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Machine learning has the potential to aid our understanding of phase structures in lattice quantum field
theories through the statistical analysis of Monte Carlo samples. Available algorithms, in particular those
based on deep learning, often demonstrate remarkable performance in the search for previously
unidentified features, but tend to lack transparency if applied naively. To address these shortcomings,
we propose representation learning in combination with interpretability methods as a framework for the
identification of observables. More specifically, we investigate action parameter regression as a pretext task
while using layer-wise relevance propagation (LRP) to identify the most important observables depending
on the location in the phase diagram. The approach is put to work in the context of a scalar Yukawa model
in ð2þ 1Þd. First, we investigate a multilayer perceptron to determine an importance hierarchy of several
predefined, standard observables. The method is then applied directly to the raw field configurations using
a convolutional network, demonstrating the ability to reconstruct all order parameters from the learned filter
weights. Based on our results, we argue that due to its broad applicability, attribution methods such as LRP
could prove a useful and versatile tool in our search for new physical insights. In the case of the Yukawa
model, it facilitates the construction of an observable that characterizes the symmetric phase.
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I. INTRODUCTION

Lattice simulations of quantum field theories have
proven essential for the theoretical understanding of fun-
damental interactions from first principles, perhaps most
prominently so in quantum chromodynamics. However, an
in-depth understanding of the emergent dynamics is often
difficult. In cases where such an understanding remains
elusive, it may be instructive to search for so far uniden-
tified structures in the data to better characterize the
dynamics.
In this quest toward new physical insight, we turn to

machine learning (ML) approaches, in particular from the
subfield of deep learning [1]. These methods have proven
capable of efficiently identifying high-level features in a
broad range of data types—in many cases, such as speech
or image recognition, with spectacular success [2–5].
Accordingly, there is growing interest in the lattice com-
munity to harness the capabilities of these algorithms, both

for high energy physics and condensed matter systems.
Applications include predictive objectives, such as
detecting phase transitions from lattice configurations, as
well as generative modeling [6–39]. We recommend [40] as
an introduction to ML for physicists and [41] as a general
review for ML applications in physics.
One ansatz for the identification of relevant observables

from lattice data is through representation learning, i.e., by
training on a pretext task. The rationale behind this
approach is that the ML algorithm learns to recognize
patterns which can be leveraged to construct observables
from low-level features that characterize different phases.
However, solving a given task does by itself not lead to
physical insights, since the inner structure of the algorithm
typically remains opaque. This issue can at least partially be
resolved by the use of “explainable AI” techniques, which
have recently attracted considerable interest in the ML
community and beyond. In this work, we focus on layer-
wise relevance propagation (LRP) [42]. It is one of several
popular post-hoc attribution methods that propagate the
prediction back to the input domain, thereby highlighting
features that influence the algorithm toward/against a
particular classification decision.
We test this approach in the context of Yukawa theory in

(2þ 1) dimensions, using inference of an action parameter
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as a pretext task in order to identify relevant observables. In
a first step, we demonstrate that this is at least partially
possible by training a multilayer perceptron (MLP) on a set
of standard observables. Here, we show that the relevance
of features in different phases, as determined by LRP,
agrees with physical expectations. We benchmark our
results with a similar method based on random forests.
Subsequently, we demonstrate that the action parameter can
be inferred directly from field configurations using a
convolutional neural network (CNN). We use LRP to
identify relevant filters and discuss how these align with
physical knowledge. This also allows us to construct an
observable that appears to be a distinctive feature of the
paramagnetic phase.
The paper is organized as follows. In Sec. II we briefly

review scalar Yukawa theory on the lattice and define
important quantities. Section III serves as an introduction to
the topic of explainable AI and discusses LRP in order to
convey the rationale behind our approach. Numerical
results for the MLP and a random forest benchmark are
presented in Sec. IVA. In Sec. IV B we conduct an analysis
of the CNN and subsequently demonstrate how all order
parameters, as well as the aforementioned observable
relevant for the paramagnetic phase, can be extracted from
the filters. We discuss our findings and possible future work
in Sec. V.

II. YUKAWA THEORY

We consider a scalar Yukawa model defined on a
ð2þ 1Þd cubic lattice with periodic boundary conditions.
The theory is comprised of a real-valued scalar field with
quartic self-interaction coupled to Dirac fermions. The
action for the scalar field can be cast into the following
dimensionless form,

SKG½ϕ� ¼
X
n∈Λ

�
−2κ

Xd

μ¼1

ϕðnÞϕðnþ μ̂Þ

þ ð1 − 2λÞϕðnÞ2 þ λϕðnÞ4
�
; ð1Þ

where Λ denotes the set of all lattice sites. Here, κ is called
the hopping parameter and λ takes the role of the coupling
constant.
In order to ensure positivity of the partition function, one

needs a minimum of two degenerate fermion flavors. Due
to their bilinear contributions to the action, the fermionic
d.o.f. can be integrated out, yielding the determinant of the
discretized Dirac operator,

