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The chiral confining Lagrangian, based on chiral theory with quark degrees of freedom, is used to study
the spectroscopy of scalar mesons. The formalism does not contain arbitrary fitting parameters, and it takes
into account an infinite number of transitions from meson-meson to quark-antiquark states. Starting from
known qq̄ poles, the transition coefficients ensure the strong shift of the poles for ππ and a much smaller
shift for the KK̄ systems. The resulting amplitudes fππ and fKK̄ are calculated in terms of qq̄ and the free
meson Green’s functions. Taking the ππ=KK̄ channel coupling into account, one obtains two resonances: a
wide resonance E1 in the range 500–700 MeV and narrow E2 near 1 GeV, which can be associated with
f0ð500Þ and f0ð980Þ. A similar analysis, applied to the I ¼ 1 channel, shows that in this case two very
close poles in different sheets appear near E ¼ 980 MeV, which can be associated with the a0ð980Þ
resonance. The obtained ππ interaction amplitudes, RefππðEÞ and ImfππðEÞ, are compared with the
known data.
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I. INTRODUCTION

Scalar mesons have been at the center of experimental
and theoretical interest for a long time (see Ref. [1] for a
summary of experimental data, the reviews [2–7] for
information about the scalars, and [8,9] for a recent
comprehensive analysis). The theoretical explanation of
the scalar spectrum has faced difficulties and required the
development of different approaches, like the tetraquark
model [10], the molecular approach [11], and the QCD
sum rules [12], as well as lattice calculations [13] (see the
recent study [14]).
It is clear that in QCD any meson state can be

represented as a seriesM ¼ c1ðqq̄Þ þ c2ðqq̄Þ2 þ…, where
higher terms can be transformed into mesons as ðqq̄Þn ¼
m1m2…. Mesons with a nonzero qq̄ component are called
standard, while those with c1 ¼ 0 are called nonstandard or
exotic. For standard mesons the original qq̄ pole can be
shifted due to the qq̄ −mm − qq̄ interaction, as is known
from comparison with experiment. However, the m1m2

interaction can be strong enough to produce bound states
and resonances as in nuclear physics. In what follows we
study scalar resonances in QCD, starting from the standard
qq̄ component and describing the physical scalar resonance
as the result of multiple qq̄ −m1m2 transitions. In princi-
ple, this approach is not new and has been worked out

in [15–22], where transitions have been properly para-
metrized. On the other hand, one can have additional poles
due to them1m2 interaction. The latter can be introduced in
the framework of the meson-meson interaction in unita-
rized chiral perturbation theory (also on top of quark model
resonances) [23–29], and here, e.g., f0ð500Þ becomes
heavier and more narrow when the mm interaction is
suppressed [24,25]. For the results of unitarized chiral
perturbation theory and inclusion of NLO terms, see
[27,28] and the review paper [8]. We stress that chiral
perturbation theory is not necessary for obtaining these
results, and one can use the dispersive methods and the data
to obtain a good explanation of f0ð500Þ and other reso-
nances; see, e.g., Refs. [30–32].
The case of scalar mesons—and, in particular, lowest

scalar mesons—is still unclear and further study is needed.
As one can see in [1], Table 2, the conventional approach
considers the resonances a0ð1450Þ and f0ð1370Þ as the
lowest 3P0 states for I ¼ 1, 0, respectively. On the other
hand, numerous calculations of the lowest 3P0 qq̄ states
with realistic qq̄ interaction, including spin-dependent
forces, refer to a0ð980Þ ½f0ð980Þ� as the lowest 3P0 states
(see, e.g., Ref. [33]), while a0ð1450Þ might only be
connected to the first excited state.
There is no general consensus on the lowest states

[f0ð500Þ, f0ð980Þ, a0ð980Þ] in modern approaches, includ-
ing the attempts to derive these states in molecular or
tetraquark approaches. Unfortunately, in this latter
approach, a recent lattice calculation [34] of the a0ð980Þ
state taking into account the tetraquark (q2q̄2Þ contribution
does not show any explicit influence of the latter on the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 094028 (2020)

2470-0010=2020=101(9)=094028(13) 094028-1 Published by the American Physical Society

https://orcid.org/0000-0002-1647-4521
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.094028&domain=pdf&date_stamp=2020-05-26
https://doi.org/10.1103/PhysRevD.101.094028
https://doi.org/10.1103/PhysRevD.101.094028
https://doi.org/10.1103/PhysRevD.101.094028
https://doi.org/10.1103/PhysRevD.101.094028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


lowest states, thus calling for a new dynamics as a possible
source of f0ð500Þ, f0ð980Þ, a0ð980Þ.
It is the purpose of the present paper to suggest a new

approach to solve this problem and to demonstrate a new
quark-chiral dynamics, which might explain the origin of
the lowest scalar states. The essence of the method is as
follows.
From our point of view, the main problem of most

approaches to the scalar meson is the imbalance in the
treatment of quark and meson degrees of freedom (d.o.f.).
In reality, meson-meson (φφ, e.g., ππ; KK̄) and qq̄ d.o.f.
have to be considered on equal footing since both can
transform into each other at any moment in time. Moreover,
the qq̄ poles are accurately predicted at the proper places
by relativistic QCD theory with scalar confinement and
gluon exchanges [35–37] in all channels [38,39], and in
many cases, they are observed in experiment shifted by
50–80 MeV or less.
Therefore, the qq̄ poles should be seen in experiment

as the φφ resonances, shifted or not shifted. On the other
hand, one may think of some (or all) φφ resonances as
produced by the φφ interaction, e.g., by the unitarized
chiral dynamics, where qq̄ dynamics does not play any
role. Instead, we consider the coupled φφ − qq̄ system with
the proper qq̄ dynamics and the transition dynamics of qq̄
into the φφ system, first neglecting the φφ interaction and
introducing it at the next stage.
Therefore, one needs the formalism of the two-channel

qq̄, φφ Green’s functions, which takes into account any
number of qq̄—φφ and φφ − qq̄ transitions. In the case of
scalar mesons, this type of formalism was already exploited
in [15–22]. In the case of the heavy quarks, this formalism,
considering the QQ̄ and ðQq̄Þ þ ðQ̄qÞ channels nonrela-
tivistically, was suggested in [40], and it is called the
Cornell formalism. It was used in [41] to discover the
nature of the resonance Xð3872Þ, with the cc̄ 23P1 state
transforming into DD� via a string breaking mechanism,
which finally brings it to the D0D�

