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In this work we present the isovector flavor combination for the nucleon tensor charge extracted from
lattice QCD simulations using overlap fermions on Nf ¼ 2þ 1 domain-wall configurations. The pion
mass dependence is studied using six valence quark masses, each reproducing a value for the pion mass in
the valence sector between 147 and 330 MeV. We investigate and eliminate systematic uncertainties due to
contamination by excited states, by employing several values for the source-sink separation that span from
1 to 1.6 fm. We apply a chiral extrapolation in the valence sector using a quadratic and a logarithmic term to
fit the pion mass dependence, which describes well the lattice data. The lattice matrix element is
renormalized nonperturbatively, and the final result is gT ¼ 1.096ð30Þ in the MS scheme at a
renormalization scale of 2 GeV.
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I. INTRODUCTION

Parton distribution functions (PDFs) are important tools
to understand the structure of hadrons and have played an
important role in establishing QCD as the theory of the
strong interaction. These quantities are universal, and
therefore, experimental data from different processes are
analyzed together within the global analysis framework for
the extraction of the x-dependent PDFs. There are several
collaborations (e.g., ABMP [1], CJ [2], CT [3], HERAPDF
[4], JR [5], MMHT [6], and NNPDF [7]) analyzing the
available experimental data which have obtained satisfac-
tory agreement for the chiral-even PDFs, that is, the
unpolarized (f1) and helicity (g1) PDFs. On the contrary,
the collinear transversity PDF (h1) is poorly known, as a
limited number of experimental data are available, only in
certain kinematic regions, and are less precise.

The PDFs cannot be calculated directly on a Euclidean
lattice, as they correspond to nonlocal operators with
timelike separated fields. Instead, it is more straightforward
to calculate their Mellin moments, leading to matrix
elements of a tower of local operators, which are well
studied. It is worth mentioning that novel pioneering
approaches have been proposed for a more direct access
to PDFs, the hadronic tensor [8–10], quasidistributions
[11,12], pseudodistributions [13–15], and good lattice cross
sections [16,17], to name a few. All of these methods are
under investigation within lattice QCD and are summarized
in the recent review of Ref. [18]. Of particular interest is the
work of Ref. [19] which is the first complete calculation of
the x dependence of the transversity PDFs for the nucleon,
with simulations at the physical point.
The tensor charge is the first Mellin moment of the

transversity PDF and is a fundamental quantity in under-
standing the internal structure of hadrons. It is also related
to physics beyond the Standard Model (BSM) [20–24] as,
together with the scalar charge, it probes novel scalar and
tensor interactions at the TeV scale. For example, neutron
β-decay experiments require input on the scalar and tensor
charges to provide reliable estimates. The nucleon tensor
charge plays an important role also in searches of a nonzero
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electric dipole moment that originates from CP-violating
contributions [25].
While the nucleon tensor charge is not accurately known

from the analysis of experiments and from phenomenology,
it can be obtained from three-point functions in lattice QCD
with statistical and systematic uncertainties better con-
trolled than by taking the moments from the lattice PDFs
at this stage [18,19]. This gives a unique opportunity to
combine lattice data with experimental measurements for
a better constraint on the tensor charge. This has been tested
in the analysis of Ref. [26], demonstrating that such
synergy is realistic and promising.
Given the importance of the tensor charge, there is an

ongoing effort to better constrain its value. For example,
there is a rich experimental program in the 12 GeVupgrade
at Jefferson Lab, to investigate the transverse spin nucleon
structure [27,28]. New experiments in Hall Awill employ a
future solenoid spectrometer (SoLID) to perform precision
measurements from semi-inclusive electroproduction of
charged pions from transversely polarized 3He target in
deep-inelastic-scattering kinematics using 11 and 8.8 GeV
electron beams [29]. SoLID is expected to increase the
experimental accuracy of the tensor coupling by an order of
magnitude [27,28]. Also, current experiments at LHC are
probing scalar and tensor interactions for BSM physics at
the TeV scale. The transversity PDFs at large x are also
included in the physics program of the future Electron-Ion
Collider [30,31], endorsed by the National Academies of
Science, Engineering and Medicine [32]. Thus, a precise
determination of the tensor charge from lattice QCD is
crucial and timely.
Recent years have seen marked progress in lattice QCD

