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We consider the three dimensional SU(2) Yang-Mills theory with adjoint static color sources, studying
by lattice simulations how the shape of the flux tube changes when increasing the distance between them.
The disappearance of the flux tube at string breaking is quite abrupt, but precursors of this phenomenon are
present already when the separation between the sources is smaller than its critical value, a fact that
influences also some details of the static potential.
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I. INTRODUCTION

Color confinement is one of the main nonperturba-
tive features of non-Abelian gauge theories. A first prin-
ciple proof of this phenomenon is still lacking and
constitutes part of the first millennium problem of the
Clay Mathematical Institute [1]. However a huge amount of
information about color confinement, both qualitative and
quantitative, has been obtained by numerical simulations of
lattice discretized gauge theories.
Starting from the seminal work in Ref. [2], the study of

flux tubes between static color charges gained a prominent
role in the investigation of color confinement [3–7]. The
flux tube between two sources has been investigated, for
example, to test the predictions of effective string theory
[8–13] and the dual superconductor picture of color
confinement [14–19], but also the case of more than two
charges has been studied [20–23].
So far the vast majority of flux tube investigations

concentrated on the Yang-Mills pure glue case, with
sources transforming in the fundamental representation
of the gauge group. In this setup a nonvanishing asymptotic
string tension is present,1 and the static potential rises
indefinitely with the distance between the sources; this

signals that the flux tube always connects them, independ-
ently of their distance.
Only recently investigations carried out in full QCD with

physical quark masses appeared [25,26]; however the
computational burden of simulations with dynamical light
flavors makes it impossible to obtain in this case results as
accurate as those achieved for Yang-Mills theories. In
particular, the QCD results obtained so far do not indicate
any significant qualitative difference with respect to the
pure glue case.
Such a qualitative difference is however to be expected,

since the asymptotic string tension vanishes in theories with
dynamical matter fields in the fundamental representation
of the gauge group. A striking consequence of this fact is
the peculiar behavior of the static potential: for small
distances between the sources the potential looks like
the one of the pure glue case, but when the separation
increases beyond a critical value Rc (the string breaking
length) the potential flattens and does not grow anymore
linearly with the distance between the charges [24,27–32].
It is natural to expect the flux tube to disappear, or at least

to be strongly suppressed, when the distance between the
sources approaches Rc, but there are several ways in which
this could happen: the flux tube could for example behave
as in the pure glue case for small distances and then
disappear abruptly at Rc, or it could start to delocalize
already when the sources are close to each other. Which of
these possibilities is the correct one can only be established
by numerical simulations, however to perform such a study
in QCD would be very demanding from the computational
point of view. We can nevertheless hope to gain at least
some insight on what happens in QCD by studying
simplified models displaying string breaking.
In this work we use for this purpose the three dimen-

sional SU(2) Yang-Mills theory with static sources trans-
forming in the adjoint representation. It is indeed simple to
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1This is what happens for most of the gauge groups used in the
literature and, in particular, for the SU(N) gauge groups. However
gauge groups exist for which gluons do screen fundamental
charges, and when this happens the asymptotic string tension
vanishes; see e.g., [24] for the case of G2.
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show that an adjoint charge can be screened by gluons, and
this model has been already used in the past to numerically
investigate string breaking and string decay in the static
potential [33–36] (see also [37] for the four-dimensional
case and e.g., [38] for a nonlattice approach). Our principal
aim is the study of the flux tube behavior as a function of
the distance between the adjoint sources, and in particular
for distances close to the critical value Rc. However, to
better appreciate the similarities and differences with
respect to the case without string breaking, we will also
perform a precision study of the static potential in the
unbroken string phase.
The paper is organized as follows: in Sec. II we

summarize the numerical setup adopted, and we describe
the observables used to study the flux tube. Numerical
results are reported in Secs. III A and III B for the flux tube
and the static potential respectively. Finally in Sec. IV we
summarize the results obtained, and we draw our
conclusions.