0 threshold at
3872 MeV [42].
We generalize the Cornell formalism, making it relativ-

istic and multichannel, when one qq̄ state can transform
into several φφ states. At the first stage, we neglect the
interaction between white φφ mesons.
The full analysis of the scalars requires the multichannel

approach to the problem, where several quark-antiquark
(qq̄) channels are present, together with two or more
Nambu-Goldstone boson channels [ðφφÞ channels].
Therefore, complete formulation requires the knowledge
of (1) the Green’s functions in both the qq̄ and φφ channels
and (2) the transition matrix elements between the chan-
nels. Without explicit knowledge of these entries, one faces
the multiparameter and multichannel situation, where
informative output is hardly possible.
The treatment of the first point—the spectral represen-

tation of the qq̄ Green’s function with accurate calculation

of one-channel qq̄ poles and couplings—can be done in
the framework of the field correlator method (FCM) (see
[36,37] for reviews and [38] for recent calculations in
different channels). The φφ Green’s function in the initial
one-channel setup will be studied here, assuming that it can
be replaced by the free two-body propagators and that
resonances might exist due to channel coupling—in par-
ticular, with the qq̄ channels. Here problem (2) becomes a
basic point in a new approach.
Indeed, in heavy quarkonia the channel coupling with

the heavy mesons is described by the string breaking
mechanism (sometimes with emission of pions), which
brings a resonance shift of Oð50 − 100Þ MeV). In the case
of scalar mesons, the φφ channel contains chiral mesons,
and the transition process from φφ to qq̄ and back requires
a different approach.
During the last 15 years, one of the authors Yu. S. has

succeeded in deriving the chiral confining Lagrangian
(CCL)—a powerful tool for the study of chiral effects in
connection with quark d.o.f. [43,44]. The latter is actually
an extension of the standard chiral Lagrangian, which
contains both the quark and the chiral d.o.f. and tends to the
standard chiral Lagrangian [45] when quark d.o.f. are
neglected; all coefficients of CCL are easily calculated,
as was done in [44] on the order of p4. Moreover, the basic
factors, like fπ , fK , are calculated within this method [46].
The only basic parameter, MðλÞ ¼ σλ, which appears due
to confinement is a fixed quantity, defined by the transition
radius λ. The latter is calculated at the stationary point and
is expressed via string tension σ and masses [47]; as a
result, our method does not contain any fitting parameters.
In this way the CCL method allows us to analytically find
all entries for (1) and (2), while the scalar decay constants
fs are calculated in the same way as fπ , fK within the
FCM, using the spectral representation of the Green’s
function.
In principle, our method gives the possibility of treating

any process with multiple qq̄ and any number of φφ
channels; the advantage of using the CCL is that for scalar
mesons all transition coefficients are known. In the case of
a single φφ and a single qq̄ channel, our results can be
written in the form comprising the Breit-Wigner resonance,
similarly to results in Refs. [15–22]. However, in the case of
multiple φφ channels, more complicated expressions are
obtained, using the K-matrix approach.
As will be seen, the essence of our approach is the

summation of the infinite rescattering series with multiple
transitions between φφ and qq̄ states, which yields several
poles. In this way we obtain two poles in the regions of f0
(500) and f0ð980Þ, which finally obtain realistic positions
when the φφ interaction is taken into account.
The paper is organized as follows. In the next section the

general structure of the coupled-channel Green’s function
for a scalar meson is derived from CCL, and we define
basic quantities (1) and (2) in terms of known standard
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coefficients. In Sec. III we discuss the qq̄ Green’s functions
in the spectral form and the free φφ Green’s functions, and
we use the decay constants and the pole masses from the
known confining, gluon exchange, and spin-dependent
interactions. Note that this calculation does not use any
parameters, beyond the string tension, the current quark
masses, ΛQCD, and MðλÞ. In Sec. IV we discuss the
resulting φφjqq̄ Green’s function and find the physical
φφ amplitudes (ππ and KK̄), containing two resonances,
which can be associated with f0ð500Þ and f0ð980Þ. In
Sec. V these results are augmented by the calculation of the
real and imaginary parts of the ππ amplitude, which are
qualitatively similar to the results obtained from theory and
experiment, at least for E > 500 MeV. We demonstrate in
Figs. 5 and 6 that, by a proper modification of the ππ
Green’s function, one is able to reproduce these data, and
the resulting ππ resonance is closer to the experiment. We
also show that, in the case of the isospin I ¼ 1, our method
gives a different picture of two nearby poles within 50 MeV
in different sheets for a0ð980Þ. Section VI contains a
discussion and an outlook.

II. COUPLED-CHANNEL EQUATIONS FOR
THE SCALARS FROM THE CHIRAL

CONFINING LAGRANGIAN

In what follows we use the CCL [43,44] with the scalar
external currents s0ðxÞ and saðxÞλa ≡ ŝ for isospin I ¼ 0
and I ¼ 1, respectively:

LCCL ¼ −Nctr logð∂̂ þ m̂þ s0 þ ŝþMÛÞ: ð1Þ

In Eq. (1) ∂̂ implies ∂
∂xμ γμ, and Û is the standard chiral

operator,

Û ¼ expðiγ5φ̂Þ; φ̂ ¼ φaλa
fa

; ð2Þ

φ̂ ¼
ffiffiffi
2

p
0
BBB@

1
fπ
ð ηffiffi

6
p þ π0ffiffi

2
p Þ πþ

fπ
Kþ
fK

π−

fπ
ð ηffiffi

6
p − π0ffiffi

2
p Þ 1

fπ
K0

fK0

K−

fK
K̄0

fK0
− 2ηffiffi

6
p

fπ

1
CCCA: ð3Þ

In (2) λa are the Gell-Mann matrices, trλaλb ¼ 2δab. One
can consider CCL in (1) as a generating functional for
different vertices and Green’s functions. Indeed, omitting
s0 and s, one can expand, as in [43,44], in powers of
ÛþΛð∂̂ þ m̂ÞðÛ − 1Þ ¼ η, which is dimensionless and
yields an expansion in S∂̂ ϕ̂, which is an expansion in
quark loops (here S ¼ iΛ is the quark propagator) times the
derivative of chiral field ϕ. This gives Oðp4Þ terms in good
agreement with standard calculations, and the same expan-
sion yields the standard GMOR relation—see [44] for
details. In our case we need another expansion in powers of

a dimensionless quantity, ΛMðU − 1Þ, which is done as
follows.
Using the scalar currents s0, ŝ, one can generate the

scalar Green’s functions Gs
qq̄, G

s
φφ:

LCCL ¼ −Nctr logðΛ−1 þ s0 þ ŝþMðÛ − 1ÞÞ
¼ −Nctr logΛ−1ð1þ Λðs0 þ ŝþMðÛ − 1ÞÞÞ

¼ Nc

2
trfðΛðs0 þ ŝÞΛðs0 þ ŝÞÞ þ � � �g

¼ Nc

2
ðGs0

qq̄ þ Gŝ
qq̄Þ þ � � � ð4Þ

Here Λ ¼ 1

∂̂þm̂þM
. The corresponding diagram is shown in

Fig. 1 One can write Gs
qðx; yÞ ¼ trðs̄ðxÞgqq̄ðx; yÞsðyÞÞ,

where gqq̄ will be used later.
On the other hand, expanding the CCL (4) in powers of