mainly due to algorithmic advances and an increase of
computational resources. The synergy of the above
has enabled simulations to be carried out at parameters
close to or at their physical values, and high-accuracy
results are now available for the tensor charge (see, e.g.,
Refs. [25,33,34]). This has enabled an intense activity
within lattice QCD to provide high-precision input to
experiments, test phenomenological models, and predict
physics beyond the Standard Model.
This paper is organized as follows: The methodology

and numerical implementation are explained in Sec. II,
while the renormalization procedure is laid out in Sec. III.
In Sec. IV, we show our results for the tensor charge and a
detailed discussion of the control of the excited-state
contamination and the chiral extrapolation. Finally, in
Sec. V we summarize and discuss our final results.

II. NUMERICAL DETAILS

The isovector tensor charge can be accurately computed
from lattice QCD, as it is extracted directly from lattice
data. It receives contributions only from the connected
insertion as in Fig. 1, in which the tensor operator is
inserted to the quark propagator on the connected insertion.

In this work, we use a single ensemble of Nf ¼ 2þ 1

RBC=UKQCD domain-wall fermions Iwasaki gauge con-
figurations [35] and the overlap formulation in the valence
sector. The lattice spacing corresponding to the gauge
configurations (32ID) is 0.1431(7) fm and has a volume of
323 × 64 [36]. Thus, the spatial extent of the lattice in
physical units is approximately 4.6 fm and allows one to
reach the near-physical sea pion mass of 170 MeV.
An advantage of overlap fermions is the fact that one can

generate the quark propagators with multiple quark masses
at a small additional computational cost compared to the
cost of the lightest quark mass. We employ six values for
the quark masses that give a valence pion mass (mπ)
ranging from 147 to 327 MeV. Therefore, one can perform
a partially quenched chiral extrapolation to the physical
point in the valence sector. Another advantage of the
overlap formulation is that the effective overlap operator
(Dc) we use is chiral, i.e., fDc; γ5g ¼ 0 [37]. Dc is
expressed in terms of the overlap operator Dov as

Dc ¼
ρDov

1 − Dov
2

with Dov ¼ 1þ γ5ϵðγ5DwðρÞÞ; ð1Þ

where ϵ is the matrix sign function and Dw is the Wilson
Dirac operator with a negative mass characterized by the
parameter ρ ¼ 4 − 1=2κ for κc < κ < 0.25. In this work we
set κ ¼ 0.2 which corresponds to ρ ¼ 1.5. Details on the
calculations with overlap fermion can be found in our
previous work [38].
The matrix elements we need are obtained from the ratio

of the three-point function to the two-point function:

Rðt;TsinkÞ¼
h0jR d3yΓm

k χðy⃗;tfÞψ̄ðtÞσk3 ψðtÞ
P

x⃗∈Gχ̄Sðx⃗;0Þj0i
h0jR d3yΓeχðy⃗;tfÞ

P
x⃗∈Gχ̄Sðx⃗;0Þj0i

;

ð2Þ

where χ is the standard proton interpolation field and χ̄S is
the grid Z3 noise source with Gaussian smearing applied to
all three quarks with size ∼0.6 fm. The source is located at
time slice t0 ¼ 0 and the sink at tf, and the current insertion
t varies between the source and the sink. We indicate the
time separation between the source and the sink as Tsink.
The two-point functions are projected with the unpolarized
projector:

FIG. 1. Example of the connected insertion.
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Γe ¼ 1

2
ð1þ γ4Þ; ð3Þ

while the three-point functions require a polarized
projector:

Γm
k ¼ i

2
ð1þ γ4Þγkγ5; ð4Þ

to extract gT . The polarized projector is along the spatial
direction k, while the current is defined as σk ¼ ϵijkγiγj. We
obtain the three-point functions for each value of k, and
then we sum over the spatial directions k ¼ 1, 2, 3 with the
appropriate current insertion that gives nonzero signal. All
the correlation functions from the source points x⃗ in the grid
G are combined to improve the signal-to-noise ratio.
To reliably extract the tensor charge, the source-sink