II. NUMERICAL SETUP

As anticipated in the Introduction, in this work we use
the three-dimensional SU(2) Yang-Mills theory with static
sources in the adjoint representation as a test bed to
investigate the behavior of flux tubes close to string
breaking. The usual Wilson discretization [39] is adopted,
which for the case of the gauge group SU(2) can be written
in the form,

S ¼
X

x;μ>ν

β

�
1 −

1

2
ΠμνðxÞ

�
: ð1Þ

In this expression x is a point of a three-dimensional
isotropic lattice with periodic boundary conditions, μ; ν ∈
f0; 1; 2g denote two lattice directions, and

ΠμνðxÞ ¼ Tr½UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ� ð2Þ

is the trace of the product of the link variables around the
plaquette in position x laying in the plane ðμ; νÞ. The update
is performed by using standard heat bath [40,41] and
microcanonical [42] moves, in the ratio of 1 to 5.
On the contrary of what happens in four-dimensional

gauge theories, the gauge coupling is not dimensionless in
three space-time dimensions, and the bare continuum
coupling g is related to the β value entering Eq. (1) by
the relation aβ ¼ 4=g2, where a denotes the lattice spacing.
As a consequence there is no dimensional transmutation in
the three-dimensional case, and dimensionless physical
observables can be expanded in inverse powers of β in the
weak coupling limit. In particular we will sometimes use
the following approximate expression for the square root of
the string tension [43]:

a
ffiffiffi
σ

p ¼ 1.324ð12Þ
β

þ 1.20ð11Þ
β2

þOðβ−3Þ; ð3Þ

which is valid for β ≥ 4.5.
The free energy (or the potential energy, in the zero

temperature limit) of two static adjoint color sources
separated by a distance d can be computed by using

FadjðdÞ ¼ −
1

aNt
loghTrPadjð0ÞTrPadjðd1̂Þi; ð4Þ

where Nt is the temporal extent of the lattice, lattice
translation and rotation invariances have been used and
PadjðxÞ denotes the adjoint Polyakov loop in position x.
The trace of PadjðxÞ can be immediately related to the trace
of the Polyakov loop in the fundamental representation,

PfundðxÞ ¼
YNt−1

k¼0

U0ðxþ k0̂Þ ð5Þ

(where periodic boundary conditions are implied and 0
denotes the temporal direction) by the relation,

TrPadjðxÞ ¼ jTrPfundðxÞj2 − 1: ð6Þ

To investigate the flux tube between two static adjoint
charges separated by a distance d along 1̂ (this choice of the
direction is purely conventional and irrelevant for the final
result) we use the observable,

ρadjμν ðd; xtÞ ¼
hTrPadjð0ÞTrPadjðd1̂ÞΠμνi
hTrPadjð0ÞTrPadjðd1̂Þi − hΠμνi; ð7Þ

where Πμν stands for

Πμνðd1̂=2þ xt2̂Þ; ð8Þ

i.e., for the plaquette oriented in the ðμ; νÞ plane, positioned
midway between the static sources at a transverse distance
xt. On the lattice the d=2 entering Eq. (8) has obviously to
be interpreted as the integer division bd=2c. This “mid-
point” flux tube is the one that has been most investigated
in the literature, mainly because in this way we minimize
the effect of the static charges. Of course it would be
interesting to extend the study to have a complete picture of
the whole flux tube also closer to the static sources, but this
would require a decomposition of ρadjμν in near and far-field
components (see [18]).
FadjðdÞ and ρadjμν ðd; xtÞ are the natural generalizations to

the adjoint case of the usual expressions for fundamental
static sources, and it is simple to show that in the naive
continuum limit ρadjμν reduces to the variation of hF2

μνi (no
sum intended) induced by the presence of the adjoint static
sources. Moreover ρadjμν is multiplicatively renomalizable,
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and its renormalization constant is the same of Πμν,
which also coincides with that of ρfundμν . In order to avoid
computing this renormalization constant we will use in the
following the ratio:

Rμνðd; xtÞ ¼
ρadjμν ðd; xtÞ
ρfund10 ðd; 0Þ ; ð9Þ

which has a well-defined continuum limit if numerator an
denominator are computed at the same lattice spacing.
To obtain accurate estimates of FadjðdÞ and ρadjμν ðd; xtÞwe

use both multihit [44] and multilevel [45] noise reduction
algorithms. The application of these algorithms is straight-
forward, once the components of PadjðxÞ are explicitly
written in term of PfundðxÞ by using the relation,

Padj
ab ðxÞ ¼

1

2
TrðσaPfundðxÞσb½PfundðxÞ�†Þ; ð10Þ

where σa denotes a Pauli matrix. The optimal values
for the number of levels, the size of the slices and the
number of updates to be used in the multilevel algorithm
has been determined by minimizing the fluctuations of
TrPadjð0ÞTrPadjðd1̂Þ at fixed simulation time.
The optimal number of hits to be used in the multihit

turned out to be quite insensitive to the distance d between
the sources, while the optimal setup for the multilevel
algorithm typically consisted of a single level for small
distances between the sources, and of two levels for larger
values of d. Let us consider for example the case of the
lattice 643 at β ¼ 11.3138: the setup adopted for d ¼ 4a
consisted of a single level algorithm with slices of thickness
4a and 600 updates for slice, while for d ¼ 15a we used
two slices of thickness 4a and 8a, with 10000 and 10
updates for slice respectively.
In all the cases data corresponding to different values of

d and/or xt came from different simulations, and they are
thus statistically independent of each other. Statistical
errors have been estimated by means of standard blocking,
jackknife and bootstrap procedures.

III. NUMERICAL RESULTS

A. Flux tube

In this section we report our results concerning the
behavior of the flux tube close to string breaking, obtained
by studying the dependence of ρadjμν ðd; xtÞ (as a function of
the transverse distance xt) on the separation d between the
adjoint static charges. The majority of our simulations have
been performed on a 323 lattice, but we resorted also to
different lattice sizes to investigate finite volume and finite
lattice spacing effects.
We mainly focus on the longitudinal component of the

chromoelectric field (corresponding to ρadj10 with the con-
ventions of the previous section), which turns out to be the

dominant component of the flux tube also in the adjoint
case. However the study of the two other components of the
field strength is important to identify the disappearance of
the flux tube: since string breaking happens when the two
charges are at a finite distance from each other, we cannot
expect the longitudinal chromoelectric field to vanish at
string breaking, because the near-field of the charges is
always present (see [18]). The natural expectation is that
the longitudinal component of the chromoelectric field
became of the same size as the other components at string
breaking.
As a first step we investigate which lattice sizes are

needed in order not to have significant finite volume effects.
For this purpose we estimated ρadjμν ðd; xtÞ for d ¼ 4a at
coupling β ¼ 6.0, using two different lattice sizes, i.e., L ¼
16 and L ¼ 32. As can be seen from the numerical results
reported in Fig. 1, finite size effects are well under control
in this setup, and the longitudinal component of the
chromoelectric field is indeed the dominant component
of the flux tube.
To study the dependence of the adjoint flux tube on

the distance d between the static sources, we thus start
by using a fixed scale approach on a 323 lattice at β ¼ 6.0.
For this value of the coupling the string breaking distance
is approximately Rc ≈ 10a (see [35] and Sec. III B), and
results for ρadjμν ðd; xtÞ obtained in this setup are shown in
Fig. 2, both for the longitudinal component ρadj10 and for the
transverse ones ρadj20 and ρadj12 .
From data in Fig. 2 we can already draw several

interesting observations: first of all it is evident that the
longitudinal component of the adjoint flux tube decreases
by increasing the distance between the sources. While the
huge decrease from d ¼ 4a to d ¼ 8a can be ascribed to
the closeness of the sources (and thus to the presence of the
Coulomb component at d ¼ 4a), the differences between
d ¼ 8a and d ¼ 9a can not be interpreted in this way.
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FIG. 1. Comparison of the estimates obtained for the
quantity ρadjμν ðd ¼ 4a; xtÞ at β ¼ 6.0 by using different lattice
sizes (L ¼ 16 and L ¼ 32). Results refer to the longitudinal (1,0)
and to the transverse (2,0) components of the chromoelectric
field.
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Indeed the transverse components of the field strength do
not change significantly, and the same happens for the flux
tube in the fundamental representation: for comparison
ρfund10 ðd; xt ¼ 0Þ changes by less than 4% when going from
d ¼ 8a to d ¼ 9a, to be compared with the 21% change
of ρadj10 ðd; xt ¼ 0Þ.
Another important thing to notice is that the longitudinal

