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We investigate the characteristics of σ, f0ð980Þ, and a0ð980Þ with the formalism of chiral unitary
approach. With the dynamical generation of them, we make a further study of their properties by evaluating
the couplings, the compositeness, the wave functions, and the radii. We also research their properties in the
single channel interactions, where the a0ð980Þ cannot be reproduced in the KK̄ interactions alone with
isospin I ¼ 1 since the potential is too weak. In our results, the states of σ and f0ð980Þ can be dynamically
reproduced stably with varying cutoffs both in the coupled channel and the single channel cases. We find
that the πη components is much important in the coupled channel interactions to dynamically reproduce the
a0ð980Þ state, which means that a0ð980Þ state cannot be a pure KK̄ molecular state. We obtain their radii

as: j
ffiffiffiffiffiffiffiffi
hr2i

p
jf0ð980Þ ¼ 1.80� 0.35 fm, j

ffiffiffiffiffiffiffiffi
hr2i

p
jσ ¼ 0.68� 0.05 fm and j

ffiffiffiffiffiffiffiffi
hr2i

p
ja0ð980Þ ¼ 0.94� 0.09 fm.

Based on our investigation results, we conclude that the f0ð980Þ state is mainly a KK̄ bound state, the σ
state a resonance of ππ and the a0ð980Þ state a loose KK̄ bound state with the significant compositeness of
πη. From the results of the compositeness, they are not pure molecular states and have something
nonmolecular components, especially for the σ state.

DOI: 10.1103/PhysRevD.101.094034

I. INTRODUCTION

Even though quantum chromodynamics (QCD) is the
fundamental theory of strong interaction and governs the
high energy region, the nature and the structure of the
lowest scalar mesons still problematic and under debate.
One of the main topics of the high energy physics is to
comprehend the properties of the hadronic resonances. The
conventional picture of the hadrons based on the quark
model is the baryon made of qqq and the meson qq̄.
However, that is not the whole picture of the observed
hadrons, with the development of the experiments, many
resonances have been found, which may have complex
structures since their nature cannot be interpreted by the
conventional ways, such as tetraquarks [1], hybrids [2], and
glueballs [3] for mesons, and pentaquarks and heptaquarks
for baryons, or molecular states. These exotic states have
drawn much attention both in theories and experiments to
understand their structure and decay properties, see more
details in the reviews [4–14]. In the low energy region the
perturbative QCD failed because of the confinement, so we
need to explore a nonperturbative QCD, such as Lattice

QCD [15–17], QCD sum rules [18–24], effective field
theory [25–27], chiral unitary approach (ChUA) [28–32],
and so on. In case of meson-meson and meson-baryon
interaction, chiral dynamics is crucial in understanding the
structure and the nature of the resonances, and it has shown
that many known resonances are dynamically generated in
the hadron-hadron interaction [33].
Following the work of Ref. [34], we continue to study

the properties of the σ [or f0ð500Þ], f0ð980Þ [35], and
a0ð980Þ [36] states. Although the states of f0ð980Þ and
a0ð980Þ are nearly degenerated, they have different isospin
and other properties. Several proposals were made about
the nature of these scalar particles, such as qq̄ state [37–40],
multiquark states [1,22–24,41,42], or KK̄ molecules [43–
46]. The evidence of four-quark nature for the f0ð980Þ and
a0ð980Þ states are found in the ϕ meson radiative decay
[42] where more experimental information and discussions
can be referred to Refs. [47–49]. The nature of the σ
resonance is different from the other two. The masses of the
f0ð980Þ and a0ð980Þ are close to the KK̄ threshold,
conversely σ is far above ππ threshold. Moreover the
decay width of the σ is very large, which does not behave
like an ordinary Breit-Wigner resonance [50]. Furthermore,
from the large NC limit calculations [51,52] and Regge
theory [53] are confirmed that σ is not an ordinary qq̄
structure. References [54,55] have found that the states of σ
and a0ð980Þ display a very different NC behavior. In the
work of Ref. [56], using the ChUA, the potential of the
pseudoscalars calculated from the chiral Lagrangians [57–
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62], and then by applying the unitarity in coupled channel
scattering amplitudes, the σ, f0ð980Þ and a0ð980Þ are
dynamically generated. Along the line of Ref. [56], we
make a further investigation of the properties of the σ,
f0ð980Þ, and a0ð980Þ states by evaluating their compos-
iteness, the wave functions and the radii both in the coupled
channel and the single channel interactions.
In the presentwork,wewill firstly introduce the formalism

of the interactions ofKK̄ and its coupled channels. Then, we
discuss the definition of the couplings and how to calculate
the compositeness, the wave functions and the radii for a
resonance in ChUA. Following, we show our results in
details for the cases of the coupled channel and the single
channel, respectively. Finally, we closewith our conclusions.

II. FORMALISM

In this section, we firstly revisit the formalism
of Ref. [56], where the interaction potentials for the
coupled channels are derived from the lowest order chiral
Lagrangian, and then performing the S-wave projection, the
scattering amplitudes are evaluate with a set of on-shell
Bethe-Salpeter equations. Next, we introduce the defini-
tions of the couplings in the coupled channel, the wave
functions, the compositeness and the radii of the generated
resonances.

