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We study three-body decays of Λ�
cð2765Þ → Λþ

c π
þπ− by using effective Lagrangians in a nonrelativistic

framework. We consider the sequential decays through Σcð2455Þπ and Σ�
cð2520Þπ in intermediate states

which are dominant contributions. The coupling constants in the effective Lagrangians are computed in the
quark model. We demonstrate that the ratio R ¼ ΓðΛ�

c → Σ�
cð2520ÞπÞ=ΓðΛ�

c → Σcð2455ÞπÞ and angular
correlations are sensitive to the spin and parity of Λ�

cð2765Þ. Thus, the measurement of these observables in
experimental facilities such as Belle and LHCb can provide useful constraints to determine the spin and
parity of Λ�

cð2765Þ.
DOI: 10.1103/PhysRevD.101.094023

I. INTRODUCTION

In the past decades, several Λ�
c resonances are exper-

imentally observed in the study of their three-body decays
into Λþ

c π
þπ−. The low-lying excited states Λ�

cð2595Þ and
Λ�
cð2625Þ have been generally accepted as a p-wave

doublet in Particle Data Group (PDG) [1]. The quark
model and other calculations give the consistent results
to each others as p-wave states with λ-mode excitations
(the definition of the internal excitations will be discussed
shortly), e.g., see references [2–4]. Their three-body
decays have been investigated in detail in our previous
studies [5,6].
In contrast to Λ�

cð2595Þ and Λ�
cð2625Þ, the information

of Λ�
cð2765Þ or Σ�

cð2765Þ is still poor experimentally. The
broad Λ�

cð2765Þ or Σ�
cð2765Þ resonance was observed by

CLEO [7] in Λþ
c π

þπ− final state and later by Belle [8]. In
PDG, this state still has a one-star rating with unknown spin
and parity [1]. However, the experimental study is under-
way [9]. Recently, the isospin has been determined to be
I ¼ 0 by Belle [10]. Therefore, this resonance should be
written as Λ�

cð2765Þ.
The mass spectrum of charmed baryons has been studied

intensively in various theoretical models [2,11–22]. The
decay pattern of Λ�

cð2765Þ has also been investigated
theoretically. In particular, its two-body decay of

Λ�
cð2765Þ → Σð�Þ

c π has been discussed in various models
[3,4,23–25]. However, a complication lies in that the

resonance is considered to be in the region of excitation
energy of 2ℏω (N ¼ 2) in the quark model [11], where
many configurations with different spins and parities are
possible.
An interesting feature of this resonance is its excitation

energy of about 500 MeV. In fact, there exist baryon
resonances systematically in various flavor contents of u, d,
s quarks with similar excitation energy, known as the Roper
resonance for the nucleon sector [26], with the spin and
parity 1=2þ. The excitation energy 500MeV is significantly
lower than the amount that is expected by the quark model.
This fact has brought many ideas such as collective
monopole vibration [27], strong coupling with meson
clouds [28], the band head of rotational states of a deformed
state [29] and so forth. If the same feature is also seen for
charmed baryons, the flavor-independent nature will pro-
vide an interesting aspect of QCD dynamics for hadron
resonances.
In the present paper, we aim to study three-body decays

of Λ�
cð2765Þ → Λþ

c π
þπ− as shown in Fig. 1 using their

Dalitz plots and other related quantities. We show that
different assignments of spin and parity for Λ�

cð2765Þ
clearly differentiate them, the comparison of which with
experimental data will be useful for the determination of its
spin and parity.
The essential ingredients are the elementary three-

particle vertices for such as Λ�
cΣcπ. They form the so-

called sequential decay processes, which are known to be
dominant in the present decays. In Ref. [3], some of such
vertices for Λ�

cð2765Þ with possible spins and parities have
been studied in the quark model. In the present work, we
complete the calculations for all possible states up to the
2ℏω region in the quark model. They include states of spin
and parity JP ¼ 1=2�, 3=2�, 5=2� and 7=2þ with λ and ρ
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mode orbital excitations where λ-mode is the orbital motion
between the center of mass of the two light quarks and the
charm quark, and ρ-mode is the relative motion between
the two light quarks. We then compute the three-body
decays of Λ�

cð2765Þ for all these cases by using effective
Lagrangians. The resulting Dalitz plots and related quan-
tities turn out to be sensitive to the spin and parity
of Λ�

cð2765Þ.
The rest of the paper is organized as follows. In Sec. II,

we explain the decay amplitudes by using effective
Lagrangians and their coupling constants. We also explain
the computation of the three-body decay amplitudes and
discuss the kinematics. In Sec. III, we discuss two-body
decays of Λ�

cð2765Þ with various configurations in the
quark model. In Sec. IV, we discuss three-body decays of
Λ�
cð2765Þ with various configurations and analyze their

Dalitz plots and other related quantities. Finally, we give a
summary in Sec. V.

II. FORMALISM

The Feynman diagrams of the three-body decay of
Λ�
cð2765Þ are shown in Fig. 2. The left two diagrams

are what we call the sequential processes that show the
resonance structure of Σc and Σ�

c, while the most right
one is the direct process which appear as a nonresonant
contribution. In addition to that, one may expect a
contribution of f0ð500Þ that decays into two π’s.
Experimentally, it is implied that those nonsequential

[the direct and f0ð500Þ] processes are insignificant. In
fact, it is shown in Fig. 1 of Ref. [8] that the Λ�

cð2765Þ peak
disappears in the invariant mass plot of Λcπ

þπ− when the
sideband events are selected, indicating that the nonse-
quential processes are not significant. Theoretically, a
possible direct process due to the Weinberg-Tomozawa
type is forbidden due to its isovector nature for the
transition between the two isoscalar Λc’s. The f0ð500Þ
process is also suppressed due to its scalar-isoscalar nature.
The relevant transition amplitude is a matrix element of an
operator [the source function of f0ð500Þ] proportional to
unity between the initial Λ�

c and the final Λc, which is
suppressed due to the orthogonality of the two states. Based
on these arguments, we will focus on the sequential
processes going through Σcð2455Þπ and Σ�

cð2520Þπ in
intermediate states. To compute these sequential decay
processes, we introduce effective Lagrangians describing
various vertices of the diagrams. We perform the calcu-
lations in the nonrelativistic approximation, which is
suitable for the decays of charmed (heavy) baryons.

