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We study the DN and D�N interactions to probe the inner structure of Σcð2800Þ and Λcð2940Þ with the
chiral effective field theory to the next-to-leading order. We consider the contact term, one-pion-exchange
and two-pion-exchange contributions to characterize the short-, long-, and mid-range interactions of the
Dð�ÞN systems. The low energy constants of the Dð�ÞN systems are related to those of the NN̄ interaction
with a quark level Lagrangian that was inspired by the resonance saturation model. The Δð1232Þ degree of
freedom is also included in the loop diagrams. The attractive potential in the ½DN�I¼1

J¼1=2 channel is too weak

to form a bound state, which indicates that the explanation of Σcð2800Þ as the compact charmed baryon is
more reasonable. Meanwhile, the potentials of the isoscalar channels are deep enough to yield the
molecular states. We obtain the masses of the ½DN�I¼0

J¼1=2, ½D�N�I¼0
J¼1=2, and ½D�N�I¼0

J¼3=2 systems to be 2792.0,

2943.6, and 2938.4 MeV, respectively. The Λcð2940Þ is probably the isoscalar D�N molecule considering
its low mass puzzle. Besides, the Λcð2940Þ signal might contain the spin-1

2
and spin-3

2
two structures, which

can qualitatively explain the significant decay ratio to D0p and Σcπ. We also study the B̄ð�ÞN systems and
predict the possible molecular states in the isoscalar channels. We hope experimentalists could hunt for the
open charmed molecular pentaquarks in the Λþ

c π
þπ− final state.

DOI: 10.1103/PhysRevD.101.094035

I. INTRODUCTION

Hadron spectroscopy plays an important role in under-
standing the low energy behaviors of QCD. The quark
model is very successful in describing the hadron spectra
[1]. But it is rather difficult to assign the near-threshold
states, such as Xð3872Þ [2] and Ds0ð2317Þ [3], to the quark
model predictions [4–9]. In the charmed baryon family, a
state Λcð2940Þ also falls into the same situation as the
Xð3872Þ and Ds0ð2317Þ.
In 2007, the BABAR Collaboration observed a charmed

baryon Λcð2940Þ in the D0p invariant mass spectrum [10],
which is an isosinglet since no signal is observed in the
Dþp final state. It was subsequently confirmed by the
Belle experiment in the decay mode Λcð2940Þ → Σcπ [11].
In 2017, the JP quantum numbers of Λcð2940Þ were

constrained by the LHCb measurement, and the most
likely spin-parity assignment for Λcð2940Þ is JP ¼ 3

2
−

[12]. [The mass and width of Λcð2940Þ obtained by the
BABAR, Belle, and LHCb experiments are shown in
Table I.]
Up until now, there are two different interpretations of

the internal structure of Λcð2940Þ. One is the ordinal
charmed baryon, and the other one is the D�N molecular
state. However, it is difficult to arrange Λcð2940Þ to the 2P
state in the charmed baryon spectroscopy, since its mass is
about 60–100 MeV smaller than the calculations of the
quark models [13–16]. Considering the Λcð2940Þ lies
about 6 MeV below the D�0p threshold, the molecular
explanation was first proposed in Ref. [17], where the
Λcð2940Þ as the 1

2
− molecular state is preferred by analyz-

ing its decay behaviors. In Ref. [18], He et al. studied the
D�N interaction with the one-boson-exchange model, and

TABLE I. The mass and width of Λcð2940Þ in experiments (in
units of MeV).

BABAR 2939.8� 1.3� 1.0 17.5� 5.2� 5.9
Belle 2938.0� 1.3þ2.0

−4.0 13þ8þ27
−5−7

LHCb 2944.8þ3.5
−2.5 � 0.4þ0.1

−4.6 27.7þ8.2
−6.0 � 0.9þ5.2

−10.4
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their calculation supports the interpretation of theΛcð2940Þ
as the D�N bound state with IðJPÞ ¼ 0ð1

2
þÞ or 0ð3

2
−Þ. In

Ref. [19], Ortega et al. investigated the Λcð2940Þ as a D�N
molecule in the constituent quark model, and they obtain
the binding solution in the isoscalar JP ¼ 3

2
− channel. In

Refs. [20,21], the strong and radiative decays of Λcð2940Þ
are calculated in the molecular picture. A QCD sum rule
study in Ref. [22] indicates the Λcð2940Þ is not a compact
state. Some recent calculations based on the chiral quark
model also support the molecular explanation for Λcð2940Þ
[23,24]. (see Refs. [25–29] for review and Refs. [30–39] for
other related works).
Another charmed baryon related with the DN threshold

is Σcð2800Þ, which is an isotriplet and first observed by
the Belle Collaboration in the Λcπ mass spectrum [40]. The
neutral state Σcð2800Þ0 was possibly confirmed by the
BABAR experiment [41], but the measured mass from
BABAR is about 50 MeV larger. The JP of Σcð2800Þ is
still undetermined yet [1]. Like the Λcð2940Þ, Σcð2800Þ is
interpreted as the P-wave excitation of the charmed baryon
in the λmode [14,36,42–44], andDN molecule [22–24,45],
respectively.
Investigating the DN and D�N interaction is essential to

disentangle the puzzles of Σcð2800Þ and Λcð2940Þ.
Besides, understanding theDð�ÞN interaction is also crucial
to probe the D-mesic nuclei [46,47] and the properties of
the charmed mesons in the nuclear matter [48,49]. An
alternative approach based on the meson-exchange model
[50] has been employed to construct the DN and D̄N
interaction by the Jülich group [51–53].
Instead of the boson-exchange model, the modern theory