A. S-wave scattering amplitude in the
coupled channels and single channel

In chiral pertubative theory, the most general chiral
Lagrangian can be written in a perturbative manner
according to the powers of the momenta of the pseudo-
scalar mesons [57–62],

LChPTðUÞ ¼
X
n

L2n ¼ L2 þ L4 þOðp6Þ; ð1Þ

where the lowest order chiral Lagrangian L2 of the
pseudoscalar meson octet is given by

L2 ¼
f2

4
h∂μU†∂μUi þ f2

4
hMðU† þ UÞi

¼ 1

2
h∂μΦ∂μΦi − 1

2
hMΦ2i þ 1

12f2
hð∂μΦΦ −Φ∂μΦÞ2i

þ 1

12f2
hMΦ4i þO

�
Φ6

f4

�
; ð2Þ

which has combined with the mass term and contains the
kinetic terms (the first two terms) and the interaction terms
containing at least four meson fields [59,62]. In the ChUA,
we only consider the interaction parts of the lowest order of
chiral Lagrangian, the third and the fourth terms, which
contain four meson fields. Thus, taking the interaction parts
with four meson fields in Eq. (2), the interaction
Lagrangian for the ChUA is given by [56],

Lin ¼
1

12f2
hð∂μΦΦ −Φ∂μΦÞ2 þMΦ4i; ð3Þ

where f is the pion decay constant, the value of which is
taken as 92.4 MeV [63], hi stands for the trace of matrices,
and Φ is the pseudo Goldstone boson fields, defined as

ΦðxÞ ¼ 1ffiffiffi
2

p ϕaλa

¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCA: ð4Þ

Besides, the pseudoscalar meson mass matrixM is given by

M ¼

0
B@

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

1
CA; ð5Þ

where we have taken the isospin limit (mu ¼ md).
Using the interaction Lagrangian, Eq. (3), we can derive

the tree level amplitudes for KK̄, ππ and πη channels,
which will be used as the interaction potentials in the
coupled channel Bethe-Salpeter equations. After perform-
ing the S-wave projections, the interaction potentials in the
isospin bases are given by [56],

VI¼0
11 ¼ −

1

4f2
ð3sþ 4m2

K − Σip2
i Þ;

VI¼0
21 ¼ −

1

3
ffiffiffiffiffi
12

p
f2

�
9

2
sþ 3m2

K þ 3m2
π −

3

2

X
i

p2
i

�
;

VI¼0
22 ¼ −

1

9f2

�
9sþ 15m2

π

2
− 3

X
i

p2
i

�
; ð6Þ

VI¼1
11 ¼ −

1

12f2

�
3s −

X
i

p2
i þ 4m2

K

�
;

VI¼1
21 ¼

ffiffiffiffiffiffiffiffi
3=2

p
12f2

�
6s − 2

X
i

p2
i þ

4

3
m2

π −
4

3
m2

K

�
;

VI¼1
22 ¼ −

1

3f2
m2

π; ð7Þ

where we specify the KK̄ and ππ channels with the labels 1
and 2, respectively, for the case of isospin I ¼ 0, and the
KK̄ and πη channels for the case of I ¼ 1. For the on shell
amplitudes, one can take p2

i ¼ m2
i .

For the scattering amplitudes of the coupled channels,
one can solve the Bethe-Salpeter equations factorized on
shell [56],

T ¼ ½1 − VG�−1V: ð8Þ
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It is worthwhile to note that in the present case T, V, and G
are 2 × 2 matrices. The element of the diagonal G matrix is
the loop function of two intermediate mesons in the ith
channel, given by

GiiðsÞ ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2
1 þ iε

1

ðp1 þp2 − qÞ2 −m2
2 þ iε

;

ð9Þ

where p1 and p2 are the four-momenta of the two initial
particles, respectively, and m1, m2 are the masses of the
two intermediate particles appearing in the loop. Note that
the G function is logarithmically divergent. There are two
methods to solve this singular integral, either using the
three-momentum cutoff method [56], where the analytic
expression is given by Ref. [64], or the dimensional
regularization method [65]. Using the cutoff method we
can rewrite Eq. (9) as

GiiðsÞ ¼
Z

qmax

0

q2dq
ð2πÞ2

ω1 þ ω2

ω1ω2½s − ðω1 þ ω2Þ2 þ iϵ� ; ð10Þ

where q ¼ jq⃗j, ωi ¼ ðq⃗2 þm2
i Þ1=2 and s ¼ ðp1 þ p2Þ2,

and the cutoff, qmax, is the only one free parameter. We
show our results of the real part and the imaginary part of
the G functions in the isospin I ¼ 0 case in Fig. 1 with two

different cutoffs (about their values see the discussions at
the beginning of next section), where one can see that the
imaginary part of the loop function is independent with the
cutoff, which leads to extrapolate to the second Riemann
sheet easily, see the discussions below.
Using ChUA, one also can easily determine the masses

and the decay widths of the states produced in the coupled
channel interactions just by looking for the poles in the
complex Riemann sheets. Thus, one need to extrapolate the
analytical structure of the scattering amplitudes in the
complex s plane. To fulfill these, one can extrapolate the
GðsÞ function into the second Riemann sheet by

GðIIÞ
ii ðsÞ ¼ GðIÞ

ii ðsÞ − 2iImGðIÞ
ii ðsÞ

¼ GðIÞ
ii ðsÞ þ

i
4π

pcmiðsÞffiffiffi
s

p ; ð11Þ

where the loop function on the first Riemann sheet,GðIÞ
ii ðsÞ,

is given by Eq. (10), and the three momentum in center-of-
mass (CM) frame is given by

pcmiðsÞ ¼
λ1=2ðs;m2

1; m
2
2Þ

2
ffiffiffi
s

p ; ð12Þ

with the usual Källen triangle function λða; b; cÞ ¼
a2 þ b2 þ c2 − 2ðabþ acþ bcÞ, see more details in

FIG. 1. Real part and imaginary part of the propagator for the case of isospin I ¼ 0 with two different cutoffs qmax.
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Ref. [56]. In our case of two coupled channels, there are
four Riemann sheets, defined as

Sheet I: Imp1 > 0; Imp2 > 0 → GðIÞ
11 ; G

ðIÞ
22 ;

Sheet II: Imp1 > 0; Imp2 < 0 → GðIIÞ
22 ; GðIÞ

11 ;

Sheet III: Imp1 < 0; Imp2 < 0 → GðIIÞ
22 ; GðIIÞ

11 ;

Sheet IV: Imp1 < 0; Imp2 > 0 → GðIÞ
22 ; G

ðIIÞ
11 .

