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The rates and spectra of the anomalous η → πþπ−γ and η0 → πþπ−γ decays are calculated. The approach
is based on the effective meson Lagrangian obtained in the Nambu-Jona-Lasinio model with vector and
axial-vector mesons by integrating out quark fields. The resulting action is affected by mixing between
members of pseudoscalar JPC ¼ 0−þ and axial-vector 1þþ nonets that violates some low-energy theorems.
In this paper we point out that a gauge covariant procedure to diagonalize this mixing allows for consistent
description of the η → πþπ−γ and η0 → πþπ−γ decays.
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I. INTRODUCTION

It is known that effective meson Lagrangians describing
low-energy interactions of spin-0 and spin-1 states usually
require a procedure for redefining the axial-vector field
which is associated with spontaneous breaking of chiral
symmetry [1–3]. By means of this procedure one eliminates
the mixing between pseudoscalar (P) and axial-vector
(A) fields (hereinafter for brevity we use the term “PA
mixing”). In the Nambu-Jona-Lasinio (NJL) model, the PA
mixing is induced by a one-quark-loop diagram connecting
bound q̄q mesonic states in leading order in 1=Nc [4–6].
The corresponding contribution is proportional to the
constituent quark mass, and therefore is generated dynami-
cally through a partial Higgs mechanism. In the world of
zero bare mass for the up, down and strange quarks, this
does not break the original Uð3Þ flavor symmetry.
However, in the real world, with small but nonzero bare
quark masses, this contribution violates both the Uð3Þ
nonet symmetry and the SUð3Þ flavor symmetry. Thus the
PA mixing is an additional source of flavor symmetry
breaking in the effective meson Lagrangian [7].
The purpose of this paper is to demonstrate that PA

mixing affects a nonresonant contribution in the anomalous
η=η0 → πþπ−γ decays of eta mesons, i.e., the box anomaly.

The selection of processes is not accidental. These decays
are reasonably well studied experimentally and make it
possible to measure the magnitude of the nonresonant
contribution [8,9]; moreover, they are sensitive to the
flavor symmetry breaking. These modes have been also
extensively investigated in the framework of the chiral
perturbation theory (ChPT) [10], and in different models
based on specific chiral Lagrangians with vector mesons
[11–18]. Despite the great work done, a violation of flavor
symmetry through the mechanism of eliminating PA
mixing has not yet been addressed in the literature.
This can be partly explained by the problem that arises
when considering axial-vector mesons. After elimination
of the PA mixing, some meson amplitudes receive addi-
tional contributions that violate a number of low-energy
theorems of current algebra and PCAC (partially con-
served axial-vector current) hypothesis [19,20]. Owing to
this problem, accounting for contributions from axial-
vector mesons to the η=η0 → πþπ−γ amplitudes is not a
straightforward issue.
Early attempts to solve the problem were based on the

naive subtraction of vertices of the effective photon-meson
Lagrangian, which violate the low-energy theorems [19].
This was done by assuming that in the low-energy region
the vector-meson dominance (VMD) hypothesis holds
exactly. The latter assumption can hardly be justified from
QCD. In addition, there are reasonable grounds to believe
that deviations from VMD can even occur when consid-
ering only pseudoscalar and vector mesons, i.e., before the
inclusion of axial-vector states to the effective action [21].
Note that VMD-based subtractions do not account for
residual effects associated with an explicit violation of
chiral symmetry, and therefore do not meet the purpose
pursued by us here.
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Apart from the language of VMD-based subtractions,
there is a more practical way to discuss the problem
[22–24]. It is an approach based on a QCD inspired
effective NJL Lagrangian [6,25,26]. In accord with a
general assertion of QCD that meson physics in the large
Nc limit is described by the tree diagrams of an effective
local Lagrangian [27,28], the NJL model associates with
any mesonic vertex the local part of the underlying quark
loop diagram. In this quark-loop based approach, contri-
butions ensuring the fulfilment of low-energy theorems in
the presence of axial-vector mesons are generated by the
PAmixing elimination procedure itself. An important role is
given to fermionic triangle-loop graphs which are (super-
ficially) linearly divergent. Owing to the linear divergence,
shifting the integration momentum in the closed loop
changes the value of the integral, so that there is an essential
ambiguity which can be used to ensure Ward identities
[29–31].
This idea has been applied recently to show how surface