of nuclear force is built upon the pioneering work of
Weinberg [54,55] and largely developed in the framework
of effective field theory. The chiral effective field theory
was extensively exploited to study the NN interaction with
great success [56–61]. The chiral effective field theory was
also utilized to study the systems with heavy flavors in
Refs. [62–68], which is a powerful tool in predicting the
BB� and B�B� bound states [64], reproducing the newly
observed pentaquarks [66], extrapolating the ΣcN potential
from the lattice QCD result to the physical pion mass [67],
and so on. As a natural extension of the NN interaction, in
this work, we use the chiral effective field theory to study
the Dð�ÞN interaction up to the next-to-leading order. We
simultaneously consider the long-, mid-, and short-range
interactions, and include the contribution of Δð1232Þ in the
loops as an intermediate state. With the chiral effective field
theory, we calculate the Dð�ÞN effective potentials and
search for the possible bound states. The numerical results
can be compared with the experimental data of Λcð2940Þ
and Σcð2800Þ to see whether they are the genuine charmed
baryons or the molecular nature.
This paper is organized as follows. In Sec. II, we give the

Lagrangians and effective potentials of the Dð�ÞN systems.

In Sec. III, we illustrate our numerical results and dis-
cussions. In Sec. IV, we conclude with a short summary. In
the Appendix we relate the low energy constants (LECs) to
those of the NN̄ system with a quark model.

II. LAGRANGIANS AND EFFECTIVE
POTENTIALS

A. Effective chiral Lagrangians

We first show the leading order Lagrangian of the
nucleon and pion interaction under the heavy baryon
reduction [69], which reads

LNφ ¼ N̄ ðiv ·Dþ 2gaS · uÞN ; ð1Þ

where N ¼ ðp; nÞT denotes the large component of the
nucleon field under the nonrelativistic reduction. v ¼ ð1; 0Þ
is the four-velocity of the nucleon and Dμ ¼ ∂μ þ Γμ. ga ≃
1.29 is the axial-vector coupling constant. Sμ ¼ i

2
γ5σ

μνvν
stands for the spin operator of the nucleon. Γμ and uμ are
the chiral connection and axial-vector current, respectively.
Their expressions read

Γμ ≡ 1

2
½ξ†; ∂μξ�≡ τiΓi

μ; uμ ≡ i
2
fξ†; ∂μξg≡ τiωi

μ; ð2Þ

where τi is the Pauli matrix,

ξ2 ¼ U ¼ exp

�
iφ
fπ

�
; φ ¼

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
; ð3Þ

and fπ ¼ 92.4 MeV is the pion decay constant.
Considering the importance of Δð1232Þ in the NN

interaction [50,70–73], we adopt the small scale expansion
method [74] to explicitly include the Δð1232Þ in the
Lagrangians. The Lagrangian that delineates the Δ-N-π
coupling is given as

LΔφ ¼ −T̄ μ
i ðiv ·Dij − δijδa þ 2g1S · uijÞgμνT ν

j; ð4Þ

LΔNφ ¼ 2gδðT̄ μ
i gμαω

α
iN þ N̄ωα†

i gαμT
μ
i Þ; ð5Þ

where δa ¼ mΔ −mN . g1 ¼ 9
5
ga is estimated with the quark

model [74]. gδ ≃ 1.05 is the coupling constant for ΔNπ
vertex. T μ

i denotes the spin-3
2
and isospin-3

2
field Δð1232Þ

after performing the nonrelativistic reduction. Its matrix
form reads

T 1
μ ¼

1ffiffiffi
2

p
�Δþþ − 1ffiffi

3
p Δ0

1ffiffi
3

p Δþ − Δ−

�
μ

;

T 2
μ ¼

iffiffiffi
2

p
�Δþþ þ 1ffiffi

3
p Δ0

1ffiffi
3

p Δþ þ Δ−

�
μ

; T 3
μ ¼ −

ffiffiffi
2

3

r �
Δþ

Δ0

�
μ

: ð6Þ
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The leading order Lagrangian that depicts the interaction
between the charmed mesons and light Goldstones reads
[75,76]

LHφ ¼ ihHv ·DH̄i − 1

8
δbhHσμνH̄σμνi þ ghH=uγ5H̄i; ð7Þ

where h� � �i represents the trace in spinor space. δb is
defined as δb ¼ mD� −mD. g ≃ −0.59 stands for the axial
coupling, whose sign is determined with the help of the
quark model. The H is the superfield for the charmed
mesons, which reads

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ =v
2

; ð8Þ

with P ¼ ðD0; DþÞT and P� ¼ ðD�0; D�þÞT , respectively.
We construct the leading order contact Lagrangian to
describe the short distance interaction between the nucleon
and charmed meson,

LNH ¼ DaN̄N hH̄Hi þDbN̄ γμγ5N hH̄γμγ5Hi
þ EaN̄ τiN hH̄τiHi þ EbN̄ γμγ5τiN hH̄γμγ5τiHi;

ð9Þ

where Da, Db, Ea, and Eb are four LECs. Da and Db
contribute to the central potential and spin-spin interaction,
respectively. Ea and Eb are related with the isospin-isospin
interaction and contribute to the central and spin-spin
interaction in spin space, respectively. With the quark
model, we fix their values with the NN̄ interaction as
inputs, which is given in the Appendix.

