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In this work, we explore the ground state of the QCD system and the relevant collective modes in a
parallel electromagnetic (EM) field within the effective three-flavor Nambu—Jona-Lasinio model. From the
features of neutral chiral condensates, three critical EM fields are identified in our study: el g" (i=1,2,3).
Moreover, competition between QCD and QED anomalies is found: the negativeness of z} and 77 is a
signal of QCD anomaly dominance for all of the flavors, and the positiveness of z; beyond el;' indicates
QED anomaly dominance for the strange quark. For the lowest-lying neutral collective modes, the masses
of IT and H modes reduce to zero around the critical EM fields and the scalar-pseudoscalar components are
exchanged between £ and H modes, as can be seen in the crossing structure.
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I. INTRODUCTION

In recent years, a lot of scientific interest has focused on
the properties of QCD systems under extreme conditions,
including those existing in certain types of astrophysical
objects and those created in relativistic heavy-ion colli-
sions. Large baryon densities (of the same order as the
saturation density p, = 0.16 fm~3) are expected to occur in
neutron stars, especially in the inner cores. Pasta structures
[1,2], chiral symmetry restoration [3,4], partial-wave
nucleon pairings [5,6], and color superconductivity [7,8]
have been extensively studied in such circumstances. These
explorations mainly focused on the equilibrium ground
states of the QCD system, which are related to the equation
of state (EoS). Actually, there is some ambiguity in the
determination of the EoS, but some new insights have been
gained from recent multimessenger observations of binary
neutron star mergers, such as GW170817 [9]. As a matter
of fact, the detection of the associated gravitational wave
(GW) constrains the tidal deformabilities and radii of
neutron stars to A < 800 and R = 8.9-13.2 km [10,11],
and the combined optical and GW observations of
GW170817 constrain the maximum mass of neutron stars
to 2.16 —2.28 M [12,13] and the EoS is found to be
slightly soft at large baryon densities, p > 5p, [14,15].

In the large terrestrial facilities, very strong electromag-
netic (EM) fields (10'8-10%" G) [16-19] and fast rotation
(~10? s71) [20] can be produced in peripheral heavy-ion
collisions (HICs), and the chiral magnetic effect (CME)
[21-24] and particle polarization effect [25-35] are hot
topics for both theoretical and experimental studies.
Besides, the effects of an EM field and rotation on QCD
ground states and the associated extended phase diagrams
have been widely studied and several intriguing phenomena
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were discovered, such as the inverse magnetic catalysis
effect [36,37], anomalous neutral pion superfluidity
[38—41], magnetic anisotropic confinement [42-44], and
rotational magnetic inhibition [45]. Directly related to the
ground states, neutral and charged meson masses have also
been studied in different scenarios [46-54]. Take two
important discoveries, for example: the charged rho meson
mass never reduces to zero in a pure magnetic field
according to the lattice QCD simulations [46—48], but the
charged pion meson mass might vanish under the conditions
of a parallel magnetic field and rotation [55-57].

Among all of the circumstances explored, the case with a
parallel EM (PEM) field is special because neutral pseu-
doscalar condensations can be induced through a chiral
anomaly [38—41]. On the experimental side, a PEM field
was used to produce chirality imbalance in a Weyl
semimetal system, and the well-known CME was discov-
ered for the first time [58]. Besides, it was found that the
observed charge-dependent elliptic flow of pions might be
understood from the PEM field distribution in HICs [59].
The present work is just the three-flavor version of our
previous researches [38—41]: the advantages are that this
case is more realistic and the QCD U,(1) anomaly is
automatically accounted for through the ’t Hooft determi-
nant [3,4]. With regards to the latter point, the relative
significances and effects of QCD and QED anomalies can
be well compared in the three-flavor case. As PEM fields
are indeed relevant in HICs [59], we hope that in the future
more attention will be paid to the possibility of anomalous
pseudoscalar condensations in experiments in addition to
the CME signals.

The paper is organized as follows. In Sec. II we present
the whole formalism for the studies of chiral condensates
and collective modes, with gap equations in Sec. IT A and

© 2020 American Physical Society
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polarization functions in Sec. IIB. The numerical
results are shown in Sec. III, and finally we conclude in
Sec. IV.