Dnm½ϕ� ¼
Xd

μ¼1

ημðnÞ
δðn −mþ μ̂Þ − δðn −m − μ̂Þ

2

þ δðn −mÞðMf þ gϕðnÞÞ; ð2Þ

as a multiplicative contribution to the statistical weight. The
Euclidean Dirac γ-matrices are absorbed by the staggered
transformation, yielding the scalars ημðnÞ that mix the
spatial and spinor degrees of freedom. They are given by
η1ðnÞ ¼ 1 and ηlðnÞ ¼ ð−1Þn1 � � � ð−1Þnl−1 . Mf denotes the
fermion mass and g is the Yukawa coupling to the bosonic
field. The expectation value of an observableO can then be
expressed as the path integral

hOi ¼ 1

Z

Z
Dϕ detðDTDÞ expð−SKGÞOðϕÞ; ð3Þ

where Z denotes the partition function. Important observ-
ables characterising phases and critical phenomena in
scalar ϕ4-theory include the magnetization,

M ¼ 1

jΛj
X
n∈Λ

ϕðnÞ; ð4Þ

as well as the staggered magnetization

Ms ¼
1

jΛj
X
n∈Λ

ð−1Þn1þ���þndϕðnÞ; ð5Þ

which is relevant for negative κ. The scalar part of Eq. (1)
features the additional staggered symmetry

κ ↦ −κ and ϕðnÞ ↦ ð−1ÞnϕðnÞ; ð6Þ

which connects both magnetizations. The fermionic part
explicitly breaks this symmetry.
A slice of the phase diagram at fixed Yukawa coupling

is shown in Fig. 1. The theory exhibits an interesting
structure, with two broken phases of ferromagnetic (FM)
and antiferromagnetic (AFM) nature, where M and Ms
respectively acquire nonzero expectation values. They are

FIG. 1. Slice of the phase diagram for fixed Yukawa coupling
g ¼ 0.25 using normalized values of hMi and hMsi. Phase
transitions are highlighted by the shaded bars. We distinguish
an antiferromagnetic (AFM), a paramagnetic (PM) and a ferro-
magnetic (FM) phase.
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separated by a symmetric, paramagnetic (PM) phase, where
both quantities vanish.
We also consider the connected two-point correlation

function

Gcðn;mÞ ¼ hϕðnÞϕðmÞi − hϕðnÞihϕðmÞi: ð7Þ

While the expectation value of the magnetization can be
estimated from a single field configuration at reasonable
lattice sizes, signals of n-point correlators are naturally
much more suppressed due to statistical noise and cannot
be reasonably approximated from one sample. Therefore,
we introduce the time-sliced correlator GcðtÞ, which is
defined by

GcðtÞ ¼
1

jΛj
X
n⃗

Gcððt; n⃗Þ; ð0; 0⃗ÞÞ; ð8Þ

where the sum runs over spacelike components. It measures
correlations only in the temporal direction, which leads to a
better signal-to-noise ratio due to the averaging procedure.
Some aspects of the derivation and simulation are given

in the Appendix A. For a comprehensive treatment of
Yukawa theory on the lattice, we recommend [43].

III. INSIGHTS FROM EXPLAINABLE AI

Simple methods from statistics and ML often lack the
capability to model complex data, whereas sophisticated
algorithms typically tend to be less transparent. A com-
monly used example is principal component analysis
(PCA). It has been successfully applied to the extraction
of (albeit already known) order parameters for various
systems [6,9,13]. However, its linear structure prohibits the
identification of complex nonlinear features, e.g., Wilson
loops in gauge theories. Hence, we require tools capable of
modeling nonlinearities, such as deep neural networks [18].
They allow for a more comprehensive treatment of complex
systems, which has been demonstrated e.g., for fermionic
theories in [7,12]. The approach also enables novel pro-
cedures, such as learning by confusion and similar tech-
niques, to locate phase transitions in a semisupervised
manner [16,36]. For lattice QCD, action parameters can be
extracted from field configurations [26]. Overall, deep
learning tools seem particularly well-suited to grasp rel-
evant information about quantum field dynamics in a
completely data-driven approach, by learning abstract
internal representations of relevant features.
However, their lack of transparency is frequently a major

drawback of using such methods, which prohibits access to
and comprehension of these representations. A unified
understanding of how and what these architectures learn,
and why it seems to work so well in a wide range of
applications, is still pending. To better understand the
processes behind neural network-driven phase detection
in lattice models, multiple proposals have been made, such

as pruning [10,27,33], utilizing (kernel) support vector
machines [17,34], and saliency maps [35]. Interpretability
is also investigated for other applications in theoretical
physics, e.g., by employing twin neural networks [44].
Also, in the broader scope of ML research, there has