ΛMðÛ − 1Þ≡ ξ, one obtains another term in the second
order in ξ,

ΔL ¼ −NctrΛsΛM
φ̂2

2
; s ¼ s0 þ ŝ; ð5Þ

which corresponds to the diagram of Fig. 2. Note that in
this way we can obtain the vertices for all chiral decays of
any qq̄ state, e.g., an a2 meson decaying into 3π, etc.
In (1) the confining kernel MðrÞ either enters the

propagating qq̄ system—in which case it is equal to the
confining potential,MðrÞ ¼ σr—or it appears at the vertex
of the qq̄ Green’s function, connecting it to the φφ Green’s
function. In this case the vertex MðrÞ is taken at the
effective distance λ;M ¼ MðλÞ ¼ σλ. One can consider
this distance λ as the spatial width of the transition vertex
connecting φφ and qq̄ channels (see Fig. 3). In the case of
one chiral meson, we take it to be approximately equal to
the correlation length in the confining vacuum, λ ≈ 0.2 fm,
yielding MðλÞ ¼ 0.15 GeV. As a check of this approxi-
mation, this value was used to calculate fπ and fK [46],
in good agreement with experimental and lattice data;

FIG. 1. The scalar qq̄ Green’s function Gqq̄.

FIG. 2. The scalar qq̄ Green’s function with the emission of the
chiral mesons.
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therefore, we consider λ in the range (0.2–0.3) fm (or
1 − 1.5 GeV−1) in what follows. This factor MðλÞ appears
to be the only parameter of our quark-chiral approach in (1),
in addition to the quark masses mq and string tension σ.
From (5) one can find the basic quantity, which will be

used below—the transition element Vqq̄φφ, which joins
the qq̄ Green’s function gqq̄ and the φφ Green’s function
gφφ (see Fig. 4 and its definition below). At this point it is
important to understand which kind of qq̄ Green’s
function is needed to join it with the gφφ, i.e., to
annihilate at one vertex qq̄ and create at this vertex
two mesons φφ. One clearly needs gqq̄ðx; yÞ∼
ðSqðx; yÞSq̄ðx; yÞ, where Sqðx; yÞ is the quark Green’s
function but with the definite total momentum, i.e.,
gqq̄ðPÞ ¼

R
d4ðx − yÞeiPðx−yÞtrðSqðx; yÞSq̄ðx; yÞÞ; origi-

nally, gqq̄ðx; yÞ should be connected with gφφ at the same
point x or y and finally with gφφðPÞ. However, gφφðPÞ is
divergent in its real part, which implies that the transition
from qq̄ to φφ occurs not at one point but at some
distance between q and q̄, namely, at the same distance
between φ and φ, which we call r0 ∼ λ ∼ 0.2 fm—the
transition radius, which is shown in Fig. 3.
It is important that at this moment the MðrÞ becomes

MðλÞ ¼ σλ ≈ 0.15 GeV, and Regφφ should have an initial
and final φ − φ distance λ. As will be shown below, this
transition radius does not change the gqq̄ðλÞmuch, which is
convergent at λ ¼ 0, but the variation of RegφφðλÞ can be
taken into account. In this approximation, the total scalar
Green’s function can be written as

Gs¼gsqq̄þgsqq̄Vg
s
φφVgsqq̄þ���¼gsqq̄

1

1−VgsφφVgsqq̄
: ð6Þ

Here V ≡ Vqq̄=φφ can be found from (5) (see below).

As seen from (5), the transition coefficient V is propor-

tional to MðλÞ
f2φ

, φ ¼ π, K, and also to the quark decay

constant of the scalar meson fðnÞs ðn ¼ 1; 2;…Þ, as found
below.
Finally, to define how V depends on isotopic indices, one

can, according to (5), project φ̂
2

2
onto a given isotopic state

with I ¼ 0 or 1,

tr

�
s0
φ̂2

2

�
¼ s0ða11 þ a22 þ a33Þ; ð7Þ

tr

�
siλi

φ̂2

2

�
¼ a11

�
s3 þ

1ffiffiffi
3

p s8

�
þ a22

�
−s3 þ

1ffiffiffi
3

p s8

�

þ a12ðs1 þ is2Þ þ a21ðs1 − is2Þ− a33 ·
2ffiffiffi
3

p s8;

ð8Þ

where aik are

a11 ¼
1

f2π

��
ηffiffiffi
6

p þ π0ffiffiffi
2

p
�

2

þ πþπ−
�
þ KþK−

f2K
; ð9Þ

a12 ¼
2ηπþ

f2π
ffiffiffi
6

p þ KþK̄0

f2K
; a21 ¼

2ηπ−

f2π
ffiffiffi
6

p þ K0K−

f2K
; ð10Þ

a22 ¼
1

f2π

��
ηffiffiffi
6

p −
π0ffiffiffi
2

p
�

2

þ πþπ−
�
þ K0K̄0

f2K
; ð11Þ

a33 ¼
KþK− þ K0K̄0

f2K
þ 2

3

η2

f2π
: ð12Þ

Later we shall neglect the isotopic [SU(3)] dependence
of the propagators Λ, which is apparent in the mass
matrices m̂; we take it into account at the end since one
can write gqq̄ ≡ g1 ¼ ðg1ðnn̄Þ

0
0

g1ðss̄ÞÞ.

III. qq̄ GREEN’S FUNCTIONS AND
THE EIGENVALUES

To calculate the qq̄ Green’s functions, we use the exact
relativistic formalism, based on the FCM [35], essentially
exploiting relativistic path integral methods [37–39,48,49];
at the end we compare our results with those obtained using
other methods.
The qq̄ Green’s function gΓqq̄ðx; yÞ≡ g1ðx; yÞ with the

vertex Γ, defining the spin parity, can be written as

g1ðx; yÞ ¼ tr

�
4Y

ðm2
1 − D̂2

1Þðm2
2 − D̂2

2Þ

�
ð13Þ

where

FIG. 3. The transition region ðqq̄jφφÞ with the spatial distance
λ between the constituents.

