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Elucidating the phase diagram of lattice gauge theories with fermionic matter in 2þ 1 dimensions has
become a problem of considerable interest in recent years, motivated by physical problems ranging from
chiral symmetry breaking in high-energy physics to fractionalized phases of strongly correlated materials in
condensed matter physics. For a sufficiently large number Nf of flavors of four-component Dirac fermions,
recent sign-problem-free quantum Monte Carlo studies of lattice quantum electrodynamics (QED3) on the
square lattice have found evidence for a continuous quantum phase transition between a power-law
correlated conformal QED3 phase and a confining valence-bond-solid phase with spontaneously broken
point-group symmetries. The critical continuum theory of this transition was shown to be the Oð2Þ QED3-
Gross-Neveu model, equivalent to the gauged Nambu–Jona-Lasinio model, and critical exponents were
computed to first order in the large-Nf expansion and the ϵ expansion. We extend these studies by
computing critical exponents to second order in the large-Nf expansion and to four-loop order in the
ϵ expansion below four spacetime dimensions. In the latter context, we also explicitly demonstrate that the
discrete Z4 symmetry of the valence-bond-solid order parameter is dynamically enlarged to a continuous
Oð2Þ symmetry at criticality for all values of Nf.

DOI: 10.1103/PhysRevD.101.094505

I. INTRODUCTION

Lattice gauge theories in 2þ 1 dimensions have received
increasing attention in recent years. From the high-energy
physics perspective, they can be viewed as a theoretical
laboratory to explore ill-understood nonperturbative phe-
nomena analogous to those of interest in four-dimensional
continuum gauge theories, such as confinement [1–3] and
chiral symmetry breaking [4–10]. The logic is reversed in
condensed matter physics, where lattice gauge theories
arise from the reparametrization of gauge-invariant, physi-
cal degrees of freedom—typically itinerant electrons or
localized spins [11]—in terms of slave-particle or parton
degrees of freedom which carry nontrivial gauge charge.
Deconfined phases of lattice gauge theories arising in this
context provide models of fractionalized phases of strongly
correlated systems, whose unusual macroscopic properties
ultimately stem from the ability of partons with fractional
quantum numbers to propagate over long distances. By
contrast, confinement “glues” the partons back together and
a conventional (e.g., broken-symmetry) phase is obtained.
Of particular interest is the case of fermionic partons,
whose dynamics in a deconfined phase can mimic a

problem of relativistic fermions interacting with dynamical
gauge fields. In a variety of recently studied Z2 lattice
gauge theories with fermionic matter [12–17], some of
which may be relevant to understanding the pseudogap
regime of the cuprate high-temperature superconductors
[18], a nontrivial Z2 flux is generated in each plaquette of
the underlying square lattice, and Dirac fermions emerge at
low energies, coupled to fluctuating Z2 gauge fields. Since
discrete gauge fluctuations are necessarily gapped, these
emergent Dirac fermions remain free at long distances.
By contrast, stronger effects of gauge fluctuations are

expected to occur for lattice gauge theories with continuous
gauge groups. Recently, sign-problem-free quantum
Monte Carlo (QMC) simulations of a Uð1Þ lattice gauge
theory with an even number Nf of flavors of fermions on
the square lattice were performed [19–21]. At half filling,
π magnetic flux is spontaneously generated in each
plaquette—as in the Z2 case—and Dirac fermions likewise
emerge at low energies. The resulting model is equivalent
to lattice QED3 with Nf flavors of four-component Dirac
fermions. In contrast to the Z2 case, however, gapless Uð1Þ
gauge fluctuations drive the ground state away from the
free-Dirac fixed point. For small values of the gauge
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coupling, the numerical results are consistent with a gapless
phase described by the deconfined, conformal QED3 fixed
point, which can be accessed either in the large-Nf

expansion [22–26] or in the ϵ expansion below four
spacetime dimensions [27–30]. When the gauge coupling
becomes strong, a quantum phase transition from the
deconfined QED3 phase to a confining phase occurs,
accompanied by chiral symmetry breaking and dynamical
mass generation for the fermions, and is found to be
continuous [19–21]. For Nf ¼ 2, the confining phase is
a Néel antiferromagnet. The continuum field theory of the
transition, the chiral Oð3Þ QED3-Gross-Neveu model, was
explicitly derived in Ref. [31] and the associated universal
critical exponents were computed to four-loop order in the ϵ
expansion and second order in the large-Nf expansion.
(A similar critical theory for an analogous transition on the
kagome lattice was derived and studied at one-loop order in
the ϵ expansion in Ref. [32].)
For Nf ¼ 4, 6, and 8, the confinement transition is found

to be towards a columnar valence-bond-solid (VBS) phase
with spontaneous breakdown of the D4 point-group sym-
metry of the square lattice. The continuum field theory of
the transition, the chiral Oð2Þ QED3-Gross-Neveu-Yukawa
(GNY) model, was explicitly derived in Ref. [33] from the
lattice gauge Hamiltonian, and shown therein to be equiv-
alent to the gauged Nambu–Jona-Lasinio (NJL) model
[34,35]. Critical exponents including the order parameter
anomalous dimension ηϕ—which in the current context
controls the asymptotic power-law decay of VBS correla-
tions at criticality—and the correlation length exponent ν
were first computed to first order in the large-Nf expansion
in Ref. [36] in arbitrary 2 < d < 4 spacetime dimensions,
and evaluated explicitly in 2þ 1 dimensions in Ref. [33].
In the latter reference, exponents controlling the power-law
decay of competing orders—charge-density-wave order
(CDW), SUðNfÞ antiferromagnetism (AF), and quantum
anomalous Hall (QAH) order—were also computed to
Oð1=NfÞ in d ¼ 3 dimensions. The chiral Oð2Þ QED3-
GNY model was also studied at one-loop order in the ϵ
expansion in d ¼ 4 − ϵ dimensions in Ref. [37], where a
stable fixed point was found and critical exponents com-
puted to OðϵÞ [21].
In this paper we go beyond previous work on the VBS

transition in lattice QED along several directions. First, we
improve upon our previous large-Nf study, Ref. [33], by
computing the critical exponents ν and ηϕ in arbitrary
2 < d < 4, and performing nontrivial cross-checks with the
ϵ expansion (see below). Furthermore, the order parameter
anomalous dimension ηϕ is now obtained up to Oð1=N2

fÞ.
We also compute the exponent ΔCDW, which characterizes
the universal power-law decay of CDW correlations at
criticality, to Oð1=NfÞ. Second, we expand upon previous
one-loop ϵ-expansion studies. Representing the VBS order
parameter by a complex scalar field ϕ, the critical theory of

the VBS transition in lattice QED is in fact not the pure
Oð2Þ QED3-GNY model, but contains a Z4 anisotropy
term ∼ðϕ4 þ ϕ�4Þ similar to that appearing in critical
theories of the Zn clock models, and allowed by the D4

point-group symmetry of the square lattice. In the large-Nf

limit in d ¼ 3, this term is irrelevant [33], but at finite Nf in
d ¼ 4 − ϵ this term is relevant at tree level. [In Ref. [37],
the transition considered was the Kekulé VBS transition
on the honeycomb lattice where instead there is a Z3

anisotropy ∼ðϕ3 þ ϕ�3Þ.] If in fact the Z4 anisotropy is
relevant at the fixed point of the chiral Oð2Þ QED3-GNY
model found in Ref. [37], the emergent Oð2Þ symmetry
would be destroyed at long distances and the transition
would ultimately lie in a different universality class (or
become first order). It is thus important to determine the
effect of quantum corrections on the renormalization group
(RG) flow of the Z4 anisotropy near the putative Oð2Þ-
symmetric QED3-GNY quantum critical point (QCP),
which has not been done before. Here we show by explicit
calculation that the Z4 anisotropy is in fact an irrelevant
perturbation, thus establishing the emergence of an Oð2Þ
symmetry. We also improve upon existing one-loop results
by computing critical exponents in the chiral Oð2Þ QED3-
GNY model at four-loop order in the ϵ expansion. In
addition to our analytical results, we apply Padé and Padé-
Borel resummation techniques to obtain numerical esti-
mates of critical exponents in 2þ 1 dimensions forNf ¼ 4,
6, 8, which pertain to the QMC studies mentioned earlier
[19–21]. Using both the large-Nf and ϵ expansions we also
compute the CDW exponent ΔCDW for the chiral Oð2Þ
GNY model, which characterizes the power-law decay of
CDW correlations at the Kekulé VBS transition on the
honeycomb lattice and is in principle accessible to QMC
simulations such as those of Refs. [38–41]. Finally, setting
d ¼ 4 − ϵ we verify that our large-Nf and ϵ-expansion
results agree order by order in the respective expansions,
up toOðϵ4; 1=Np

f Þ, where p is one or two depending on the
order at which an exponent is known. This provides strong
evidence that the fermionic (GN) and bosonized (GNY)
formulations of the critical theory access the same infrared
fixed point, for both the gauged and ungauged models.