B. Expressions of the effective potentials

In the framework of heavy hadron chiral perturbation
theory, the scattering amplitudes of the Dð�ÞN systems can
be expanded order by order in powers of a small parameter
ε ¼ q=Λχ , where q is either the momentum of Goldstone
bosons or the residual momentum of heavy hadrons, andΛχ

represents either the chiral breaking scale or the mass of a
heavy hadron.1 The expansion is organized by the power
counting rule in Refs. [54,55]. The Oðε0Þ Feynman
diagrams for the DN and D�N systems are shown in
Fig. 1, which contain the contact and one-pion-exchange

diagrams. The one-pion-exchange diagram for the DN
system vanishes since the DDπ vertex is forbidden. The
corresponding momentum-space potentials of the graphs in
Fig. 1 read

VX1.1
DN ¼ Da − 4EaðI1 · I2Þ; ð10Þ

VX2.1
D�N ¼ Da þDbσ · T − 4ðEa þ Ebσ · TÞðI1 · I2Þ; ð11Þ

VH2.1
D�N ¼ ðI1 · I2Þ

gga
f2π

ðq · σÞðq · TÞ
q2 þm2

π
; ð12Þ

where I1 and I2 are the isospin operators of D and N,
respectively. The operators σ and T are related to the
spin operators of the spin-1

2
baryon, spin-1 meson as 1

2
σ and

−T, respectively (see Ref. [66] for details). The Breit
approximation

VðqÞ ¼ −
MðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Πimi2Πfmf
p ð13Þ

is used to relate the scattering amplitude MðqÞ to the
effective potential VðqÞ in momentum space (mi andmf are
the masses of the initial and final states, respectively).
The next-to-leading order two-pion-exchange diagrams

for the DN system are illustrated in Fig. 2. The effective
potentials from these graphs read

VF1.1
DN ¼ ðI1 · I2Þ

1

f4π
JF22ðmπ; qÞ; ð14Þ

VT1.1
DN ¼ ðI1 · I2Þ

g2

f4π

�
ðd − 1ÞJT34

− q2ðJT24 þ JT33Þ
�
ðmπ; E − δb; qÞ; ð15Þ

VT1.2
DN ¼ ðI1 · I2Þ

4g2δ
3f4π

�
ð2 − dÞJT34

− q2
2 − d
d − 1

ðJT24 þ JT33Þ
�
ðmπ; E − δa; qÞ; ð16Þ

FIG. 1. The leading order Feynman diagrams that account for
the Oðε0Þ effective potentials of the ND (X1.1), and ND� (X2.1,
H2.1) systems. We use the thick, thin, double-thin, and dashed
lines to denote the N, D, D�, and pion fields, respectively.

1The mass splitting δb ∼mπ , so δb=Λχ can be safely treated as
the small parameter in chiral expansions. However, the mass
difference δa ∼ 2mπ ≪ mN , so strictly speaking, the “small
parameter” δa=Λχ therefore has to be regarded as a phenomeno-
logical one. With the current accuracy, expanding to ðδa=ΛχÞ2 at
the one-loop level can fulfill the convergence of the chiral
expansions.
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VT1.3
DN ¼ ðI1 · I2Þ

g2a
f4π

�
ðd− 1ÞJT34 − q2ðJT24 þ JT33Þ

�
ðmπ;E; qÞ;

ð17Þ

VB1.1
DN ¼

�
1

8
−
1

3
I1 · I2

�
3g2g2a
2f4π

�
q4ðJB22 þ 2JB32 þ JB43Þ

þ ðd2 − 1ÞJB41 − 2q2ðdþ 1ÞðJB31 þ JB42Þ

− q2JB21

�
ðmπ; E; E − δb; qÞ; ð18Þ

VB1.2
DN ¼

�
1

2
þ 2

3
I1 · I2

�
g2g2δ
f4π

�
q4

d − 2

d − 1
ðJB22 þ 2JB32 þ JB43Þ

þ ðd2 − d − 2ÞJB41 − 2q2
d2 − d − 2

d − 1
ðJB31 þ JB42Þ

− q2
d − 2

d − 1
JB21

�
ðmπ; E − δa; E − δb; qÞ; ð19Þ

where the loop functions JFij, J
T
ij, J

B
ij, and JRij are defined

and given in Refs. [64–66]. d is the dimension introduced
in the dimensional regularization. E¼Ei−mi½i¼N;Dð�Þ�
represents the residual energies of the N and Dð�Þ. E is set
to zero in our calculations. The expressions of the crossed
box diagrams ðR1.iÞ can be obtained with the relation

VR1.i
DN ¼ VB1.i

DN

���
JBij→JRij;I1·I2→−I1·I2

: ð20Þ

In order to generate the effective potential, one needs to
subtract the two particle reducible contributions from the
box diagrams. A detailed deduction that based on the
principal value integral method is given in the Appendix B
of Ref. [66].
The Oðε2Þ two-pion-exchange diagrams for the D�N

system are shown in Fig. 3. Their analytical expressions are
written as

VF2.1
D�N ¼ ðI1 · I2Þ

1

f4π
JF22ðmπ; qÞ; ð21Þ

VT2.1
D�N ¼ ðI1 · I2Þ

g2

f4π

�
2JT34 − q2

d − 2

d − 1
ðJT24 þ JT33Þ

�
ðmπ; E; qÞ; ð22Þ

FIG. 2. The two-pion-exchange diagrams of the DN system at Oðε2Þ. These diagrams are classified as the football diagram (F1.1),
triangle diagrams (T1.i), box diagrams (B1.i), and crossed box diagrams (R1.i). We use the heavy-thick line to denote the Δð1232Þ in the
loops. Other notations are the same as those in Fig. 1.