A. Two-body decays

Here we compute two-body decay amplitudes of the first

vertex Λ�
c → Σð�Þ

c π and second vertex Σð�Þ
c → Λcπ where

Σð�Þ
c is either Σcð2455Þ or Σ�

cð2520Þ. There are two decay
processes in the first vertex, (1) Λ�

c → Σcð2455Þπ and
(2) Λ�

c → Σ�
cð2520Þπ. As mentioned in introduction, in

the present study, we consider JP ¼ 1=2�, 3=2�, 5=2� and
7=2þ for Λ�

cð2765Þ.
In the calculation, we denote the spin operators σ for

spin-1=2 particles and Σ for spin-3=2 particles. We also
introduce the spin transition operators S for transitions from
spin 3=2 to 1=2, T for those from spin 5=2 to 3=2, andU for
those from spin 7=2 to 5=2. These operators form scalar
products with the pion momentum p at the vertices.
Moreover, we introduce Vij for transitions from spin
3=2 to 3=2 with a d-wave pion, Wijk and Xijk for those
from spin 3=2 to 3=2 and spin 5=2 to 3=2, respectively, with
an f-wave pion. These spin transition operators are
represented in the Cartesian basis. They are related to
those in the spherical basis that are given by the Clebsh-
Gordan coefficients,

hJfmfjSLμ jJimii ¼ ðJimiLμjJfmfÞ; ð1Þ

FIG. 2. Feynman diagrams of three-body decays of Λ�þ
c into Λþ

c π
þπ−. The first two diagrams represent sequential processes going

through Σð�Þ0
c and Σð�Þþþ

c . The last diagram corresponds to the direct process.

FIG. 1. Three-body decay of Λ�
cð2765Þ into Λþ

c π
þπ−. Blue

arrows represent sequential processes, and a red arrow corre-
sponds to the nonsequential process.

ARIFI, NAGAHIRO, HOSAKA, and TANIDA PHYS. REV. D 101, 094023 (2020)

094023-2



where the rank of the operator L follows the partial wave of
the pion. For example, Vij is such an operator of rank two.
Note that in defining Eq. (1), we set the reduced matrix
element unity except for the σ and Σ spin matrices. The
arbitrariness of it is absorbed into the coupling constants.
With those ingredients, for Λ�

cð1=2−Þ, the decay ampli-
tudes are given by

−iT Λ�
c→ΣcπðsÞ ¼ gs1χ

†
Σc
χΛ�

c
; ð2Þ

−iT Λ�
c→Σ�

cπðdÞ ¼ gd2 χ
†
Σ�
c
ðS† · pÞðσ · pÞχΛ�

c
; ð3Þ

where χΛ�
c
and χ†

Σð�Þ
c

are the spin states of Λ�
c and Σð�Þ

c ,

respectively, and p is the pion momentum. The coupling
constants gs1 and g

d
2 correspond to the Yukawa couplings of

the first vertex in the sequential process in Fig. 2 going
to Λ�

c → πΣc and Λ�
c → πΣ�

c processes, respectively. The
labels (s) and (d) on the left hand side indicate that

the partial waves of πΣð�Þ
c are s and d wave, respectively.

The labels are also shown as superscripts in each coupling
constant.
For Λ�

cð3=2−Þ, the amplitudes are written as

−iT Λ�
c→ΣcπðdÞ ¼ gd1 χ

†
Σc
ðσ · pÞðS · pÞχΛ�

c
; ð4Þ

−iT Λ�
c→Σ�

cπðsÞ ¼ gs2 χ
†
Σ�
c
χΛ�

c
; ð5Þ

−iT Λ�
c→Σ�

cπðdÞ ¼ gd2 χ
†
Σ�
c
ðp · V · pÞχΛ�

c
; ð6Þ

where Λ�
cð3=2−Þ → Σ�

cπ can decay both in s and d waves.
Accordingly, we define their coupling constants as gs2
and gd2 , respectively.
For Λ�

cð5=2−Þ, we have

−iT Λ�
c→ΣcπðdÞ ¼ gd1 χ

†
Σc
ðS · pÞðT · pÞχΛ�

c
; ð7Þ

−iT Λ�
c→Σ�

cπðdÞ ¼ gd2 χ
†
Σ�
c
ðΣ · pÞðT · pÞχΛ�

c
; ð8Þ

where Λ�
cð5=2−Þ → Σ�

cπ can decay only in d wave. We do
not consider g wave because it is not possible due to the
brown muck selection rule in the quark model, as we will
discuss in the next subsection.
For positive parity cases, amplitudes are calculated in a