II. THREE-FLAVOR FORMALISM
A. Gap equations

In order to improve upon previous studies [38—41] and
study the QCD system more realistically, we adopt the
three-flavor Nambu—Jona-Lasinio (NJL) model where
more low-lying collective modes are involved and the
QCD U,4(1) anomaly has been taken into account auto-
matically through the 't Hooft term. The corresponding
Lagrangian density is [3,4]
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where w = (u, d, s)T represents the three-flavor quark field
and Ly is the ’t Hooft term with coupling K. In the kinetic
term, mqy = diag(mo,, mog, mo,) is the current quark mass
matrix and
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Without loss of generality, we choose the gauge in Euclidean
space as A, = (iEz, 0, Bx, 0). In the four-quark interaction

terms with coupling G, 2° = /2/3diag(1, 1, 1) and (i =
1, ..., 8) are Gell-Mann matrices in flavor space. Finally, in
the *t Hooft term, the determinant is also performed in flavor
space and the interaction vertices are I'* = 1 =& y5 for right-
and left-handed channels, respectively.

In the setup B-E # 0, we already found z° and #°
condensations in two-flavor NJL models due to a chiral
anomaly [38,39]. With the additional inclusion of strange-
ness, another neutral pseudoscalar field—the #® meson—
should also be expected to condense in the same setup,
though the effect might be small. Thus, for a consistent
exploration, we should set 77 = (iy°w;)/N, to be non-
zero besides the scalar condensates oy = (Wsy;)/N,, with
f =u, d, s. To facilitate the study, we would first like to
reduce L to an effective form of four-fermion interactions
in the Hartree approximation. By following the derivations
in Ref. [3] where a quark-antiquark pair is contracted in
each six-fermion interaction term, we immediately find

. 2
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where ¢, is the Levi-Civita symbol with €53 = 1 and we used the Einstein summation convention for the flavor indices i,
J» k, m, n in the first two steps. The correspondences between 1,2,3 and u, d, s should be understood for the subscripts
here and throughout the rest of the paper. Substituting L in Eq. (1) with £}, the effective Lagrangian density with only

four-fermion interactions is
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where the effective and symmetric couplings for the pure scalar-pseudoscalar channels Gjb

and the mixing ones sz are,

respectively,

GL—GFN giai, GTl:Gi:Gi:GiNcgas, GL:G;;:GiNcgad, G66—G77—G:|:NC§GM
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G§8:Nc§(ﬂ§—2ﬂ'g—2ﬂ'i), Gy =N, %(27[‘—7[ -13), Gi=-V2G3; =N g(ﬂg—n’fl). (5)

Notice that pseudoscalar condensates further develop
couplings between the scalar channels (mediated by
0, ay, ag mesons) and pseudoscalar channels (mediated
by 7° #, ng mesons), and thus these isospin-parity
eigenstates will mix with each other in the mass eigenstates.

Armed with the reduced Lagrangian density, all of the
necessary analytic derivations are just parallel to those
given in two-flavor NJL models [38,39]. By contracting a
quark-antiquark pair further in each isospin-diagonal inter-
action term of Eq. (4), the effective mass and pion
condensate of each quark flavor are, respectively,

—4N_.Go; + 2N?K (o0} — 7‘[572'2)

= —4N.Gr; — 2N2K (0,7} + ﬂjak), (6)
with i# j# k. The G- and K-dependent terms in
Eq. (6) correspond to the U4 (1)-symmetric and anomalous

violating interactions, respectively. Then, the gap equations
|

are given through the following six self-consistent
conditions [3]:

o; = (p'y')/N. = —trS,, (7)
m = (@'ir’y) /N, = —triy’S;, (8)
where S;(x) = —[ip; —m} — iy’zi]7! is the effective

propagator of a given quark flavor in the PEM field and
the trace should be taken over the spinor and coordinate
spaces. With only neutral condensates involved, the propa-
gators can be evaluated independently for quarks with
different flavors or colors. In principle, we should work in
the in-in formalism when an electric field is involved
[40,60]; here, we simply adopt the simpler in-out formalism
to avoid numerical difficulties.