FIG. 3. The two-pion-exchange diagrams of the D�N system at Oðε2Þ. The notations are the same as those in Fig. 2.
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VT2.2
D�N ¼ ðI1 · I2Þ

g2

f4π

�
JT34 −

q2

d − 1
ðJT24 þ JT33Þ

�
ðmπ; E þ δb; qÞ; ð23Þ

VT2.3
D�N ¼ ðI1 · I2Þ

g2a
f4π

�
ðd − 1ÞJT34 − q2ðJT24 þ JT33Þ

�
ðmπ; E; qÞ; ð24Þ

VT2.4
D�N ¼ ðI1 · I2Þ

4g2δ
3f4π

�
ð2 − dÞJT34 − q2

2 − d
d − 1

ðJT24 þ JT33Þ
�
ðmπ; E − δa; qÞ; ð25Þ

VB2.1
D�N ¼

�
1

8
−
1

3
I1 · I2

�
3g2g2a
2f4π

�
4d2 − 10dþ 6

d − 1
JB41 − q2

d2 þ 3d − 8

d − 1
ðJB31 þ JB42Þ

− q2
d − 2þ σ · T

d − 1
JB21 þ q4

d − 2

d − 1
ðJB22 þ 2JB32 þ JB43Þ

�
ðmπ; E; E; qÞ; ð26Þ

VB2.2
D�N ¼

�
1

8
−
1

3
I1 · I2

�
3g2g2a
2f4π

�
−2q2

dþ 1

d − 1
ðJB31 þ JB42Þ − q2

1

d − 1
ð1þ σ · TÞJB21

þ ðdþ 1ÞJB41 þ q4
1

d − 1
ðJB22 þ 2JB32 þ JB43Þ

�
ðmπ; E; E þ δb; qÞ; ð27Þ

VB2.3
D�N ¼

�
1

2
þ 2

3
I1 · I2

�
g2g2δ
f4π

�
−q2

ðd − 2Þ2 − σ · T
ðd − 1Þ2 JB21 − q2

ðd − 2Þðd2 þ 3d − 8Þ
ðd − 1Þ2 ðJB31 þ JB42Þ

þ 2ðd2 − 2dþ 2Þ
d − 1

JB41 þ q4
ðd − 2Þ2
ðd − 1Þ2 ðJ

B
22 þ 2JB32 þ JB43Þ

�
ðmπ; E − δa; E; qÞ; ð28Þ

VB2.4
D�N ¼

�
1

2
þ 2

3
I1 · I2

�
g2g2δ
f4π

1

d − 1

�
−2q2

ðdþ 1Þðd − 2Þ
d − 1

ðJB31 þ JB42Þ − q2
d − 2 − σ · T

d − 1
JB21

þ q4
d − 2

d − 1
ðJB22 þ 2JB32 þ JB43Þ þ ðd2 − d − 2ÞJB41

�
ðmπ; E − δa; E þ δb; qÞ: ð29Þ

The expressions of the diagrams ðR2.iÞ can be obtained
with

VR2.i
D�N ¼ VB2.i

D�N jJBx→JRx ;I1·I2→−I1·I2;σ·T→−σ·T : ð30Þ

In the above equations, the spin operator and transferred
momentum are defined in d dimensions, such as S2 ¼
ðd − 1Þ=4 [69] and qiqj ¼ 1=ðd − 1Þq2δij for the S wave.
The relation between the T operator and the polarization
vector of D� meson can be found in Appendix C of
Ref. [66].
Notably, because of δb > mπ , some diagrams in Fig. 3,

such as (T2.2) and (B2.2), would also generate imaginary
parts, which contribute to the width of the corresponding
bound state. If solving the Lippmann-Schwinger equation,
the imaginary part would shift the pole position in the
Riemann sheet. In this work, we solve the Schrödinger
equation to only focus on the binding energies; thus, the
imaginary parts are ignored in our calculations.

At the next-to-leading order, besides the two-pion-
exchange potentials illustrated above, we also have the
one-loop corrections to the one-pion-exchange and contact
terms. These corrections can be replaced by using the
physical values of the couplings, decay constant, and
masses of pion, N and D mesons, etc. In addition, the
subleading contact Lagrangians are also necessary. On the
one hand, they are responsible for the renormalizations of
two-pion-exchange loop diagrams. Because these diagrams
are usually ultraviolet divergent in d ¼ 4 dimensions, we
need the unrenormalized Oðε2Þ LECs to absorb the
divergent parts of the loop functions in Eqs. (14)–(29).
On the other hand, these Oðε2Þ Lagrangians may generate
contact interactions with two powers of momenta in the
following form [58]:

V ¼ C1q2 þ C2k2 þ ðC3q2 þ C4k2Þσ · T

þ C5½iS · ðq × kÞ� þ C6ðσ · qÞðT · qÞ
þ C7ðσ · kÞðT · kÞ; ð31Þ
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where k ¼ ðpN þ pDÞ=2 is the average momentum and
S ¼ ðSN þ SD� Þ=2 is the total spin. (Note that for the DN
system, only the C1, C2, and C5 terms survive.) Unlike the
NN case, these Oðε2Þ LECs cannot be fitted at present
since the Dð�ÞN scattering data is still unavailable. So we
ignore their contributions and only consider the leading
order contact terms. Once the Dð�ÞN scattering phase shifts
in lattice QCD simulations are available, it would be an
intriguing topic to restudy this system while considering
higher order contributions.