FIG. 4. The ππ interaction amplitude in terms of the qq̄ (solid
lines) and ππ Green’s functions (broken lines). The filled and
empty circles denote the transition matrix elements Vπ1 ¼ V1π .
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4Y ¼ tr½Γðm1 − D̂1ÞΓðm2 − D̂2Þ�: ð14Þ

Then, using the relativistic path integral formalism (see
[48–50] for a review), it can be written in the c.m. system
and in the Euclidean time T,

Z
d3ðx − yÞg1ðx; yÞ

¼ T
2π

Z
∞

0

dω1

ω3=2
1

Z
∞

0

dω2

ω3=2
2

hYih0je−Hðω1;ω2;pÞT j0i: ð15Þ

Here, the c.m. Hamiltonian Hðω1;ω2;pÞ depends on the
virtual energies ω1, ω2 and includes all instantaneous
interactions, including those that are spin and angular
momentum dependent,

Hðω1;ω2;pÞ ¼
X
i¼1;2

p2 þ ω2
i þm2

i

2ωi
þ V0ðrÞ þ Vso þ VT:

ð16Þ

Here, V0ðrÞ ¼ σr − 4
3

αV ðrÞ
r , Vso is the spin-orbit inter-

action, and VT is the tensor interaction, both in the
relativistic form. Neglecting spin terms, one can rewrite
the last term in (15) as

h0jeHðω1;ω2pÞT j0i ¼
X
n¼0

φ2
nð0Þe−Mnðω1;ω2ÞT; ð17Þ

where φnðrÞ is the wave function. On the other hand, one
has a general relation

Z
g1ðx; yÞd3ðx − yÞ ¼

X
n

Z
d3ðx − yÞh0jjΓjnihnjjΓj0i

× eiPðx−yÞ−MnT
d3P

2Mnð2πÞ3

¼
X
n

εΓ ⊗ εΓ
ðMnf

ðnÞ
Γ Þ2

2Mn
e−MnT:

ð18Þ

This relation allows us to calculate the scalar decay

constant fðnÞs , which is done in Appendix A.
Note that using CCL [Eq. (1)], in (14) on obtains

mi þMðλÞ instead of mi, which allows one to obtain, in
the PS case ðΓ ¼ γ5Þ, the correct decay constants fπ, fK
[46], which otherwise would be zero in the zero quark
mass limit.
In (15) it is convenient to integrate over dω1, dω2, using

the stationary-point method, and for vanishing quark masses
mi ¼ 0, one obtains the so-called spinless Salpeter equation,
if spin-dependent interactions are neglected. In the first
approximation one has

�
2

ffiffiffiffiffi
p2

q
þ V0ðrÞ

�
φnlðrÞ ¼ McogðnlÞφnlðrÞ; ð19Þ

where Mcog means the center-of-gravity mass. Later we use
only the fundamental parameters: σ ¼ 0.182ð2Þ GeV2 and
ΛVðnf ¼ 3Þ ¼ 0.465ð15Þ GeV, which are well established
(see [51] for the definition ofΛV and an accurate perturbative
treatment of scalar mesons); we obtain

Mcogð1PÞ ¼ 1259ð10Þ MeV; ω0ð1PÞ ¼ 499 MeV:

ð20Þ

Performing the same calculations as in [37–39], we give
the resulting mass of the 13P0 state, taking into account the
tensor and spin-orbit forces,

Mð13P0Þ ¼ ð1259ð10Þ − 214Þ MeV ¼ 1045ð10Þ MeV;

ð21Þ

which defines the qq̄ initial mass of f0 and a0, taken below,
as M1 ¼ 1 GeV. This mass can be compared with that
obtained by other groups, where in [52] Mð0þþÞ ¼
1090 MeV, while in [53] Mð0þþÞ ¼ 1176 MeV, and in
[54] Mð0þþÞ ¼ 970 MeV.
Note that the first excited state in the 0þþ, I ¼ 0 channel

is obtained as M2 ¼ 1474 MeV [50], and this state can be
associated with a0ð1450Þ.
Finally, we can use (18) to calculate the full Fourier

transform of g1ðx; yÞ in Minkowskian time, which yields

g̃1ðPÞ ¼ g̃1ðE;P ¼ 0Þ ¼
X
n

ðfðnÞs Þ2M2
n

M2
n − E2

: ð22Þ

The form with the lowest n ¼ 1 will be used below to
analyze the scalars f0; we show that the level M1 ¼
1045 MeV generates both f0ð500Þ and f0ð980Þ resonan-
ces, connected, respectively, to the ππ and KK̄ Green’s
functions.
We now turn to the structure of the meson-meson

Green’s function, which we first take as a free two-body
relativistic Green’s function of two scalar particles with the
total momentum P ¼ 0 and the total c.m. energy E. See
Appendix B for a detailed discussion.
Then, in the φφ channel, the free Green’s function of φφ

displaced by a spatial distance λ and averaged over its
direction (S-wave) brings an additional factor f2ðjpjλÞ:

g2ðEÞ ¼
Z

f2ðjpjλÞd4p
ð2πÞ4ðp2 −m2

1ÞððP − pÞ2 −m2
2Þ
; ð23Þ

with P ¼ 0; P0 ¼ E. Its imaginary part is
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Img2ðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − ðm1 þm2Þ2ÞðE2 − ðm1 −m2Þ2Þ

p
16πE2

:

ð24Þ

One can compare (24) with the cutoff integral, where for
equal masses m1 ¼ m2 ¼ m one has, for the real part with
the cutoff function f1ðjpjλÞ ¼ θð1 − jpjλÞ, N ¼ 1=λ,

Reg2ðE ¼ 2mÞ ¼ 1

8π2
ln

�
N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þm2

p

m

�
: ð25Þ

Note that f2ðjpjλÞ is not a cutoff introduced by hand, like
f1ðjpjλÞ, which will be used below for comparison.
Moreover, f2 is part of a physical amplitude, not violating
unitarity in the case of spatial distance and therefore not
producing additional singularities. Indeed, one can see this
in the explicit form since f2 is expanded in even powers
of p.
In the case of the spatial cutoff f2ðjpjλÞ, when the initial

and final distances between φφ are equal to λ, we have
f2ðxÞ ¼ ðsin xx Þ2, and the resulting difference between the
two real parts with f1 and f2 is less than 10% for
λ ¼ ð0.5 − 2Þ GeV−1.
Note that the spatial cutoff does not introduce branch

points into g2ðEÞ and therefore does not spoil unitarity.