similar way. For Λ�
cð1=2þÞ, they are given by

−iT Λ�
c→ΣcπðpÞ ¼ gp1 χ

†
Σc
ðσ · pÞχΛ�

c
; ð9Þ

−iT Λ�
c→Σ�

cπðpÞ ¼ gp2 χ
†
Σ�
c
ðS† · pÞχΛ�

c
: ð10Þ

For Λ�
cð3=2þÞ,

−iT Λ�
c→ΣcπðpÞ ¼ gp1 χ

†
Σc
ðS · pÞχΛ�

c
; ð11Þ

−iT Λ�
c→Σ�

cπðpÞ ¼ gp2 χ
†
Σ�
c
ðΣ · pÞχΛ�

c
; ð12Þ

−iT Λ�
c→Σ�

cπðfÞ ¼ gf2 χ
†
Σ�
c
ðWijkpipjpkÞχΛ�

c
; ð13Þ

where Λ�
cð3=2þÞ → Σ�

cπ can decay both in p and f waves.
For Λ�

cð5=2þÞ,

−iT Λ�
c→ΣcπðfÞ ¼ gf1 χ

†
Σc
ðσ · pÞðS · pÞðT · pÞχΛ�

c
; ð14Þ

−iT Λ�
c→Σ�

cπðpÞ ¼ gp2 χ
†
Σ�
c
ðT · pÞχΛ�

c
; ð15Þ

−iT Λ�
c→Σ�

cπðfÞ ¼ gf2 χ
†
Σ�
c
ðXijkpipjpkÞχΛ�

c
; ð16Þ

where Λ�
cð5=2þÞ → Σ�

cπ can decay both in p and f waves.
For Λ�

cð7=2þÞ,

−iT Λ�
c→ΣcπðfÞ ¼ gf1 χ

†
Σc
ðS · pÞðT · pÞðU · pÞχΛ�

c
; ð17Þ

−iT Λ�
c→Σ�

cπðfÞ ¼ gf2 χ
†
Σ�
c
ðΣ · pÞðT · pÞðU · pÞχΛ�

c
; ð18Þ

where the h-wave decay is forbidden due to the brown
muck selection rule in the quark model.
For the second vertex, we calculate the Σc → Λcπ and

Σ�
c → Λcπ amplitudes as

−iT Σc→ΛcπðpÞ ¼ gp3 χ
†
Λc
ðσ · pÞχΣc

; ð19Þ

−iT Σ�
c→ΛcπðpÞ ¼ gp4 χ

†
Λc
ðS · pÞχΣ�

c
; ð20Þ

where gp3 and g
p
4 are Yukawa couplings of the second vertex

in sequential process corresponding to Σð�Þ
c → Λcπ.

B. Coupling constants by the quark model

To determine various coupling constants of the effective
Lagrangians, we compute helicity amplitudes both in
effective Lagrangians and in the quark model. Let us start
from helicity amplitudes in effective Lagrangians for the

second vertex Σð�Þ
c → Λcπ, A1=2,

−iA1=2ðΣc → ΛcπÞ ¼ gp3

�
1

2
;
1

2

����ðσ · pÞ
���� 12 ;

1

2

�

¼ gp3p

�
1

2
;
1

2

����σz
���� 12 ;

1

2

�

¼ gp3p; ð21Þ
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−iA1=2ðΣ�
c → ΛcπÞ ¼ gp4

�
1

2
;
1

2

����ðS · pÞ
���� 32 ;

1

2

�

¼ gp4p

�
1

2
;
1

2

����Sz
���� 32 ;

1

2

�

¼ −
ffiffiffi
2

3

r
gp4p: ð22Þ

Because of the spin 1=2 of the final state Λc, only helicity
1=2 is allowed as indicated by the subscript 1=2. Similarly,
the helicity amplitudes for the first vertex are computed as
in the following. For Λ�

cð1=2−Þ decays,

−iA1=2ðΛ�
c → ΣcπÞ ¼ gs1

�
1

2
;
1

2

����12 ;
1

2

�
¼ gs1; ð23Þ

−iA1=2ðΛ�
c → Σ�

cπÞ ¼ gd2

�
3

2
;
1

2

����ðS† · pÞðσ · pÞ
���� 12 ;

1

2

�

¼
ffiffiffi
2

3

r
gd2p

2: ð24Þ

For Λ�
cð3=2−Þ decays,

−iA1=2ðΛ�
c → ΣcπÞ ¼ gd1

�
1

2
;
1

2

����ðσ · pÞðS · pÞ
���� 32 ;

1

2

�

¼ −
ffiffiffi
2

3

r
gd1p

2: ð25Þ

For Σ�
cπ channel, because the spin of Σ�

c is 3=2, there are
two helicity amplitudes A1=2 and A3=2 and two possible
partial waves, s and d waves. For the s-wave case, the
amplitudes are written as

−iA1=2ðΛ�
c → Σ�

cπÞ ¼ gs2

�
3

2
;
1

2

����32 ;
1

2

�
¼ gs2; ð26Þ

−iA3=2ðΛ�
c → Σ�

cπÞ ¼ gs2

�
3

2
;
3

2

����32 ;
3

2

�
¼ gs2; ð27Þ

while for d-wave, the amplitudes are given by

−iA1=2ðΛ�
c → Σ�

cπÞ ¼ gd2

�
3

2
;
1

2

����ðp · V · pÞ
���� 32 ;

1

2

�

¼ gd2p
2

�
3

2
;
1

2

����Vzz

���� 32 ;
1

2

�

¼ −
1ffiffiffi
5

p gd2p
2; ð28Þ

−iA3=2ðΛ�
c → Σ�

cπÞ ¼ gd2

�
3

2
;
3

2

����ðp · V · pÞ
���� 32 ;

3

2

�

¼ 1ffiffiffi
5

p gd2p
2: ð29Þ

Other cases can be calculated in similar manners.
The summary of helicity amplitudes in the effective
Lagrangians is given in Table I.
Now for quark model calculations, following Ref. [3],

baryon wave functions are formed in the heavy quark basis.
Namely, a diquark which is formed by two light quarks
(brown muck) is combined with the one heavy quark to
form baryons. Therefore, quark model configurations for
Λ�
c states are denoted as Λ�

cðnlξ; JðjÞPÞ where nl stand for
the node and orbital angular momentum quantum numbers,
and ξ ¼ λ; ρ; λλ; ρρ or λρ indicate orbital excitations of
quarks. Its spin and parity are denoted by JðjÞP, in which j
corresponds to the total angular momentum of the brown
muck. In the quark model, we employ the axial-vector type
coupling for the interaction between the pion and a light
quark inside a charmed baryon as

Lπqq ¼
gqA
2fπ

q̄γμγ5τ⃗q · ∂μπ⃗ ð30Þ

where gqA is the quark axial vector coupling constant and
fπ ¼ 93 MeV is the pion decay constant. Helicity ampli-
tudes are computed by sandwiching the πqq interaction in
Eq. (30) by baryon wave functions. Details including quark

TABLE I. Helicity amplitudes Ah of Λ�
c → Σð�Þ

c π decays with
various spin and parity assignments, and Σð�Þ

c → Λcπ decays
calculated in effective Lagrangians.