been growing interest in interpretability approaches, most
of them focusing on post-hoc explanations for trained
models. So-called attribution methods typically assign a
relevance score to each of the input features that quantifies
which features the classifier was particularly sensitive to, or
influenced the algorithm toward/against an individual
classification decision. In the domain of image recognition,
such attribution maps are typically visualized as heatmaps
overlaying the input image. The development of attribution
algorithms is a very active field of research in the ML
community. Therefore, we refer to dedicated research
articles for more in-depth treatments [45,46]. Very broadly,
the most important types of such local interpretability
methods can be categorized as: 1. Gradient-based, such
as saliency maps [47] obtained by computing the derivative
of a particular class score with respect to the input features
or integrated gradients [48]. 2. Decomposition-based, such
as layer-wise relevance propagation (LRP) [42] or DeepLift
[49]. 3. Perturbation-based, as in [50], investigating the
change in class scores when occluding parts of the input
features.
In this work, we focus on LRP, a particular variant of

decomposition-based attribution methods, which has been
successfully applied to other problems in physics and
chemistry, e.g., in the context of atomistic systems [51].
Nevertheless, we stress that qualitative findings are
expected to agree for all decomposition- and gradient-
based methods [52]. The general idea of LRP is to start
from a relevance assignment in the output layer and
subsequently propagate this relevance back to the input
using certain propagation rules, see the sketch in Fig. 2 and
Appendix C for details. In this way, the method assigns a
relevance score to each neuron, where positive (negative)
entries strongly influence the classifier toward (against) a
particular classification decision.

FIG. 2. Sketch of LRP through the last two layers of a
classification network that predicts one-hot vectors. Relevance
is indicated by arrow width. The conservation law requires the
sum of widths to remain constant during back propagation.
Diagram adapted from [53].
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IV. RESULTS

In this section, numerical results are presented which
corroborate our rationale. We train a multilayer perceptron
(MLP) and a convolutional neural network (CNN) to infer
the associated hopping parameter κ from a set of known
observables (Approach A), as well as solely from the raw
field configurations (Approach B), akin to [26]. In the first
case, without providing any prior knowledge of the phase
boundaries, LRP manages to reveal the underlying phase
structure and returns a phase-dependent importance hier-
archy of the observables in accordance with physical expert
knowledge. In the second case, by calculating the rele-
vances of the learnt filters, we can associate each of them
with one of the physical phases and thereby extract the
known order parameters. Moreover, it facilitates the con-
struction of an observable that characterizes the symmetric
phase. Both variants of our strategy are sketched in Fig. 3.
Due to the ill-conditioned nature of the action parameter
prediction problem, the optimization objective is formu-
lated in terms of maximum likelihood estimation.
Assuming a Gaussian distribution with fixed variance, this
objective reduces to minimising the mean squared error
(MSE), which we use as loss function in the following. In
addition, we apply weight regularization, see Appendix E
for details.

A. Importance hierarchies of known observables

In Sec. II we introduced a set of standard observables,
consisting of the normal and staggered magnetization as

well as the time-sliced two-point correlation function.1 It
seems reasonable to assume that much of the relevant
information characterising the phase structure and dynam-
ics of the theory is encoded in these quantities. To check
this, we create an ordered dataset of measurements of these
quantities at various, evenly spaced values of κ (see
Appendix B for details on the dataset) and use it to perform
a regression analysis. We employ a MLP, also called fully-
connected neural network (see Appendix E for details on
the specific architecture). The method is compared against
a random forest regressor as a baseline, which is a standard
method based on the optimization of decision trees [54]
(see Appendix D for details). The results for both appro-
aches, shown in Figs. 4 and 5, will be discussed in the
following.
We observe qualitatively similar accuracy on the training

and test data in the broken FM and AFM phases. This is
expected, since we know from Fig. 1 that always one of the
two types of magnetizations is strictly monotonic in the
respective phase and can therefore determine κ uniquely.
However, both approaches yield at best mediocre perfor-
mance in the symmetric PM phase. Here, both magnetiza-
tions tend to zero and therefore do not contain much
relevant information. Moreover, the two-point correlator
exhibits approximately symmetric properties around κ ¼ 0.
Therefore, it also does not provide a unique mapping.
This issue is resembled in the prediction for both methods.

Configurations
 Action para- 

 meters

Physics

MLP

CNN

Interpretation

Observables Approach A

Approach BConfigurations
 Action para- 

 meters

Physics

MLP

CNN

Interpretation

Observables Approach A

Approach B

FIG. 3. Sketch of our strategy to learn meaningful structures from the simulation data by analysing the networks trained for action
parameter inference. Field configurations used for training are either preprocessed into observables for the MLP (Approach A) or
directly operated upon with a CNN (Approach B). Obtaining accurate predictions for the parameters indicates approximate cycle
consistency in the above diagram, which supports the notion that the networks have successfully identified characteristic features. These
can then be extracted in a subsequent interpretation step using LRP.

1We use a slightly modified definition of the time-sliced
correlator in order to remove lattice artifacts from the data, see
Appendix B.
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The random forest yields a symmetric discrepancy around
κ ¼ 0. In comparison, the MLP shows an improved
performance for κ < 0, albeit at the price of a larger
variance for κ > 0. At this point, we can already see that
the chosen set of observables suffices to characterize the
theory only in the broken phases, whereas in the
symmetric phase, additional information appears to be
necessary.
Before we embark on the search for the missing piece, let

us first examine the results further to verify that the learnt
decision rules conform to the physical interpretation given
above. We begin with the relevances as determined by LRP,
shown in Fig. 4 (bottom), and later compare to the random
forest benchmark below. As expected, M and Ms are
relevant in the FM and AFM phases, respectively. There,
considerable relevance is also assigned to the observable
Gcðt ¼ 0Þ. However, the contribution appears to diminish
when going deeper into the broken phases. Its comparably
large relevance in the symmetric PM phase shows that it
contains most of the information used for the noisy
prediction. As described above, the mediocre performance
in this phase indicates that although the network seems to
find weak signals, the chosen set of observables cannot be
optimal.