terms of some anomalous triangle Feynman diagrams can
be used to satisfy Ward identities for a1 → πþπ−γ and
γ → 3π decays [22–24]. It is important that necessary
triangle diagrams arise only due to gauge-covariant diag-
onalization of πa1 mixing. A naive (nongauge-covariant)
diagonalization of the πa1 mixing for both processes leads to
a contradictionwith the corresponding low-energy theorems.
What is special about the gauge-covariant diagonaliza-

tion? Let us remind that the standard diagonalization
procedure consists in redefining the axial-vector field aμ as

aμ ¼ aðphysÞμ þ ∂μπ

agρfπ
; ð1Þ

where aμ ¼ τiaiμ, π ¼ τiπ
i, τi are Hermitian SUð2Þ Pauli

matrices, i ¼ 1, 2, 3; fπ ≃ 93 MeV, the coupling constant
gρ ≃

ffiffiffiffiffiffiffiffi
12π

p
is fixed by relating it to the ρ → ππ decay

width; a is a dimensionless parameter which comes out as a
result of diagonalization

1

a
¼ g2ρf2π

m2
ρ
; ð2Þ

where mρ is the mass of the ρ meson.
In the presence of electromagnetic interactions the

replacement (1) is not a Uð1Þem gauge-covariant one.
Our alternative diagonalization procedure is suggested
by the appearance of theUð1Þem gauge-covariant derivative
Dμπ instead of the nongauge-covariant one ∂μπ in (1)

aμ ¼ aðphysÞμ þ Dμπ

agρfπ
; Dμπ ¼ ∂μπ − ieAμ½Q; π�; ð3Þ

where Q ¼ ð1þ 3τ3Þ=6 is the electric charge matrix of
quark fields, e ¼ ffiffiffiffiffiffiffiffi

4πα
p

is the positron charge. Notice that

the coupling of the electromagnetic field Aμ to pions (and as
a consequence to quarks in the form q̄γμγ5Dμπq) can be
carried out unambiguously using the gauge principle.
One might think of criticizing new replacement (3) on

the grounds that in accord with the known equivalence
theorem in the axiomatic field theory (Haag’s theorem
[32]), as well as in its Lagrangian version (Chisholm’s
theorem [33,34]), both replacements (1) and (3) are
equivalent and therefore should lead to the same physical
content of the theory. Indeed, most likely this is true for the
real part of the effective action [23,35,36] and this probably
would be true for the anomalous (imaginary) part of
the action if we, as usual, neglected the contribution of
the surface terms. It should be noted, however, that the
replacement (3) is a source of new anomalous triangle
diagrams with photons possessing surface terms that cannot
be ignored because they are important to fulfil the require-
ments of Ward identities. For instance, in Fig. 1 we show a
Feynman diagram which is zero if one neglects the
contribution of the surface term. It is this diagram that
allows us to ensure the fulfilment of Ward identities for the
anomalous γπππ vertex [24].
The paper is organized as follows. In Sec. II we discuss

the reason for mixing in the system of η and η0 mesons. We
recall the Witten-Veneziano approach to resolve the Uð1Þ
problem and show that this framework leads naturally to the
η − η0 mixing angle θP ≃ −20°. In Sec. III we discuss the γγ
widths of the η and η0. We define here the notation and use
the experimental data on these modes to fix the main
parameters involved in the description of the η and η0
system. Radiative η=η0 → πþπ−γ decays are discussed in
Sec. IV. In this section we show that the axial-vector
mesons through the PA mixing mechanism affect the box
anomaly at lowest order of flavor symmetry breaking. That
leads to the difference in the description of flavor symmetry
breaking effects for box and triangle anomalies. This
section contains the main result of the paper. Our con-
clusions are found in Sec. V.