II. THE VBS TRANSITION IN LATTICE QED3

We briefly review the relevant theoretical models; a more
detailed discussion can be found in our previous work [33].
The model studied numerically in Refs. [19–21] is a
quantum rotor model with Hamiltonian

H ¼ 1

2
JNf

X
hrr0i

1

4
L2
rr0 − t

XNf

i¼1

X
hrr0i

�
c†rie

iθrr0cr0i þ H:c:
�

þ 1

2
KNf

X
□

cos ðΔ × θÞ: ð1Þ
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The operators cð†Þri annihilate (create) a fermion of flavor
i ¼ 1;…; Nf at site r, where Nf is the total number of
flavors; the fermion density is fixed at Nf=2 fermions per
site on average (half filling). The sum over hrr0i includes
only the nearest-neighbor sites r and r0. The angular
variable θrr0 represents the coordinate operator for rotors
on each bond hrr0i of a 2D square lattice, and the
eigenvalue of this operator is an element of ½0; 2πÞ. The
operator Lrr0 is the angular momentum canonically con-
jugate to θrr0 . The term proportional to J represents an
electric-field contribution that governs the strength of
gauge fluctuations, whereas the term proportional to K
is a magnetic-field contribution that favors a background
flux of π in each plaquette. The magnetic flux of
each plaquette □ is defined by Δ × θ ¼ P

hrr0i∈□ θ̂rr0,

where the summation over θ̂rr0 is taken around the
elementary plaquette.
In the absence of gauge fluctuations, i.e., when J ¼ 0,

the angular variable θrr0 is a classical variable with no
imaginary-time dynamics. The background gauge flux is π,
as a consequence of Lieb’s theorem [42] and the positive
sign of the magnetic coupling K > 0, which produces two
two-component Dirac fermions (or alternatively, one four-
component Dirac fermion Ψi) per flavor i in the single-
particle fermion spectrum. Turning on a nonzero value of J
produces gauge fluctuations Aμ which minimally couple to
the Dirac fermions Ψi. In the QMC simulations, a critical
value J ¼ JcðNfÞ dependent on Nf is found such that, for
J < JcðNfÞ, the ground state is described by the conformal
QED3 fixed point, and, for J > JcðNfÞ, the ground state is
a confined VBS phase (we focus on Nf ¼ 4, 6, 8). The
continuum theory of the transition was derived from the
lattice Hamiltonian in Ref. [33], and is of the form

L ¼
XNf

i¼1

Ψ̄i½Dþ igðϕ1Γ3 þ ϕ2Γ5Þ�Ψi

þ 1

4
F2
μν þ

1

2ξ
ð∂μAμÞ2 þ Lϕ: ð2Þ

We define the following 4 × 4 Euclidean gamma matrices,

Γμ ¼
�
γ̃μ 0

0 −γ̃μ

�
; μ ¼ 0; 1; 2; ð3Þ

and

Γ3 ¼
�
0 −i
i 0

�
; Γ5 ¼ Γ0Γ1Γ2Γ3 ¼

�
0 1

1 0

�
; ð4Þ

where γ̃μ ¼ ðσ3; σ2;−σ1Þ are 2 × 2 Euclidean Dirac matri-
ces, and σ1;2;3 are the usual Pauli matrices. We define the
Dirac conjugate field Ψ̄i ¼ Ψ†

iΓ0, the gauge-covariant

derivativeD ¼ Γμð∂μ þ ieAμÞ, and the field strength tensor
Fμν ¼ ∂μAν − ∂νAμ; ξ is a gauge-fixing parameter.
The scalar fields ϕ1 and ϕ2 represent the x and y

components of the fluctuating VBS order parameter,
respectively. Combining them into a complex scalar
field ϕ ¼ ϕ1 þ iϕ2, their dynamics is governed by the
Lagrangian

Lϕ ¼ 1

2
j∂μϕj2 þ

1

2
m2jϕj2 þ λ2jϕj4: ð5Þ

The model thus defined is known as the chiral Oð2Þ
QED3-GNY model [19], since it possesses a global
SOð2Þ symmetry under ϕ → eiθϕ, Ψi → e−iWθ=2Ψi, where
W ¼ −iΓ3Γ5. Apart from an anisotropy term discussed
below, it is identical to the field theory considered in
Ref. [37] for the Kekulé VBS transition on the honeycomb
lattice in the presence of a dynamical gauge field. The
scalar-field content and form of the Yukawa coupling in
Eq. (2) make it differ from both the chiral Ising QED3-GNY
model [30,43–49], which involves a single real scalar field
coupled to a fermion mass bilinear

P
i Ψ̄iΨi, and the chiral

Oð3Þ or Heisenberg QED3-GNY model [31,32], which
possesses a triplet of scalar fields coupled to a fermion spin
bilinear

P
i Ψ̄iσΨi where σ denotes a vector of spin Pauli

matrices. It also differs from a “Higgs-QED3-GNY” model
studied in Ref. [50], also with a single complex scalar field,
but where the Uð1Þ symmetry is the gauge symmetry and
the scalar field is minimally coupled to the gauge field with
gauge charge twice that of the fermion field. The conformal
QED3 phase of the lattice gauge theory (1) corresponds
to the unbroken phase of the chiral Oð2Þ QED3-GNY
model (2), where hϕi ¼ 0, while the VBS phase is the
broken phase with hϕi ≠ 0. However, the symmetry broken
in the VBS phase is really a discrete C4 ≅ Z4 rotation
symmetry with θ ¼ πk=2, k ¼ 0;…; 3. In the continuum
theory, this discrete symmetry allows for a coupling of
the form

Lanis: ¼ bðϕ4 þ ϕ�4Þ; ð6Þ

in the long-wavelength critical theory. Many other cou-
plings are allowed by symmetries, but Eq. (6) is the onlyZ4

anisotropy term that is relevant or marginal near four
dimensions. This implies that only the gauge coupling
e2, the Yukawa coupling g2, the jϕj4 coupling λ2, the
anisotropy b, and the scalar field mass squared m2 need to
be kept in the RG analysis to follow.

III. ϵ EXPANSION

We first set the anisotropy coupling b in Eq. (6) to zero,
and in Sec. III C we return to its effect on the critical
properties. In order to perform a perturbative RG analysis
of Eq. (2), its extension to arbitrary d dimensions is
required. To facilitate the dimensional continuation of
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the chiral Oð2Þ QED3-GNY model, which was derived
from a lattice gauge theory in fixed 2þ 1 dimensions, it is
convenient to first rewrite it in terms of the equivalent
gauged NJL model [33]. We introduce a new set of gamma
matrices defined by

γμ ¼ iΓμΓ3; μ ¼ 0; 1; 2; ð7Þ

γ3 ¼ Γ3; ð8Þ

γ5 ¼ −iΓ3Γ5: ð9Þ

In addition, define ψ i ¼ Ψi and ψ̄ i ¼ Ψ†
i γ0. Performing

these transformations, we obtain the gauged NJL
Lagrangian [34,35],

L ¼
XNf

i¼1

ψ̄ i½Dþ gðϕ1 þ iϕ2γ5Þ�ψ i þ
1

4
F2
μν þ

1

2ξ
ð∂μAμÞ2

þ 1

2
j∂μϕj2 þ

1

2
m2jϕj2 þ λ2jϕj4; ð10Þ

where the gauge-covariant derivative is now defined as
D ¼ γμð∂μ þ ieAμÞ. The SOð2Þ symmetry of the Oð2Þ
QED-GNY model is realized as a global chiral Uð1Þ
symmetry of the gauged NJL model: ψ i → e−iγ5θ=2ψ i, with
a concomitant Uð1Þ rotation of the scalar field ϕ → eiθϕ as
before. In the absence of gauge coupling (e2 ¼ 0), Eq. (10)
reduces to the ordinary (ungauged) NJL model, or equiv-
alently the chiral Oð2Þ or XY GNY model, which was
previously studied in the ϵ expansion up to four-loop
order [51,52].
To study the critical properties (i.e., the m2 ¼ 0 limit) of

the model (10) in d ¼ 4 − ϵ space-time dimensions, we use
field-theoretic RG and the modified minimal subtraction
(MS) prescription. In terms of bare fields ψ0

i ;ϕ0; A0
μ and

bare coupling constants e0, ξ0, m0, λ0, g0, with D0 ¼
γμð∂μ þ ie0A0

μÞ and ϕ0 ¼ ϕ0
1 þ iϕ0

2, the bare Lagrangian is
written as

L0 ¼
XNf

i¼1

ψ̄0
i

h
D0 þ g0

�
ϕ0
1 þ iϕ0

2γ5
�i

ψ0
i

þ 1

2
j∂μϕ0j2 þ

1

2
m2

0jϕ0j2 þ λ20jϕ0j4

þ 1

4
ðF0

μνÞ2 þ
1

2ξ0
ð∂μA0

μÞ2: ð11Þ

The renormalized Lagrangian, written in terms of renor-
malized fields ψ i ¼ Z−1=2