Initial state h AhðΛ�
c → ΣcπÞ AhðΛ�

c → Σ�
cπÞ

Λ�
cð1=2−Þ 1=2 gs1

ffiffi
2
3

q
gd2p

2

Λ�
cð3=2−Þ 1=2 −

ffiffi
2
3

q
gd1p

2 gs2 − 1ffiffi
5

p gd2p
2

3=2 gs2 þ 1ffiffi
5

p gd2p
2

Λ�
cð5=2−Þ 1=2

ffiffi
2
5

q
gd1p

2 −
ffiffi
3
5

q
gd2p

2

3=2 −
ffiffiffiffi
18
5

q
gd2p

2

Λ�
cð1=2þÞ 1=2 gp1p

ffiffi
2
3

q
gp2p

Λ�
cð3=2þÞ 1=2 −

ffiffi
2
3

q
gp1p gp2p − 3ffiffiffiffi

35
p gf2p

3

3=2 3gp2p þ 1ffiffiffiffi
35

p gf2p
3

Λ�
cð5=2þÞ 1=2

ffiffi
2
5

q
gf1p

3 −
ffiffi
3
5

q
gp2p þ

ffiffiffiffi
6
35

q
gf2p

3

3=2 −
ffiffi
2
5

q
gp2p − 3ffiffiffiffi

35
p gf2p

3

Λ�
cð7=2þÞ 1=2 −

ffiffiffiffi
8
35

q
gf1p

3
ffiffiffiffi
12
35

q
gf2p

3

3=2
ffiffiffiffi
12
7

q
gf2p

3

AhðΣð�Þ
c → ΛcπÞ

Σcð1=2þÞ 1=2 gp3p

Σ�
cð3=2þÞ 1=2 −

ffiffi
2
3

q
gp4p
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model parameters for actual computations in this paper are
found in Ref. [3], and here we summarize the results.
To simplify the notations, we define the quantities as

following

Cλ
0 ¼ iG

E
m
aλFðpÞ; ð31Þ

Cρ
0 ¼ iG

E
m
aρFðpÞ; ð32Þ

Cλ
2 ¼

iGM
aλð2mþMÞ

�
2þ E

2m

�
1 −

M
2mþM

�	
FðpÞ; ð33Þ

Cρ
2 ¼

iG
2aρ

�
2þ E

2m

�
1 −

M
2mþM

�	
FðpÞ; ð34Þ

C1 ¼ G
�
2þ E

2m

�
1 −

M
2mþM

�	
FðpÞ; ð35Þ

Cλλ
1 ¼ G

E
m

�
M

2mþM

�
FðpÞ; ð36Þ

Cρρ
1 ¼ G

E
2m

FðpÞ; ð37Þ

Cλλ
3 ¼ GM2

a2λð2mþMÞ2
�
2þ E

2m

�
1 −

M
2mþM

�	
FðpÞ;

ð38Þ

Cρρ
3 ¼ G

4a2ρ

�
2þ E

2m

�
1 −

M
2mþM

�	
FðpÞ; ð39Þ

Cλρ
3 ¼ GM

2aλaρð2mþMÞ
�
2þ E

2m

�
1 −

M
2mþM

�	
FðpÞ;

ð40Þ

where M and m are the masses of the heavy and light
quarks. We denote the constant G as

G ¼ gqA
2fπ

: ð41Þ

The range of the Gaussian wave functions of λ and ρ
coordinates are denoted by aλ and aρ, respectively. The
Gaussian form factor FðpÞ is given by

FðpÞ ¼ e−p
2
λ=4a

2
λe−p

2
ρ=4a2ρ : ð42Þ

The energy and momentum of an emitted pion are denoted
by E and p. Furthermore, the momentum transfer for the λ
and ρ modes are given by

pλ ¼ p

�
M

2mþM

�
; ð43Þ

pρ ¼
p
2
: ð44Þ

We will demonstrate, for instance, the calculation of the
coupling constant for the decay Λ�

cð1Pλ; 3=2ð1Þ−Þ → Σcπ

−iAel
1=2 ¼ −iAqm

1=2;ffiffiffi
2

3

r
gd1p

2 ¼
�
−
1

3

�
p2Cλ

2;

gd1 ¼ −
1ffiffiffi
6

p Cλ
2: ð45Þ

For Λ�
cð1Pλ; 3=2ð1Þ−Þ → Σ�

cπ, we have two helicity
amplitudes with h ¼ 1=2 and 3=2. The coupling constants
are obtained by using the relations below