II. η− η0 MIXING

In the limit of zero bare mass for the up, down and
strange quarks m̂u ¼ m̂d ¼ m̂s ¼ 0, the pseudoscalar states

FIG. 1. The fermionic one-loop graph contributing to the low-
energy γπππ amplitude if the surface term is not ignored. It is
suggested that such diagrams can be used to satisfy the Ward
identities violated by the πa1 mixing.
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belonging to the SUð3Þ octet become massless Goldstone
bosons, but the ninth pseudoscalar state, the SUð3Þ singlet
η0, remains massive m2

η0 ¼ 3λ2η=Nc due to the Uð1Þ
anomaly [37]. With the explicit breaking of chiral sym-
metry m̂u ¼ m̂d ≪ m̂s (isospin is assumed to be exact) the
octet pseudoscalar masses become nonzero and are related,
at first order in the quark mass expansion, by the Gell-
Mann-Okubo formula 3m2

η8 ¼ 4m2
K −m2

π [38–40], where
η8 is the eighth member of the SUð3Þ octet.
In lowest order of chiral expansion, if m̂u ¼ m̂d ≠ m̂s,

the massive SUð3Þ singlet η0 mixes with η8 producing the
mass matrix m2

ab (a; b ¼ 8; 0) which in the η8, η0 basis can
be written as follows [41]

 
4
3
m2

K − 1
3
m2

π − 2
3

ffiffiffi
2

p ðm2
K −m2

πÞ
− 2

3

ffiffiffi
2

p ðm2
K −m2

πÞ 2
3
m2

K þ 1
3
m2

π þ 3λ2η
Nc

!
: ð4Þ

Taking the trace of this matrix one obtains the Veneziano
formula

m2
88 þm2

00 ¼ m2
η þm2

η0 ¼ 2m2
K þ λ2η; ð5Þ

with the phenomenological estimate λ2η ¼ 0.726 GeV2.
The physical eigenstates η; η0 are given by

η ¼ cos θPη8 − sin θPη0

η0 ¼ sin θPη8 þ cos θPη0; ð6Þ

where θP is a mixing angle. Diagonalization of (4) then
yields

m2
η0;η ¼ m2

K þ 3λ2η
2Nc

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

K −m2
π −

λ2η
2Nc

�
2

þ 2
λ4η
N2

c

s
;

with the following restriction for θP

tan 2θP ¼ −
4
3

ffiffiffi
2

p ðm2
K −m2

πÞ
λ2η − 2

3
ðm2

K −m2
πÞ
: ð7Þ

The mass matrix (4) leads automatically to Schwinger’s
mass relation [42] for the nonet of pseudoscalar mesons

ðm2
η0 −m2

πÞðm2
η −m2

πÞ
ðm2

η0 þm2
η − 2m2

KÞ
¼ 4

3
ðm2

K −m2
πÞ: ð8Þ

The experimental values for left and right sides of this
formula are 0.35 GeV2 and 0.30 GeV2 correspondingly.
This is a quite good result for the approximation used.
The other consequence of this consideration is the value

of the pseudoscalar mixing angle θP ≃ −18.3°. This lowest
order analysis does not include the leading logarithmic
corrections arising from the meson one-loop diagrams.

Nonetheless, the estimate obtained is quite compatible with
that given in the full one-loop analysis of the ChPT: θP ¼
−20°� 4° [43].
Since we are interested in consistency with the simplest

possible situation, the old parametrization [44] in terms of
two (octet f8 and singlet f0) decay constants and one η − η0
mixing angle θP will be used through the whole paper. This
is sufficient both to describe the η; η0 radiative decay results
considered here, and to demonstrate the main idea of our
approach—the effect of PA-mixing on the box anomaly.
This does not exclude the further extension of the idea to
more involved parametrizations in terms of either two octet-
singlet decay constants and two mixing angles [45]; or in
terms of strange and nonstrange decay constants and only
onemixing angle, see, e.g., Refs. [46–50]; or even in the form
used within the context of the hidden local symmetry [16].