component of the adjoint flux tube is about a factor of
3 larger than the transverse components at d ¼ 8a and
9a; however at string breaking (i.e., d ¼ 10a) ρadj10 ðd; xtÞ
suddenly drops and become compatible with the transverse
components. As previously discussed this is the smoking
gun signal of the flux tube disappearance, since for finite Rc
we can not expect the longitudinal (or any other) compo-
nent to vanish. A hint that at d ¼ 10a the physics of the
system is changing comes also from the scaling of error
bars: from Fig. 2 we see that ρadj10 ðd; xtÞ data at d ¼ 10a
have errors which are approximately 3 times those at
d ¼ 9a, despite the fact that the statistics accumulated
for d ¼ 10a is about 6 times larger than the one used for the
other distances. A possible interpretation of this fact is that
for d < 10a the flux tube is present and the main sources of
statistical error in ρadj10 are the fluctuations of Polyakov
loops, which are however kept well under control by using
the multilevel algorithm. For d ¼ 10a the string is broken,

and fluctuations in the plane containing the plaquette
increase (the “broken ends” of the string moves freely),
thus reducing the effectiveness of the error reduction of our
implementation of the multilevel algorithm.
To have a finer control of the separation between the

sources and better resolve the distances close to string
breaking, we now abandon the fixed scale approach and
change the distance between the sources by varying the
lattice spacing. More in detail we keep d ¼ 9a on a 323

lattice, and we increase the lattice spacing by decreasing the
value of the coupling constant β in the range [5.5, 6.0]. For
β ¼ 6.0 and 5.5 we explicitly computed the string tension,
obtaining the values reported in Table I; these values are
consistent with those obtained by applying Eq. (3); however
their errors are significantly smaller than theonesweget from
Eq. (3); the values of a

ffiffiffiffiffiffiffiffiffi
σðβÞp

needed for 5.5 ≤ β ≤ 6.0 are
computed by using a linear interpolation of data in Table I.
To compare results obtained at different values of the

lattice spacing we can not use ρadjμν , due to the presence of
the lattice dependent renormalization, so we use the ratio
Rμν defined in Eq. (9). In Fig. 3 we present our results for
the longitudinal component R10ðd ¼ 9a; xtÞ at four differ-
ent values of the coupling β in the range [5.5, 6.0]; some
data for the transverse component (2,0) are also shown.
As for the case of the fixed scale approach, we see

from Fig. 3 that the longitudinal component R10 is steeply
decreasing when increasing the distance between the
adjoint Polyakov loops. In particular, its peak value at
xt ¼ 0 reduces approximately by a factor of 3 when
increasing the separation between the sources from
≈1.02 fm (at β ¼ 6.0) to ≈1.13 fm (at β ¼ 5.5). The
transverse component R20 also decreases when increasing
the lattice spacing, but in a less dramatic way than the
longitudinal component.
From Fig. 3 it is not completely clear if the longitudinal

flux tube just gets rescaled when approaching string break-
ing, or it is also slightly distorted (i.e., the rescaling factor is
different for different values of xt). To better investigate this
point we tried computing the flux tube width defined by

w2ðdÞ ¼
R
∞
0 x2t ρ

adj
10 ðd; xtÞdxtR∞

0 ρadj10 ðd; xtÞdxt
: ð11Þ

This quantity does not need any renormalization, and
it was computed by using a spline interpolation of the data
for ρ10ðd; xtÞ.
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FIG. 2. Results for ρadjμν ðd; xtÞ obtained on a 323 lattice at
coupling β ¼ 6.0. In the upper panel the longitudinal component
is reported, while in the lower panel the transverse directions are
shown (data have been slightly shifted to improve the read-
ability). Notice the different scales on the vertical axis of the two
panels.