separation Tsink has to be large enough to suppress excited-
state contamination. Also, the insertion time t is taken to be
away from the source and the sink, to guarantee ground
state dominance in the ratio Rðt; TsinkÞ. To examine effects
from excited states we compute Rðt; TsinkÞ for five values of
the sink-source separation Tsink=a ¼ 7, 8, 9, 10, 11,
corresponding to 1.00, 1.14, 1.29, 1.43, and 1.57 fm,
respectively. For each Tsink value, the current is inserted at
all time slices from the source to the sink.
In this work, we use the stochastic method with

low mode substitution (LMS) to generate the two-
point and three-point functions efficiently. We use six
2-2-2-2 grid sources, and 2=4=6=10=12 stochastic wall
source for the cases with Tsink=a ¼ 7, 8, 9, 10, 11,
respectively, to approximate the corresponding sequential
sources, on 200 configurations. The projection ð1 − γ4Þ=2 is
applied to the backward nucleon propagators and thus the
total measurements are 6ðsourcesÞ � 16ðpoints in the
gridÞ � 2ðforward and backwardÞ � 200ðconfigurationsÞ ¼
38 400. Note that we have the same statistics for each
valence quark mass, as the overlap inverter can be applied to
multiple masses without much overhead. To suppress the
additional statistical uncertainty from the stochastic sources,
the LMS is applied to all four quark propagators. The details
of the simulation setup can be found in Refs. [39–41].

III. RENORMALIZATION

One important ingredient for extracting the tensor charge
is the renormalization of the operator that removes diver-
gences related to the regulator, as well as the leading
dependence on the fermionic and gluonic action (up to
cutoff effects). The bare matrix elements of the tensor
charge are renormalized multiplicatively, and we compute
the appropriate renormalization function ZT nonperturba-
tively in the Regularization Independent Momentum sub-
traction scheme (RI=MOM). This is then converted to the
MS scheme using continuum perturbation theory [42,43]
and evolved to a scale of 2 GeV that allows comparison

with phenomenological estimates. Below we explain the
procedure followed to obtain the value used in this work.
Based on the strategy presented in our previous paper

[44] we first determine the renormalization function of the
local axial-vector current, ZWI

A , using the Ward identity
(WI), that is,

ZWI
A ¼ 2mqh0jψ̄γ5ψ jπi

mπh0jψ̄γ5γ4ψ jπi
: ð5Þ

One may use ZWI
A to extract the RI=MOM renormalization

function of the tensor charge, which is defined as

ZRI=MOM
T ðμÞ ¼ ZWI

A

Tr½ðγkγ5Þ−1Λγkγ5ðpÞ�
Tr½σ−1k ΛσkðpÞ�

����
p2¼μ2

: ð6Þ

In the above equation, ΛΓðpÞ is the forward vertex function

ΛΓðpÞ ¼ S−1ðpÞ
X
x;y

e−ip·ðx−yÞhψðxÞOð0Þψ̄ðyÞiS−1ðpÞ ð7Þ

with SðpÞ ¼ P
x e

−ip·xhψðxÞψ̄ð0Þi being the quark propa-
gator in momentum space andO the tensor operator. Such a
definition does not require knowledge of the quark field
renormalization, extracted from the quark self-energy,
which may have large discretization errors [44]. In our
previous study we have demonstrated a similar procedure
for the renormalization function of the vector current,
which was found to be consistent with the one determined
from the vector charge [40].
ZRI=MOM
T is gauge dependent and the vertex functions

and quark propagators are computed in the Landau gauge.
We also employ periodic boundary conditions in all four
directions, and the momentum p, which is set to the RI/
MOM renormalization scale μ, is chosen as

ap ¼ 2π

�
k1
L
;
k2
L
;
k3
L
;
k4
T

�
: ð8Þ

The integer appearing in the components of the momentum
is chosen as kμ ¼ −8;−7;…; 8, and the lattice size is L ¼
32 and T ¼ 64. To reduce the effects of Lorentz non-
invariant discretization errors, we apply a “democratic”
cut [45]

p½4�

ðp2Þ2 < 0.32; where p½4� ¼
X
μ

p4
μ; p2 ¼

X
μ

p2
μ:

ð9Þ

The extracted value for ZWI
A and its dependence on the

valence pion mass is plotted in Fig. 2. The errors shown are
statistical uncertainties computed using the jackknife
method and are of the order of ∼0.1% using 200 configu-
rations. As can be seen from the plot, the pion mass
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dependence is very weak and within statistical uncertain-
ties. The difference in ZA between the lowest and the
heaviest value of mπ is less than ∼0.3%. We perform a
chiral extrapolation using a linear fit in m2

π , and the chiral
value of 1.141(1) is shown with a green triangle. The
number in the parentheses corresponds to the statistical
uncertainty.
Figure 3 shows the renormalization function of the

tensor operator in the RI=MOM scheme (blue polygons)
as defined in Eq. (6). The statistical uncertainties of
ZRI=MOM
T at ðapÞ2 > 5 are less than 0.5%, which is the

region of interest for the final fit. A chiral extrapolation in
the valence quark sector has already been applied to the
data in the plot, similarly to the case of ZA. The black
squares correspond to ZT upon conversion to the MS
scheme at the same scale as in the initial RI=MOM scheme,
that is, μ2 ¼ p2. Finally, the red circles show ZT in the MS
scheme evolved at a common scale for all points,
μ ¼ 2 GeV. The conversion and evolution use four-loop
expressions for the anomalous dimension in MS extracted
in continuum perturbation theory [42,43]. The MS esti-
mates at a fixed scale are expected to have a constant
behavior up to OððapÞ2Þ effects, which are found to be
non-negligible as the initial scale ðapÞ2 increases. To
remove the residual dependence on the initial RI=MOM
scale we perform a linear extrapolation in ðapÞ2 → 0
obtaining a value of 1.1857(17). For the aforementioned
fit we use the range ðapÞ2 ∈ ½5; 8� and the corresponding
χ2=DOF is 0.7.
In this work we examined the following systematic

uncertainties on the renormalization function and consid-
ered the ones contributing above 0.1%:

(i) Truncation effects in the conversion factor to theMS
scheme and evolution of scale.—This is estimated
by comparing the results using three-loop and four-
loop formulas. Above ðapÞ2 ¼ 5, this error is about
or less than 0.1%.

(ii) Uncertainty in ΛMS
QCD ¼ 339ð10Þ MeV for evaluat-

ing αs.—Varying ΛMS
QCD from 339 to 349 MeV

changes the central value of ZMS
T ð2 GeVÞ by 0.14%.

(iii) Uncertainty in the value used for the lattice spacing
½1=a ¼ 1.3784ð68Þ GeV� when choosing ðapÞ2
such that μ ¼ 2 GeV.—This effect is found to be
less than 0.1% and thus negligible.

(iv) Variation of the final value with the fit range for
obtaining ðapÞ2 → 0.—We vary ðapÞ2 from [5, 8]
to [4, 8], which leads to a 0.23% change in

ZMS
T ð2 GeVÞ.
The uncertainties due to ΛMS

QCD and the fit range
are added quadratically to get the total systematic
error. Thus, we report as our final result

ZMS
T ð2 GeVÞ ¼ 1.1857ð17Þð36Þ: ð10Þ

The aforementioned systematic effects are found to
be similar to the renormalization functions of other
operators, such as the scalar operator [44].

IV. RESULTS

In this section we present the analysis for excited-state
contamination, with main focus on the plateau method and
the two-state fits. The first method relies on a constant fit in
a region where a plateau is identified, that is,

FIG. 2. The renormalization function of the axial-vector oper-
ator from the Ward identity, as a function of the pion mass
dependence (red points). The green triangle shows the chirally
extrapolated value.

FIG. 3. ZT as a function of the initial RI=MOM scale ðapÞ2.
RI=MOM values are shown with light blue polygons, and MS
values at a scale ðapÞ2 are shown with black squares. Red circles
correspond to MS values evolved to μ ¼ 2 GeV. The final value
used in this work is obtained from the ðapÞ2 → 0 limit using a
linear extrapolation in ðapÞ2, which is applied on the red points.
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Rðt; TsinkÞTsink−t→∞
t−ti→∞