−iAel
1=2 ¼ −iAqm

1=2; ð46Þ

−iAel
3=2 ¼ −iAqm

3=2: ð47Þ

For simplicity, we define ðD1=2
s ; D3=2

s Þ and ðD1=2
d ; D3=2

d Þ as
the coefficients of the momenta p0 and p2, respectively, in
the quark model amplitude for helicity 1=2 and 3=2 as
shown in superscripts. Then, we obtain

gs2 −
1ffiffiffi
5

p gd2p
2 ¼ D1=2

s þD1=2
d p2; ð48Þ

gs2 þ
1ffiffiffi
5

p gd2p
2 ¼ D3=2

s þD3=2
d p2; ð49Þ

where there are s-wave and d-wave amplitudes. From the
equations above, we can determine the coupling constants
gs2 and gd2 as

gs2 ¼
1

2
ðD1=2

s þD3=2
s Þ þ 1

2
ðD1=2

d þD3=2
d Þp2

¼ −
1ffiffiffi
2

p Cλ
0 þ

1

3
ffiffiffi
2

p p2Cλ
2; ð50Þ

gd2 ¼ −
ffiffiffi
5

p

2
ðD1=2

d −D3=2
d Þ

¼ −
ffiffiffi
5

p

3
ffiffiffi
2

p Cλ
2: ð51Þ

Similarly, we can compute other coupling constants. One
remark is that for some spin and parity JP, one of the
possible partial waves in decaying channels is missing due
to the selection rule for the brown muck. For instance, for
the case of 5=2−, possible partial waves are d and g waves.
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The transition (pion emission) occurs between the brown
mucks of jP ¼ 1− in Λ�

cð5=2−Þ and of jP ¼ 1þ in Λcðg:s:Þ.
Due to the pion’s spin and parity 0−, the transition into the g
wave is forbidden. We can discuss similarly other cases.
The results of forbidden partial waves are shown in
Table IV. This explains the discussions around Eqs. (8)
and (18). We tabulate the coupling constants of Λ�

c and Σ�
c

in terms of the quark model for various cases in Table II.

C. Three-body decays

Let us calculate the three-body decay amplitude of
Λ�
cð2765Þ → Λcπ

þπ− for the sequential processes as
described in Fig. 2. The amplitude of the first Feynman
diagram with an intermediate Σc is expressed by

−iT ½Σ0
cð1=2þÞ� ¼ −i

T Σ0
c→Λþ

c π
−T Λ�þ

c →Σ0
cπ

þ

m23 −mΣ0
c
þ i

2
ΓΣ0

c

; ð52Þ

while the amplitude of the cross diagram is written as

−iT ½Σþþ
c ð1=2þÞ� ¼ −i

T Σþþ
c →Λþ

c π
þT Λ�þ

c →Σþþ
c π−

m13 −mΣþþ
c

þ i
2
ΓΣþþ

c

; ð53Þ

where the two-body decay amplitudes T are taken appro-
priately from Eqs. (2)–(20). We denote m23 and m13 as
the invariant masses of the subsystem of particle (2, 3) and
(1, 3), respectively, where the particle numbers 1, 2, 3
correspond to πþ, π− and Λþ

c .
The amplitude of the sequential process going through

Σ�
cð3=2þÞ is calculated similarly. We emphasize that no

phase ambiguity exists for the sequential decay amplitudes
when we use the quark model for the coupling constants.
The total amplitude is then a coherent sum,

T ¼ T ½Σ0
c� þ T ½Σþþ

c � þ T ½Σ�0
c � þ T ½Σ�þþ

c �: ð54Þ

The actual forms of the three-body decay amplitudes for
Λ�
cð1=2−Þ, for example, are given by

T ½Σ0
c� ¼ Fs

1χ
†
Λc
ðσ · p2ÞχΛ�

c
; ð55Þ

T ½Σ�0
c � ¼ Fd

2χ
†
Λc
ðS · p2ÞðS† · p1Þðσ · p1ÞχΛ�

c
; ð56Þ

T ½Σþþ
c � ¼ Fs

3χ
†
Λc
ðσ · p1ÞχΛ�

c
; ð57Þ

T ½Σ�þþ
c � ¼ Fd

4χ
†
Λc
ðS · p1ÞðS† · p2Þðσ · p2ÞχΛ�

c
; ð58Þ

where the spin states of initial Λ�
cð2765Þ and ground state

Λc are denoted by χΛ�
c
and χ†Λc

, respectively. The first and
second emitted pions are denoted by p1 and p2, respec-
tively. The Fi factor contains information about the
coupling constants, normalizations, and the Breit-Wigner
function, for instance

Fs
1 ¼

gs1g
p
3

ffiffiffiffiffiffiffiffiffiffiffi
2MΛ�

c

p ffiffiffiffiffiffiffiffiffiffiffi
2MΛc

p
m23 −mΣ0

c
þ iΓΣ0

c
=2

ð59Þ

where the gs1 and gp3 are the coupling constants for the
Λ�
cΣcπ (first vertex) and ΣcΛcπ (second vertex) which have

been defined in Sec. II A. The three-body decay amplitudes
for other spins and parities of Λ�

cð2765Þ can be computed
similarly as in Eqs. (52) and (53).
The three-body decay width is calculated as

Γ ¼ ð2πÞ4
2M

Z
jT j2dΦ3ðP;p1; p2; p3Þ

¼ 1

ð2πÞ3
1

32M3

Z
jT j2dm2

12dm
2
23; ð60Þ

where dΦ3 is the three-body phase space and P the
momentum of Λ�

cð2765Þ. From Eq. (60), we can see
that the three-body decay can be described by a two-
dimensional plot of invariant masses m2

12 and m2
23.

TABLE II. Coupling constants of the effective Lagrangians in
terms of the quark model. The quark model configurations are
denoted as Λ�

cðnlξ; JðjÞPÞ, the meaning of which is defined in the
text.