TABLE I. String tension determined from the correlators of
(fundamental) Polyakov loops on a 323 lattice. Conversion to
physical units is performed by using 1=

ffiffiffi
σ

p ¼ 0.45 fm.

β a
ffiffiffi
σ

p
a

5.5 0.2790(4) 0.12555(18) fm
6.0 0.2524(4) 0.11358(18) fm
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Numerical results for w2ðdÞ are shown in Fig. 4, and a
slight increase of the flux tube width with the distance
between the sources seems to be present. While there is no
reason for the effective string theory (EST) to provide
robust results for theories with string breaking, it is
nevertheless interesting to compare the observed behavior
with the one predicted by EST. In particular in Fig. 4 we
also report the result of a best fit of the form,

2πσw2ðdÞ ¼ kw logðd=d0Þ; ð12Þ

which for kw ¼ 1 is the form expected on the basis
of EST (see e.g., [8]). The functional form in Eq. (12)
well describes numerical data for w2ðdÞ but with
kw ¼ 0.37ð7Þ; however the dependence of w2ðdÞ on the
distance d is mild enough that also a lineal function
correctly reproduces data. From this fact we can conclude
that the flux tube is not simply rescaled as d approaches Rc,
it gets slightly broader, but the numerical accuracy is not
enough to reliably fix the functional form of w2ðdÞ.
To close this section we verify that lattice discretization

artifacts do not significantly affect the results presented so
far. For this purpose we compare data obtained by using
two different lattice spacings, which have been determined
by using Eq. (3) to keep the value of d constant in physical
units. We used a 323 lattice at coupling β ¼ 6.0 and a 483

lattice with β ¼ 8.6392, in such a way that

8aðβ ¼ 6Þ ≈ 0.91 fm ≈ 12aðβ ¼ 8.6392Þ: ð13Þ

The results obtained with this setup for R10ðd; xtÞ are
presented in Fig. 5, and it is clear that lattice artifacts are
well under control, being at most of the same size of
statistical errors.

B. Static potential

In this section we describe the results of our study of the
static potential between adjoint color charges, performed
for distances between the sources small enough to be in
the unbroken string regime. The aim of this study is to
understand if the breaking of the string, associated to the
dependence of the flux tube on d discussed in the previous
section, has some precursor in the behavior of the static
potential.
One of the most typical properties of the static potential

between fundamental charges is the presence of the so-
called Luscher term [46]. This is just the first term of the
EST expansion of the static potential in powers of 1

σr2 (see
e.g., [47] for a recent review), and it is characterized by the
fact of having an universal coefficient, which depends only
on the space-time dimensionality but not on the gauge
group nor on other high-energy properties of the theory
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FIG. 3. Numerical results for the ratio Rμνðd ¼ 9a; xtÞ defined
in Eq. (9) obtained using a 323 lattice.
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FIG. 4. Dependence of the width of the flux tube [as defined in
Eq. (12)] on the distance between the adjoint charges.
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FIG. 5. Continuum scaling of R10ðd; xtÞ for d ≈ 0.91 fm.
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(as far as an asymptotic string tension exists). In our three-
dimensional setup the large distance behavior of the
fundamental static potential is thus

VfundðdÞ ¼ σdþ π

24d
þOðd−3Þ: ð14Þ

Does something analogous to the Luscher term exist also
for the static potential VadjðdÞ between adjoint sources?
While Vadj has been previously investigated several times
[33–36], to the best of our knowledge an accurate inves-
tigation of the presence of the Luscher term in Vadj has not
been carried out so far.2 We thus try to fit data for Vadj

according to the ansatz,

VadjðdÞ ¼ σdþ k
π

24d
; ð15Þ

where k is a free parameter. Such an ansatz is reasonable
only for d < Rc however, just like in standard EST, values
of d which are too small have to be excluded from the fit,
since they are contaminated by the Coulomb interaction
between the sources (that in our case is logarithmic).
In Fig. 6 we show our estimates for the parameter k