In the present case, only two coupled channels, the
elements of the scattering amplitudes T matrix can be
written as [56],

T11 ¼
1

Δc
ðΔπV11 þ V2

12G22Þ;

T21 ¼
1

Δc
ðV21G11V11 þ ΔkV21Þ;

T22 ¼
V22

Δπ
þ V2

12G11

ΔπΔc
; ð13Þ

where one defines

Δπ ¼ 1 − V22G22;

ΔK ¼ 1 − V11G11;

Δc ¼ ΔKΔπ − V2
12G11G22: ð14Þ

For the single channel cases, we have the KK̄ and ππ
(πη) interaction channel separately for I ¼ 0 (I ¼ 1). Just
by taking V21 ¼ 0, one can easily reduce Eq. (13) to,

T11 ¼
V11

Δk
; T22 ¼

V22

Δπ
: ð15Þ

B. The couplings and the wave functions

By applying the Laurent expansion of the amplitude
close to the pole, the scattering amplitudes can be written
as [66,67]

Tij ¼
gigj

s − spole
þ γ0 þ γ1ðs − spoleÞ þ � � � ; ð16Þ

where gi and gj are the coupling constants of the ith and jth
channels, which can be calculated from the residue of the
pole [68,69]

gigj ¼ lim
s→spole

ðs − spoleÞTij: ð17Þ

Using Cauchy integral formula, we can evaluate the residue
as a loop integral in the complex s plane,

g2i ¼
1

2πi

I
Tiids; ð18Þ

where the integral is over a closed path in the complex s
plane around the pole s ¼ spole. Furthermore, with the

couplings of the corresponding poles, one can generalize
Weinberg’s rule [70] for bound state or resonance to the
formalism of ChUA [71]

−
X
i

g2i

�
dGi

ds

�
s¼spole

¼ 1; ð19Þ

where an alternative derivation of this relationship can be
found in Ref. [72]. The sum rule of Eq. (19) holds for the
pure molecular states, the bound states or resonances,
which are dynamically generated in the coupled channel
interactions. More discussions and the applications of this
rule can be found in Refs. [73–77]. However, in some
cases, if a physical state couples not only to hadron-hadron
pairs, but also to a different component of nonmolecular
type, this relation becomes for the composite states

−
X
i

g2i

�
dGi

ds

�
s¼spole

¼ 1 − Z; ð20Þ

where Z represents the probability of which the system is
not a molecule components but something else. As dis-
cussed in Ref. [76], the interpretation of Z as a probability
nonmolecular (meson-meson or meson-baryon state in
ChUA) component is strict for bound states, which is
related to the genuine component in the wave function of
the state omitted from the coupled channels. Note that for a
specified channel the Gi function should be extrapolated to
the right Riemann sheet for a corresponding pole of
the state.
To understand more about the sources of the resonances,

we study the wave function of the resonance at small
distances. Once we have the wave function of a resonance,
one can also investigate its form factor, which responses the
state to external sources. Following the formalism of
Ref. [78], the wave function of a resonance in coordinate
space is given by

ϕðr⃗Þ ¼
Z
qmax

d3p⃗

ð2πÞ3=2 e
ip⃗·r⃗hp⃗jΨi: ð21Þ

After performing the angle integration of the momentum,
we obtained [68]

ϕðr⃗Þ ¼ 1

ð2πÞ3=2
4π

r
1

C

Z
qmax

pdp sinðprÞ

×
Θðqmax − jp⃗jÞ

E − ω1ðp⃗Þ − ω2ðp⃗Þ
m2

V

p⃗2 þm2
V
; ð22Þ

where C is the normalization constant, and E≡ ffiffiffiffiffiffiffiffiffispole
p ,

thus, which is real for a pure bound state with zero width
and otherwise complex for the general cases in ChUA. Note

that here we put an extra form factor fðq⃗Þ ¼ m2
V

p⃗2þm2
V
to
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regulate the scale of the wave function, and our conclusions
do not change if we remove it. Besides, Eq. (22) is the
scattering wave function of the two components, which
does not include the outgoing plane wave function for the
case of the resonance with open channel(s), and thus, it will
be confined within a few fm for the molecular states,1 see
our results later. Using the wave functions that we have,
one can evaluate the form factor of the states with its
definition [78],

Fðq⃗Þ¼
Z

d3r⃗ϕðr⃗Þϕ�ðr⃗Þe−iq⃗0·r⃗

¼
Z

d3p⃗

×
θðΛ−pÞθðΛ− jp⃗− q⃗jÞ

½E−ω1ðpÞ−ω2ðpÞ�½E−ω1ðp⃗− q⃗Þ−ω2ðp⃗− q⃗Þ� ;