Excitation Channel Coupling constant

Λ�
cð1Pλ; 1=2ð1Þ−Þ ΣcπðsÞ gs1 ¼ − 1ffiffi

2
p Cλ

0 þ 1

3
ffiffi
2

p p2Cλ
2

Σ�
cπðdÞ gd2 ¼ − 1ffiffi

6
p Cλ

2

Λ�
cð1Pλ; 3=2ð1Þ−Þ ΣcπðdÞ gd1 ¼ 1ffiffi

6
p Cλ

2

Σ�
cπðsÞ gs2 ¼ − 1ffiffi

2
p Cλ

0 þ 1

3
ffiffi
2

p p2Cλ
2

Σ�
cπðdÞ gd2 ¼ −

ffiffi
5

p
3
ffiffi
2

p Cλ
2

Λ�
cð1Pρ; 5=2ð2Þ−Þ ΣcπðdÞ gd1 ¼ 1ffiffi

6
p Cρ

2

Σ�
cπðdÞ gd2 ¼ − 1

3
ffiffi
2

p Cρ
2

Λ�
cð2Sλλ; 1=2ð0ÞþÞ ΣcπðpÞ gp1 ¼ 1

3
ffiffi
2

p Cλλ
1 − 1

6
ffiffi
2

p p2Cλλ
3

Σ�
cπðpÞ gp2 ¼ − 1

3

ffiffi
3
2

q
Cλλ
1 þ 1

6

ffiffi
3
2

q
p2Cλλ

3

Λ�
cð1Dλλ; 3=2ð2ÞþÞ ΣcπðpÞ gp1 ¼ −

ffiffiffiffi
5
12

q
Cλλ
1 þ

ffiffiffiffi
1
60

q
p2Cλλ

3

Σ�
cπðpÞ gp2 ¼ − 1

6
ffiffi
5

p Cλλ
1 þ 1

30
ffiffi
5

p p2Cλλ
3

Σ�
cπðfÞ gf2 ¼ −

ffiffi
7

p
10
Cλλ
3

Λ�
cð1Dλλ; 5=2ð2ÞþÞ ΣcπðfÞ gf1 ¼ 1

2
ffiffi
6

p Cλλ
3

Σ�
cπðpÞ gp2 ¼ − 1ffiffi

2
p Cλλ

1 þ 1

5
ffiffi
2

p p2Cλλ
3

Σ�
cπðfÞ gf2 ¼ −

ffiffi
7

p
15
Cλλ
3

Λ�
cð1Dλρ; 7=2ð3ÞþÞ ΣcπðfÞ gf1 ¼ 1

2
ffiffi
3

p Cλρ
3

Σ�
cπðfÞ gf2 ¼ − 1

6
Cλρ
3

Σcð1S; 1=2ð1ÞþÞ ΛcπðpÞ gp3 ¼ − 1ffiffi
3

p C1

Σ�
cð1S; 3=2ð1ÞþÞ ΛcπðpÞ gp4 ¼ −C1
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The decay width can also be written as

Γ ¼ 1

8M2ð2πÞ3
Z

jT j2jp2jjp0
1jd cos θ12dm23; ð61Þ

in terms of the invariant massm23 and relative angle of two
pions (helicity angle) θ12 as depicted in Fig. 3. Here,
the momentum p2 is calculated in the rest frame of the

intermediate Σð�Þ
c resonance while p0

1 is calculated in the
rest frame of the initial particle Λ�

cð2765Þ. If we make a plot
with a combination of cos θ12 and m23, we will obtain a
so-called square Dalitz plot.
For a fixed value of m2

23, we can determine the range of
m2

12 by

m2
12 ¼ ðp1 þ p2Þ2

¼ m2
1 þm2

2 þ 2ðE1E2 − jp1jjp2j cos θ12Þ: ð62Þ

Because the value of cos θ12 is only between þ1 and −1,
the maximum and minimum values of m2

12 are

ðm2
12Þ� ¼ m2

1 þm2
2 þ 2ðE1E2 � jp1jjp2jÞ: ð63Þ

We can write the helicity angle in terms of the invariant
mass as

cos θ12 ¼
ðm2

12Þþ þ ðm2
12Þ− − 2m2

12

ðm2
12Þþ − ðm2

12Þ−
: ð64Þ

This θ12 angle is used for the study of the angular
correlation between the decay products. It depends solely
on the spin of the participating particles. In the three-body
decay of Λ�

cð2765Þ, those final states and Σ�
c intermediate

states are known. Therefore, we can study the spin of the
Λ�
cð2765Þ by analyzing the angular correlations.
The angular correlations are characterized along the

resonance bands as depicted in two Dalitz plots with
different combinations of invariant masses in Fig. 4.
Even though the structures of the two Dalitz plots are
essentially the same, the larger area provides a clearer
image of the structure on the Dalitz plot, as shown in the
lower panel of Fig. 4. We will use the lower one in the
following analysis and discussions.

III. RESULTS FOR TWO-BODY DECAYS

Let us first revisit two-body decays of Λ�
cð2765Þ with

all possible quark model configurations up to 2ℏω. In
Table III, we summarize total and partial decay widths
for decaying to Σcπ and Σ�

cπ, and the ratio R which is
defined by

R ¼ ΓðΛ�
cð2765Þ → Σ�

cð2520ÞπÞ
ΓðΛ�

cð2765Þ → Σcð2455ÞπÞ
; ð65Þ

for various quark model configurations of Λ�
cð2765Þ. The

uncertainties in the decay widths are from the ambiguities
in the quark model parameters such as quark masses and
spring constants.

A. Ratios of decay widths

Model calculations, such as in the quark model, often
contain ambiguities in absolute values, which are, however,
canceled out by taking the ratios in Eq. (65). This is one of
the advantages of studying the ratios.

FIG. 3. Relative angle of two pions defined in the Σ�
c resonance

rest frame.