The interpretation sketched above is further supported by
the results obtained through random forest regression [54].
Analogously to the previously introduced relevance for
LRP, we can determine nominal contributions of input
features to the prediction and hence a measure of local
feature importance (see Appendix D for details), which is
shown in Fig. 5 (bottom). In the broken FM and AFM
phases, the respective contributions of M and Ms demon-
strate a linear dependence on κ. Again, this clearly indicates
that these quantities characterize the associated phases. For
the symmetric PM phase, the situation appears more
challenging, since no such clear dependence is observed
for any of the observables. The nonzero contributions of
features in the PM phase imply that they add some valuable
information to the decision here. However, this has to be
weighted against the observation that the accuracy in this
region is poor. This further confirms our previous con-
clusion that relevant information to characterize this phase
is largely lost in the preprocessing step, assuming that it
was initially present in the raw field configurations. It is
worthwhile stressing that this analysis represents an inde-
pendent confirmation of the results obtained above. Both
algorithms (MLP vs random forest) rely on fundamentally
different principles. We use a model-intrinsic interpret-
ability measure for the random forest, whereas for the MLP
we rely on LRP, i.e., a post-hoc attribution method.

FIG. 4. Results for the MLP. Top: predictions, bottom: nor-
malized LRP relevances of individual features. Error bars here
and throughout this work are obtained with the statistical jack-
knife method.

FIG. 5. Benchmark results for the random forest. Top: pre-
dictions, bottom: nominal contributions of individual features.
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B. Extracting observables from convolutional filters

In the previous section, we used a dataset of known
observables to reconstruct κ. Calculating such quantities
corresponds to heavy preprocessing of the high-dimen-
sional field configuration data. The resulting low-dimen-
sional features are far less noisy, implying distillation of
relevant information. This is a common procedure in the
field of data science, and may become unavoidable for
large lattices and/or theories with more degrees of freedom.
E.g., in state-of-the-art simulations of lattice QCD, the
required memory to store a single field configuration can
easily reach Oð109Þ floating point numbers. Nevertheless,
using preprocessed data in the form of standard observables
introduces strong biases toward known structures. If our
perception of the problem or generally our physical
intuition is flawed, machine learning cannot help us—
the relevant information may very well be lost in the
preprocessing step. In the present case specifically, it
appears that important features in the PM phase are
neglected by this procedure, assuming that structures
characterising this phase do in fact exist. Therefore, it is
instructive to search for signals of such structures by
training neural networks directly on field configurations.
As a starting point for this search, we first perform a PCA

on the field configuration dataset. As previously men-
tioned, this has been done before with promising results
[6,9,13], albeit not in exactly the same physical setting.
PCA immediately identifies the normal and staggered
magnetizations as dominant features, essentially reproduc-
ing the work of [9]. All higher order principal components
show a vanishing explained variance ratio, implying that no
other relevant, purely linear features are present in the data.
This observation indicates that, if a quantity exists which
parametrizes the symmetric PM phase, it cannot simply be
a linear combination of the field variables.
Our improved approach is based on a convolutional

neural network (CNN). The training procedure is largely
equivalent to that for the MLP in the previous section, with
the observable dataset replaced by the full field configu-
rations. We train a CNN using five convolutional filters
with a shape of 2 × 2 × 2 and a stride of 1. In order to
support explainability, we encourage weight sparsity by
adding the L1 norm to the loss—also known as LASSO
regularization—as suggested in [35] (see Appendix E for
details). Due to the nature of the convolution operation,
learnt filters have a direct interpretation i.t.o. first-order
linear approximations of relevant observables. Hence, we
expect the CNN to reproduce the PCA results at the very
least, and aim for the identification of other, nonlinear
quantities, which the network can encode in subsequent
layers. It is important to understand this difference between
the approaches, even though both extract only linear signals
in a first approximation.
The model predictions are shown in Fig. 6 (top). We can

immediately observe a superior performance in the PM

phase compared to our previous results. The CNN succeeds
to consistently infer κ from the field configuration data with
high accuracy. This indicates that it indeed manages to
construct internal representations suitable not only to
discern the different phases, which would be sufficient
for classification purposes, but also for an ordering of data
points within each phase.
In order to interpret the predictions and extract knowl-

edge about the learnt representations, we have to customize
LRP to our needs. In image recognition, as previously
mentioned, one mostly aims at highlighting important
regions in the input domain, leading to superimposed
heatmaps. This is based on the inherent heterogeneity
common to image data, where relevant features are usually
localized. For field configurations on the lattice, due to the
translational symmetry of the action and the resulting
homogeneity, no particularly distinguished, localized
region should be apparent in any given sample.
However, each convolutional filter encodes an activation
map that is in fact sensitive to a specific feature present in a
lattice configuration. In contrast to the usual ansatz, the
spatial homogeneity promotes global pooling over the
relevances associated with each filter weight. Hence,
instead of assigning relevances to input pixels, we are
interested in the cumulative filter relevance which indicates
their individual importance for a particular prediction.