III. η → γγ AND η0 → γγ DECAYS

The dominant two-photon decay modes of η and η0 are
described by matrix elements which do not preserve the
intrinsic parity. Such anomalous interactions were treated
by Wess and Zumino [51]. The topological content of
the anomalous action was clarified by Witten [52]. The
corresponding piece of the Wess-Zumino Lagrangian is
given by

Lϕγγ ¼ −
3

2
Fπeμναβ∂μAν∂αAβtrðQ2ϕÞ: ð9Þ

Here the factor Fπ is given by

Fπ ¼ Nce2

12π2fπ
¼ 0.025 GeV−1: ð10Þ

The nonet of the pseudoscalar fields is described by the
matrix ϕ ¼P8

i¼0 ϕiλi; matrices acting in flavor space, λi,
are the standard SUð3Þ Gell-Mann matrices for i ≠ 0, and

λ0 ¼
ffiffi
2
3

q
. These matrices obey the following basic trace

properties: trλi ¼
ffiffiffi
6

p
δi0, trðλiλjÞ ¼ 2δij. As a result, we

have

trðQ2ϕÞ ¼ 1

3

�
π0 þ ηffiffiffi

3
p
�
cos θP − 2

ffiffiffi
2

p
sin θP

�

þ η0ffiffiffi
3

p
�
sin θP þ 2

ffiffiffi
2

p
cos θP

��
: ð11Þ

The Lagrangian density (9) describes perfectly well the
π0 → γγ decay. However, in order to deal with interactions
involving η or η0 mesons, one should take into account the
SUð3Þ and nonet symmetry breaking effects. It is generally
believed that these effects can be taken into account
through a naive replacement of pseudoscalar decay con-
stants [44,53–55]. Namely, the η=η0 → γγ decays are
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usually described at the chiral point by the following
amplitudes

Aη;η0→γγ ¼ Fη;η0 ð0Þeμναβϵ�μðq1Þq1νϵ�αðq2Þq2β; ð12Þ

where couplings have the values

Fηð0Þ ¼ Fπffiffiffi
3

p
�
fπ
f8

cos θP − 2
ffiffiffi
2

p fπ
f0

sin θP

�
; ð13Þ

Fη0 ð0Þ ¼ Fπffiffiffi
3

p
�
fπ
f8

sin θP þ 2
ffiffiffi
2

p fπ
f0

cos θP

�
ð14Þ

The decay constants f8 and f0 are defined from axial-
vector current expectation values: h0jJA8μ jη8i ¼ if8pμ,
h0jJA0μ jη0i ¼ if0pμ; ϵμðqÞ is a photon polarization with
4-momentum qμ. Using the experimental numbers of the
two-photon decay widths, and the ratio f8=fπ ≃ 1.3 from
the extended ChPT one can obtain that θP ¼ −20°, and
f0=fπ ≃ 1.04. It is these parameter values that we will use
in our subsequent numerical estimates.
The meson vertices (9) can be obtained through the direct

calculation of the anomalous quark triangle diagrams
shown in Fig. 2 by using, for instance, the NJL model
with spin-1 mesons included.
One can show that the diagram in Fig. 2(b) which is

generated by η − f1 transitions does not contribute. In other
words, the Uð3Þ version of the shift (1) does not modify a
result of quark loop calculations. The reasoning behind it is
the Landau-Yang theorem [56,57] which states that a
massive unit spin particle cannot decay into two on shell
massless photons. In particular, the theorem forbids the
f1 → γγ decays, where f1 is a short hand for either
f1ð1285Þ or f1ð1420Þ axial-vector states which can mix
with the η; η0.

IV. η=η0 → π +π − γ DECAYS

We can now confront the main subject of our paper—
that of the η=η0 → πþπ−γ decays. In the Wess-Zumino
Lagrangian the piece responsible for these decays has a
form

Lγϕϕϕ ¼ iFπ

2ef2π
eμναβAμtrðQ∂νϕ∂αϕ∂βϕÞ

¼ iFπ

ef2π
eμναβAμ

�
∂νπ

0 þ ∂νηffiffiffi
3

p ðcos θP −
ffiffiffi
2

p
sin θPÞ

þ ∂νη
0ffiffiffi
3

p ðsin θP þ
ffiffiffi
2

p
cos θPÞ

�
∂απ

þ∂βπ
− þ…

ð15Þ
Again it is necessary to feed this Lagrangian density with

effects of nonet and SUð3Þ symmetry breaking when
considering the η; η0 decays. The corresponding standard
modifications will be introduced later.
At the one-quark-loop level the η → πþπ−γ amplitude

receives contributions from the box and ρ-exchange dia-
grams, shown in Fig. 3. In the following we will refer to
them as the box and the triangle anomalies. An essential
difference between the box and the triangle diagrams is that
the box suffers from effects induced by the shift of axial-
vector fields (1). These shifts violate the low-energy theo-
rems [19,20] and need a special consideration. Indeed, the
direct calculations of the box graphs of Fig. 3(a) give