FIG. 4. Resonance band (vertical solid line) on which angular
correlations are studied for different combinations of invariant
masses.
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The ratio R can also be calculated by using the heavy-
quark symmetry in a model-independent way [30]. They
provide a measure of how the quark model results follow
the heavy-quark symmetry. Let us consider the decay of
JðjÞ → J0ðj0Þ þ π. The initial and final spin of charmed
baryon with their corresponding brown muck spin are
denoted by JðjÞ and J0ðj0Þ, respectively. In the heavy-
quark limit, the heavy quark acts as a static quark, and its
spin is decoupled from the light quarks. Moreover, the
decay occurs between the brown muck j → j0 þ π. As a
result, the decay width is computed by using six-j
symbols as [31]

Γ ¼ ð2jþ 1Þð2J0 þ 1Þ
����


J J0 L

j0 j sq

�����
2

pð2Lþ1ÞjMLj2

ð66Þ

where sq ¼ 1=2 is the heavy-quark spin, L is the relative

angular momentum of the final states Σð�Þ
c π, p the emitted

pion momentum, and ML the reduced matrix element.
Equation (66) implies that there is a model-independent
relation between the decay widths for different J0 with the
same partial wave.
For the case of Λ�

cð1=2þÞ, we have six possible con-
figurations, as in Table III. The ratios with different spin j
are, for example, given by

R½Λ�
cð2Sλλ; 1=2ð0ÞþÞ� ¼ 0.79 − 0.91; ð67Þ

R½Λ�
cð1Dλρ; 1=2ð1Þþ0 Þ� ¼ 0.19 − 0.21: ð68Þ

The calculated ratio for Λ�
cð1=2þÞ with j ¼ 0 is larger than

that of j ¼ 1 by a factor 4. This factor can be explained by

TABLE III. Λ�
cð2765Þ decay width into Σcð2455Þπ and Σ�

cð2520Þπ calculated in the quark model (in unit of MeV). ½Σ�
cπ�þ denotes the

isospin summed width by using the isospin-averaged masses. The quark model configurations are denoted as Λ�
cðnlξ; JðjÞPÞ, the

meaning of which is defined in the text. For the mixed λρmode, we also show the total angular momentum ⃗l ¼ ⃗lλ þ ⃗lρ as a subscript l in
JðjÞPl . The ratio is defined by R ¼ ΓðΛ�

c → Σ�
cπÞ=ΓðΛ�

c → ΣcπÞ. We add a subscript HQ in RHQ for the ratio calculated from the heavy-
quark symmetry.

Excitations ½Σð�Þ
c π�total ½Σcπ�þ ½Σ�

cπ�þ R RHQ

1P-wave
Λ�
cð1Pλ; 1=2ð1Þ−Þ 65.1–146 61.2–140 3.90–6.10 0.04–0.06 � � �

Λ�
cð1Pλ; 3=2ð1Þ−Þ 52.2–104 7.9–11.9 44.3–92.4 5.60–7.80 � � �

Λ�
cð1Pρ; 1=2ð0Þ−Þ � � � � � � � � � � � � � � �

Λ�
cð1Pρ; 1=2ð1Þ−Þ 326–676 324–673 2.10–3.00 0.004–0.006 � � �

Λ�
cð1Pρ; 3=2ð1Þ−Þ 210–413 4.20–5.80 206–408 49.0–70.0 � � �

Λ�
cð1Pρ; 3=2ð2Þ−Þ 9.40–13.1 7.60–10.5 1.90–2.70 0.25–0.26 0.22

Λ�
cð1Pρ; 5=2ð2Þ−Þ 6.30–8.80 3.40–4.70 2.90–4.20 0.87–0.90 0.76

2S-wave
Λ�
cð2Sλλ; 1=2ð0ÞþÞ 1.60–4.50 0.86–2.49 0.78–1.98 0.79–0.91 0.80

Λ�
cð2Sρρ; 1=2ð0ÞþÞ 4.69–11.2 2.60–6.55 2.09–4.60 0.70–0.80 0.80

1D-wave
Λ�
cð1Dλλ; 3=2ð2ÞþÞ 4.70–10.9 4.40–10.1 0.33–0.72 0.07–0.08 0.07

Λ�
cð1Dλλ; 5=2ð2ÞþÞ 1.90–4.40 0.13–0.32 1.77–4.04 12.8–13.8 � � �

Λ�
cð1Dρρ; 3=2ð2ÞþÞ 11.5–23.3 10.7–21.8 0.77–1.43 0.07-0.06 0.07

Λ�
cð1Dρρ; 5=2ð2ÞþÞ 4.45–8.63 0.13–0.31 4.32–8.32 26.8–33.2 � � �

1D-wave (mixed)
Λ�
cð1Dλρ; 1=2ð1Þþ0 Þ 5.47–13.4 4.53–11.3 0.93–2.10 0.19–0.21 0.20

Λ�
cð1Dλρ; 3=2ð1Þþ0 Þ 3.47–8.06 1.13–2.82 2.33–5.24 1.86–2.06 1.99

Λ�
cð1Dλρ; 1=2ð0Þþ1 Þ 0.66–1.79 0.42–1.12 0.25–0.67 0.60-0.60 0.80

Λ�
cð1Dλρ; 1=2ð1Þþ1 Þ 0.24–0.64 0.21–0.56 0.03–0.08 0.15-0.15 0.20

Λ�
cð1Dλρ; 3=2ð1Þþ1 Þ 0.13–0.35 0.05–0.14 0.08–0.21 1.49–1.51 1.99

Λ�
cð1Dλρ; 3=2ð2Þþ1 Þ 0.28–0.74 0.26–0.70 0.02–0.04 0.06-0.06 0.07

Λ�
cð1Dλρ; 5=2ð2Þþ1 Þ 0.09–0.25 0.00 0.09–0.25 ∞ � � �

Λ�
cð1Dλρ; 1=2ð1Þþ2 Þ 11.4–23.8 9.78–20.5 1.61–3.32 0.16-0.16 0.20

Λ�
cð1Dλρ; 3=2ð1Þþ2 Þ 6.48–13.4 2.45–5.13 4.03–8.31 1.62–1.65 1.99

Λ�
cð1Dλρ; 3=2ð2Þþ2 Þ 23.5–49.3 22.0–46.2 1.49–3.11 0.07-0.07 0.07

Λ�
cð1Dλρ; 5=2ð2Þþ2 Þ 8.92–18.4 0.19–0.40 8.73–18.0 44.7–44.9 � � �

Λ�
cð1Dλρ; 5=2ð3Þþ2 Þ 0.25–0.54 0.22–0.46 0.04–0.08 0.17–0.18 0.15

Λ�
cð1Dλρ; 7=2ð3Þþ2 Þ 0.17–0.37 0.12–0.26 0.05–0.11 0.41–0.43 0.35
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the heavy-quark symmetry using Eq. (66). In fact, for
Λ�
cð1=2þÞ with j ¼ 0 and j ¼ 1, the ratios are obtained as