III. NUMERICAL RESULTS AND DISCUSSIONS

With the momentum-space potentials VðqÞ obtained in
Sec. II B, we make the following Fourier transformation to
get the effective potential VðrÞ in the coordinate space,

VðrÞ ¼
Z

d3q
ð2πÞ3 e

iq·rVðqÞF ðqÞ: ð32Þ

We need to introduce a regulator F ðqÞ to suppress the high
momentum contribution. We choose the Gauss form
F ðqÞ ¼ expð−q2n=Λ2nÞ as used in the NN and NN̄
systems [77,78]. The Taylor expansion of the regulator
function gives F ðqÞ ¼ 1 − q2n=Λ2n þ � � �. The power n is
chosen to be sufficiently large in order that the cutoff
induced contributions VðqÞOðq2n=Λ2nÞ are beyond the
chiral order one is working at. In our calculation, we only
consider the leading and subleading contributions, thus n ¼
1 is already enough in our case. However, we use the NN̄
LECs fitted in Ref. [79] to estimate the LECs of Dð�ÞN

systems, where the n ¼ 3 is adopted in Ref. [79], so we also
choose n ¼ 3 for consistency. The power n ¼ 3 and cutoff
Λ ≃ 0.5� 0.1 GeV are always adopted to fit the exper-
imental data and make predictions [79,80,80–82].

A. Numerical results

In order to get the numerical results, we also need to
know the values of the four LECs in Eq. (9). Generally,
these LECs should be determined by fitting the Dð�ÞN
scattering data in experiments or in lattice QCD simula-
tions. However, the data in this area are scarce; thus, we
have to resort to other alternative ways. As proposed in
Refs. [67,68], we estimate the LECs by constructing the
contact Lagrangian at the quark level, and then extract the
couplings from the NN̄ interaction, which is demonstrated
in the Appendix.
We show the effective potentials of each possible IðJPÞ

configuration in Fig. 4. In the following, we analyze the
behaviors of effective potentials for each system.
DN system: The result in Fig. 4(a) shows that the Oðε0Þ

contact and Oðε2Þ two-pion-exchange potentials of the
½DN�I¼0

J¼1=2 system are both attractive. But the attraction of
two-pion-exchange potential is rather weak. The attractive
potential is dominantly provided by the contact interaction.
We find a bound state in this channel. The binding energy
and mass of this state are predicted, respectively,

ΔE½DN�I¼0
J¼1=2

≃ −11.1 MeV;

M½DN�I¼0
J¼1=2

≃ 2792.0 MeV: ð33Þ

(a) (b) (c)

(d) (e) (f)

FIG. 4. The effective potentials of theDð�ÞN systems. Their IðJPÞ are marked in each subfigure. The potentials with the solid lines are
obtained with the cutoff parameter Λ ¼ 0.4 GeV and the LECs estimated in the Appendix. The corresponding total potentials with the
dashed lines are obtained with the cutoff parameter Λ ¼ 0.6 GeV.
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For the ½DN�I¼1
J¼1=2 system in Fig. 4(b), the Oðε0Þ contact

interaction vanishes in our calculation, and the total
potential arises from the two-pion-exchange contribution.
We notice the potential in this channel is much shallower
than that of the ½DN�I¼0

J¼1=2 channel, i.e., the attraction is too
feeble to form the bound state. Thus the binding solution
does not exist in this channel.
D�N system: The contact potential of the ½D�N�I¼0

J¼1=2

system in Fig. 4(c) is attractive, while the one-pion-
exchange and two-pion-exchange interactions are both
repulsive. Therefore, the total potential is shallower than
that of the ½DN�I¼0

J¼1=2 channel. However, we still obtain a

binding solution in the ½D�N�I¼0
J¼1=2 system. The binding

energy and mass of this state are

ΔE½D�N�I¼0
J¼1=2

≃ −1.5 MeV;

M½D�N�I¼0
J¼1=2

≃ 2943.6 MeV: ð34Þ

For the ½D�N�I¼1
J¼1=2 system in Fig. 4(d), the one-pion-

exchange potential is weakly attractive, but the contact and
two-pion-exchange potentials are all repulsive. Thus, the
total attractive potential is not strong enough to form
molecular states in this channel.
For the channel ½D�N�I¼0

J¼3=2 in Fig. 4(e), the behavior of
its potentials is very interesting. We notice the one-pion-
and two-pion-exchange contributions almost cancel each
other. Thus, the total potential is mainly provided by the
contact term, which can reach up to −80 MeV at the
deepest position. By solving the Schrödinger equation, we
find the binding solution in the ½D�N�I¼0

J¼3=2 system, and the
binding energy is

ΔE½D�N�I¼0
J¼3=2

≃ −6.7 MeV: ð35Þ

The corresponding mass of this bound state is

M½D�N�I¼0
J¼3=2

≃ 2938.4 MeV; ð36Þ

which is in good agreement with the mass of Λcð2940Þ
measured by BABAR, Belle, and LHCb (e.g., see Table I).
For the last channel ½D�N�I¼1