⟶ ΠðTsinkÞ: ð11Þ

In the above equation, ti is the insertion time of the source,
which is zero in our case. The tensor charge is obtained
upon renormalization:

gplateauT ðTsinkÞ ¼ ZTΠðTsinkÞ: ð12Þ

No additional kinematic factor is needed due to the use of
the rest frame.
An alternative analysis approach for the isolation of the

ground state is to perform a two-state fit, assuming
dominance of the ground and first excited states. In such
a method, the ratio is fitted to the form

Rðt; TsinkÞ ¼ R0 þ C1e−δmðTsink−tÞ þ C2e−δmt; ð13Þ

for each quark mass. The tensor charge is then given by

g2-stateT ¼ ZTR0: ð14Þ

In principle, there is an additional term, C3e−δmTsink , in this
expression. However, it was found to be insignificant in the
fit, and thus C3 was set to zero for better stability in the fit.
Once the ground state contribution is obtained successfully,
we expect that g2−stateT will be consistent with the value
extracted from the plateau fit at some large source-sink
separation.
The unrenormalized ratio Rðt; TsinkÞ of Eq. (2) is plotted

in Fig. 4 for each quark mass used in this work. The ratio

FIG. 4. Rðt; TsinkÞ as a function of the insertion time t for all six ensembles. The two-state fit of Eq. (13) is shown for each value of
Tsink: 7a (red), 8a (green), 9a (blue), 10a (orange), and 11a (magenta). The extracted value of gBT ¼ R0 is shown with a band.
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for source-sink separation 7a, 8a, 9a, 10a, and 11a is
shown with red, green, blue, orange, and magenta points,
respectively. With a black constant line we show R0

extracted from the two-state fit of Eq. (13), and its width
(green band) shows the statistical uncertainties. For dem-
onstration purposes, we keep the range of the y axis the
same for each plot so a direct comparison between different
quark masses can be made. Starting from the top left plot
and moving to the bottom right plot, we show the results for
mπ ¼ 327, 288, 262, 234, 175, and 147 MeV. From the
analysis of the various quark masses we find that excited-
state contamination is very small. Comparing the results
from different values of the pion mass gives us a compre-
hensive understanding of the dependence of excited states
as the pion mass decreases. As can be seen from the plots,
the two-state fit is compatible with the one-state fit using
data at Tsink > 1.1 fm. This is in agreement with other
investigations on the same quantity (see, e.g., Ref. [34]).
For the quark masses with mπ < 200 MeV we find that the
excited-state effect is within the statistical uncertainties for
all separations. The individual plateau values for Tsink ¼
7a; 9a; 11a are given in Table I and are compared to the
values extracted from the two-state fit.
In order to obtain results at the physical pion mass, we

use a chiral extrapolation with respect to the valence pion
mass. We fit the data to the form

gT ¼ aþ bm2
π þ cm2

π log

�
m2

π

m2
ρ

�
; ð15Þ

wheremρ ¼ 0.775 GeV. The final extrapolated value at the
physical point is

gT ¼ 1.096ð30Þ; ð16Þ

obtained using the two-state fit values at each quark mass.
The statistical error has been determined using the super-
jackknife method [46]. The final results on each ensemble
are shown with red points in Fig. 5, while the fit function of
Eq. (15) is shown with a red band. We observe a rather flat
behavior with respect to the pion mass. In fact, omitting the
last term in Eq. (15) gives compatible results with the fit
shown in the plot. The extrapolated value is shown with a

black open circle and is obtained from a fit including the
logarithmic term.
It is interesting to compare our final result with the recent

work of Refs. [25,33,34] on the isovector combination for
the tensor charge. While the results from these references
correspond to simulations directly at the physical point, a
comparison is justified by the mild dependence on the pion
mass. In addition, such a comparison can give an indication
of the effectiveness of the chiral fit. A calculation by
PNDME [25] uses nine ensembles of Nf ¼ 2þ 1þ 1