ψ ψ0
i ; Aμ ¼ Z−1=2

A A0
μ, ϕ ¼ Z−1=2

ϕ ϕ0,

and covariant derivative D ¼ γμð∂μ þ ieμϵ=2AμÞ, is

LR ¼
XNf

i¼1

ψ̄ i½ZψDþ Zggμϵ=2ðϕ1 þ iϕ2γ5Þ�ψ i

þ 1

2
Zϕj∂μϕj2 þ

1

2
Zϕ2μ2m2jϕj2 þ Zλ2λ

2μϵjϕj4

þ 1

4
ZAF2

μν þ
1

2ξ
ð∂μAμÞ2: ð12Þ

The dimensionless renormalized coupling constants are

e2 ¼ e20μ
−ϵZA; ð13Þ

g2 ¼ g20μ
−ϵZ2

ΨZϕZ−2
g ; ð14Þ

λ2 ¼ λ20μ
−ϵZ2

ϕZ
−1
λ2
; ð15Þ

m2 ¼ m2
0μ

−2ZϕZ−1
ϕ2 ; ð16Þ

ξ ¼ ξ0Z−1
A ; ð17Þ

where μ is an arbitrary renormalization scale. The renorm-
alization constants ZX, X ¼ ψ ; A;ϕ;ϕ2; λ2; g are calculated
up to four-loop order using an automated setup, the
technical details of which can be found in previous
publications [30,31,52]. We perform computations in an
arbitrary ξ gauge, which allows us to explicitly verify that
all anomalous dimensions defined below [Eq. (22)] are
properly gauge invariant (except that for the fermion field
ψ , which is not a gauge-invariant operator). The number of
diagrams that arise during the perturbative calculation of
the renormalization constants is significantly larger than
for the chiral Ising and chiral Oð3Þ QED-GNY theories
[30,31], as in the pure GNY theories [53]. The difference
arises from the fact that in the Ising and Oð3Þ theories, the
Yukawa vertex insertions are either proportional to the
identity or to a spin Pauli matrix, both of which commute
with the gamma matrices γμ that appear in numerator traces
(coming from fermion propagators and QED vertex inser-
tions). Traces over spin Pauli matrices and gamma matrices
factorize and can be evaluated independently. By contrast,
no such factorization occurs in the ungauged or gauged
NJL models, since the Yukawa vertex contains a γ5 matrix
which anticommutes with γμ.

A. Beta functions

The beta functions for the coupling constants α ¼ e, g, λ
are defined by

βα2 ¼ μ
dα2

dμ
: ð18Þ

Rescaled couplings,whereα2=ð4πÞ2 → α2, areused through-
out the paper. Using the definitions in Eqs. (13)–(15), along
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with the fact that the bare coupling constants are independent
of μ, the beta functions become

βe2 ¼ ð−ϵþ γAÞe2; ð19Þ

βg2 ¼ ð−ϵþ 2γψ þ γϕ − 2γgÞg2; ð20Þ

βλ2 ¼ ð−ϵþ 2γϕ − γλ2Þλ2; ð21Þ

where the anomalous dimensions associated with renormal-
ization constants ZX, X ¼ ψ ; A;ϕ;ϕ2; λ2; g are defined by

γX ¼ μ
d lnZX

dμ
: ð22Þ

While Eqs. (19)–(21) have the same form as in the chiral
Ising [30] and chiral Oð3Þ [31] QED-GNY models, the
explicit form of the renormalization constants, and thus
the form of the anomalous dimensions, are different for the
three theories. As in the aforementioned articles, the four-
loop beta functions can be expressed as a sum over
contributions at a fixed loop order:

βα2 ¼ −ϵα2 þ βð1LÞ
α2

þ βð2LÞ
α2

þ βð3LÞ
α2

þ βð4LÞ
α2

: ð23Þ

Here we present our results up to and including three-loop
order; the four-loop contributions are lengthy and are
deferred to the Supplemental Material [54]. The beta
functions βe2 for the gauge coupling are given by

βð1LÞe2 ¼ 8

3
Nfe4; ð24Þ

βð2LÞ
e2

¼ 8Nfe6 − 4Nfe4g2; ð25Þ

βð3LÞe2 ¼ −6Nfe6g2 þ Nfð7Nf þ 6Þe4g4

−
4

9
Nfð22Nf þ 9Þe8: ð26Þ

Similarly, the beta functions βg2 for the Yukawa coupling
are given by

βð1LÞ
g2

¼ 2g4ðNf þ 1Þ − 12e2g2; ð27Þ

βð2LÞ
g2

¼ −
1

2
ð12Nf − 7Þg6 þ 2ð5Nf þ 8Þe2g4

þ 2

3
ð20Nf − 9Þe4g2 − 64g4λ2 þ 128g2λ4; ð28Þ

βð3LÞ
g2

¼ 1

8
g8½Nfð52Nf þ 48ζ3 þ 15Þ þ 48ζ3 − 227�

þ 2

27
e6g2½Nfð280Nf − 108ð24ζ3 − 23ÞÞ − 3483�

−
1

2
e4g4½Nfð32Nf þ 432ζ3 − 33Þ þ 144ζ3 − 157�

þ 64e2g4λ2 − e2g6ð27Nf þ 70Þ − 2560g2λ6

þ 48g6λ2ð5Nf þ 6Þ − 480g4λ4ðNf − 3Þ: ð29Þ

Finally, the beta functions βλ2 for the four-scalar coupling
are given by

βð1LÞ
λ2

¼ 80λ4 þ 4Nfg2λ2 −
1

2
Nfg4; ð30Þ

βð2LÞ
λ2

¼ −3840λ6 − 2Nfe2g4 þ 20Nfe2g2λ2

þ 2Nfg4λ2 − 160Nfg2λ4 þ 2Nfg6; ð31Þ

βð3LÞ
λ2

¼ 512λ8ð384ζ3 þ 617Þ

−
1

16
Nfg8ð154Nf þ 96ζ3 − 53Þ

þ 1

4
Nfe4g4ð116Nf − 96ζ3 þ 131Þ

− Nfe4g2λ2ð32Nf − 144ζ3 þ 119Þ

þ 1

2
Nfe2g6ð48ζ3 − 7Þ þ Nfe2g4λ2ð373 − 528ζ3Þ

þ 120Nfe2g2λ4ð16ζ3 − 17Þ þ 7232Nfg2λ6

þ 1

4
Nfg6λ2ð512Nf − 336ζ3 − 1339Þ

− 4Nfg4λ4ð60Nf − 408ζ3 − 509Þ: ð32Þ

In these expressions ζ3 ≡ ζð3Þ ≈ 1.202 is Apéry’s constant.
The results for the beta functions can be compared

against existing results in the literature for specific cases. In
the limit g2 ¼ λ2 ¼ 0 the model reduces to pure QED with
Nf flavors of four-component Dirac fermions. The results
in Eqs. (24)–(26), together with the four-loop result [54],
agree with the four-loop QED beta function [55]. In the
limit e2 ¼ g2 ¼ 0 the theory reduces to the Oð2Þ vector
model; the beta functions in Eqs. (30)–(32) and Ref. [54]
agree in that limit with the four-loop beta function for that
model [56]. Finally, in the limit e2 ¼ 0 the model reduces
to the ungauged NJL or chiral Oð2Þ=XY GNY model, and
the results in Eqs. (27)–(29) and Ref. [54] agree with the
four-loop result in Ref. [52].