J¼3=2 in Fig. 4(f), the one-
pion- and two-pion-exchange potentials almost cancel each
other and the contact contribution is very weakly attractive.
Thus, no bound state can be found in this channel.
Role of the Δð1232Þ: Considering the strong coupling

between Δð1232Þ and Nπ, we include the contribution of
Δð1232Þ in the loop diagrams (e.g., see Figs. 2 and 3).
Here, we discuss the role of Δð1232Þ in the effective
potentials of theDN andD�N systems. We try to ignore the
effect of Δð1232Þ, and notice that the line shape of the two-
pion-exchange potentials changes drastically. Except for
the ½DN�I¼1

J¼1=2, the whole behavior of the other channels
is totally reversed. For example, the two-pion-exchange

potential of the ½DN�I¼0
J¼1=2 channel becomes repulsive,

which renders the total potential of this channel shallower.
But for the ½D�N�I¼0

J¼3=2 channel, the two-pion-exchange
potential becomes attractive. The variation is about
−30 MeV, which gives rise to a deeper attractive potential,
and the binding energy is −16 MeV.
In general, the conclusion that there exists the bound

state in the isoscalar ½Dð�ÞN�J channel and no binding
solution in the isovector channel is robust, whether we
consider the Δð1232Þ or not. However, the Δð1232Þ plays
an important role in determining the physical masses of
Λcð2940Þ and other bound states, since the molecular states
are very sensitive to the subtle changes of their internal
effective potentials.
It is also interesting to see the dependence of the potentials

on cutoff Λ. The results for Λ ¼ 0.6 GeV are shown as the
dashed lines in Fig. 4. We notice the change is dramatic, the
total potentials are sensitive to the cutoff, and they all
become much deeper when the cutoff is varied to 0.6 GeV.
The binding energies for ½DN�I¼0

J¼1=2, ½D�N�I¼0
J¼1=2, and

½D�N�I¼0
J¼3=2 channels in this case are −76.7, −11.6, and

−55.1 MeV, respectively. The isovector DN system also
starts to form a bound state with binding energy −1.0 MeV,
butwe still cannot get binding solutions in the isovectorD�N
system. Of course, this behavior is foreseeable because we
introduced a Gaussian regulator when making the Fourier
transformation [see Eq. (32)]. Even in the NN interactions,
the LECs showmild dependence on the cutoff over a narrow
range only when the higher order contributions are included
[83,84]. Generally, the LECs are used to absorb the scale
dependence of observables when making the nonperturba-
tive renormalizations; i.e., they are usually the functions of
cutoff Λ. Therefore, varying the cutoff with the fixed LECs
might be unreasonable. In the Appendix, we illustrate the
results with the LECs fixed at Λ ¼ 0.6 GeV from Ref. [79].
Inspecting the potentials in Fig. 4 one can find two

defects, one is the one-pion-exchange potential does not
have a longer range than the two-pion exchange one and
even the contact interaction, another one is where a bump
appeared in the total potentials. Both are caused by the
artificial effect from the Gaussian regulator. As indicated in
Refs. [80,85], such a form regulator would distort the
partial waves and affect the long-range parts of the
interactions. If the cutoff is sufficiently large, the induced
artifacts are expected to go beyond the accuracy at the order
we are conducting. However, they may become an issue
when the cutoff resides in the low scale. Additionally, the
F ðqÞ in Eq. (32) has the risk of mixing different partial
waves. But for the S wave, the mixing effect is insufficient
to impact the main feature of the potentials.

B. Discussions

No binding solution in the isovector channel indicates
that the ½DN�I¼1

J¼1=2 molecular explanation of Σcð2800Þ is
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not favored. Although the Σcð2800Þ is near the DN
threshold, its mass is also consistent with the quark
model predictions [14,42,43,86,87]. Thus, interpreting
the Σcð2800Þ as the 1P charmed baryon seems to be more
reasonable.
The situation ofΛcð2940Þ is very similar to the Λð1405Þ,

Ds0ð2317Þ, and Xð3872Þ; i.e., there is large gap between
the physical states and quark model predictions.2 Generally,
one possible reason is these states per se may be exotic
rather than conventional.
A recent analysis from LHCb gives weak constraints on

the JP quantum numbers of Λcð2940Þ, where JP ¼ 3
2
− is

favored [12]. This is consistent with our calculations.
Actually, one can notice two peaks in the D0p invariant
mass spectrum from 2.92 to 2.99 GeV in the results of
LHCb [see Fig. 13(a) in Ref. [12] ]. The one at 2.94 GeV is
just the reported Λcð2940Þ. The other peak at 2.98 GeV
may correspond to the trueΛcð2PÞ baryon, since its mass is
close to the quark model prediction [13–16]. Our calcu-
lation indicates the Λcð2940Þ is probably the S-wave D�N
molecular state.
We report three bound states in the ½DN�I¼0

J¼1=2,

½D�N�I¼0
J¼1=2, and ½D�N�I¼0

J¼3=2 systems. They are very similar
to the newly observed Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ
at LHCb [89], which are interpreted as the ½D̄Σc�I¼1=2

J¼1=2,

½D̄�Σc�I¼1=2
J¼1=2, and ½D̄�Σc�I¼1=2

J¼3=2 molecular states [65,66],
respectively. If Λcð2940Þ is indeed the D�N molecular
states, then it should contain two structures, i.e., ½D�N�I¼0

J¼1=2

and ½D�N�I¼0
J¼3=2. Because the mass splitting between the

spin-1
2
and spin-3

2
states is only about 5 MeV, it is very

difficult to disassemble these two structures with current
accuracy. A similar situation has happened to the Pc states.
The previously reported Pcð4450Þ [90] contains two
structures, Pcð4440Þ and Pcð4457Þ, after increasing the
data sample. More interesting, we find the mass of the spin-
1
2
state is larger than that of the spin-3

2
one.