ð23Þ

with a normalization to keep Fðq ¼ 0Þ≡ 1. For a gen-
erated state in ChUA, a pole with its width, which is
complex, the form factor is complex too, see the results
below. Finally, the radii of the states (or mean square
distance) can be evaluated from the form factor,

hr2i ¼ −6
�
dFðqÞ
dq2

�
q2¼0

: ð24Þ

Note that a soft step function needed to make the form
factor converge in this case. On the other hand, for the case
of a bound state, the radii of the state can also be obtained
from the tail of the wave functions as done in Ref. [73]

hr2ii ¼
−g2i ½dGiðsÞ

ds �s¼spole

4μiBE;i
; ð25Þ

where the binding energy BE;i ¼ mi þm0
i −MB, and the

reduced mass μi ¼ mim0
i

miþm0
i
. Conceptually, hr2ii is the mean-

squared distance of the bound state in the ith channel. In fact,
using the relations of the sum rule and the wave functions, it
is easy to know that Eq. (25) is an approximation of Eq. (24),
see more discussions in Refs. [71,72,76,84].

III. RESULTS

We first revisit the KK̄ interactions with its coupled
channels of ππ or πη, where the states of σ, f0ð980Þ, and

a0ð980Þ are dynamically generated in the coupled channel
interactions as done in Ref. [56]. But, we make a further
study of the couplings, the compositeness, the wave
functions and the radii for these states to investigate more
details on their properties, as the results shown below. To
find more information about the structure of the poles
corresponding to these states, we examine the single
channel interactions. Note that, for the only one free
parameter in our approach, what we used below for the
value of the cutoff is the one determined in Ref. [34] by
performing a combined fit for the experimental data,
qmax ¼ 931 MeV, which is a bit different with the ones
used in Ref. [56]. To see the uncertainties of our calcu-
lations, we also show the results with the one of about 15%
division to the upper limits, qmax ¼ 1080 MeV and varying
the values between 15% division in some cases.

A. Coupled channel approach

We first calculate the phase shifts and the inelasticities.
As done in Ref. [56], the two-channels S-matrix are used,

S ¼
�

ηe2iδ1 ið1 − η2Þ1=2eiðδ1þδ2Þ

ið1 − η2Þ1=2eiðδ1þδ2Þ ηe2iδ2

�
ð26Þ

where the observables of δ1, δ2 correspond to the phase
shifts of the channel 1, 2, respectively, and the one of η is
the inelasticity. These observables can be calculated from
the relationship between S-matrix and the scattering
amplitude T-matrix, having

T11 ¼ −
8π

ffiffiffi
s

p
2ipcm1

ðS11 − 1Þ;

T22 ¼ −
8π

ffiffiffi
s

p
2ipcm2

ðS22 − 1Þ;

T12 ¼ t21 ¼ −
8π

ffiffiffi
s

p
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pcm1pcm2

p ðS12 − 1Þ; ð27Þ

where pcmi is the corresponding three momentum in the
CM frame as discussed above. The results of the phase
shifts and the inelasticities in isospin of I ¼ 0 and I ¼ 1
sectors are shown in Figs. 2 and 3, respectively. In Fig. 2,
we can see that the results of I ¼ 0 sector are in good
agreement with the experimental data up to

ffiffiffi
s

p ¼ 1.2 GeV
even with the upper limit of the cutoff. From Fig. 2(b), one
can see that the σ structure is a wide bump and the signal of
f0ð980Þ is in the sharp increasing region which crosses 90°
[50]. However, in I ¼ 1 sector because of the lack of
experimental data for phase shifts and inelasticities, we
make some predictions for them, where the structure of
a0ð980Þ can be clearly seen in the phase shifts of the πη
channel.
Next, we show our results for the invariant mass

distributions. As done in Ref. [56], we compare our results

1Within ChUA, more discussions about the wave functions for
the s-wave bound states can be found in Ref. [79], for the s-wave
resonances with open channel(s) in Refs. [76,78], the extrapo-
lation to any partial wave interactions in Ref. [71], and more
details connected with the sum rule in Refs. [71,80]. Furthermore,
Refs. [81–83] have discussed more about the wave functions for
the molecular state and the compact four-quark states.
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with the data of πη invariant mass distribution from the
reaction K−p → Σð1385Þπ−η and the ones of KK̄ from the
reaction K−p → ΣþK−K0, see Fig. 4, where we use

dσii
d

ffiffiffi
s

p ¼ CjTiij2qcmi; ð28Þ

where Tii is the scattering amplitude of the KK̄ or πη
channel, qcmi is three momentum in CM frame and C the
normalization factor. To see more clearly the resonances
dynamically reproduced in the coupled channel inter-
actions, we plot the modulus squared of the scattering
amplitudes in I ¼ 0 and I ¼ 1 sectors, as shown in Figs. 5
and 6. From Figs. 5(a) and 5(b) of jT11j2 and jT12j2 for
I ¼ 0, the peak of f0ð980Þ state is clearly seen. In Fig. 5(c),
the broad structure of T22 are σ resonance, where the dip is
the signal of f0ð980Þ state closed to the KK̄ threshold and
the structure of the amplitudes are consistent with the ones
calculated with dispersion method [85]. Likewise, the
a0ð980Þ resonance can be clearly seen in jT11j2, jT12j2,
and jT22j2 for I ¼ 1 sectors in Fig. 6. In spite of showing
the a0ð980Þ resonance in the results of jT22j2, see Fig. 6(c),
there is an extra feature, which is called threshold effect
[56,86], of which more details can be seen a recent review
[87]. This feature is due to the strong coupling of the

resonance a0ð980Þ to the KK̄ channel which cause to
dwindle the width of the scattering amplitude and change
the location of the maximum. This effect is originated from