B. Quantum critical point

We now utilize the beta functions obtained in the
previous section to investigate the existence of a QCP
for the VBS transition, which should correspond to a stable
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RG fixed point within the critical (m2 ¼ 0) hypersurface.
At one-loop order, our beta functions for the gauge
coupling e2, the Yukawa coupling g2, and the four-scalar
coupling λ2 agree with those derived in Ref. [37]. Denoting
the critical couplings by ðe2�; g2�; λ2�Þ, we thus find the same
eight fixed points as them: the Gaussian fixed point (0,0,0),
the conformal QED fixed point ð 3ϵ

8Nf
; 0; 0Þ, the Oð2Þ

Wilson-Fisher fixed point ð0; 0; ϵ
80
Þ, a conformal QED ×

Wilson-Fisher fixed point ð 3ϵ
8Nf

; 0; ϵ
80
Þ, two pure Oð2Þ GNY

fixed points with e2� ¼ 0 and g2� ≠ 0; λ2� ≠ 0, and two fixed
points with all three couplings nonzero. The stable fixed-
point is given by one of the latter two fixed points [37]:

e2� ¼
3

8Nf
ϵþOðϵ2Þ; ð33Þ

g2� ¼
9þ 2Nf

4NfðNf þ 1Þ ϵþOðϵ2Þ; ð34Þ

λ2� ¼
Y − Nf − 8

160ðNf þ 1Þ ϵþOðϵ2Þ; ð35Þ

where

Y ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ 56Nf þ 424þ 810

Nf
:

s
ð36Þ

These three (squared) coupling constants are positive for all
Nf ≥ 1, including the cases Nf ¼ 4, 6, 8 applicable to the
VBS phase transition found numerically.

C. Fate of Z4 anisotropy at criticality

It has so far only been shown that there exists a stable RG
fixed point when the anisotropy term (6) is set to zero and
the Lagrangian has an exact Uð1Þ symmetry. In reality, the
long-wavelength theory will generically have b ≠ 0 and the
exact symmetry is only a discrete subgroup Z4 ⊂ Uð1Þ.
For the chiral Oð2Þ QED3-GNY model to describe the
critical properties of the VBS transition, and assuming the
anisotropy is small, we must show that the Uð1Þ symmetry
is truly emergent, i.e., that the anisotropy is an irrelevant
perturbation at the fixed point found in Sec. III B. For the
Kekulé VBS transition on the honeycomb lattice in the
presence of a dynamical gauge field, the Z3 anisotropy
∼ðϕ3 þ ϕ�3Þ is strongly relevant at small ϵ for finite Nf

[37], and its flow cannot be reliably controlled in the ϵ
expansion. By contrast, the Z4 anisotropy (6) is marginal in
four dimensions; its flow can thus be reliably controlled in
the ϵ expansion. In the Z3 case, at one-loop order the
anisotropy vertex contributes to the renormalization of the
scalar-field two-point function (self-energy), three-point
function (anisotropy vertex), and four-point function (jϕj4
vertex). By contrast, in the Z4 case the anisotropy does not

contribute to the scalar-field self-energy at one-loop order,
only to the scalar-field four-point functions (Fig. 1).
The couplings in the bare and renormalized anisotropy
Lagrangians,

L0
anis: ¼ b0ðϕ4

0 þ ϕ�4
0 Þ; ð37Þ

LR
anis: ¼ Zbbμϵðϕ4 þ ϕ�4Þ; ð38Þ

are related by b ¼ b0μ−ϵZ2
ϕZ

−1
b . The beta function for b is

thus given by

βb ¼ ð−ϵþ 2γϕ − γbÞb; ð39Þ

where γb ¼ d lnZb=d ln μ. Evaluating the diagrams in
Fig. 1, we find additional contributions to the one-loop
renormalization constants Zλ2 and Zb,

Zλ2 → Zλ2 þ
576b2λ−2

ϵ
; ð40Þ

Zb ¼ 1þ 96λ2

ϵ
; ð41Þ

which allows us to the find the corrected beta functions

βλ2 → βλ2 þ 576b2; ð42Þ

βb ¼ ð−ϵþ 4Nfg2 þ 96λ2Þb: ð43Þ

Since the anisotropy contribution to βλ2 is quadratic in b,
the RG eigenvalue yb describing the flow of the anisotropy
near the Oð2Þ-symmetric QED3-GNY fixed point is given
simply by the negative of the slope of the UV beta function
βb evaluated at the fixed point (33)–(35),

yb ¼ ϵ − 4Nfg2� − 96λ2�; ð44Þ

(a)

(b)

FIG. 1. One-loop renormalization of four-point vertices due to
Z4 anisotropy (dashed lines: scalar field propagator, ordinary
crossing: jϕj4 vertex; box: ϕ4 or ϕ�4 vertex). Renormalization of
(a) the four-scalar coupling λ2, (b) the anisotropy b.
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such that yb > 0 denotes a relevant coupling. At the Oð2Þ
Wilson-Fisher fixed point e2� ¼ g2� ¼ 0 and λ2� ¼ ϵ=80, and
one finds yb ¼ −ϵ=5, in agreement with the analysis of
pure jϕj4 theory perturbed by a Z4 anisotropy in Ref. [57].
At the QED3-GNY fixed point (33)–(35), we find

yb ¼ −
ð2Nf þ 16þ 3YÞ

5ðNf þ 1Þ ϵ; ð45Þ

which is strictly negative for all Nf. Thus the Z4 anisotropy
is irrelevant at small ϵ even for small Nf, in contrast with
the Z3 case. This establishes the emergent Oð2Þ symmetry
at the VBS QCP, and the fixed point discussed in Sec. III B
is the true QCP. In the remainder of Sec. III we compute its
critical exponents at four-loop order in the ϵ expansion.
Before moving on to the critical properties of the Oð2Þ

QED3-GNY model, we observe that the calculation above
can also address the issue of Z4 anisotropy at the semi-
metal-columnar VBS quantum phase transition of the
SUð4Þ Hubbard model on the π-flux square lattice [58],
which is described by the chiral Oð2Þ GNY model or
ungauged NJL model supplemented by the anisotropy
term (6). At one-loop order, the stable fixed point of the
ungauged model is obtained by setting e2 ¼ 0 in the beta
functions (27) and (30). We obtain

ðg2�ÞGNY ¼ 1

2ðNf þ 1Þ ϵ; ð46Þ

ðλ2�ÞGNY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ 38Nf þ 1
q

− Nf þ 1

160ðNf þ 1Þ ϵ: ð47Þ

Substituting into Eq. (44), we obtain

ðybÞGNY ¼ −
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ 38Nf þ 1
q

þ 2Nf − 2

5ðNf þ 1Þ ϵ; ð48Þ

which is strictly negative for all Nf. Thus the Z4 anisotropy
is irrelevant at criticality also for the pure GNY model.

D. Order-parameter anomalous dimension

The order-parameter anomalous dimension ηϕ character-
izes the long-range power-law decay of the two-point
function of the order parameter at criticality [59]. Here,
this is the VBS correlation function,

hOVBSðrÞOVBSðr0Þi ∼
1

jr − r0j1þηϕ
: ð49Þ

Microscopically, OVBSðrÞ can be chosen as either
component of the VBS order parameter V ¼ ðVx; VyÞ,
where Vx ¼ ð−1Þx PA SAðrÞSAðr þ x̂Þ and Vy ¼
ð−1Þy PA SAðrÞSAðr þ ŷÞ correspond to columnar VBS
order in the x and y directions, respectively. The SUðNfÞ

spin operator SAðrÞ is defined by SAðrÞ ¼
P

ij c
†
riT

ij
Acrj,

where TA, A ¼ 1;…; N2
f − 1 are Hermitian generators of

the SUðNfÞ Lie group in the fundamental representation,
and we choose the normalization trTATB ¼ δAB. Note that
by using the identity

X
A

Tij
AT

kl
A ¼ δilδjk −

1

Nf
δijδkl; ð50Þ

and the canonical anticommutation relations of fermion
operators, one findsX

ij

SijðrÞSjiðr0Þ ¼
X
A

SAðrÞSAðr0Þ; ð51Þ

where SijðrÞ ¼ c†ricrj −
δij
Nf

P
k c

†
rkcrk. Thus the ðπ; 0Þ and

ð0; πÞ dimer operators Dx
r ¼ ð−1Þx Pij S

i
jðrÞSjiðrþ x̂Þ and

Dy
r ¼ ð−1Þy Pij S

i
jðrÞSjiðrþ ŷÞ used in the QMC simula-

tions [19–21] coincide with the operators Vx and Vy

defined above. In practice, one often computes equal-time
correlation functions, such that r and r0 in (49) are spatial
(lattice) coordinates with jr − r0j ≫ a, a being the lattice
constant. As a consequence of Eq. (49), the anomalous
dimension ηϕ also appears in the finite-size analysis of the
VBS structure factor. For instance, the ðπ; 0Þ VBS structure
factor on an L × L lattice is given by