Abox ¼
eNc

12π2f3π

1ffiffiffi
3

p
�
fπ
f8

cos θP −
ffiffiffi
2

p fπ
f0

sin θP

�

×

�
1 −

2

a
−

1

aη
þ 1

a

�
2

aη
−

1

2a

�
þ 1

8a2aη

�

× eμναβϵ�μðpγÞpν
γpαþpβ

−; ð16Þ

(a)

(b)

FIG. 2. Two graphs for the η=η0 → γγ decays in the NJL model
with vector meson dominance. The ηf1 mixing induced graph
(b) is forbidden due to the Landau-Yang theorem.

(a)

(b)

FIG. 3. Two graphs for the η=η0 → πþπ−γ decays in the NJL
model with vector meson dominance. The box graph (a) is
affected by the PA mixing effects. On the contrary, the triangle
anomaly ηγρ (and η0γρ) of the graph (b) is not affected by the PA
mixing.
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where a is given by (2). The parameter aη differs from a only
in that it arises from the diagonalization of ηf1 mixing. In the
limit of exact Uð3Þ symmetry aη coincides with a. Our
notations for 4-momenta of the photon and charged pions
pμ
γ ; p

μ
þ and pμ

− are obvious.
In its turn, the ρ-exchange diagram shown in Fig. 3(b)

leads to the amplitude

Aρ ¼
eNc

4π2f3π

1ffiffiffi
3

p
�
fπ
f8

cos θP −
ffiffiffi
2

p fπ
f0

sin θP

�
g2ρf2π

m2
ρ − q2

× eμναβϵ�μðpγÞpν
γpαþpβ

−

¼ eNc

12π2f3π

1ffiffiffi
3

p
�
fπ
f8

cos θP −
ffiffiffi
2

p fπ
f0

sin θP

�

×
3

a

�
1þ q2

m2
ρ − q2

�
eμναβϵ�μðpγÞpν

γpαþpβ
−; ð17Þ

where q ¼ pþ þ p−.
The sum of Eqs. (16) and (17) is

Abox þ Aρ ¼
eNc

12π2f3π

1ffiffiffi
3

p
�
fπ
f8

cos θP −
ffiffiffi
2

p fπ
f0

sin θP

�
× eμναβϵ�μðpγÞpν

γpαþpβ
−

×

�
1þ 1

a
−

1

aη
þ 1

a

�
2

aη
−

1

2a

�

þ 1

8a2aη
þ
�
3

a

�
q2

m2
ρ − q2

�
: ð18Þ

This clearly shows that the expression in square
brackets does not turn into unity (at q2 ¼ 0) even when
the Uð3Þ symmetry is exact. The latter contradicts to the
requirements of the low-energy theorem (15). As we have
already noted, the way out of this problem is to use the
gauge-covariant diagonalization (3), which leads to the
consideration of the additional diagram shown in Fig. 4.
Taking into account the contribution of this diagram
we obtain

Aη→ππγ ¼ AboxþAρþAnew

¼ eNc

12π2f3π

1ffiffiffi
3

p
�
fπ
f8

cosθP −
ffiffiffi
2

p fπ
f0

sinθP

�

× eμναβϵ�μðpγÞpν
γpαþpβ

−

�
1þ 1

a
−

1

aη
þ 1

a

�
2

aη
−

1

2a

�

þ 1− 12b
8a2aη

þ
�
3

a

�
q2

m2
ρ−q2

�
: ð19Þ

Owing to the shift ambiguity related to the formal linear
divergence of the one-loop triangle integral, the result
depends on the undetermined coupling b, which survives
in the final expression [29–31,58]. Observing that

1

a
−

1

aη
þ 1

a

�
2

aη
−

1

2a

�
þ 1 − 12b

8a2aη

¼
�

3

2a2
þ 1 − 12b

8a3

�
þ
�
1

a
−

1

aη

��
1 −

2

a
−
1 − 12b
8a2

�
;

ð20Þ

we see that the coupling b can be uniquely fixed in accord
with the low-energy theorem (15), namely b ¼ aþ 1=12.
Thus, we finally obtain