the second term of T22,
V2
12
G11

ΔπΔc
, see Eq. (13), and precisely

comes from the imaginary part of the term G11

Δc
as shown

in Fig. 7.
In Figs. 5 and 6, we have dynamically reproduced the

states of σ, f0ð980Þ and a0ð980Þ in the modulus squared of
the scattering amplitudes. Thus, we can search for their
corresponding poles in the Riemann sheets to determine
their masses and widths. To see their poles stable or not, we
plot the trajectories for the masses and the widths of their
poles by changing the value of qmax, see Fig. 8, where all of
these poles are found in the second Riemann sheet (sheet II
as defined in the last section). Because all of these poles
locate in the second Riemann sheet, where the channel of
ππ or πη is open and KK̄ close, we only can obtain rough
information on their structures since all of them are above
the threshold of ππ or πη channel and below the one of KK̄.
This is why we need to continue researching their couplings
of a certain channel later for revealing more structure
details. From Fig. 8, we can find that even varying the free
parameter, qmax, the corresponding poles for them are
stably produced in the second Riemann sheets. But, one
can see that the behavior of the pole for σ is different from

FIG. 2. Our results for the sector of isospion I ¼ 0 with two different values of qmax.
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the other two states, f0ð980Þ and a0ð980Þ. When the cutoff
increases, the mass of σ slightly increases to a maximum
and then declines, and its width decreases, whereas the
masses of f0ð980Þ and a0ð980Þ always decline from above
KK̄ threshold to below threshold, and their widths increase
(the width of a0ð980Þ increase to an upper limit). These
differences mean that the properties of σ look like different
from the ones of f0ð980Þ and a0ð980Þ. On the other hand,
the mass of f0ð980Þ is more stable than the one of a0ð980Þ,

whereas, the width of a0ð980Þ does not change much when
the cutoff varies. Thus, we continue to make further
investigations about their different properties.
To explain the different properties of the states σ,

f0ð980Þ and a0ð980Þ in the behaviors of Fig. 8, we firstly
look at the results of G functions in Fig. 1, where one can
see that the real parts of the loop function reduce when the
cutoff qmax increases, whereas the imaginary parts are
independent with the cutoff. To simplify the discussions,

FIG. 3. Our results for the sector of I ¼ 1.

FIG. 4. Results for the invariant mass distribution with two different qmax.
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FIG. 5. Results of the modulus squared of the scattering amplitudes in I ¼ 0 sector.

FIG. 6. Results of the modulus squared of the scattering amplitudes in I ¼ 1 sector.
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we detail with the single channel formalism, since these
properties can be confirmed by the single channel cases,
except for the one of a0ð980Þ, see the discussions on the
next subsection and the results of Fig. 13. Since the σ state

is a resonance above the ππ threshold of which the pole is
located in the second Riemann sheet, one can see that
the pole conditions are the modulus and the arguments
of complex G22 and V22 meeting with both jV22G22j ¼ 1

FIG. 7. Results of the real part (left) and imaginary (right) part of (G11

Δc
) with different cutoffs.

FIG. 8. Trajectories for the masses and the widths of the poles in the second Riemann sheets corresponding to σ (f0ð500Þ), f0ð980Þ,
and a0ð980Þ by varying cutoff (qmax).
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and ArgðV22Þ ¼ −ArgðG22Þ, which are equivalent to
1 − ReðV22G22Þ ¼ 0 and ImðV22G22Þ ¼ 0, see the subfig-
ures of Fig. 9(a) and Fig. 9(b). From Fig. 9(a), one can find
that, when the cutoff qmax increases, the parts of

1
jG22j close

to x-axes (real energy) will rise up due to the real parts of G
function decreasing, which will lead to the pole moving to
higher energy, and thus, the mass of the σ state increases, as
shown in Fig. 8. On the other hand, one also can see that the
surface of 1

jG22j is a bit flat, which make the pole moving to

higher energy not much. This is why the mass of the σ state
increases in a small range. In Fig. 9(b), when the cutoff
qmax increases, the arguments of the complex G22,
−ArgðG22Þ, increase. But, on the other hand, the real parts
of G function decrease, which will lead to the imaginary
parts of G function reducing more, and thus, the width of
the σ state decreasing more, see Fig. 8. For the case of the
state of f0ð980Þ, since it is a bound state ofKK̄ which is the
dominant channel for the f0ð980Þ state in the coupled
channel interactions, it is easy to see in Fig. 9(c) that the
mass of the f0ð980Þ state decreases due to the cutoff
increasing, where we plot 1

V11
and ReðG11Þ for the KK̄

channel. But, the width of the f0ð980Þ state comes from the
contributions of the ππ channel, and thus, from the
discussions for the σ state, the width will become larger
for the pole moving to the lower energy region with the
cutoff increasing. In the case of the state of a0ð980Þ, it looks
like a bit complicated for the potential of the KK̄ channel
being too weak to create a pole in the first Riemann sheet in
the single channel case, see the discussions on the next
subsection. In fact, one can perform similar analyses with
the pole conditions as the case of the σ state replacing with
the parts of Δc − 1, see Eq. (14), where we do not repeat
this analyses again. One should know that in this case the
transition potential of V12 plays a significant role to
produce a pole in the second Riemann sheet of the coupled
channel case. Besides, the width of the a0ð980Þ state is not
changed much for the cutoff varying because of the
constant potential of the πη channel, see Eq. (7).
For the sake of the complete investigations about the

characteristics of these resonances, we continue to study
the couplings, the compositeness, the wave functions and
the radii as well. The couplings to various channels for
isospin I ¼ 0 and I ¼ 1 sectors have been calculated using