Sðπ;0ÞVBS ðLÞ ¼
1

L4

X
rr0

hVxðrÞVxðr0Þi

∼
1

L4

Z
d2r

Z
d2r0

1

jr − r0j1þηϕ
∼ L−ð1þηϕÞ; ð52Þ

at criticality J ¼ Jc, where we have approximated the
lattice sum by a continuous integral, and cut the latter
off at long distances by the system size and at short
distances by the lattice constant a, here set to unity [60].
Away from criticality J ≠ Jc, one has

Sðπ;0ÞVBS ðLÞ ∼ L−ð1þηϕÞF ðL1=νðJ − JcÞÞ; ð53Þ
where F is a universal scaling function.
In the field-theoretic approach, ηϕ is calculated by

evaluating γϕ at the QCP:

ηϕ ¼ γϕðe2�; g2�; λ2�Þ: ð54Þ

The anomalous dimensions can be expressed in a similar
way as the beta functions by a sum of contributions at a
fixed loop order:

γX ¼ γð1LÞX þ γð2LÞX þ γð3LÞX þ γð4LÞX : ð55Þ

For the scalar anomalous dimension, the contributions at
each order are given by
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γð1LÞϕ ¼ 2Nfg2; ð56Þ

γð2LÞϕ ¼ 10Nfe2g2 − 3Nfg4 þ 128λ4; ð57Þ

γð3LÞϕ ¼ −
1

2
Nfe4g2ð32Nf − 144ζ3 þ 119Þ

−
1

2
Nfe2g4ð48ζ3 − 5Þ þ 80Nfg4λ2

þ 1

8
Nfg6ð64Nf þ 48ζ3 − 27Þ

− 480Nfg2λ4 − 2560λ6: ð58Þ

At one-loop order, we obtain

ηϕ ¼ 2Nf þ 9

2ðNf þ 1Þ ϵþOðϵ2Þ: ð59Þ

in agreement with Ref. [21]. The four-loop result is
presented in Ref. [54]. The four-loop results to Oðϵ4Þ
for Nf ¼ 4, 6, 8 are respectively given by

ηϕ ≈ 1.7ϵþ 0.05330ϵ2 þ 0.9040ϵ3 − 3.455ϵ4; ð60Þ
ηϕ ≈ 1.5ϵ − 0.02886ϵ2 þ 0.3396ϵ3 − 1.075ϵ4; ð61Þ

ηϕ ≈ 1.389ϵ − 0.04893ϵ2 þ 0.1597ϵ3 − 0.4775ϵ4: ð62Þ

Both the ϵ expansion and the large-Nf expansion (see
Sec. IV) generate asymptotic series that have zero radius of
convergence. In order to extract physical results from finite-
order ϵ-expansion expressions derived perturbatively,
resummation procedures must be implemented [61]. Two
standard resummation techniques are Padé approximants,
discussed below, and the Padé-Borel transformation,
reviewed in Appendix A. For a given loop order L, the
(one-sided) Padé approximants are defined by

½m=n�ðϵÞ ¼
P

m
i¼0 aiϵ

i

1þP
n
j¼1 bjϵ

j : ð63Þ

Here, m and n are two positive integers satisfying
mþ n ¼ L. The coefficients ai and bj are determined
such that expanding the above function in powers of ϵ to
OðϵLÞ reproduces the ϵ-expansion results. In Fig. 2 we plot
Padé approximants (colored lines) in d ¼ 3 at two- and
four-loop orders; three-loop approximants turn out to
have poles in the extrapolation region ϵ ∈ ½0; 1� for certain
values of Nf in the range considered, and are thus excluded
from the plot. Apart from the [1/3] approximant, a good
convergence of the approximants with increasing loop
order is found for the values of Nf ¼ 4, 6, 8 studied in
QMC. Numerical values of Padé and Padé-Borel approx-
imants for ηϕ for Nf ¼ 4, 6, 8 are given in Appendix A 1
(Tables I, II, and III, respectively).

E. Correlation length exponent

The correlation length exponent ν governs the diver-
gence of the zero-temperature correlation length as the
QCP is approached, i.e., as the scalar mass squared m2 is
tuned to zero. The anomalous dimension for the scalar mass
squared is defined by γm2 ¼ γϕ2 − γϕ, where γϕ, the
anomalous dimension of the order-parameter field ϕ, has
already been computed in the previous section. The beta
function for m2 is given by

μ
dm2

dμ
¼ −ð2þ γm2Þm2: ð64Þ

At the QCP, the correlation length exponent ν is related to
the anomalous dimension γm2 by

1=ν ¼ 2þ γm2ðe2�; g2�; λ2�Þ: ð65Þ

The contributions to γm2 , up to three-loop order, are given
by

γð1LÞm2 ¼ −2Nfg2 − 32λ2; ð66Þ

γð2LÞm2 ¼3Nfg4−10Nfe2g2þ64Nfg2λ2þ640λ4; ð67Þ

γð3LÞ
m2 ¼ 1

2
Nfe4g2ð32Nf − 144ζ3 þ 119Þ

−
1

8
Nfg6ð256Nf − 379þ 240ζ3Þ

þ 8Nfg4λ2ð12Nf − 48ζ3 − 35Þ

þ 1

2
Nfe2g4ð240ζ3 − 149Þ

− 48Nfe2g2λ2ð16ζ3 − 17Þ
− 1056Nfg2λ4 − 72192λ6: ð68Þ

At one-loop order, we obtain

FIG. 2. Padé approximants for ηϕ as a function of Nf at two
(blue) and four-loop (red) orders. The large-Nf result (96) is
shown in black.
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1=ν ¼ 2 −
8Nf þ 29þ 2Y

10ðNf þ 1Þ ϵþOðϵ2Þ; ð69Þ

in agreement with Ref. [21]. The four-loop order result is
presented in Ref. [54]. The four-loop order results to Oðϵ4Þ
for Nf ¼ 4, 6, 8 are respectively given by

1=ν ≈ 2 − 2.397ϵþ 1.484ϵ2 − 4.376ϵ3 þ 16.46ϵ4; ð70Þ

1=ν ≈ 2 − 1.972ϵþ 0.8886ϵ2 − 1.562ϵ3 þ 4.193ϵ4; ð71Þ

1=ν ≈ 2 − 1.749ϵþ 0.6315ϵ2 − 0.7591ϵ3 þ 1.639ϵ4: ð72Þ

Padé approximants for 1=ν in d ¼ 3 up to four-loop
order are plotted using colored lines in Fig. 3. Relatively
poor convergence with increasing loop order is found, and
it is difficult to obtain reliable estimates even for Nf ¼ 4, 6,
8. Numerical values of Padé and Padé-Borel approximants
for 1=ν for those values of Nf are given in Appendix A 1
(Tables I, II, and III, respectively).

F. Fermion bilinears and CDW exponent

Apart from the scaling dimension ΔVBS ¼ Δϕ ¼
ð1þ ηϕÞ=2, which controls VBS two-point correlations
at criticality [see Eqs. (49) and (52)], the scaling dimension
of other gauge-invariant local operators can be computed.
Other microscopic gauge-invariant local observables for
model (1) and accessible to QMC simulations include
the staggered density or CDW operator OCDWðrÞ ¼
ð−1Þxþy

P
i c

†
ricri, the staggered SUðNfÞ spin OAFðrÞ ¼

ð−1ÞxþySAðrÞ, and a QAH mass operator OQAHðrÞ [33].
These operators also exhibit universal power-law correla-
tions hOðrÞOðr0Þi ∼ jr − r0j−2ΔO at criticality, which cor-
respond to nondiverging static susceptibilities χOðqÞ∼
jqj2ΔO−3, with ΔO > 3=2. (By contrast, the static VBS
susceptibility diverges as χVBSðqÞ ∼ jqj2Δϕ−3 ∼ jqj−ð2−ηϕÞ,
due to critical fluctuations of the VBS order parameter.)
The microscopic observables above correspond in the
long-wavelength, low-energy effective field theory to

Lorentz-invariant, gauge-invariant fermion bilinears
[31,33]. In terms of the fermion fields Ψ; Ψ̄ in the Oð2Þ
QED3-GNY model (2), the identification is

OCDW ∼ Ψ̄Ψ; ð73Þ

OAF ∼ Ψ̄TAΨ; ð74Þ

OQAH ∼ iΨ̄Γ3Γ5Ψ; ð75Þ

while in the gauged NJL formulation (10) with the fields
ψ , ψ̄ , these bilinears are