Aη→ππγ ¼
eNc

12π2f3π

1ffiffiffi
3

p
�
fπ
f8

cos θP −
ffiffiffi
2

p fπ
f0

sin θP

�

×

�
1þ δþ

�
3

a

�
q2

m2
ρ − q2

�
eμναβϵ�μðpγÞpν

γpαþpβ
−;

ð21Þ

where

δ ¼
�
1

a
−

1

aη

��
1 −

1

2a

�
: ð22Þ

Some comments about formula (21) are in order. Let us
first notice that in the case of exact Uð3Þ symmetry, δ ¼ 0.
This follows from the method used to fix the constant b.
The method is based on satisfying Ward identities for the
amplitudes of the processes γ → π0πþπ− and η → πþπ−γ.
In both cases this requirement yields the same value of b (to
compare see [24]).
Next, among the implicit assumptions commonly used in

describing η=η0 → πþπ−γ decays there is the hypothesis
that SUð3Þ and nonet symmetry breaking act in exactly the
same way for the triangle and box anomalies. This would
also be true in our approach, if δwould be zero. It should be
noted however that the effects of Uð3Þ symmetry breaking
in the triangle and box anomalies differ, if δ ≠ 0. In the case
considered here, this difference is related to the inclusion of
spin-1 mesons.

FIG. 4. The triangle quark-loop graph contributing to the
η=η0 → πþπ−γ decay in the NJL model with the gauge-covariant
πa1 and ηf1 diagonalizations (3).
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For our purpose we do not need to calculate aη explicitly.
We are faced here with a simpler task—to demonstrate the
main consequence of using the diagram Fig. 4 in solving
the problem of PA mixing in η=η0 → πþπ−γ decays. For
that it is enough to know that aη ≠ a when Uð3Þ symmetry
is broken, i.e., that δ ≠ 0. The latter follows from the
observation that PA transition is proportional to the squared
quark mass. The amplitude of πa1 transition is described by
the one-quark-loop graph containing only light u and d
quarks. This gives a. The η → f1 amplitude contains also
the strange quarks, and this is why aη ≠ a. The value of δ
can be extracted from the experiment.
One should still include unitarity effects to the amplitude

(21) via final state interactions. This is very important
for η0 → πþπ−γ decay, where the physical region is
4m2

π ≤ q2 ≤ m2
η0 , and less important for the η → πþπ−γ

decay, where the ρ-meson pole is out of the physical region.
One very obvious approach is simply to include the
(energy-dependent) width of the ρ-meson in the propagator
in the vector-dominance form

q2

m2
ρ − q2

→
q2

m2
ρ − q2 − imρΓρðq2Þ

; ð23Þ

where

Γρðq2Þ ¼
g2ρðq2 − 4m2

πÞ3=2
48πq2

: ð24Þ

Our last comment concerns the η0 → πþπ−γ decay
amplitude, which can be easily found from (21) by use
of two obvious replacements

Aη0→ππγ ¼
eNc

12π2f3π

1ffiffiffi
3

p
�
fπ
f8

sin θP þ
ffiffiffi
2

p fπ
f0

cos θP

�

×

�
1þ δ0 þ 3q2=a

m2
ρ − q2 − imρΓρðq2Þ

�

× eμναβϵ�μðpγÞpν
γpαþpβ

−; ð25Þ

where δ0 is obtained from δ by replacing aη → aη0 .
It is easy to verify (see, for instance, [55]) that the

expressions (21) and (25) differ from previously known
estimates made on the basis of the VMD model only by the
presence of δ and δ0 terms—contributions originated due to
the difference between πa1 and ηf1 mixing effects.
Neglecting these terms (δ ¼ δ0 ¼ 0) we find

Γtheor
η→ππγ ¼ 63.08 eV; Γtheor

η0→ππγ ¼ 64.06 keV: ð26Þ

These results overestimate the experimentally measured
partial widths[59,60]