FIG. 9. Results of the potentials V and the loop functions G (
ffiffiffi
s

p ¼ xþ iy).
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Eq. (17), as presented in Tables I and II, respectively. From
these results in I ¼ 0 sector, it is observed that the σ state
couples to the ππ channel strongly, while f0 strongly
couples to the KK̄ channel. Thus, the pole of the σ state
dominates by the ππ channel whereas the one of the f0 state
mainly by the KK̄ channel. In I ¼ 1 sector, the a0 state is
tightly coupled to both the KK̄ and πη channels, but it has
more tendency to the KK̄ channel, which means that the
pole of a0 is dominated by the KK̄ channel but the
contributions of πη is significant too.
Using the sum rule of Eq. (20), the compositeness can be

calculated from the couplings of the dynamically generated
states, where one can check that whether f0 and a0 are a
pure molecular state or have something else. Our results are
given in Tables III and IV. From the results of Table III,
once again we can conclude that the structure of f0 is
highly dominated by the KK̄ molecular components, which

is up to 80% with the central value of qmax ¼ 931 MeV,
and has very small parts of the ππ components even though
the coupling to the ππ channel is not so small, which is
more than 1=3 of the one to theKK̄ channel, see Table I. By
contrast, the σ state has large part components of ππ about
40% and quite tiny parts of KK̄, where one can find that
this state still has much large parts of nonmolecular
components. Our results of the compositeness in
Table III for the states of σ and f0 are consistent with
the ones obtained in Ref. [77] with the inverse amplitude
method. The a0 state has a main components of KK̄ and
some contributions from the πη component, see Table IV,
but it still has something else about 30%. These results are
comparable with the work of Ref. [73] where the properties
of these resonances are investigated with the formalism of
finite-volume. Therefore, these states are not pure molecu-
lar states and have something else, where Ref. [88] also

TABLE I. Couplings of σ and f0 to every channel for I ¼ 0 sector.

qmax ¼ 931 MeV gKK̄gKK̄ðGeV2Þ jgKK̄ jðGeVÞ gππgππðGeV2Þ jgππjðGeVÞ
σ: 469.23þ 199.70i −1.05þ 1.72i 1.42 −3.49þ 8.20i 2.98
f0: 991.17þ 13.45i 10.92 − 10.91i 3.92 −1.76þ 0.70i 1.37

qmax ¼ 1080 MeV
σ: 469.28þ 180.46i −0.80þ 1.86i 1.42 −2.0þ 8.28i 2.92
f0: 982.13þ 21.67i 16.15 − 10.55i 4.39 −2.34þ 1.11i 1.60

TABLE II. Couplings of a0 for I ¼ 1 sector.

qmax ¼ 931 MeV gKK̄gKK̄ðGeV2Þ jgKK̄jðGeVÞ gπηgπηðGeV2Þ jgπηjðGeVÞ
a0: 1002.90þ 56.68i 24.17 − 9.22i 5.08 10.30þ 5.71i 3.43

qmax ¼ 1080 MeV
a0: 974.50þ 57.31i 21.83 − 3.28i 4.78 8.16þ 5.20i 3.11

TABLE III. Results of the compositeness of the poles in I ¼ 0 sector.

qmax ¼ 931 MeV ð1 − ZÞKK̄ jð1 − ZÞKK̄ j ð1 − ZÞππ jð1 − ZÞππj
σ: 469.23þ 199.70i −0.01þ 0.01i 0.01 −0.13 − 0.37i 0.40
f0: 991.17þ 13.45i 0.79þ 0.12i 0.80 0.02 − 0.01i 0.02
qmax ¼ 1080 MeV
σ: 469.28þ 180.46i −0.00þ 0.01i 0.01 −0.16 − 0.36i 0.39
f0: 982.13þ 21.67i 0.70þ 0.11i 0.70 0.02 − 0.01i 0.02

TABLE IV. Results of the compositeness of the poles in I ¼ 1 sector.

qmax ¼ 931 MeV ð1 − ZÞKK̄ jð1 − ZÞKK̄ j ð1 − ZÞπη jð1 − ZÞπηj
a0: 1002.90þ 56.68i 0.37þ 0.41i 0.55 −0.09 − 0.13i 0.16
qmax ¼ 1080 MeV
a0: 974.50þ 57.31i 0.34þ 0.29i 0.45 −0.07 − 0.12i 0.14
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conclude that the f0ð980Þ and a0ð980Þ states are not
elementary states based with a Flatté parametrization
analysis.
To study the response of these states to the external

sources, one need to know the form factor of these states.
Thus, we evaluate the wave functions for them, and then,
we can calculate the radii once we have their form factor.
The wave functions of these state for all distances are
shown in Fig. 10, where the real parts and the imaginary
parts of the wave functions for the f0, σ and a0 states are
given since the poles corresponding to these states are
complex. From Fig. 10, one can see that, up to about 4 fm,
the wave functions for them become zero. With the wave
functions obatined, we can investigate the radii of these
states with Eq. (24) which relates the wave functions at the

origin, see the results of Table V with two cutoffs. As
discussed above, we also calculate the radii from the tail of
the wave functions using Eq. (25), as shown in Table VI.
From the results of Tables Vand VI, we can clearly see that
the radii of the f0 and a0 states in two approaches of
Eqs. (24) and (25) are larger than the typical hadronic scale
0.8 fm [73], whereas the one of the σ state keeps in the
typical hadronic scale ≲0.8 fm. But, in Table VI, we find
that the one for f0ð980Þ with cutoff qmax ¼ 931 MeV is
much larger, j

ffiffiffiffiffiffiffiffi
hr2i

p
j ¼ 16.36 fm, which is due to the

corresponding pole closing to the KK̄ threshold where the
binding energy becomes zero, see Eq. (25). Indeed, when
we vary the cutoff which changes the positions of the
corresponding poles closed to the threshold, the results with
Eq. (25) become unstable, as shown in Fig. 11. In Fig. 11,