OCDW ∼ −iψ̄γ3ψ ; ð76Þ

OAF ∼ −iψ̄TAγ3ψ ; ð77Þ

OQAH ∼ iψ̄γ3γ5ψ : ð78Þ

In both sets of equations a sum over repeated flavor indices
is understood. Since our four-loop analysis is based on a
d-dimensional representation of the gauged NJL model, the
appearance of the γ3 matrix makes the dimensional
continuation of the above fermion bilinears while preserv-
ing their Lorentz invariance appear intractable at first sight
(see Ref. [31] for a discussion of related issues in the
context of the Ising QED3-GNY model). To overcome this
issue, in our diagrammatic calculations we introduce a
formal object γ03 ¼ ðγ03Þ† which squares to the identity, is
traceless, and naively anticommutes with all gamma matri-
ces: fγ03; γ5g ¼ 0 and fγ03; γμg ¼ 0 for μ ¼ 0; 1;…; d − 1 in
general d dimensions. This object obeys the same properties
as γ3 in d ¼ 3 dimensions, and is thus a suitable replacement
for γ3 in the bilinears (76)–(78) for general d calculations.
As an example application of this procedure, we calculate
the scaling dimension of the simplest bilinear of this type,
the CDW operator (76), thus defined as ΔCDW ≡ Δiψ̄γ0

3
ψ in

general d. The corresponding anomalous dimension is
given by

γð1LÞCDW ¼ 6e2 þ g2; ð79Þ

γð2LÞCDW ¼ −
1

3
e4ð20Nf − 9Þ þ 8e2g2 −

1

4
g4ð2Nf − 1Þ; ð80Þ

γð3LÞCDW ¼ −
1

27
e6½4Nfð70Nf − 648ζ3 þ 621Þ − 3483Þ�

þ 1

4
e4g2ð32Nf − 720ζ3 þ 13Þ

þ 1

4
e2g4½Nfð48ζ3 − 19Þ − 96ζ3 þ 72�

−
1

16
g6½2Nfð10Nf − 31Þ þ 48ζ3 − 57�

þ 16g4λ2 − 28g2λ4; ð81Þ
FIG. 3. Padé approximants for 1=ν as a function of Nf at two-
(blue), three- (green), and four-loop (red) orders. The large-Nf
result (97) is shown in black.
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at three-loop order, with the four-loop contribution given in
Ref. [54]. At one-loop order, we obtain

ΔCDW ¼ 3 −
4N2

f þ 15Nf þ 18

4NfðNf þ 1Þ ϵþOðϵ2Þ: ð82Þ

The four-loop order results for Nf ¼ 4, 6, 8 are respectively
given by

ΔCDW ¼ 3 − 1.775ϵþ 0.1394ϵ2 þ 0.4558ϵ3 − 1.317ϵ4;

ð83Þ

ΔCDW ¼ 3 − 1.500ϵþ 0.1453ϵ2 þ 0.1677ϵ3 − 0.1937ϵ4;

ð84Þ

ΔCDW ¼ 3 − 1.368ϵþ 0.1223ϵ2 þ 0.09757ϵ3 − 0.05859ϵ4:

ð85Þ

We plot the corresponding Padé approximants as colored
lines in Fig. 4. Except for the four-loop approximants, all
approximants agree quite well for Nf ¼ 4, 6, 8. Numerical
values of the approximants for the latter are given in
Appendix A 1 (Tables I–III).

G. Kekulé VBS transition on the honeycomb
lattice: CDW exponent

The CDW operator (76) also corresponds to the long-
wavelength limit of the staggered density (or Semenoff mass
[62]) on the honeycomb lattice. Evaluating the anomalous
dimension γCDW computed above at the stable fixed point of
the chiralOð2ÞGNYmodel or the ungaugedNJLmodel, i.e.,
setting the gauge coupling to zero in the Lagrangian (10), one
can determine the universal exponent ΔKekulé

CDW characterizing
the decay ofCDWcorrelations at theQCPof theKekulé VBS
transition on the honeycomb lattice [38–41].We assume here
thatNf is sufficiently large that theZ3 anisotropy is irrelevant
at the QCP. At one-loop order, we obtain

ΔKekulé
CDW ¼ 3 −

2Nf þ 3

2ðNf þ 1Þ ϵþOðϵ2Þ: ð86Þ

Evaluating the four-loop expressions [54] numerically for
Nf ¼ 2, 3, 4, respectively, we obtain

ΔKekulé
CDW ¼3−1.167ϵ−0.04222ϵ2þ0.02605ϵ3−0.04662ϵ4;

ð87Þ

ΔKekulé
CDW ¼3−1.125ϵ−0.01980ϵ2þ0.02584ϵ3−0.01168ϵ4;

ð88Þ

ΔKekulé
CDW ¼ 3− 1.100ϵ− 0.009ϵ2 þ 0.02384ϵ3 − 0.001980ϵ4:

ð89ÞThe corresponding Padé approximants are plotted as
colored lines in Fig. 5. An excellent convergence with
increasing loop order is found; in particular, all four-loop
approximants agree very closely. Numerical values of
the approximants for select values of Nf are found in
Appendix B, Table VII.

IV. LARGE-Nf EXPANSION

The previous section is based on a perturbative analysis
of the chiral Oð2Þ QED-GNY model (gauged NJL model)
in d ¼ 4 − ϵ spacetime dimensions up to Oðϵ4Þ. Since the
physical dimension of interest is d ¼ 3, it is pertinent to
consider other approximation techniques that allow com-
plementary aspects of the critical point to be illuminated.
One such approach is the large-Nf expansion, reviewed
in Ref. [63], where one formally considers a large and
arbitrary number of fermion flavors Nf and constructs an
expansion in powers of 1=Nf. A large-Nf analysis for the
chiral Ising QED-GNY theory was performed to Oð1=N2

fÞ,
in 2 < d < 4 spacetime dimensions, in Ref. [47] using the
large-N critical point formalism. A large-Nf analysis of
the same model, to Oð1=NfÞ but for fixed d ¼ 3, was
performed in Refs. [49,64], and it was noted that in fixed
d ¼ 3 certain critical exponents have contributions that are

FIG. 4. Padé approximants for ΔCDW as a function of Nf for
d ¼ 3 at two- (blue), three- (green), and four-loop (red) orders.
The large-Nf result (100) is shown in black.

FIG. 5. Padé approximants for ΔCDW in the chiral Oð2Þ GNY
model as a function of Nf for d ¼ 3 at two- (blue), three-
(green), and four-loop (red) orders. The large-Nf result (104) is
shown in black.
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not captured in the continuous 2 < d < 4 analysis. For the
chiral Oð3Þ QED3-GNY theory, the large-Nf analysis was
performed in Ref. [31].
The chiral Oð2Þ QED3-GNY model considered here

was first studied in the large-Nf expansion in Refs. [36]
and [33]. In Ref. [36], the critical exponents ηϕ and ν were
computed to Oð1=NfÞ in 2 < d < 4, while in Ref. [33] the
scaling dimensions of the CDW, AF, and QAH bilinears
(73)–(75) were computed to Oð1=NfÞ in fixed d ¼ 3.
Following the method used in Ref. [36], here we expand
upon these previous studies by computing ηϕ to Oð1=N2

fÞ
and ΔCDW to Oð1=NfÞ, in general 2 < d < 4. We also
establish consistency between the results of the ϵ expansion
(Sec. III) and those of the large-Nf expansion, by verifying
that all exponents computed by both methods agree to
Oðϵ4; 1=Np

f Þ, with p ¼ 1 or 2 the order at which a given
quantity is known in the large-Nf expansion. This con-
stitutes a strong check on both the ϵ-expansion and large-
Nf expansion results.