IV. ANALYTIC STRUCTURE OF
PHYSICAL AMPLITUDES

We start with the transition coefficient, which we denote
kðIÞðqq̄jφφÞ, and define it in the following way. Using the
definition of g̃1ðPÞ in (22) and leaving for g̃1 only the

combination M2
n

M2
n−E2, one can associate the transition coef-

ficient with the following combination:

kðIÞðqq̄jφφÞ ¼ Vq̄q̄jφφVφφjq̄q̄ ¼ ðVqq̄jφφÞ2

¼ C2
i M

2ðλÞðfðnÞs Þ2
f4φ

; fφ ¼ fπ; fK: ð26Þ

Here, the coefficient Ci can be found from (7)–(12).
Introducing the notation Ci ¼ CI

meson;meson, one obtains,
from (5) and (7)–(12),�

Cð0Þ
ππ

�
2 ¼ 3;

�
Cð0Þ
KK̄

�
2 ¼ 2;�

Cð1Þ
KK̄

�
2 ¼ 2;

�
Cð1Þ
πη

�
2 ¼ 2ffiffiffi

3
p : ð27Þ

We start with the one-threshold situation and choose the
channel ππ, neglecting its connection to KK̄. In this case
one has the following basic elements, with notation
g2ðππ; EÞ≡ gπ , g̃1ðE;P ¼ 0Þ ¼ g1, where we keep the
lowest pole M1, with the notation Vqq̄jππ ¼ V1π ¼ Vπ1,

kð0Þðnn̄jππÞ ¼ ðV1πÞ2 ¼
�
Cð0Þ
ππ

�
2
MðλÞ

�
fð1Þs

�
2

f4π
¼ ðV1πÞ2;

g1 ¼
M2

1

M2
1 − E2

; ð28Þ

and the infinite series for the total ππ Green’s function reads
(see Fig. 3)

Gππ¼gπþgπVπ1g1V1πgπþgπVπ1g1V1πgπVπ1g1V1πgπþ���;
ð29Þ

which can be summed up in the form

Gππ ¼ gπ þ gπVπ1
1

1 − g1V1πgπVπ1
g1V1πgπ: ð30Þ

For the ππ scattering amplitude fπðeÞ, since gπ does not
contain ππ interaction, one can define

Gππ ¼ gπ þ gπfπðEÞgπ;

and one has

fπðEÞ ¼
1

16π
Vπ1

1

1 −□π
g1V1π; ð31Þ

where we have defined the 4-term code □π ≡
g1V1πgπVπ1 ¼ g1gπkð0Þðnn̄jππÞ.
In an analogous way, one can define the one-channelKK̄

Green’s function and amplitude

fKðEÞ ¼
1

16π
VK1

1

1 −□K
g1V1K; ð32Þ

where

□K ¼ g1gKkð0Þðnn̄jKK̄Þ;

kð0Þðnn̄jKK̄Þ ¼
�
Cð0Þ
KK̄MðλÞfð1Þs

fK

�2

: ð33Þ

Note that the qq̄ pole at E2 ¼ M2
1 is canceled in (31)

and (32); the only visible singularity is the unitary cut in gπ
and gK , respectively.
One can check the unitarity of both amplitudes fπ

and fK ,

ImfπðEÞ ¼
2kπ
E

jfπðEÞj2; ð34Þ

and the similar form for fK is valid with the replacement
π → K.
One can also find the position of the pole in the amplitude

fπðEÞ from the denominator in (31), □πðEÞ ¼ 1. One has
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gπkð0Þðnn̄jππÞ
M2

1

M2
1 − E2

¼ 1; gπðEÞ ¼ Regπ þ iImgπ:

ð35Þ

Here, we take M1 ¼ 1.05 GeV as follows from (21).
In the real part of gπðEÞ, the cutoff N is taken at large

momenta in (23), equal to the minimal length λ; N ¼ 1=λ,
which yields (N ¼ 1 GeV),

gπðEÞ ≈ 0.033þ i0.02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

0.078
E2

r
: ð36Þ

Inserting in (35) for I¼0, fπ ¼93MeV, fð1Þs ¼125MeV
(see Appendix A for the discussion of f1s and Appendix C
for the pole position in the complex plane), and

Mðλ ¼ 1 GeV−1Þ ¼ 180 MeV, ðCð0Þ
ππ Þ2 ¼ 3, one obtains

the equation

E2 ¼ M2
1ð1 − 20.3gπðEÞÞ; ð37Þ

or using (36), one obtains the resonance position Eπ ¼
ð0.67 − i0.45Þ GeV ðλ ¼ 1 GeV−1). As a result, varying λ
in the range ð1 − 1.5Þ GeV−1, one obtains the resonance
parameters

Eπ ¼ ð0.6 − 0.8Þ GeV − ið0.2 − 0.45Þ GeV: ð38Þ

Note that the resonance appears on the second sheet of
the complex plane with respect to the ππ threshold, as it is
explained in Appendix C.
This can be favorably compared with the experimental

values f0ð500Þ, E¼ð400−550ÞMeV, Γ ¼ 400–700 MeV
[1]. However, note that we have obtained these values with
several simplifying approximations, including the neglect
of higher levels in g1, possible coupling with the KK̄
channel, and notably neglecting the 4π; 6π; ... vertices of
the chiral theory, which imply the ππ interaction in gπðEÞ.
Therefore, the resonance position and the width are subject
to essential changes, if one takes this interaction into
account. In particular, one can notice that the resonance
position (38) is some (150–200) MeV higher than in
experiment.
We now turn to the KK̄ channel, again neglecting the

connection to the ππ channel and keeping only the lowest
mass eigenvalue M1 ¼ 1.05 GeV in g1ðEÞ. Inserting

in (32) ðCð0Þ
KK̄Þ2 ¼ 2, fK ¼ 115 MeV, Mðλ ¼ 1 GeV−1Þ ¼

180 MeV, and fs ¼ 125 MeV, one obtains kð0Þðnn̄KK̄Þ ¼
5.8. From (32) one finds the equation for the pole position,
□K ¼ 1, or

E2 ¼ M2
1ð1 − 5.8gKðEÞÞ; ð39Þ

where, with the upper limit N ¼ 1 GeV in (25),

gKðEÞ ¼ 0.018þ i0.02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

K

E2

r
; ð40Þ

which yields an approximate position of the pole,

EK ¼ ðλ ¼ 1 GeV−1Þ ¼ ð0.984 − i0.013Þ GeV: ð41Þ

One can see that the pole EK can be associated with the
standard f0ð980Þ [1],

Mðf0ð980ÞÞ¼ð990�20ÞMeV; Γ¼ð10−100ÞMeV;

ð42Þ

while the obtained width is inside the allowed region.
It is interesting that in this case the cutoff λ in the range
ð0.5 − 2Þ GeV−1 brings about only a few percent change in
the resulting resonance parameters. Taking into account the
approximations made above, this agreement can be con-
sidered reasonable; however, one should take into account
that both channels ππ and KK̄ should be connected, as is
seen in the experimental measurements of the ratio for

f0ð980Þ, ΓðKK̄Þ
ΓðππÞ ¼ 0.69� 0.32 [1].

The standard way to include the φφ channel coupling is
to write, for the amplitudes f̂αβ ¼ ðfππfKπ

fπK
fKK

Þ, the K matrix
form,

f̂−1 ¼ 16π

 1−□π
wπ

a

b 1−□K
wK

!
; wπ ¼ Vπ1g1V1π;

wK ¼ Vk1g1ViK: ð43Þ

As a result, one obtains

f̂ ¼ 1

16π

 1−□K
wπ

−b

−a 1−□π
wK

!