FIG. 10. Results of the real part and imaginary part of the wave functions for the f0 (upper parts), σ (middle parts), and a0 (lower parts)
states.
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we can see that the results with the second method are
much stable, and the ones with the first method have
singularities when the cutoff moves the pole near the
threshold where the binding energy becomes zero. As
discussed in Ref. [84], the mean-squared radius is
well defined with Eq. (24) both for the bound states
and the resonances. Thus, at the end, we obtain
j

ffiffiffiffiffiffiffiffi
hr2i

p
jf0ð980Þ ¼1.80�0.35 fm, j

ffiffiffiffiffiffiffiffi
hr2i

p
jσ¼0.68�0.05 fm

and j
ffiffiffiffiffiffiffiffi
hr2i

p
ja0ð980Þ ¼ 0.94� 0.09 fm, where we take the

central value of the cutoff qmax ¼ 931 MeV within 15%
uncertainties.

B. Single channel approach

In the previous section, we have investigated the proper-
ties of the σ, f0, and a0 states in the coupled channel

FIG. 11. Results of the radii by varying the cutoffs, where method 1 means the radii calculated with Eq. (25), and method 2 the one
with Eq. (24).

TABLE V. The radii of states calculated with Eq. (24).

Resonances qmax ¼ 931 MeV j
ffiffiffiffiffiffiffiffi
hr2i

p
j qmax ¼ 1080 MeV j

ffiffiffiffiffiffiffiffi
hr2i

p
j

f0 1.42þ 1.10i fm 1.80 fm 1.31þ 0.62i fm 1.45 fm
σ 0.68þ 0.005i fm 0.68 fm 0.63þ 0.04i fm 0.63 fm
a0 0.83þ 0.44i fm 0.94 fm 0.96þ 0.35i fm 1.03 fm

TABLE VI. The radii of states evaluated with Eq. (25).

Resonances qmax ¼ 931 MeV j
ffiffiffiffiffiffiffiffi
hr2i

p
j qmax ¼ 1080 MeV j

ffiffiffiffiffiffiffiffi
hr2i

p
j

f0 16.32þ 1.20i fm 16.36 fm 1.73þ 0.13i fm 1.73 fm
σ 0.43þ 0.31i fm 0.54 fm 0.44þ 0.29i fm 0.53 fm
a0 0.56 − 1.25i fm 1.37 fm 0.96þ 0.36i fm 1.02 fm
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FIG. 13. Results of the masses and widths for the states of σ and f0ð980Þ as a function of the cutoffs.

FIG. 14. Real (left) and imaginary (right) parts of the ππ scattering amplitude in coupled and single channels.

FIG. 12. Modulus squared of the KK̄ (left) and ππ (right) scattering amplitudes.

HIWA A. AHMED and C.W. XIAO PHYS. REV. D 101, 094034 (2020)

094034-14



formalism. For the sake of the completeness and the
comprehensive understanding of these dynamically gen-
erated states, we continue to examine their properties in
single channel interactions where one can make a further
checking their dominant components. At first, we show the
results of the modulus squared of the scattering amplitudes,
jTj2, in Fig. 12, where one can see the sharp peak with
nearly zero width in the KK̄ channel on the left and the
wide bump structure in the ππ channel on the right. Next,
we search for the corresponding poles in the complex
Riemann sheets. For the ππ channel interactions, as shown
in Fig. 13 where we vary the cutoffs, we always find the
pole in the second Riemann sheet above the threshold, of
which the mass changes weakly and the width varies not so
much as the case of the coupled channel interactions. For
the case of the KK̄ channel, now the pole keeps below the
threshold, and thus, has no width as a pure bound state
since there is no decay channel, see Fig. 13(c), which are
more bound compared with the results of coupled channel
cases in Fig. 8. Therefore, we can conclude that the σ state

is a resonance mainly formed by the ππ interactions and the
one of the f0 state is a bound state of the KK̄ component as
found in the coupled channel interactions above. To reveal
more details, see Fig. 14 for the real and the imaginary parts
of the ππ scattering amplitudes in the coupled and the
single channel interactions, one can see that in the region of
the σ state appeared, 400–700 MeV, the amplitudes are not
affected so much by the coupled channel of KK̄, which is a
bit far away from the threshold of KK̄. Indeed, the structure
of the f0ð980Þ state can be clearly seen closed to the
threshold of KK̄, as shown in Fig. 14. However, in the
isospin I ¼ 1 sector, the potential of the KK̄ channel is too
weak to create a pole in the second Riemann sheet when it
decouples to the πη channel, of which the potential is
independent with the energy. This means that the coupled
channel effects play much important role in the dynamical
production of the a0 state.
As in case of the coupled channel interactions, we make

further studies of the compositeness, the wave functions
and the radii. The results of the couplings are given in

TABLE VIII. Compositeness of the σ and f0ð980Þ states in single channel.

qmax ¼ 931 MeV ð1 − ZÞKK̄ jð1 − ZÞKK̄ j ð1 − ZÞππ jð1 − ZÞππj
σ: 467.13þ 209.968i 0 0 −0.11 − 0.37i 0.39
f0ð980Þ: 948.62 0.62 0.62 0 0

qmax ¼ 1080 MeV
σ: 468.213þ 195.8i 0 0 −0.13 − 0.36i 0.386
f0ð980Þ: 923.77 0.52 0.52 0 0

FIG. 15. Wave function of the σ state in the ππ channel.