Γexp
η→ππγ ¼ 55.28� 3.2 eV; ð27Þ

Γexp
η0→ππγ ¼ 58.60� 0.06� 1.08 keV: ð28Þ

The latter ones can be used to extract the values of

δ ¼ −0.1; and δ0 ¼ −0.3: ð29Þ

If one neglects q2 terms in (21) and (25), one finds that
factors at the corresponding kinematic parts of the ampli-

tudes are Að0Þ ¼ Að0Þ
0 ð1þ δð0ÞÞ, where the parameters for η0

decay are marked with a prime. These expressions are in
agreement with the low-energy theorems [44].
It is interesting also to note that similar parameters δð0Þ

were considered in [61] with the nearby estimates: δ ¼
−0.22� 0.04 and δ0 ¼ −0.40� 0.09. A slight discrepancy
with our results (29) is apparently due to a more detailed
account of unitary and analyticity corrections used in [61]
(see also [62,63]).
In [61] the analytical expression for δ has been estab-

lished by the matching of the decay amplitude to the one-
loop Uð3Þ extended ChPT result. The origin of our δð0Þ is
associated with the procedure of elimination of the PA
mixing. They also can be calculated, for instance, in the
extended NJL model. In this case they will depend on the
angle of f1ð1285Þ − f1ð1420Þ mixing, and apparently may
be used to extract the numerical value of this angle from
η=η0 → ππγ decays.
To conclude this section we confront the differential

distributions for width-modified amplitudes (21) and (25)
with the known experimental data. The found theoretical
curves are shown in Fig. 5 and Fig. 6 compared to the
experimental Eγ spectrum of WASA-at-COSY collabora-
tion [64] for η case, and CRYSTAL BARREL data [8] for
η0 case.
The PA mixing is an additional source of flavor Uð3Þ

symmetry breaking in the theory. To demonstrate how

FIG. 5. The photon energy distribution dΓ=dEγ in the decay
η → πþπ−γ. WASA-at-COSY data [64] are shown as crosses
together with the result of the model fit for the width-modified
amplitude (21) and δ ¼ −0.1. The dashed line corresponds to the
case with δ ¼ 0.
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much our results are affected by this breaking we plot the
theoretical curves corresponding to the case without PA
mixing (dashed lines in Figs. 5 and 6, where δð0Þ ¼ 0). It is
seen that both distributions are quite sensitive to such
effect, and that PA mixing improves the theoretical
description of decays considered.

V. CONCLUSIONS

The essential ambiguity related with surface terms of
anomalous triangle diagrams has been used to satisfy the
low-energy theorems for the η=η0 → πþπ−γ decays in the
NJL model with spin-1 states. As a consequence, we have
found that chiral anomaly not only determines the tran-

sition strength prefactor of these amplitudes Að0Þ
0 , but also

explains the origin of the Uð3Þ breaking corrections
accumulated in the nonresonant part described by the
parameters δð0Þ. The latter quantities have been extracted
from the experiment. However their values are quite
sensitive to the shape of the spectrum including the region

wherewe do not have high quality data yet. The futuremore
accurate data may significantly influence the integrated
rate and therefore the values of δð0Þ. For this reason, it seems
reasonable to establish a solid framework for theoretical
calculation of these parameters. The main result of our
work is that it suggests a new important contribution for
such calculations. We have shown that δð0Þ arise as a result
of gauge covariant PA diagonalization and are the residual
Uð3Þ breaking effect after applying the Ward identities to
the amplitudes of η=η0 → πþπ−γ decays.
An important result of our work is also the fact that we

were able to extend the known approach [22–24] to the
description of more complex processes with η; η0 mesons.
The nontrivial nature of the problem led to an interesting
result—an explanation of the appearance of the parameters
δð0Þ in the amplitudes of these decays [61].
In addition to the already mentioned applications of the

result obtained here, we note the emerging new strategy for
extracting the 1þþ nonet singlet-octet mixing angle from
the η=η0 → πþπ−γ decays. The extraction of f1ð1285Þ −
f1ð1420Þ mixing angle θf1 is associated with the processes
directly related to the radiative decays of these mesons, or
with the use of the Gell-Mann-Okubo mass formula
together with the K1ð1270Þ − K1ð1400Þ mixing angle
[65]. It seems one can try to extract θf1 from the η=η0 →
πþπ−γ decays too. The reason is that the parameters δð0Þ
most likely depend on this angle through the mechanism of
η; η0 − f1ð1285Þ; f1ð1420Þ mixings.
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