The signal of Λcð2940Þ has been observed in the D0p
and Σcπ final states [10–12]. However, if the JP of
Λcð2940Þ is 3

2
− as weakly constrained by the LHCb, then

it decays into the D0p and Σcπ through the D-wave, which
is strongly suppressed.3 Therefore, as mentioned above,
one promising explanation is that the Λcð2940Þ signal
actually contains two structures. The spin-1

2
structure can

easily decay into D0p and Σcπ via the S wave.

Borrowing experiences from the discovery of Pc states,
we urge the experimenters to reanalyze the Λþ

c π
þπ−

invariant mass spectrum with the accumulated data, since
the ½DN�I¼0

J¼1=2, ½D�N�I¼0
J¼1=2, and ½D�N�I¼0

J¼3=2 bound states

can all decay into Σ0
cπ

þ.
In addition to the mass spectrum, the decay pattern can

also give us some important criteria to identify the inner
structure of Λcð2940Þ. In the molecular scenario, the D�N
system can easily decay into the DN channel via the pion
exchange, while the Σcπ decay mode requires the exchange
of a nucleon or a D meson. Thus, the decay amplitude of
the D0p mode should be much larger than that of the Σcπ,
because the heavy hadron exchange is generally sup-
pressed. However, the phase space of the Σcπ mode is
larger.
The three body decay mode is also very interesting. We

take the decay modes of the Xð3872Þ and other higher
charmonia as an example. The branching fraction of
Xð3872Þ → D0D̄0π0 can reach up to 40% [1]. In contrast,
the open charm three body decays of the higher charmonia
are only a few percents [93]. Analogously, the branching
fraction of Λcð2940Þ → D0π0ðγÞp should also be con-
spicuous in the molecular picture.
Besides, our study can be easily extended to the B̄ð�ÞN

systems. The axial coupling g and mass splitting δb in
Eq. (7) should be replaced by the bottomed ones, where we
adopt g ¼ −0.52 [94,95] and δb ¼ 45 MeV [1]. The
predicted results are listed in Table. II. There also exist
bound states in the isoscalar ½B̄ð�ÞN�J systems. These states
might be reconstructed at the Λ0

bπ
þπ− final states, and the

½B̄�N�J states could also be detected in the B−p mass
spectrum.

IV. SUMMARY

A sophisticated investigation on the DN and D�N
interactions is crucial to clarify the nature of the charmed
baryons Σcð2800Þ and Λcð2940Þ. In this work, we sys-
tematically study the effective potentials of the DN and
D�N systems with the chiral effective field theory up to the
next-to-leading order. We simultaneously consider the
contributions of the long-range one-pion-exchange, mid-
range two-pion-exchange, and short-range contact term.
We also include the Δð1232Þ as an intermediate state in the
loop diagrams. The LECs are estimated from the NN̄
interaction with the help of the quark model.

TABLE II. The predicted binding energies and masses for the
isoscalar ½Dð�ÞN�J and ½B̄ð�ÞN�J systems (in units of MeV).

System ½DN�1
2

½D�N�1
2

½D�N�3
2

½B̄N�1
2

½B̄�N�1
2

½B̄�N�3
2

ΔE −11.1 −1.5 −6.7 −8.8 −3.5 −8.4
Mass 2792.0 2943.6 2938.4 6208.8 6259.4 6254.5

2An unquenched study with the channel coupling in Ref. [88]
declares the mass of Λcð2P; 3=2−Þ state can be lowered down to
match the experimental data of Λcð2940Þ.

3Based on the 3P0 model calculation, the large decay width of
Λcð2940Þ → D0p is reported in Refs. [91,92] by treating
Λcð2940Þ as a 2P state in the Λc family, but the low mass
puzzle still exist.
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For the DN system, our calculation shows the effective
potentials of the ½DN�I¼0

J¼1=2 and ½DN�I¼1
J¼1=2 channels are

both attractive. We find a bound state in the ½DN�I¼0
J¼1=2

channel, but the attraction in the ½DN�I¼1
J¼1=2 channel is too

weak to form a bound state. Thus, the explanation of
Σcð2800Þ as the DN molecular state is disfavored in our
calculations. The Σcð2800Þ is more likely to be the conven-
tional 1P charmed baryon, since its mass is well consistent
with the quark model prediction.
There are four channels in the ½D�N�IJ system. We find

only the isoscalar ½D�N�J potential is deep enough to form
the molecular state. We obtain the masses of the bound
states in the ½D�N�I¼0

J¼1=2 and ½D�N�I¼0
J¼3=2 channels to be

2943.6 and 2938.4 MeV, respectively, which well accord
with the BABAR, Belle, and LHCb measurements for
Λcð2940Þ. Considering the small mass splitting between
the spin-1