FIG. 6. Results for the CNN. Top: prediction, bottom: normal-
ized relevances of individual filters. The dashed curve corre-
sponds to the cumulative relevance of filter 3 and 4.
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Analogously to the rationale of the previous section, we can
use this approach to build importance hierarchies of filters,
thereby facilitating their physical interpretation as signals
of relevant observables.
Figure 6 (bottom) shows each filter relevance as a

function of κ. We can recognize some similarities to the
relevances in Fig. 4, highlighting the underlying phase
structure of the Yukawa theory. It appears that the model
can parametrize each phase individually using one or a
small subset of filters, while the others show small or
insignificant relevances in the respective region. The learnt
weight maps are shown in Fig. 7, where we also assign
names to the filters depending on the corresponding
associated phase, with the exception of filter no.0 because
it exhibits completely vanishing weights and relevance. It
seems to have been dropped entirely by the network,
indicating that four filters are sufficient to characterize
all phases seen in the data. This reduction is an effect of the
regularization, and constitutes a recurring pattern also when
more filters are initially used, providing a first hint toward
the number of independent quantities utilized by the
network.
Let us begin by examining the results that directly

correspond to known quantities. We observe that the
FM1 and FM2 filters have entries of roughly uniform
magnitude with a globally flipped sign. Accordingly, we
can identify them as signals of the negative and positive
branches of the magnetization M, respectively. This is
corroborated by their dominating relevances in the FM
phase. The AFM filter exhibits alternating entries of uni-
form magnitude and therefore corresponds to the staggered
magnetization Ms, which accordingly dominates the AFM
phase. Hence, both order parameters can be explicitly
reconstructed from the CNN. The appearance of two filters
for the magnetization is easily understood by inspection of
the network architecture in Table III, the crucial point being
the application of a ReLU activation after the convolution
operation. Consider the action of a positively-valued filter
to negatively magnetized field configurations, or vice versa.
The resulting negative activation map is subsequently
defaulted to zero by the ReLU. Hence, in order to take
both branches ofM into account, two equivalent filters with
opposing signs are required. The comparably large error
bars in this region stem from the presence of positively and
negatively magnetized samples in the dataset, which lead to

a higher per-filter variance. Therefore, we additionally plot
the cumulative relevance of both filters.
We now discuss the main object of interest, namely the

PM filter. It supplies the dominant signal for the charac-
terization of this phase. A linear application of this filter to
the configurations, as done for the FM and AFM filters,
does not produce a monotonic quantity, which would be
required for a unique ordering. This further supports the
aforementioned evidence gathered by PCA for the absence
of an additional, purely linear observable. Hence, the
simple reconstruction scheme outlined in the previous
paragraphs cannot be applied in this case. Instead, we
undertake a heuristic attempt to reconstruct the relevant
quantity. To this end, we note that the ReLU activation
applied to the convolutional layer’s output can effectively
correspond to the absolute value function, albeit with less
statistics, if the entries of the activation map are distributed
accordingly. Inspired by this observation, we define the
following observable,

OPM ¼ 1

jΛj
X
n∈Λ

j½ϕðnÞ þ ϕðnþ μ̂1Þ�

− ½ϕðnþ μ̂2 þ μ̂3Þ þ ϕðnþ μ̂1 þ μ̂2 þ μ̂3Þ�j: ð9Þ

As with M and Ms, we obtain the corresponding staggered
form Os

PM by applying the transformation given in Eq. (6).
The resulting pair of quantities is visualised by the idealised
filters in Fig. 10.
The observableOPM defined in Eq. (9) is the sum over all

lattice sites of the lattice derivative in the diagonal μ̂2 þ μ̂3
direction of blocks in the μ̂1 direction. This already explains
the modulus, as otherwise OPM would be the sum over all
sites of a total derivative, which vanishes identically. We
also remark that OPM can be made isotropic by summing
over all directions.
We now discuss the properties of the theory that are

measured by OPM: In the continuum limit, OPM naively
tends toward the volume integral over j∇ϕj. Due to the
modulus of the derivative, hOPMi carries the same infor-
mation as the expectation value of the kinetic term.
The blocking in the μ̂1-direction leads to a sensitivity of

OPM to sign flips of nearest-neighbors. While no con-
tinuum observable is sensitive to these sign flips, the
continuum limit of hOPMi maintains this information.
Accordingly, hOPMi exhibits a distinct behavior in the
presence of localized, (anti-)magnetized regions, even if the
expectation values vanish globally. Possible local field

FIG. 7. learnt weights of convolutional filters. Left to right:
(no.1, PM); (no.2, AFM); (no.3, FM); (no.4, FM). The colour
map is symmetric around zero. Red (blue) corresponds to positive
(negative) weights.