A. Critical exponents

A critical exponent x can be expanded in a series of the
form x ¼ P∞

i¼1 xi=N
i
f. To first order in 1=Nf, the pertinent

quantities to compute here are the fermion anomalous
dimension η1 and the fermion-scalar vertex anomalous
dimension χϕ;1. As a result of the Ward-Takahashi identity,
the fermion-gauge vertex obeys χA;1 ¼ −η1; thus, it is not
an independent quantity. The fermion anomalous dimen-
sion is a gauge-dependent quantity and throughout this
paper we consider the Landau gauge (with gauge fixing
parameter ξ ¼ 0). To determine 1=ν the exponent λ
(defined in Ref. [36]) must be computed. The results for
these quantities at Oð1=NfÞ have already been computed
[36], and are reproduced here for convenience:

η1 ¼ −
ð4μ3 − 8μ2 þ μþ 2Þ

4ðμ − 1Þ
Γð2μ − 1Þ

μΓð1 − μÞΓðμÞ3 ; ð90Þ

χϕ;1 ¼ −
μð2μ − 1Þ2

ð4μ3 − 8μ2 þ μþ 2Þ η1; ð91Þ

λ1 ¼ −
1

2

ð2μ − 1Þð2μ2 − 2μþ 1ÞΓð2μ − 1Þ
Γð2 − μÞμΓðμÞ3 : ð92Þ

Here ΓðzÞ denotes Euler’s gamma function and μ ¼ d=2.
To Oð1=N2

fÞ, η2 and χϕ;2 are given by

η2 ¼
�
−8ð2μ2 − 1Þðμ − 1Þ2Ψ̂ðμÞ þ 3μð2μ − 1Þð4μ3 − 8μ2 þ μþ 2Þðμ − 1Þðψ 0ðμ − 1Þ − ψ 0ð1ÞÞ

þ 16μ7 − 112μ6 þ 240μ5 − 184μ4 þ 15μ3 þ 46μ2 − 20μþ 2

μðμ − 1Þ
�

η21
ð4μ3 − 8μ2 þ μþ 2Þ2 ; ð93Þ

χϕ;2 ¼ −
�
3ðμ − 1Þμ2ð4μþ 1Þð2μ − 1Þ2ðψ 0ðμ − 1Þ − ψ 0ð1ÞÞ

þ 48μ7 − 184μ6 þ 204μ5 − 30μ4 − 82μ3 þ 31μ2 þ 8μ − 2

μ − 1

�
η21

ð4μ3 − 8μ2 þ μþ 2Þ2 ; ð94Þ

where ψðzÞ≡ Γ0ðzÞ=ΓðzÞ and

Ψ̂ðμÞ ¼ ψð2μ − 1Þ − ψð1Þ þ ψð1 − μÞ − ψðμ − 1Þ: ð95Þ

The scalar anomalous dimension is then determined via
ηϕ ¼ 2ð2 − μ − ðηþ χϕÞÞ, and the inverse correlation ex-
ponent is obtained from 1=ν ¼ 2ðμ − 1þ λÞ. Expanding
the expressions for ηϕ and 1=ν in d ¼ 4 − ϵ up toOðϵ4Þ, we
find agreement with the counterpart expressions in Eqs. (54)
and (65) respectively, when the latter are expanded in
powers of 1=Nf to Oð1=N2

fÞ and Oð1=NfÞ respectively.
This agreement is an important verification of the validity
of our results. In fixed d ¼ 3, the large-Nf expressions
reduce to

ηϕjd¼3
¼ 1þ 56

3π2Nf
þ 3168π2 − 14368

27π4N2
f

: ð96Þ

1

ν

				
d¼3

¼ 1 −
80

3π2Nf
: ð97Þ

The results for ηϕ and 1=ν atOð1=NfÞ agree with Ref. [36].
Note that, for the chiral Oð2Þ QED3-GNY model, in fixed
d ¼ 3 spacetime dimensions, there are no additional con-
tributions at Oð1=NfÞ arising from Aslamazov-Larkin
diagrams [49], and the above result agrees to Oð1=NfÞ
with Ref. [33].
The large-Nf results are plotted in Fig. 2 (ηϕ) and Fig. 3

(1=ν) alongside the Padé approximants for the ϵ-expansion
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results. Excellent agreement with the ϵ-expansion approx-
imants is found for ηϕ for Nf ≳ 4, while the large spread of
values of the ϵ-expansion approximants for 1=ν prevents a
meaningful comparison with the large-Nf result. In
Appendix A 2, we also resum the large-Nf results for
ηϕ and 1=ν at Nf ¼ 4 (Table IV), Nf ¼ 6 (Table V), and
Nf ¼ 8 (Table VI), treating 1=Nf as a small parameter and
using Padé and Padé-Borel resummation.

B. CDW exponent

As discussed in Sec. III F, in general 2 < d < 4 dimen-
sions a suitable definition of the CDW exponent is as the
scaling dimension of the iψ̄γ03ψ fermion bilinear in the
gauged NJL model. In the large-Nf formalism, this
exponent is given by

ΔCDW ≡ Δiψ̄γ0
3
ψ ¼ 2μ − 1þ ηO;30 ; ð98Þ

where the parameter ηO;30 is given by

ηO;30 ¼ −
2ð4μ2 − 2μ − 1Þ

ð4μ3 − 8μ2 þ μþ 2Þ η1: ð99Þ

Again, when Eq. (98) is expanded in d ¼ 4 − ϵ up to
Oðϵ4Þ, we find agreement with the counterpart expression
computed at four-loop order in Sec. III F, when the latter is
expanded in powers of 1=Nf to Oð1=NfÞ. In fixed d ¼ 3

the result is

ΔCDWjd¼3 ¼ 2 −
40

3π2Nf
: ð100Þ

This agrees with Ref. [33], which computed ΔΨ̄Ψ ¼ ΔCDW
in the Oð2Þ QED3-GNY model in fixed d ¼ 3 dimensions;
as in the previous section, there are no additional contri-
butions specific to d ¼ 3. The large-Nf result is shown in
Fig. 4 alongside the Padé approximants for the ϵ-expansion
results; good agreement is found with those approximants
(except four-loop order). Numerical values of Padé and
Padé-Borel resummations of (100) at Nf ¼ 4, 6, 8 are also
found in Tables IV–VI, Appendix A 2.
Finally, as in Sec. III G, we can turn off the gauge

coupling and study the resulting chiral Oð2Þ GNY model
(ungauged NJL model) in the large-Nf expansion. The
critical exponents ηϕ and 1=ν for this model have already
been determined toOð1=N2

fÞ in Ref. [65] and Refs. [66,67],
respectively. Here, we provide the large-Nf analysis for the
CDW exponent, to Oð1=NfÞ in general 2 < d < 4. The
pertinent quantities are given by

η1 ¼ −
ðμ − 1ÞΓð2μ − 1Þ
μΓð1 − μÞΓðμÞ3 ; ð101Þ

χϕ;1 ¼ 0; ð102Þ

ηO;30 ¼ −
1

μ − 1
η1: ð103Þ

The CDW exponent is computed via the relation
ΔKekulé

CDW ¼ 2μ − 1þ ηO;30 . Again, when this quantity is
expanded in d ¼ 4 − ϵ up to Oðϵ4Þ, we find agreement
with the counterpart expression determined in Sec. III G,
when the latter is expanded in powers of 1=Nf toOð1=Nf).
In fixed d ¼ 3 the result is

ΔKekulé
CDW jd¼3 ¼ 2 −

8

3π2Nf
: ð104Þ

This agrees with Ref. [33], which computedΔΨ̄Ψ ¼ ΔKekulé
CDW

in the Oð2Þ GNY model in fixed d ¼ 3 dimensions; as in
the previous section, there are no additional contributions
specific to d ¼ 3. The large-Nf result is shown in Fig. 5
alongside the Padé approximants for the ϵ-expansion
results; there is excellent agreement with the four-loop
approximants for values Nf ≳ 6. Numerical values of Padé
and Padé-Borel resummations of (104) for select values
of Nf are presented in Table VIII, Appendix B.

C. VBS bilinear vs VBS order parameter

What about the scaling dimension of the VBS fermion
bilinears iΨ̄Γ3Ψ, iΨ̄Γ5Ψ in the chiral Oð2Þ QED3-GNY (or
pure GNY) formulation, or equivalently ψ̄ψ, iψ̄γ5ψ in the
gauged (or ungauged) NJL formulation? The order param-
eter fields ϕ1;ϕ2 and those bilinears transform identically
under all symmetries, and are in fact not independent
operators at the critical fixed point in the large-Nf formal-
ism, as ϕ1;ϕ2 arises from the Hubbard-Stratonovich
decoupling of a four-Fermi interaction. This is sensible,
since VBS correlations at criticality are already controlled
by the order parameter anomalous dimension ηϕ [see
Eqs. (49) and (52)]. At the critical fixed point, the above
VBS fermion bilinears are in fact set to zero by the equation
of motion for ϕ [64,68,69]. Diagrammatically, one finds
that the two-point correlation function of a VBS bilinear
vanishes order by order in the 1=Nf expansion, due to
“dumbbell” diagrams (Fig. 6, where the double dashed line
denotes the large-Nf scalar-field propagator). The cancel-
lation follows from the fact that in the long-wavelength
limit, the large-Nf scalar field propagator is simply (minus)
the inverse of the fermion bubble. Note that these dumbbell
diagrams are only possible when the operator insertion
(denoted by “×” in Fig. 6) corresponds to a VBS bilinear,

FIG. 6. Example of cancellation in the two-point correlation
function of a VBS bilinear at a given order in the large-Nf
expansion.
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which itself appears in the Yukawa vertex. In Ref. [21],
the critical scaling of the VBS correlation function was
associated with the dimension of the iΨ̄Γ3Ψ, iΨ̄Γ5Ψ
fermion bilinears; as discussed above and also in
Refs. [64,68,69], these bilinears technically correspond
to vanishing operators due to the presence of the diagrams
in Fig. 6. Thus the correct asymptotic scaling of the VBS
correlation function is dictated by ηϕ.