1−□π
wπ

· 1−□K
wK

− ab
; ð44Þ

and in the limit ab ¼ 0, one returns to the two independent
channels.
One can check that the amplitudes fαβ, α, β ¼ ππ, KK̄

satisfy the unitarity relations with the normalization factor

Imgπ;K ¼ kπ;KðEÞ
8πE . In particular, for fKK̄ one has, in this

channel coupling (CC) form,

16πfKK̄ ¼ ð1 −□πÞwK

ð1 −□πÞð1 −□KÞ − abwKwπ
: ð45Þ

Estimating the wK , wπ one finds that the CC can affect the
positions and the widths of the uncoupled resonances (38)
and (41); therefore, this point should be studied in more
detail.
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We start with the fππ amplitude, which can be written as
follows:

16πfππ ¼
1
wK

− gK
ð 1
wπ

− gπÞð 1
wK

− gKÞ − ab
; ð46Þ

and we can rewrite (46) using γ ¼ 40.4ab and the properly

normalized amplitudes Imfð0Þπ ¼ 2k
E jfð0Þπ j2 as follows:

fð0Þπ ¼ 1

16π
k

ðE2
π−E2Þ
M2

1

− γM2
1

E2
K−E

2

ð47Þ

with

E2
π ¼ M2

1ð1 − kð0ðnn̄jππÞgπÞ;
E2
K ¼ M2

1ð1 − kð0ðnn̄jKK̄ÞgKÞ: ð48Þ

Analogously for fð0ÞK one has

fð0ÞK ¼ 1

16π
kM2

1

ðE2
K − E2Þ − 2.34γM2

1

E2
π−E2

: ð49Þ

One can estimate the ratio of imaginary parts of the first
and the second term in the denominator of (49), which
yields the order of magnitude of the ratio of ΓKK̄ðfð980ÞÞ
and Γππðfð980ÞÞ at E ¼ 1.00 GeV,

Γππðfð980ÞÞ
ΓKK̄ðfð980ÞÞ

≅
2.4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

K

p ≈ 17γ: ð50Þ

One can see that this ratio is around 1 for γ ¼ 0.05, which is
found in the next section by comparison with data. The
resulting pole is near the KK̄ threshold and satisfies the
criteria of the fð0Þð980Þ resonance.

V. RESULTS AND DISCUSSION

From (47) one can see that the amplitude fð0Þπ can be
expressed via the Green’s functions gπ and gK with only the
parameter γ responsible for the coupling of channels ππ and
KK̄. Note that only the parameter λ enters both qq̄ −mm
coupling kð0Þ and the real parts of both Green’s functions,
which start and finish at the same distance λ and therefore
contain the legitimate factor N ∼ 1=λ ∼Oð1 GeVÞ. In the
present paper we have chosen λ in the narrow interval
around 1 GeV−1, which has yielded reasonable results. In a
subsequent paper [47] it was shown that λ can be defined
from the stationary point of the transition coefficient kð0Þ

and indeed has a value near 0.2 Fm¼ 1 GeV−1.
The main result of our approach, based on the CCL (1),

is that the qq̄ pole at 1 GeV can provide only one
resonance, when connected with one threshold, and we

need ππ − KK̄ channel coupling to produce two quark-
chiral resonances: f0ð500Þ due to coupling nn̄ − ππ, and
f0ð980Þ due to coupling nn̄ − KK̄ðn ¼ u; dÞ. This is a
feature of our quark-chiral Lagrangian, and it is obtained
from the infinite sum of products of □π and □K. Starting
with uncoupled π and K channels, it is interesting that the
ππ pole, produced by the qq̄ pole, is obtained without the
ππ interaction, which is governed by the chiral Lagrangian;
however, this occurs far from the experimental position,
and then one needs direct (not via qq̄) ππ interaction to
bring resonance to the realistic values, which can be
obtained directly by the analysis in [30–32]. The possible
reason for this is that the low energy physics is only mildly
connected to the higher fð0Þ resonance physics, but it
strongly affects the low and intermediate energy regions,
including the f0ð500Þ position; at the first stage we have
neglected the low energy ππ interaction given by the chiral
Lagrangian.
Therefore, in our general two-channel form, we include a

possible modification of the real and imaginary parts of gπ
due to direct ππ or KK̄ interaction, which is contained in
the term E2

π in (48). This leads to the following two-channel
form, generalizing (47),

fπ ¼
1

2.67 Ẽ2
π−E2

M2
1

−
γM2

1

E2
K − E2

;

Ẽ2
π ¼ M2

1

�
1 − xðEÞ − iyðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

π

E2

r �
; ð51Þ

F2ðEÞ ¼ 0.96 − 0.043i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

0.975
E2

r
θðE2 − 0.975Þ − E2:

ð52Þ

Here, xðEÞ ¼ kRegπðEÞ, y ¼ kImgπðEÞ are found by fit-

ting the resulting curves of Refð0Þπ , Imfð0Þπ to the data of
[31,32]. Parameters of xðEÞ, yðEÞ are given in Appendix C.
The two curves fπðEÞ, obtained by fitting gπðEÞ, are

shown in Figs. 4 and 5 by the solid lines, together with the
curves from the work of Pelaez et al. [31], obtained in the
course of the analysis in [32]. In the same figures we show
the dashed lines obtained from (47) and (48) with the free

ππ Green’s function. As one can see, our Refð0Þπ ðEÞ and

Imfð0Þπ ðEÞ for the free case are in qualitative agreement with
the results of [31], with an exclusion of the region of
relatively small energies, E < 0.5 GeV.
This means that the ππ interaction is important in this

region, and the approximation of the free ππ Green’s
function should be modified by inclusion of the purely
chiral interactions, at least for the lowest f0ð500Þ
resonance.
This is well illustrated by the calculation of the position

of the resonance f0ð500Þ, which was obtained above in the
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free gπ case at ð0.67 − i0.45Þ GeV, while from [31] (the
dotted lines in Figs. 5 and 6) the resonance position is
at ð0.457 − i0.259Þ GeV.
However, it was not the purpose of our study to exactly

reproduce the ππ interaction amplitude in the whole region
(280, 1000) MeV but rather to discover the dynamical
mechanism producing the lowest scalar-isoscalar mesons
f0ð500Þ and f0ð980Þ. At the first stage the basic part of this
mechanism can be reduced to the interaction of the qq̄ and
free meson-meson channels, given by our quark-chiral
interaction in the CCL, Eq. (1). Indeed, this interaction
provides the reasonable coupling Vqq̄jππ and Vqq̄jKK̄ , in
addition to the values of the qq̄ Green’s functions and the
corresponding poles Mnðqq̄Þ. In our case the lowest pole