entering Eq. (15), obtained by fitting data for VadjðdÞ
computed on a 643 lattice at coupling β ¼ 11.3138.
According to Eq. (3) the lattice spacing corresponding to
this value of the coupling is about half the one at β ¼ 6.0,
so we expect Rc ≈ 20a, and indeed up to d ¼ 18awe found
no signal of string breaking. In Fig. 6 we also report
estimates obtained by fitting the two-point finite difference
approximation of the derivative of Vadj,

dVadj

dr
ðrþ a=2Þ ≃ Vadjðrþ aÞ − VadjðrÞ

a
; ð16Þ

instead of the static potential itself, which give consistent
results. From Fig. 6 we see that k is definitely not consistent
with 1, and this fact can be interpreted as a signal for
d < Rc that the string will break by increasing the distance
between the sources.
Finally, in Fig. 7 we show the continuum scaling of

Vadj for three different values of the lattice spacing (which
goes from a ≈ 0.11 fm at β ¼ 6.0 to a ≈ 0.057 fm at
β ¼ 11.3138), with the static potential between fundamental
charges being also shown for comparison. Additive con-
stants have been fixed by imposingVadjð2= ffiffiffi

σ
p Þ ¼ 7

ffiffiffi
σ

p
, and

an almost perfect scaling is observed, which implies also in
this case the absence of significant cutoff effects.

IV. CONCLUSIONS

In this paper we have studied color flux tubes in a
theory which displays string breaking, and in particular
their behavior when the separation between the static
sources approaches the string breaking distance Rc. For
this purpose we used as a test bed the three-dimensional
SU(2) Yang-Mills theory with charges transforming in the
adjoint representation of the gauge group.
We have shown that the adjoint flux tube, like the

fundamental one, consists mainly of the longitudinal chro-
moelectric field for distances d between the sources that are
smaller than Rc. As the critical distance Rc is approached,
the longitudinal chromoelectric field gets strongly sup-
pressed, becoming of the same size of the transverse fields
atRc. The disappearance of the flux tube is quite abrupt, and
the value of R10ðd; xt ¼ 0Þ (which is related to square of
longitudinal chromoelectric field inside the flux tube)
decreases approximately by a factor of 3 when the relative
difference between d and Rc reduces below 10%.
This rapid disappearance is the one that could have

been naively guessed from the behavior of the adjoint
static potential VadjðdÞ, which suddenly switches from an
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FIG. 6. Values of the coefficient k defined in Eq. (15) obtained
by fitting on the interval ½rmin; 15a� data for Vadj (corresponding
to integer values of rmin=a) or its first derivative (corresponding to
half-integer values of rmin=a). Data have been estimated by using
a 643 lattice at β ¼ 11.3138.
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FIG. 7. Continuum scaling of the adjoint static potential:
data have been obtained on lattices with L ¼ 32 (β ¼ 6.0),
L ¼ 48 (β ¼ 8.34688) and L ¼ 64 (β ¼ 11.3138). The potential
between two fundamental charges for β ¼ 6.0 is also reported for
comparison.

2This issue was mentioned in [35] but the authors report that no
stable fit parameter was found.
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approximately linear grow to a constant plateau at d ≃ Rc.
We have however seen that precursors of string breaking
are present for d smaller than Rc, which are basically
related to the failure of standard effective string theory. The
scaling of the square width w2ðdÞ of the flux tube with
the distance d follows (at least within the present accuracy)
the expected logarithmic behavior, but the value of the
coefficient differs from the universal effective string pre-
diction. Similarly, an analogous of the Luscher term is
present also in VadjðdÞ, but again numerical data are not
compatible with the expected universal coefficient.
Future studies should be aimed at extending this

analysis to other models, to understand to which amount
the phenomenology at string breaking observed in the

three-dimensional SU(2) Yang-Mills case is generic and, in
particular, is relevant for QCD. For the same reason it
would be very interesting to investigate if there is a relation
between the values of the coefficients kw and k in Eqs. (12),
(15) (or better, their deviations from the EST predictions)
and some nonuniversal property of the theory, like its
spectrum.
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