V. CONCLUSIONS

In summary, we have computed several critical expo-
nents for the VBS transition in lattice QED3 using high-
order ϵ- and large-Nf expansions. We have established the
emergent Oð2Þ symmetry at the critical point, previously
only conjectured, by showing that the only potentially
relevant Z4 anisotropy term is in fact irrelevant in the
infrared already at leading order in the ϵ expansion. We
have performed state-of-the-art Oðϵ4Þ computations of
several critical exponents in the resulting chiral Oð2Þ
QED3-GNY model, equivalent to the gauged NJL model:
the anomalous dimension ηϕ, which controls the power-law
decay of VBS two-point correlations at criticality; the
correlation length exponent ν; and the exponent ΔCDW,
which controls the power-law decay of the simplest
competing order (CDW order). In the large-Nf expansion,
we have newly computed ηϕ to Oð1=N2

fÞ. Furthermore, by
computing all exponents in 2 < d < 4 we have shown that
they agree with the ϵ-expansion results at Oðϵ4; 1=Np

f Þ,
with p ¼ 1, 2 the highest order computed. We have
additionally computed the CDW exponent at the Kekulé
VBS transition on the honeycomb lattice in both ϵ and
large-Nf expansions. Finally, we have performed Padé and
Padé-Borel resummations for all critical exponents to
obtain numerical estimates for flavor numbers Nf currently
accessible to QMC simulations.
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APPENDIX A: RESUMMED CRITICAL
EXPONENTS: VBS TRANSITION

IN LATTICE QED3

In the following pages we present tables containing
the numerical values of Padé (P) and Padé-Borel (PB)
resummations in d ¼ 3 of the two-, three-, and four-loop

ϵ-expansion results (Sec. A 1) and large-Nf expansion
results (Sec. A 2) for the critical exponents of the chiral
Oð2Þ QED3-GNY model (2). Given the power-series
expansion ΔðδÞ ¼ P∞

k¼0Δkδ
k of a quantity Δ in terms

of a small dimensionless parameter δ (here ϵ or 1=Nf),
the Borel sum is defined as BΔðδÞ ¼

P∞
k¼0Δkδ

k=k!. The
Padé-Borel transform is then

ΔðδÞ ¼
Z

∞

0

dte−tBΔðδtÞ: ðA1Þ

The δ-expansion coefficients have been computed here
only to a finite order, and therefore in the expression above,
B is replaced by the appropriate (ϵ-expansion or large-Nf)
Padé approximant.

1. ϵ expansion

We present estimates of ηϕ, 1=ν, and ΔCDW for Nf ¼ 4

(Table I), Nf ¼ 6 (Table II), and Nf ¼ 8 (Table III). Values
for which the approximant either has a pole in the domain
ϵ ∈ ½0; 1�, is undefined, or is negative, are denoted in the
tables by ×.

2. Large-Nf expansion

Here 1=Nf is treated as the small expansion parameter
for resummation. We present estimates of ηϕ, 1=ν, and
ΔCDW for Nf ¼ 4 (Table IV), Nf ¼ 6 (Table V), and Nf ¼
8 (Table VI). Approximants which are either singular in the
domain Nf ≥ 1, undefined, or negative are denoted by ×.
The exponents that are unknown beyond Oð1=NfÞ are

TABLE I. ϵ-expansion resummations for Nf ¼ 4.

ηϕ ν−1 ΔCDW

P½0=2� × 0.691178 1.58288
PB½0=2� × 0.921858 1.83814
P½1=1� 1.75502 0.519214 1.35423
PB½1=1� 1.75597 0.426303 1.35013
P½0=3� × 0.398022 1.5827
PB½0=3� × 0.829563 1.74961
P½1=2� 3.88237 × 1.5827
PB½1=2� × × 1.55548
P½2=1� × × ×
PB½2=1� × 0.0500637 ×
P½0=4� × 1.37123 1.34501
PB½0=4� × 0.786758 1.70129
P½1=3� 0.679069 0.541884 1.58288
PB½1=3� 1.2536 0.553304 ×
P½2=2� 1.97642 0.138865 1.45687
PB½2=2� × × 1.45722
P½3=1� 1.94078 0.167599 1.48159
PB½3=1� 1.97185 0.0165785 1.49813
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denoted by −; for these quantities only one approximant
can be used.
As both Padé and Padé-Borel resummations fail for ηϕ,

we have performed resummations of η−1ϕ , then taken the
reciprocal, which is denoted by 1=η−1ϕ in the tables.

TABLE III. ϵ-expansion resummations for Nf ¼ 8.

ηϕ ν−1 ΔCDW

P½0=2� × 0.860757 1.84821
PB½0=2� × 1.06164 2.01877
P½1=1� 1.34162 0.714953 1.74425
PB½1=1� 1.34238 0.675792 1.74029
P½0=3� × 0.709312 1.82006
PB½0=3� × 0.984411 1.94698
P½1=2� 1.50719 × 1.81517
PB½1=2� × × 1.8052
P½2=1� 1.37741 0.537753 2.23623
PB½2=1� 1.37508 0.564138 ×
P½0=4� × 0.762125 1.80981
PB½0=4� × 0.946503 1.91307
P½1=3� 1.1047 0.746421 1.80381
PB½1=3� 1.22268 0.714258 1.80322
P½2=2� 1.37998 0.618923 1.80761
PB½2=2� 1.38603 0.601702 1.80332
P½3=1� 1.37997 0.642166 1.81526
PB½3=1� 1.38574 0.614338 1.81724

TABLE V. 1=Nf-expansion resummations for Nf ¼ 6.

ηϕ 1=η−1ϕ ν−1 ΔCDW

P½0=1� × 1.31522 0.689505 1.79763
PB½0=1� × 1.25904 0.739952 1.81347
P½0=2� × 1.4937 − −
PB½0=2� × 1.37268 − −
P½1=1� × × − −
PB½1=1� × × − −

TABLE VI. 1=Nf-expansion resummations for Nf ¼ 8.

ηϕ 1=η−1ϕ ν−1 ΔCDW

P½0=1� × 1.23642 0.747531 1.84428
PB½0=1� × 1.20138 0.784343 1.85417
P½0=2� × 1.33681 − −
PB½0=2� × 1.27668 − −
P½1=1� × × − −
PB½1=1� × × − −

TABLE IV. 1=Nf-expansion resummations for Nf ¼ 4.

ηϕ 1=η−1ϕ ν−1 ΔCDW

P½0=1� × 1.47283 0.596846 1.71106
PB½0=1� × 1.36619 0.670006 1.74054
P½0=2� × 1.87442 − −
PB½0=2� × 1.5627 − −
P½1=1� × × − −
PB½1=1� × × − −

TABLE II. ϵ-expansion resummations for Nf ¼ 6.

ηϕ ν−1 ΔCDW

P½0=2� × 0.795683 1.7631
PB½0=2� × 1.00854 1.95805
P½1=1� 1.47169 0.640775 1.63251
PB½1=1� 1.47194 0.584353 1.62754
P½0=3� × 0.592311 1.74195
PB½0=3� × 0.92582 1.88102
P½1=2� 1.89107 × 1.73957
PB½1=2� × × 1.72435
P½2=1� 1.49774 0.350477 ×
PB½2=1� 1.49694 0.392351 ×
P½0=4� × 0.750097 1.70513
PB½0=4� × 0.8858 1.84369
P½1=3� 0.999387 0.669572 ×
PB½1=3� 1.25658 0.644327 ×
P½2=2� 1.55518 0.465496 1.70842
PB½2=2� × 0.429557 1.70409
P½3=1� 1.5527 0.493025 1.72315
PB½3=1� 1.56486 0.435965 1.72842
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APPENDIX B: RESUMMED CRITICAL EXPONENTS: KEKULÉ VBS TRANSITION
ON THE HONEYCOMB LATTICE

We also present Padé and Padé-Borel resummations in d ¼ 3 of the CDWexponentΔCDW in the chiralOð2ÞGNYmodel,
which describes the Kekulé VBS transition on the honeycomb lattice. Table VII contains resummations of the ϵ-expansion
results, and Table VIII those of the 1=Nf-expansion result.
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