Highly Improved Staggered Quarks action (HISQ) at
different lattice spacings, volumes and pion mass
(∼130–320 MeV). This allows for a combined continuum,
chiral and infinite-volume extrapolation, obtaining as a
final estimate gT ¼ 0.987ð51Þ. JLQCD [47] has calculated
the tensor charge using Nf ¼ 2þ 1 overlap fermions with
four ensembles withmπ in the range 290–540 MeV. After a
linear (quadratic) chiral extrapolation, the final value is
gT ¼ 1.08ð3Þ [gT ¼ 1.11ð7Þ], which is compatible with our
estimates. LHPC performed a calculation on Nf ¼ 2þ 1þ
1 of double hypercubically nested stout smeared (HEX)
Wilson-clover fermions, using two ensembles at the physi-
cal pion mass and different values of the lattice spacing
[33]. They find gT ¼ 0.972ð24Þ for a ¼ 0.093 fm and gT ¼
0.989ð23Þ for a ¼ 0.116 fm. In Ref. [48] several ensembles
of nonperturbatively improved Nf ¼ 2þ 1 Wilson fer-
mions are used with range in pion mass between 200
and 350 MeV. The ensembles correspond to different
volumes and lattice spacing and are used to perform chiral,
continuum and finite-size fits, leading to a final value of
gT ¼ 0.965ð38Þ. ETMC has recently obtained gT on three
ensembles at the physical point using Nf ¼ 2 and Nf ¼
2þ 1þ 1 twisted mass fermions at volumes up to 5 fm
[34]. The reported results are gT ¼ 0.992ð22Þ (Nf ¼ 2,

TABLE I. Renormalized gT for each value of the pion mass
using the plateau method of Eq. (12) (Tsink ¼ 7a; 9a; 11a) and
the two-state fit given in Eq. (13).

mπ ðGeVÞ Tsink ¼ 7a Tsink ¼ 9a Tsink ¼ 11a Two-state

0.3266 1.144(07) 1.117(06) 1.103(08) 1.100(10)
0.2881 1.136(08) 1.110(07) 1.094(11) 1.093(12)
0.2623 1.132(08) 1.106(08) 1.087(12) 1.087(15)
0.2335 1.129(09) 1.102(09) 1.080(14) 1.079(19)
0.1745 1.122(15) 1.097(17) 1.074(28) 1.075(34)
0.1471 1.118(23) 1.098(26) 1.103(49) 1.097(24)

FIG. 5. gT as a function of the pion mass squared (red points),
together with the chiral extrapolation of Eq. (15) (red band). Each
point was obtained using the two-state fit method. The empty
black point is the extrapolated value. The error for each ensemble
is calculated using the jackknife method. The error on the
extrapolated point and error band are calculated using the
superjackknife method.
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L ¼ 4.5 fm), gT ¼ 0.974ð33Þ (Nf ¼ 2, L ¼ 6 fm), and
gT ¼ 0.926ð32Þ (Nf ¼ 2þ 1þ 1, L ¼ 5.1 fm).
Tension between our result and results from other

formulations, indicates further systematic uncertainties
(e.g., finite lattice spacing, volume effects) not yet
addressed. Given that the continuum limit has not been
taken, comparison between the various groups is only
qualitative. Note that we find agreement with the results of
Ref. [47], which also uses chiral fermions.

V. SUMMARY

We have presented a lattice calculation of the nucleon
tensor charge using a mixed setup of chiral fermions, that
is, overlap fermions on Nf ¼ 2þ 1 domain-wall configu-
rations. Lattice results for this quantity are very important,
as they may be used to constrain global fits of the
transversity PDFs, due to lack of experimental data in
all kinematic regions. Besides the tensor charge’s signifi-
cance in hadronic physics, it is also related to physics
beyond the Standard Model. We focus on the isovector
combination which has no contributions from disconnected
diagrams. The valence pion mass ranges between 147 and
330 MeV, while the pion mass in the sea sector of the
RBC=UKQCD action is 170 MeV, which is close to its
physical value. At each quark mass we study excited-state
contamination using several values of the source-sink time
separations, between 1 and 1.6 fm. These data allow us to
perform one- and two-state fits for the elimination of
excited-state contamination, as well as a chiral extrapola-
tion to physical quark masses in the valence sector. The
final result after chiral extrapolation is gT ¼ 1.096ð30Þ
and is given in the MS scheme at a scale of 2 GeV. It is

worth mentioning that we find a very weak pion mass
dependence, and the uncertainty of the chiral extrapolation
is comparable to the statistical error of gT at the lightest
valence pion mass. In the near future we intend to address
further systematic uncertainties, by including more ensem-
bles of gauge configurations at different values of the lattice
spacing and volume.
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