FIG. 8. Comparison of PM filters for three independent training
runs of the CNN.

TOWARDS NOVEL INSIGHTS IN LATTICE FIELD THEORY … PHYS. REV. D 101, 094507 (2020)

094507-7



alignments resulting in different values of OPM, but not of
the standard derivative, are visualized in Fig. 11.
The construction and discussed sensitivities of hOPMi

demonstrates again the usefulness of LRP: we can identify
the learnt representation as a feature of the dataset arising
from the lattice discretization. hOPMi and hOs

PMi as
functions of κ are shown in Fig. 9 together with the other
reconstructed observables and their respective analytical
counterparts. A monotonic, roughly linear dependence is
observed in the PM phase, indicating that the quantity
indeed provides a unique mapping which aids the κ
inference. In fact, ifOPM is included in the set of predefined
observables for the inference approach detailed in the
previous section, the prediction accuracy of the MLP
accordingly becomes comparable to the CNN in this phase.
In conclusion, we find that the CNN characterizes the

PM phase by additionally measuring kinetic contributions
in the described manner, rather than only expectation values
of the condensate like in the broken phases. Still,M andMs
are being utilized as well, judging from the comparably
large relevances of the FM filters in this region. Due to the
opacity of the fully-connected layers following the con-
volution, some ambiguity remains regarding the precise
decision rules that the network implements based on these
quantities. This residual lack of clarity can likely be
resolved by manually enforcing locality in the internal
operations, e.g., by introducing artificial bottlenecks into
the network. Of course, the form of OPM is also not exactly

equivalent to the operations of the CNN, even though they
share many important features. In particular, there is a
mismatch between the averaging procedure and the
MaxPool layer. Effects associated with the choice of
different activation functions and pooling layers, which
may be tailored more specifically toward certain types of
observables, should be investigated in the future. However,
our analysis shows that the overlap with the learned internal
representation is significant.

V. CONCLUSIONS AND OUTLOOK

We have investigated the application of interpretability
methods to deep neural network classifiers as a general-
purpose framework for the identification of physical
features from lattice data. The approach facilitates an
interpretation of a network’s predictions, permitting a
quantitative understanding of the internal representations
that the network learns in order to solve a pretext task—in
this case, inference of action parameters. This culminates in
the extraction of relevant observables from the data, leading
to insights about the phase structure.
First, both types of magnetizations and the time-sliced,

connected two-point correlator were used as training data
for a MLP (see Fig. 4). Inference of the hopping parameter
was shown to work in each of the two broken phases,
respectively. However, in the symmetric phase, the network
was observed to suffer from bad accuracy. This indicates
that the amount of relevant information present in the
dataset is insufficient for the network to fully capture the
dynamics of the theory. Using layer-wise relevance propa-
gation, we determined a κ-dependent importance hierarchy
of the observables. Using this approach we were able to
confirm our physics expectations about order parameters
being relevant within their associated phases. Moreover,
while the two-point correlation function is sensitive to the
PM phase, this signal is insufficient for attaining high

FIG. 9. Normalized observables reconstructed from the learnt
filters. The quantities associated with the FM and AFM phases
are compared to M and Ms. OPM and Os

PM are related by Eq. (6)
and exhibit an approximate mirror symmetry around κ ¼ 0.

FIG. 10. Convolutional filters corresponding to the observable
OPM defined in Eq. (9) (left) and its corresponding staggered
counterpart Os

PM (right).

FIG. 11. Qualitative visualization of local structures in field
configurations operated upon by the PM filter. Sign is encoded by
arrow orientation/colour. Diagonal neighbors tend to share the
same sign everywhere in the phase diagram. On the contrary,
nearest neighbors show a preference toward either same (left) or
opposite (right) orientations. OPM is particularly sensitive toward
the local presence/absence of such sign flips in the PM phase,
without the need for a globally nonzero expectation value of the
magnetizations.
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accuracy for the MLP. Our numerical results and inter-
pretation thereof were further verified by a random forest
regression benchmark performed on the same dataset,
which demonstrated qualitatively comparable accuracy
(see Fig. 5).
Next, we trained a CNN directly on the field configu-

rations. In contrast to aforementioned results, the CNN was
shown to yield superior accuracy for the same inference
task (see Fig. 6). Therefore, the set of observables chosen
previously must have neglected important information,
which the network managed to distill from the raw data.
Employing LRP, a cumulative relevance was assigned to
the individual convolutional filters, revealing a distinctive
pattern that explains the decision process. In particular, we
observed that the network specifically assigned filters to the
each of the phases of the theory, with small to vanishing
relevances in the remaining phases. This also indicates
where phase transitions are located. We confirmed that the
learned filters correspond to representations of the known
order parameters by examining the weight maps (see
Figs. 7 and 8), essentially reproducing previous results.
Guided by the filter analysis, we constructed an observ-