In Euclidean space, the effective quark propagator has
already been evaluated in momentum space as [61]

R oo o itanh(gl,s) itan(ql,s) . s ) -
Si(p) =l/ dsexp{—leS—%(pier%) ———=22(pt+ p3) pImi —ir’m; —y*(ps—itanh(g(T>5) ps)
0 qgtls qel>
— 7 (ps+itanh(gilys) ps) = 7> (pa +tan(gelas) py) — v (p1 —tan(gelas) pa))
x [1+iy” tan(gelps) tanh(gelps) +y'y* tan(gel,s) + iy*y tanh(gel,s)). )
| 7 2,-Mi2s 2
Here, we define the chiral mass M} = (m;* + x}%)'/? _Gf__/wds (gelys)"e™ " gily mf (10)

and the field strength is chosen to be E = B = I, without 4z Jo s*tan(gsl,s)tanh(gelss)  4a® Mi?
loss of generality. Inserting it into Eqs. (7) and (8) and _ »
transforming the integral variable s — —is, the explicit S f / o ds (qf_Izs)ze‘Mf S_ qflz my (11)
forms of the gap equations are ' 4n? Jo s?tan(gilys)tanh(gelys)  4x® M2
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where I, = E - B is the second Lorentz invariant. These forms are divergent, so we would like to use the vacuum
regularization scheme [62] to proceed to numerical evaluations; then, the gap equations become

2 *
_ o qih
—Of —mfFA<Mf) _4—”2M;f2 (12)
- =7 —— ,
f fHA f 471_2 Mr2
with the auxiliary function defined as
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2z M M M 4= Jo s tan(q;l,s) tanh(g;l,s)
Getting rid of the cutoff terms, model-independent results follow from Eqgs. (12) and (13):
2
Offty = Aphy = (14)
The two-flavor results in Ref. [39] can then be reproduced by setting K = 0.
Finally, the overall thermodynamic potential can be derived consistently as
M3 2A? A%z
2K 5 f
Q= 2NGfZ - 2N2K ( II o - kmnk>—_2{8ﬂ2 [A<1+W><1+W)
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[

by combining the integrations over mj of Eq. (12) and B. Polarization functions

the integrations over z; of Eq. (13). The expression Now we focus on the collective modes, especially the

tan‘l(;—%) in the last term of Eq. (15) represents chiral  neutral scalars o, ay, ag and pseudoscalars 7°, 5, 75 which

angles for different flavors [41] and would change  MiX W%th ?aCh other. IP ﬂ}e well-known rz?n.dom phase
randomly beyond the ends of corresponding chiral ~ approximation [3], the kinetic terms of gnd mixings among
rotations [40]. Since the quark mass mj is usually these. mesons  are comple.tely Qetemlned by the 6x6
positive before the completion of chiral rotation, this polanzaﬁc?n function matrix, which can b? more conven-
term indicates that a pion condensate z{ always prefers iently derived from the reduced Lagrangian density (4).
the same sign as I, if the QED anomaly dominates over Actually, only 21 elements of the matrix are independent due
the QCD one, regardless of the charge. This has already  to the transpose symmetry. To obtain these functions, we
been well checked in the two-flavor U,(1)-symmetric  first evaluate the traces over spinor space for each flavor,
NJL model [39].

Tt =-uS:(p+4q/2)8:(p—q/2)

® ® ds' M2 n_dth L L L S S L SO
=4 ) ds | dsexp —IMP(s+s) — o (P py) = (P = (P ) = (P )
2

gelr ’ gel> : gcl>
X [(m;‘ —z2)(1=tt') (1 +thth') + 2mix} (t+¢') (th+th') — (P P + P{ P3)(1 —tt') (1 —thth')
+i(PfP;—P7P;)(1—tt)(th—th') — (P§ P; + P{ P7)(1+tt')(1+thth')
+ (P{ Py — Py P7)(t—t)(1 +thth')], (16)
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where the following denotations should be understood:
t = tan(qsl,s), th = tanh(g;l,s),t = tan(gsl,s'), th’ = tanh(g¢l,s"), P =Pyt q,/2.
Py =pi—ipith, Py =pj+ipith, Py =p;+pit. P =pl-pit
Py =p;—ipsth’, Py =p3y+ip;th.  Py=p5+pit.,  Py=py-pt.

For the evaluations of pole masses, we set the three-momentum q = 0; then, the four-momentum integrated forms of the
. 4 .
trace functions I1}(q,) = — | ([2171)’4 Tt(p,qq4)(n = £,5) are, respectively,
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Transforming the integral variables as s — s(1 +u)/2,s" — s(1 — u)/2 and regularizing the functions I} with the help of
the corresponding terms in the limit 7, — 0, we find [40]