M1ðqq̄Þ at 1 GeV produces a wide resonance f0ð500Þ in
“collaboration” with the ππ Green’s function and the ππ
threshold, and a more narrow resonance f0ð980Þ in
collaboration with the KK̄ Green’s function and the thresh-
old. The interaction of these two channels, strongly shifted
in energy from each other, which is outside of our simple
qq̄-meson-meson model, only slightly modifies their indi-
vidual properties, as can be seen by comparing one-channel
and coupled-channel characteristics.
In the second stage one should take into account

the chiral interactions ðππ; KK̄Þ to obtain the relativistic
ππ and KK̄ amplitudes. This stage is especially essential
for the determination of the f0ð500Þ pole parameters,
as can be seen from the analysis in [31]; E ¼
ð457� 10Þ MeV−i279 MeV, which agrees with the
results of [30]. This result disagrees with our estimate
(38), where the ππ interaction was disregarded. At the same
time the characteristics of the f0ð980Þ in [31] and in our
case, Eq. (41), are similar. This leads to the conclusion
that the accurate determination of the lowest resonances,
much below 1 GeV, requires a proper account of the φφ
interaction, which can be done by combining the formalism
of [30,31] with our qq̄ − φφ approach.
This is the main result of this paper; however, the general

mechanism described above leads to many further possible
discoveries.
At this point one can ask the following question: If the

same qq̄ level can create several resonances, accounting
for the coupling between φφ channels, what happens with
the a0ð980Þ resonance, which can decay both to πη and
KK̄? However, in experiment one can see only one broad
resonance near the KK̄ threshold. Now we apply our
technique to this case to understand the difference between
the situation with a0ð980Þ on one hand and f0ð500Þ,
f0ð980Þ on the other.
To this end we try to find separate resonances in the πη

and KK̄ channels and write, as in (37), the resulting
equation for the position of the assumed resonances
Eð1ÞðπηÞ and Eð1ÞðKK̄Þ, where the upper index refers to
the isospin I ¼ 1:

ðEð1ÞðνÞÞ2 ¼M2
1ð1− kð1Þðnn̄jνÞgνðEÞÞ; ν¼ πη; KK̄:

ð53Þ

Now, using (28) and (8)–(12) one can write

kð1Þðnn̄jπηÞ ≈ Vπη;1V1;πη ¼ ðCð1Þ
πη Þ2M

2ðλÞðfð1Þs Þ2
f2πf2η

¼ 4.69;

ð54Þ

kð1Þðnn̄jKK̄Þ ¼ ðCð1Þ
KK̄Þ2M2ðλÞðfð1Þs Þ2

f4K
¼ 2.9: ð55Þ

FIG. 6. The same as in Fig. 4 but for Imfð0Þπ ðEÞ.

FIG. 5. Refð0Þπ ðEÞ as a function of E in GeV from Eq. (47) (grey
bands) in comparison with the resulting curves from Pelaez et al.
[31,32] (broken lines) comprising the ππ data.
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[We have neglected the difference between fπ and fη for a
rough estimate; in the real case the coefficient in (54) is
smaller.]
Now, gπηðEÞ has smaller real and imaginary parts (see

Appendix B for details) as compared with gππðEÞ, Eq. (36),
while gKK̄ðEÞ is the same as was used before [see Eq. (40)].
As a result, the solution of Eq. (53) gives two resonances:

Eð1ÞðνÞ ¼ M1ð1 − āν − ib̄νÞ; ð56Þ

where a rough estimate yields

āπη ≅ 0.05; b̄πη ≈ 0.05; ð57Þ

āKK̄ ¼ 0.022; b̄KK̄ ¼ 0.04

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

K

E2

r
: ð58Þ

One should take into account thatM1ðI¼1Þ≈M1ðI¼0Þ¼
1.00GeV and Eð1ÞðπηÞ ≅ ð1.05Þ GeV, while Eð1ÞðKK̄Þ ≅
ð1.04 − i0.02

ffiffiffiffiffiffiffiffiffiffiffiffi
E2−4m2

k
E2

q
Þ GeV; Eð1ÞðπηÞ is on the second

sheet with the πη threshold, while Eð1ÞðKK̄) is on the
second sheet with the KK̄ threshold.
However, one should consider the πη − KK̄ channel

coupling, which can rearrange the position of the poles, as
was found recently in the lattice calculations [14].
Thus, one can see that the displacements of both

resonances are small, being of the order of the width of
the resonances. This might be the reason why in experiment
one actually observes one resonance a0ð980Þ near 1 GeV
with two decay modes, while in the I ¼ 0 channel with
larger couplings kð0Þðnn̄jππÞ and more distant ππ and KK̄
thresholds, one observes two distinct resonances; this
example gives additional support for our theory.

VI. CONCLUSIONS AND OUTLOOK

Comparing our approach with other models, we neglect
any direct φφ interaction in the first step described in the
paper. Therefore, all details of this interaction, as well as the
qq̄ − qq̄ interaction—in particular, crossing symmetry,
the left-cut singularities, etc.—are missing in this first step.
As a second, more complicated step, one should take i
nto account all the details of the φφ interaction, e.g., as
in the dispersive methods or in unitarized chiral model
interaction.
In summary, the method suggested above as a first stage

has a general character and can be applied to any systems,
consisting of several components, which can transform into
one another. The only information needed to describe the
properties of such mixed systems are the spectral properties
of each component and transition coefficients. In the case
of the charmonium system, this method gives a first
explanation of the resonance Xð3872Þ [42]. In the case
of the quark-chiral system, qq̄ − φφ, this method uses the

information given by the FCM approach plus the quark-
chiral CCL Lagrangian (1). Our method suggests a possible
solution to the old-standing problem of f0ð500Þ, f0ð980Þ,
and a0ð980Þ associating these resonances with (n ¼ 1) qq̄
3P0 states.
As applied to the lowest scalar resonances, we have

shown that the resonances f0ð500Þ and f0ð980Þ, as well as
the a0ð980Þ resonance, can be connected to the use of CCL
and to the n ¼ 1, M ≈ 1 GeV qq̄ resonance, calculating
explicitly the transition coefficients and, consequently, the
partial widths. Several issues arise:
(1) Since we have connected f0ð500Þ, f0ð980Þ with one

qq̄ state—the 3P0 ground state nn̄ with mass around
1 GeV—one should consider the next qq̄ state,
M2ð1474Þ, as an excited qq̄ state with n ¼ 2, in
contrast to an accepted view (see [1]) that the latter is
a ground state. It is interesting to study the conse-
quences of this assignment.

(2) What will the result be for excited qq̄ − φφ states,
e.g., with M2 ¼ 1474 MeV, in connection with the
same φφ thresholds, and can one expect additional
resonances below M2?

(3) It is clear that by taking into account the full sumP
n

M2
n

M2
n−E2, one finds divergences and the necessity

for renormalization. This issue can probably be
treated in the spirit of the formalism developed in
the method of matrix product states; see [55] for
reviews.