able that characterizes the symmetric phase. In a heuristic
attempt to find the exact form of this quantity, we defined
OPM in Eq. (9) and showed that it exhibits several
interesting properties (see Fig. 9). We interpreted this
quantity as a particular measure of local fluctuations that
is also sensitive to nearest-neighbor sign flips. This further
validates our physical intuition, since in the PM phase, we
expect that relevant information for its characterization is
encoded by kinetic contributions. As discussed in detail
below Eq. (9), the naive continuum limit of OPM is simply
the volume integral of j∇ϕj, Hence, it has lost the
information about nearest-neighbour sign flips, while the
continuum limit of its expectation value, hOPMi, keeps its
sensitivity toward this property. Accordingly, the construc-
tion of this observable guided by the filter analysis is
nontrivial evidence for the potential power of the present
approach: the results demonstrate that we can identify
relevant structures which may otherwise stay hidden. At
this point, LRP has indeed facilitated a deeper under-
standing of the CNN, by explaining the origin of its
comparably high accuracy w.r.t. the MLP. With these
results, we have conclusively established the value of
interpretability methods in deep learning analyses of lattice
data.
In the present work, the emphasis was put on the

methodological aspects of the analysis in order to form a
comprehensive basis for future efforts. Many interesting
aspects, such as an investigation of the fermionic sector,
were barely discussed. Instead, we have focused on the
inference of the hopping parameter. Including other action
parameters into the labels, such as the Yukawa coupling or
chemical potential, is a promising endeavor for the future,
as it will likely lead to an improvement in comparison to the

current results. This is necessary in order to pave the way
toward an application to more interesting scenarios, such as
QCD at finite density or competing order regimes in the
Hubbard model. Moreover, the introduced ML pipeline has
the potential to provide insight also in various other areas of
computational physics.
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APPENDIX A: THEORY AND SIMULATION
DETAILS

1. Dimensionless form of the Klein-Gordon action

The lattice action for real, scalar ϕ4-theory in d dimen-
sions is defined as

SKG½ϕ0� ¼
X
n∈Λ

ad
�
1

2

Xd

μ¼1

ðϕ0ðnþ aμ̂Þ − ϕ0ðnÞÞ2
a2

þm2
0

2
ϕ2
0 þ

g0
4!

ϕ4
0

�
; ðA1Þ

where a is the lattice spacing, ϕ0; m0; g0 correspond to the
bare field, mass and coupling constant, and μ̂ is the unit
vector in μ-direction. The action can be cast into a
dimensionless form through the following transformation:

a
d−2
2 ϕ0 ¼ ð2κÞ1=2ϕ

ðam0Þ2 ¼
1 − 2λ

κ
− 2d

a−dþ4λ0 ¼
6λ

κ2
: ðA2Þ

Here, κ is commonly called the hopping parameter and λ
now takes the role of the coupling constant. Applying this
transformation results in

SKG½ϕ� ¼
X
n∈Λ

�
−2κ

Xd

μ¼1

ϕðnÞϕðnþ μ̂Þ

þ ð1 − 2λÞϕðnÞ2 þ λϕðnÞ4
�
: ðA3Þ

2. Simulating fermions

Calculating the determinant of the dicretized Dirac
operator [Eq. (2)] exactly and repeatedly, which is in
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principle necessary for importance sampling, is computa-
tionally intractable even for moderate lattice sizes. The
usual approach is to approximate its value stochastically,
e.g., by introducing auxiliary bosonic field variables
(commonly called pseudo-fermions), which guarantees
an asymptotically exact distribution. Simulations based
on the numerical solution of differential equations, such
as the hybrid Monte Carlo (HMC) algorithm or Langevin
dynamics, can exploit the comparably low cost of comput-
ing only the matrix inverse with the conjugate gradient
method. In this work, we exclusively employ the HMC
algorithm to generate data.

APPENDIX B: LATTICE DATASETS

All field configurations composing the datasets used in
this work are generated with the parameters listed in
Table I. A single, labeled sample is given by the mapping

ðϕ; κÞ∶ fϕng ¼ fϕnjn ∈ Λg → κ: ðB1Þ

In order to explicitly enforce Z2 symmetry onto the neural
networks, we use the same configurations twice in the
dataset, just with a globally flipped sign. This raw data is
directly used to train the CNN. For the MLP, the samples
are preprocessed by computing the chosen set of observ-
ables for each configuration,

ðO; κÞ∶ fjMj; jMsj; GcðtÞg → κ: ðB2Þ

In this case, we can simply take the modulus of the
magnetizations without losing information, since only
two branches with exactly opposite signs are present in
the phase diagram. Due to the finite expectation value of the
staggered magnetization, the AFM phase contains unphys-
ical negative correlations. In order to remove these lattice
artifacts, we adapt the usual time-sliced two-point corre-
lator to

GcðtÞ ¼ jhϕðtÞϕð0Þi −M2 − ð−1ÞtM2
s j: ðB3Þ

Generally, LRP is designed for classification problems.
Therefore, we discretize κ to facilitate the formulation of
the inference objective as a classification task. All values of
κ are transformed into individual bins and the networks are
tasked to predict the correct bin. In order to retain a notion
of locality, the true bins are additionally smeared out with a
Gaussian distribution, resulting in the target labels

κ → yb ¼ e−
ðκb−κTrueÞ2

2σ2 : ðB4Þ

Here, b denotes the bin number, and the variance was set to
σ ¼ 3Δκ. In combination with a MSE loss, we obtain
qualitatively similar prediction results compared to a
standard regression approach.