TABLE VII. Couplings of the σ and f0ð980Þ states in a single channel.

qmax ¼ 931 MeV gKK̄gKK̄ðGeV2Þ jgKK̄ jðGeVÞ gππgππðGeV2Þ jgππjðGeVÞ
σ: 466.81þ 212.21i 0 0 −4.41þ 7.77i 2.98
f0ð980Þ: 948.62 26.4 5.13 0 0

qmax ¼ 1080 MeV
σ: 468.213þ 195.8i 0 0 −3.20þ 8.05i 2.942
f0ð980Þ: 923.77 29.8 5.45 0 0
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Table VII, even though the strengths of the couplings have
lost the relative meanings in the case of the single channel
interactions. But, from the results of the compositeness, see
Table VIII, with the couplings obtained, the compositeness
for the f0ð980Þ state is a bit smaller than the ones of the
coupled channel case, which is consistent with the results
of the coupled channel case in Table III.
The wave functions of the σ and f0ð980Þ states are

shown in Figs. 15 and 16, respectively. And their radii

calculated from the form factor and the tail of the wave
functions are given in Tables IX and X, respectively, of
which the trajectories with different cutoffs are shown in
Fig. 17. The results of Tables IX and X are consistent with
the ones obtained in the coupled channel case, see Tables V
and VI. Since now the f0ð980Þ state is pure KK̄ bound
state, the radii with the tail of the wave functions in Eq. (25)
are well defined and always smaller than the ones evaluated
from the form factor with Eq. (24), compared the right part
of Fig. 17 with the subfigure of Fig. 11(a).

IV. CONCLUSIONS

In the present work, we investigate the properties of the
σ, f0ð980Þ, and a0ð980Þ states with the chiral unitary
approach, where we use the formalisms of the coupled
channel and the single channel. Within the isospin limit,
two poles are found in the second Riemann sheet in isospin
I ¼ 0 sector corresponding to the σ and f0ð980Þ states, and
a pole in I ¼ 1 sector is found, which corresponds to the
a0ð980Þ state. In the case of the single channel calculations,
we find the corresponding poles of the σ and f0ð980Þ states
in the ππ and KK̄ channels with I ¼ 0, respectively.
However, in I ¼ 1 sector the potential of the KK̄ channel
is too weak to create a pole in the second Riemann sheet.

FIG. 17. Radii of the states σ (left) and f0ð980Þ (right) as a function of cutoffs in single channel case, where the methods 1 and 2 are
referred the same as in Fig. 11.

TABLE IX. Radii of the states calculated with Eq. (24) in the single channel case.

Resonances qmax ¼ 931 MeV j
ffiffiffiffiffiffiffiffi
hr2i

p
j qmax ¼ 1080 MeV j

ffiffiffiffiffiffiffiffi
hr2i

p
j

σ 0.69þ 0.007 i fm 0.69 fm 0.64þ 0.03 i fm 0.64 fm
f0ð980Þ 1.29 fm 1.29 fm 1.11 fm 1.11 fm

TABLE X. Radii of the states evaluated with Eq. (25) in the single channel case.

Resonances qmax ¼ 931 MeV j
ffiffiffiffiffiffiffiffi
hr2i

p
j qmax ¼ 1080 MeV j

ffiffiffiffiffiffiffiffi
hr2i

p
j

σ 0.43þ 0.32 i fm 0.54 fm 0.43þ 0.30 i fm 0.53 fm
f0ð980Þ 0.75 fm 0.75 fm 0.55 fm 0.55 fm

FIG. 16. Wave function of the f0ð980Þ state in the KK̄ channel.
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When we vary the only one free parameter of the cutoff,
these states are stably dynamically generated both in the
coupled channel and the single channel formalism, except
for the one of a0ð980Þ missing in the single channel
interactions. Besides, we also predict the phase shifts in
I ¼ 1 sector with the coupled channel formalism.
Furthermore, we studied the couplings, the composite-

ness, the wave functions, and the mean-squared distance of
these dynamically generated states in both the coupled
channel and the single channel formalisms. From the
results of the couplings and the compositeness, we con-
clude that the f0ð980Þ state is essentially made by the KK̄
component, which is about 80%, and has very small parts
of ππ. However, the σ state has the main contributions
from the ππ channel, of which the component amounts to
about 40%, and has quite small quantity of the KK̄
component. Thus, the σ resonance has a large parts of
something else except for the molecular components. For
the case of the a0ð980Þ state, the πη channel has important
contributions to its generations in the coupled channel
interactions. Even though it is dominated by the KK̄

component with 55%, it also has large contributions of
about 16% from the πη component. With the wave
functions obtained, we calculate the radii of these
states and get j

ffiffiffiffiffiffiffiffi
hr2i

p
jf0ð980Þ ¼ 1.80� 0.35 fm, j

ffiffiffiffiffiffiffiffi
hr2i

p
jσ¼

0.68�0.05 fm and j
ffiffiffiffiffiffiffiffi
hr2i

p
ja0ð980Þ ¼ 0.94� 0.09 fm, which

can be indirectly tested in the future experiments. Finally,
from our results of the couplings, the compositeness, the
wave functions and the radii, we can conclude that the
f0ð980Þ state is mainly a KK̄ bound state, the σ state a
resonance of ππ and the a0ð980Þ state a loose KK̄ bound
state with the significant contributions from the πη
component.
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