ithgthy’ 2

it 1l 2 * * 1 —_— = =
H:F qf[z/ ds/ due_lM*z qf([;(f‘hfhjﬂif )"4 :t(mtz _ ﬂfz) + 2mtrt — Qf12<1 gl (thy-+thy") Q4)
Aelg 7 = £ — T N2 T
tan(q;l,s) tanh(gl,s) i tan(ggl,s)sinh? (gl s)
ol |- 0y [ L Ell) AN 2 i) -
ztanh(qflzs) sin (lelzs) (2”)3 Ef(P)(‘]% +4E%( ) ’
i(thp—th')? 7 %
C]flz L) % 2mgm; «2 42
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- A dp mwy;
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(27)* E¢(p) (g3 + 4E£ (p))
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where the dispersion relationship in the cutoff terms is
Ei(p) = (p> + M;?)'/? and we define th; = tanh((1 +
u)qel,s/2) and th} = tanh((1 — u)gsI,s/2) for brevity.
Note that the integrations over the Euclidean energy p,
have already been carried out in the vacuum terms.

For convenience, we define three diagonal matrices

1"(q,) = diag(I1},(q4). 1M}4(q4) . TR (q4)) (n=£,5).

Then, the polarization functions among the isospin eigen-
states, that is,

4
I = / (‘21”1)’4 TeS(p + ¢/248(p —q/2)4.  (23)

d* A o .
M= [ LTS+ 0/ i 430 - a2, (2
T

d* " n .
M= [ L0+ /2130 - 0207, (29

can be evaluated directly through traces over the flavor
space:

I17(q4) = N tre[ATI"(q4) ). (26)

Since IT" and A' (i =0, 3, 8) are all diagonal, H?j are all
symmetric under the exchange of the subscript indices i and
Jj. Gathering all of the polarization functions into a matrix
for the whole scalar-pseudoscalar sector with the general-
ized meson field (o, ay, ag, o, 70, i’[g)T, we have

My Moy Mgy TG, IR, I
My Ty T I I3, [T
My Ty Iy Ty B ITg
G, MG, Iy Ty IMg T
G, I, I3y T I I

5 5 5 + + +
HOS H38 HSS HOS H38 H88

sp(qq) = (27)

Then, the corresponding propagator matrix is given by [63]

Psp(qs) = [1 + 2GspIlsp(q4)] " Gsp. (28)

where Ggp is the coupling matrix with the elements G7;
listed in Eq. (5) and arranged in the same order as II}; in
IIsp(g4). Eventually, the pole masses of the collective

modes can be obtained by solving the equation

det [1 + ngpnsp(le)] = 0,

and there are six independent solutions in principle.

r T T T T T T T T T T T T T T T ]
06 ]
""""""""""" . m
L * Yeman 4
0'4.:—-—--—_md ...'~» ]
;' i ma \ 'f T;*-.~.~.\ 0\‘ ]
o} [ 5 u o \ 1
10} 0.2 ’ N, i
= 4 \ TS ]
*E 0.0F e i H i
PR
S
-0.2f :
[ T
-0.4} ]
L " " " 1 " " " 1 " " " 1 " " "
0.0 0.2 0.4 0.6 08
(elp)""? [GeV]
FIG. 1. The effective masses m; and pion condensates 7§ as

functions of the electromagnetic field e, for u (dash-dotted), d
(dashed), and s (dotted) quarks, respectively. For brevity, the
restorations of the corresponding order parameters to their current
values are not shown beyond the critical points.

III. NUMERICAL RESULTS

For the numerical calculations, we choose the following
model parameters: mg, =mny,;=5.5MeV, my,=140.7MeV,
A =602.3 MeV, GA? = 1.835, and KA’> = 12.36 [64].
The effective masses and pion condensates of different
flavors are solved self-consistently from Eqgs. (12) and (13)
and shown together in Fig. 1. The features of the more
interesting pion condensates can be explained by adopting
the cutoff-independent results (14) and the fact that, in
Eq. (6), the U, (1)-symmetric term of zf dominates over the
anomalous violating term as G > |Kog|. Substituting
Eq. (6) into Eq. (14), we get

4l 2 5 5
—4N .Grd = 4N .G e 2N:K(o;m; + ﬂjak)oi .
c i C mol+2N%K(6jO'k—ﬂ37[Z)

(29)

As the denominator on the right-hand side of Eq. (29) is
always positive, the sign of z; just follows the numerator.
For small EM field, the QCD anomaly dominates over the
QED one, that is, the numerator is mainly determined by
the second term. According to the numerical results, o; are
always negative and the QCD anomaly terms in the
numerators are dominated by

oy, o5my, (6,70 + o4m) (30)

for u, d, s quarks, respectively. Then, it is easy to find
that the signs of zy; and 7} are opposite to each other, and
7y < 0 as the numerical calculations show that 6, ~ 6, and
0 < 7, < —n;. These are just the characteristics up to the
end of the first chiral rotation with the critical strength
el;' = (0.278 GeV)?. However, beyond this point with
both ¢, and o, vanishing, z; changes sign because the
QCD anomaly loses significance for the strange quark.
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FIG. 2. The meson masses as functions of the electromagnetic
field el, for the lowest-lying neutral collective modes X, I1, and
H in the scalar-pseudoscalar sector.