APPENDIX C: PROPAGATION RULES

This section contains a summary of the mathematical
background of LRP, in particular regarding the propagation
rules. Generally, the relevance Rj depends on the activation
of the previous layer xi. Given some input to the network,
its predicted class f is identified by the output neuron with
the largest response. This neuron’s activation Rout

f , along
with Rout

i ¼ 0 for all other classes i ≠ f, defines the
relevance vector. This output layer relevance can then be
backpropagated through the whole network, which results
in the aforementioned heatmap on the input. Importantly,
the propagation rules are designed such that the total
relevance is conserved,

X
i

Rn
i ¼

X
i

Rout
i ≡ Rout

f ; ðC1Þ

where the index n can indicate any layer. This conservation
law ensures that explanations from all layers are closely
related and prohibits additional sources of relevance during
the backpropagation. A Taylor expansion of this conserva-
tion law yields

X
j

RjðxiÞ ¼
X
j

Rjðx̃iÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

þ
X
i

X
j

∂Rj

∂xi
����
fx̃ig

ðxi − x̃iÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ri

: ðC2Þ

Here, we choose x̃i to be a so-called root point, which
corresponds to an activation with vanishing consecutive
layer relevance Rjðx̃iÞ ¼ 0. By definition, it is localized on
the layer’s decision boundary, which constitutes a hyper-
surface in the activation space. Hence, the root point is not
uniquely defined and we need to impose an additional
criterion. However, given such a point, we can identify the
first order term as the relevance propagation rule Rj ↦ Ri.
The remaining root point dependence gives rise to a variety
of possible propagation rules. For instance, the w2 rule
minimizes the Euclidean distance between neuron activa-
tion xi and the decision boundary in order to single out a
root point. Visualizations of root points, as well as essential
derivations and analytical expressions for propagation
rules, can be found in [46].

APPENDIX D: RANDOM FOREST DETAILS

Random forests [54] denote a predictive ML approach
based on ensembles of decision trees. They utilize the

TABLE I. Action/simulation parameters used for training and
test dataset.

N λ M g Δκ #samples per κ

16 1.1 20 0.25 0.005 200—Training set
100—Test set

STEFAN BLÜCHER et al. PHYS. REV. D 101, 094507 (2020)

094507-10



majority vote of multiple randomized trees in order to arrive
at a prediction. This greatly improves the generalization
performance compared to using a single tree. The elemen-
tary building block is a node performing binary decisions
based on a single feature criterion. New nodes are con-
nected sequentially with so-called branches. A single
decision tree is grown iteratively from a root node to
multiple leaf nodes. A concrete prediction corresponds to a
unique path from the root to a single leaf. Each node on the
path is associated with a specific feature. Hence, we can
sum up the contributions to the decision separately for each
feature by moving along the path,

prediction ¼ biasþ
X
i

ðfeature contributionÞi: ðD1Þ

Here, the bias corresponds to the average prediction at the
root node.
We employ the SCIKIT-LEARN implementation [55] in

combination with a TREEINTERPRETER extension [56]. The
latter reference also provides an excellent introduction to
the concept of feature contributions.
The random forest is initialized with 10 trees and a

maximum tree depth of 10. This parameter is essential for
regularization, since an unconstrained depth causes over-
fitting and thus results in poor generalization performance.
In order to fix this parameter, we start at a large value and
successively reduce it until the training and test accuracy
reach a similar level. This way we can retain as much
expressive power as possible in the random forest while
simultaneously eliminating systematic errors resulting from
overfitting. However, we emphasize that the specific choice
of this parameter not relevant to our argument.

APPENDIX E: NETWORK ARCHITECTURES
AND IMPLEMENTATION DETAILS

We use the PYTORCH framework [57]. The machi-
nery of LRP is included by defining a custom
torch.nn.Module and equipping all layers with a
relevance propagation rule. Furthermore, all biases are
restricted to negative values in order to ensure the existence
of a root point. For training, we employ the Adam

optimizer [58] with default hyperparameters and an initial
learning rate of 0.001, using a batch size of 16.
For both networks, the first layer undergoes least

absolute shrinkage and selection operator (LASSO) regu-
larization during training, which encourages sparsity and
thereby enhances interpretability. This corresponds to
simply adding the L1 norm of the respective weights wij
to the MSE loss, which accordingly takes the form

L ¼ 1

d

Xd

f¼1

ðyf − ŷfÞ2 þ λLasso
X
ij

jwijj: ðE1Þ

Here,yf; ŷf denote theprediction and ground truth labels, and
i, j the input and output nodes of the first layer. The quantity
λLasso parametrizes the strength of the regularization.
The network architectures used in this work are given in

Tables II and III.
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