2
and spin-3

2
states, we conjecture the Λcð2940Þ

signal contains two structures.
It is not so easy to squeeze the Λcð2940Þ into the

conventional charmed baryon spectrum, since the 60–
100 MeV gap between the physical mass and quark model
prediction cannot be readily remedied. However, this
problem can be easily reconciled in the molecular picture;
i.e., the Λcð2940Þ is probably the isoscalar D�N molecule
rather than the 2P charmed baryon.
We also investigate the influence of Δð1232Þ in the

loop diagrams. The binding solutions always exist in
the isoscalar ½D�N�J channels no matter if we include
the Δð1232Þ or not. There still do not exist bound states
in the isovector channels even when we ignore the
Δð1232Þ. However, the Δð1232Þ is important in yielding
the shallowly bound isoscalar ½Dð�ÞN�J states.
We hope experimentalists could seek for the pentaquark

candidates in the open charmed channels, where the Dð�ÞN
molecular pentaquarks in the isoscalar systems might be
reconstructed at the Λþ

c π
þπ− final state.
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APPENDIX: DETERMINING THE LECs FROM
NN̄ INTERACTION

One needs to know the values of the LECs in Eq. (9) to
study the strength of the short-range interaction. As
proposed in Refs. [67,68] (more details can be found in
the Appendix of these two references), the LECs of Dð�ÞN
systems can be bridged to those of the NN̄ interaction with
the help of quark model. The way is analogous to the
resonance saturation model [96], but we build the quark
level Lagrangian. We assume the contact interaction stems

from the heavy meson exchanging. We introduceS andAμ

to produce the central potential and spin-spin interaction,
respectively. The matrix form of S and Aμ can be
expressed as

S ¼ Si
3τ

i þ
ffiffiffi
1

3

r
S1; ðA1Þ

Aμ ¼ Aμi
3 τ

i þ
ffiffiffi
1

3

r
Aμ

1; ðA2Þ

where S3 (A
μ
3) and S1 (A1) denote the isospin triplet and

isospin singlet, respectively. The coefficient
ffiffi
1
3

q
is intro-

duced to satisfy the SU(3) flavor symmetry.
The qq̄ contact potential can be written as

Vqq̄ ¼ csð1 − 3τ1 · τ2Þ þ ctð1 − 3τ1 · τ2Þσ1 · σ2; ðA3Þ

where cs and ct are the coupling constants. The minus sign
in Eq. (A3) arises since the isospin triplet and the isospin
singlet have the different G parities.
With the qq̄ contact potential Vqq̄ in Eq. (A3) and the

relevant matrix element in Table III, we obtain the NN̄
contact potential as follows:

VNN̄ ¼ hNN̄jVqq̄jNN̄i ¼ 9cs − 3csτ1 · τ2

þ ctσ1 · σ2 −
25

3
ctðτ1 · τ2Þðσ1 · σ2Þ: ðA4Þ

Similarly, the D�N contact potential can be easily
worked out,

VD�N ¼ hD�NjVqq̄jD�Ni ¼ 3cs − 12csI1 · I2

− ctσ · Tþ 20ctðI1 · I2Þðσ · TÞ: ðA5Þ

Matching Eq. (11) and Eq. (A5) one can get the LECs in
Eq. (9), which read

Da ¼ 3cs; Db ¼ −ct; Ea ¼ 3cs; Eb ¼ −5ct: ðA6Þ

Therefore, once we know the values of cs and ct, we can
capture the short-range interaction of the Dð�ÞN systems.
The cs and ct can be extracted from theNN̄ interaction, and

TABLE III. The matrix elements of the operator
P

i∈ha;j∈hb Oij,
where ha and hb are two hadrons. Oij is the two-body interaction
operator between quarks.

Oij 1ij τi · τj σi · σj ðτi · τjÞðσi · σjÞ
½NN̄�I¼1

J¼0
9 1 −3 − 25

3

½D�N�I¼1
J¼3=2 3 1 1 5

3
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the NN̄ scattering phase shift has been fitted in the
framework of chiral effective field theory to the next-to-
next-to-leading order in Ref. [79]. Using the values of C̃3S1

in the I ¼ 0 and I ¼ 1 channels fitted at ðΛ; Λ̃Þ ¼
ð450; 500Þ MeV as inputs, we obtain

cs ¼ −8.1 GeV−2; ct ¼ 0.65 GeV−2: ðA7Þ

We notice jcsj=jctj ≃ 12.5, i.e., the spin-spin interaction
only serves as a perturbation to give mass splittings
between spin multiplets.
In addition, Ref. [79] also gives the fitted results with

cutoff combination ðΛ; Λ̃Þ ¼ ð650; 700Þ MeV. With the
LECs of C̃3S1 in the I ¼ 0 and I ¼ 1 channels fitted at
ðΛ; Λ̃Þ ¼ ð650; 700Þ MeV as inputs we obtain

cs ¼ −11.1 GeV−2; ct ¼ 4.5 GeV−2: ðA8Þ

We see the cs value is similar to the one in Eq. (A7),
while ct becomes much larger. (We find that using other
channel combinations in Ref. [79] as inputs always obtains
the cs value with the similar size and the same sign, but ct

varies a lot.) With the LECs in Eq. (A8) as inputs we get the
binding energies of the isoscalar and isovector Dð�ÞN
systems as listed in Table IV. One can notice that the
binding energies of the ½DN�I¼0

J¼1=2 and ½D�N�I¼0
J¼1=2 channels

are quite large, which can reach up to hundreds of MeV.
This is highly unnatural in our framework, so we intend to
use the moderate LECs in Eq. (A7) rather than the ones in
Eq. (A8) to give predictions. However, we still can capture
a gross indication that the isoscalar channel is always
bound, while the isovector channel is not (except for the
½DN�I¼1

J¼1=2 channel).
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