In the one-flavor case, we have explained that the =,
condensate only stands for the magnitude of the chiral
condensate and the chiral angle can be randomly chosen
[40]. But, for the three-flavor case, the constancy of the
s-quark dynamics requires 6,0, — m,m; to be almost a
constant to keep the change of m small. In other words, the
QCD anomaly correlates the chiral angles of u and d quarks
in the three-flavor NJL model. Eventually, the chiral
symmetry for u and d quarks is restored at the second
critical EM field el5* = (0.523 GeV)? and that for s quarks
is restored at the third critical field el5’ = (0.677 GeV)2.
Note that the transitions at ely', el5*, and el5’ are weak
first-order, weak second-order, and strong first-order tran-
sitions, respectively. Due to the large current mass of s
quarks, the corresponding end of chiral rotation and the
chiral restoration point merge into one, that is, el5’.

There is one thing that needs to be clarified in an external
EM field: the flavor separations of the collective modes,
which were usually assumed in lattice QCD simulations at
large magnetic field [46-48]. We rearrange the interaction
terms of Eq. (4) in flavor eigenchannels and find the
couplings of mixing terms to be

Gl:']: =F KNCGk, GIS] = KNCﬂ.'k,

with i # j # k. So, u and d quarks never separate from each
other up to ely, beyond which all of the condensates
almost vanish, and s quarks never separate from them up to
el where chiral symmetry for u and d quarks is eventually
restored. In real QCD, the effective couplings would
decrease with the EM field due to asymptotic freedom
and the flavor separations might occur earlier.

The masses of the lowest-lying collective modes X, I1,
and H are shown in Fig. 2. Note that these modes separately

correspond to o, z°, and 1 mesons in the vanishing-EM-
field limit. As we can see, the masses of IT and H modes
reduce to zero around el;' and el3’, which actually signal
the instabilities induced by QCD and QED anomalies
for u and d quarks, respectively. There is an extra feature:
around eig‘, the scalar-pseudoscalar components are
exchanged between the mass eigenstates ¥ and H, which
demonstrates itself through the peak-to-dip crossing struc-
ture. Concretely, the component iiy>u + diy>d dominates
in the ¥ mode, whereas iy + dd dominates in the H mode
beyond el;'. Furthermore, the peak right after the dips
in My is just the hierarchy of that found in the one-flavor
case around 67;' [40], and there is a second, soft one
around el3’.

IV. CONCLUSIONS

The neutral chiral condensates and lowest-lying collec-
tive modes were explored in the three-flavor NJL model,
which is characterized by the 't Hooft determinant for the
QCD U,4(1) anomaly. Three critical EM fields were found
for the chiral condensates: el5' is the end of chiral rotation
of u and d quarks, e7;2 is the chiral restoration point of u
and d quarks, and el5’ is the chiral restoration point of s
quarks. We performed a detailed mathematical analysis and
found that the signs of pion condensates 77 reflect the
relative significances of the QCD and QED anomalies: the
opposite signs of z;; and z; and the negativeness of 7 both
indicate the dominance of the QCD anomaly in the small-
EM-field region, and the positiveness of z; implies the
dominance of the QED anomaly for s quarks. Along with
the changes of chiral condensates, the masses of the two
lowest-lying modes I and H reduce to zero at el5' and el5?,
which actually signal the instabilities induced by the QCD
and QED anomalies, respectively. Besides, there is a
component-exchange structure for the two modes X and
H with their masses close to each other. Since we only
studied the QED anomaly in our previous work [40], the
different features of the lightest meson near el5' here can be
considered as the signal of QCD anomaly dominance, that
is, the absence of a peak structure in M.

Finally, it should be pointed out that, as we have
demonstrated that the in-in and in-out results are almost
the same when the EM field is relatively small [40], the
most important discoveries of this work are reliable around
the first critical point el5'.
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