(4) We have considered only one qq̄ channel. However,
for the KK̄ system the ss̄ channel provides bound
states starting with M1 ≅ 1400 MeV, near the first
excited nn̄ state. Therefore, for the KK̄ system one
should take into account both nn̄ and ss̄ states,
which requires an extension of our method with the
inclusion of several qq̄ and one or more φφ channels
to explain several extra resonances in the region
1300–1700 MeV, observed in experiment [1].

These topics have recently been studied in [47], and it was
shown how excited qq̄ states produce higher scalar reso-
nances using the explicit method discussed in the present
paper. In addition, ns̄ and ss̄ systems have also been
considered in connection with the corresponding mm
thresholds, and the same pole shifts as in the present paper
were found. From this point of view our approach helps
clarify the old problem of scalar resonances, both in the
ground and first excited states. The following question
remains for future investigations: What parts of the lowest
scalars are occupied by qq̄ and direct φφ interactions?
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APPENDIX A: DECAY CONSTANTS
OF SCALAR MESONS

In the framework of the path-integral formalism, the
decay constants of the qq̄ meson states can be defined as in
[39,50],

ðfðnÞΓ Þ2 ¼ 2NchYΓijφnð0Þj2
ω1ω2Mn

; ðA1Þ

where ω1, ω2 are the average energies of quarks with
masses m1 and m2, Mn is the mass of the meson, φnðrÞ is
the (relativistic) meson wave function of the relative
distance r, and hYΓi is

4YΓ ¼ trððm1 − D̂1ÞΓðm2 − D̂2ÞΓÞ
¼ trððm1 − ip̂1ÞΓðm2 þ ip̂2ÞΓÞ: ðA2Þ

Here, Γ is the vertex operator, for the scalar particle
Γs ¼ 1, but the momentum operators p̂i act on the wave
function φnðrÞ, namely, ipiφnðrÞ ¼ ∂iφnðrÞ. In our case

hYsijφnð0Þj2 ¼ ðm1m2 − ω1ω2 − p̂p̂0ÞjΨSð0Þj2
→ ð∂iΨSðrÞ∂ 0

iΨ�
Sðr0ÞÞr→0;r0→0: ðA3Þ

Since ΨSðrÞ is

ΨSðrÞ ¼
X

χ1M1
Ỹ1m2

φðrÞ
r

C00
1m1;1m2

ðA4Þ

and Ỹ1m ≡ rY1m, after summation over spin projections,
one finds

∂iΨSðrÞ∂ 0
iΨ�

Sðr0Þ ¼ ∂i∂ 0
i
1

4π
ðxx0 þ yy0 þ zz0Þ ¼ 1

4π
; ðA5Þ

where we have taken into account that the subscript i
refers to a fixed momentum direction. As a result, one
obtains

ðfðnÞS Þ2 ¼ 2NcðR0
nPð0ÞÞ2

4πω1ω2Mn
; ðA6Þ

where R0
nPð0Þ ¼ ðφnðrÞ

r Þr→0
. Estimated in the same way

as in [39,50] for the 1P scalar state, one has R0
1Pð0Þ ¼

0.086 GeV5=2, ω1 ¼ ω2 ¼ 0.448 GeV [56], and according
to (A6) one obtains

ðfð1ÞS Þ2 ¼ 0.01568 GeV2; fð1ÞS ¼ 0.125 GeV: ðA7Þ

For the first excited state, 2P, one obtains, for the scalar
state ωð2PÞ≅0.5GeV, R0

2Pð0Þ¼0.0817GeV5=2,Mð2PÞ ¼
1.474 GeV [56].
As a result, from (A6) one obtains

ðfð2Þs Þ2 ¼ 0.00865 GeV2; fð2Þs ¼ 0.093 GeV: ðA8Þ

APPENDIX B: MESON-MESON GREEN’S
FUNCTIONS

The relativistic Green’s function of two scalar mesons
with the total momentum P can be written in the Euclidean
space-time as

gðPÞ ¼
Z

d4p
ð2πÞ4

1

½ðP − pÞ2 þm2
1�ðp2 þm2

2Þ
: ðB1Þ

Integrating over dp4 in the c.m. frame, P ¼ 0, one
obtains, with P4 ¼ iE and m1 > m2,

Reg12ðEÞ ¼
Z

N

0

p2dp
4π2

×
E
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p �
þm2

1 −m2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p �
2
− E2

i�
Eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

p � :
ðB2Þ

Here, we have introduced the cutoff N in momentum p:

ImgðEÞ ¼ 1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − ðm1 þm2Þ2ÞðE2 − ðm1 −m2Þ2Þ

p
E

:

ðB3Þ

In the equal mass limit one obtains

RegðEÞ ¼
Z

N

0

p2dp

8π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
ðp2 þm2 − E2=4Þ

; ðB4Þ

which for E2 ¼ 4m2 reduces to a simple answer,

Regð2mÞ ¼ 1

8π2

Z
N

0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ¼ 1

8π2
ln
N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þm2

p

m
:

ðB5Þ
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For E2 ¼ 4m2 − 4Δ, Δ > 0 one has, instead of (B5),

RegðEÞ ¼ 1

8π2

Z
N

0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
−

Δ
8π2

Z
N

0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
ðp2 þ ΔÞ

; ðB6Þ

and for m2 ≫ Δ the last integral in (B6) can be written as

ΔRegðEÞ ≅ −
ffiffiffiffi
Δ

p

16πm
θ

�
m2 −

E2

4

�
: ðB7Þ

Note that ΔRegðEÞ is much smaller than Regð2mÞ,
Eq. (B5), and can be neglected in the first approximation.

APPENDIX C: POSITION OF NEW POLES IN
THE COMPLEX PLANE

One can write Eq. (37) for the ππ pole as

E2 ¼ M2
1ð1 − constðRegπðEÞÞ þ iconstðImgπðEÞÞÞ: ðC1Þ

Writing ImgπðEÞ ¼ constpðEÞ=E, where pðEÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4m2

π

p
, one can rewrite (C1) as E2 ¼ E2

0 −
ibpðEÞ

E ,
or expressing E2 via p2, one has

p2ðEÞ þ ibpðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðEÞ þ 4m2

π

p
− p2

0

¼ 0 ðC2Þ

where b and p0 are constants. Starting with small b, one
gets approximately pðEÞ ¼ p0, and in the next order withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðEÞ þ 4m2

π

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 þ 4m2

π

p
, one solves the quadratic

equation for pðEÞ as

pðEÞ ¼ −
ib

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðEÞ þ 4m2

π

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b2

4
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2ðEÞ þ 4m2
π

p �
2
þ p2

0

vuut : ðC3Þ

One can perform the next orders of approximation
following the motion of the root, starting with the
position (C3). Another method is the direct solution of
Eq. (C2), which is cubic in p2ðEÞ, choosing the correct
root to be consistent with (C3). As is seen in (C3), the
sign of the imaginary part of pðEÞ is negative, implying
that the pole is on the second sheet in the E plane,
corresponding to the ππ threshold.
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