RHQ½Λ�
cð1=2ð0ÞþÞ� ¼ 2 ×

pðΣ�
cπÞ3

pðΣcπÞ3
¼ 0.80; ð69Þ

RHQ½Λ�
cð1=2ð1ÞþÞ� ¼

1

2
×
pðΣ�

cπÞ3
pðΣcπÞ3

¼ 0.20: ð70Þ

The ratios for various configurations of Λ�
cð1=2þÞ with

the same j have similar values. For instance, Λ�
cð2Sλλ;

1=2ð0ÞþÞ and Λ�
cð2Sρρ; 1=2ð0ÞþÞ with the same j ¼ 0 have

similar ratios as shown in Table III. Consequently, those
configurations are difficult to be differentiated by compar-
ing the ratio.
For the case of Λ�

cð1=2−Þ, there are also two possibilities
with j ¼ 0 and j ¼ 1. The decay of Λ�

cð1=2−Þ with j ¼ 0 is
forbidden due to the brown muck selection rule, which is
indicated by “−” in Table III. In the quark model, the ratios
for Λ�

cð1=2−Þ are given by

R½Λ�
cð1Pρ; 1=2ð0Þ−Þ� ¼ −; ð71Þ

R½Λ�
cð1Pλ; 1=2ð1Þ−Þ� ¼ 0.04 − 0.06; ð72Þ

R½Λ�
cð1Pρ; 1=2ð1Þ−Þ� ¼ 0.004 − 0.006: ð73Þ

The ratio for Λ�
cð1=2−Þ with j ¼ 1 is one order magnitude

smaller than for Λ�
cð1=2þÞ. This is because Λ�

cð1=2−Þ
decays into Σ�

cπ in d wave resulting in a suppression in
the ratio as,

R½Λ�
cð1=2ð1Þ−Þ� ¼

ΓðΣ�
cπÞd

ΓðΣcπÞs
≪ 1: ð74Þ

The ratio is estimated to be much smaller than unity due to
d-wave nature of Σ�

cπ decay channel. In this case, the ratio
cannot be calculated by the heavy-quark symmetry because
the partial waves are different, and therefore the value of
RHQ is indicated by “−” in Table III.
For the case of Λ�

cð3=2þÞ, the ratios calculated in the
quark model with j ¼ 1 and j ¼ 2, for example, are
given by

R½Λ�
cð1Dλρ; 3=2ð1Þþ0 Þ� ¼ 1.86 − 2.06; ð75Þ

R½Λ�
cð1Dλλ; 3=2ð2ÞþÞ� ¼ 0.07 − 0.08: ð76Þ

The large difference here is understood by the heavy-quark
symmetry. For Λ�

c → Σ�
cπ decay, there are two possible

partial waves, pwave and f wave. If we neglect the fwave,
we can calculate the ratio for Λ�

cð3=2þÞ decays in p wave
by the heavy-quark symmetry as

RHQ½Λ�
cð3=2ð1ÞþÞ� ¼ 5 ×

pðΣ�
cπÞ3

pðΣcπÞ3
¼ 1.99; ð77Þ

RHQ½Λ�
cð3=2ð2ÞþÞ� ¼

1

5
×
pðΣ�

cπÞ3
pðΣcπÞ3

¼ 0.07: ð78Þ

The results are similar to the quark model calculation.
For Λ�

cð3=2−Þ, the ratios in the quark model are
obtained as

R½Λ�
cð1Pλ; 3=2ð1Þ−Þ� ¼ 5.60–7.80; ð79Þ

R½Λ�
cð1Pρ; 3=2ð1Þ−Þ� ¼ 49.0–70.0; ð80Þ

R½Λ�
cð1Pρ; 3=2ð2Þ−Þ� ¼ 0.25–0.26: ð81Þ

For j ¼ 1, the ratio is much larger than unity because the s
wave is allowed for the decay into Σ�

cπ while not for that
into Σcπ,

R½Λ�
cð3=2ð1Þ−Þ� ¼

ΓðΣ�
cπÞs þ ΓðΣ�

cπÞd
ΓðΣcπÞd

≫ 1: ð82Þ

For the brown muck spin j ¼ 2, the s-wave decay is not
allowed due to brown muck selection rule. Since both
channels allow d-wave decay, the ratio from the heavy-
quark symmetry can be computed as

RHQ½Λ�
cð3=2ð2Þ−Þ� ¼ 1 ×

pðΣ�
cπÞ5

pðΣcπÞ5
¼ 0.22; ð83Þ

which is consistent with the quark model in Eq. (81).
For the case of Λ�

cð5=2þÞ with j ¼ 2 and j ¼ 3, the
ratios are calculated as

R½Λ�
cð1Dλλ; 5=2ð2ÞþÞ� ¼ 12.8–13.8; ð84Þ

R½Λ�
cð1Dρρ; 5=2ð2ÞþÞ� ¼ 26.8–33.2; ð85Þ

R½Λ�
cð1Dλρ; 5=2ð2Þþ2 Þ� ¼ 44.7–44.9; ð86Þ

R½Λ�
cð1Dλρ; 5=2ð2Þþ1 Þ� ¼ ∞; ð87Þ

R½Λ�
cð1Dλρ; 5=2ð3Þþ2 Þ� ¼ 0.17–0.18: ð88Þ

For Λ�
cð1Dλρ; 5=2ð2Þþ1 Þ, the matrix element of the Σcπ

decaying channel becomes zero (and hence the ratio
becomes infinity) due to conservation of orbital angular
momenta. For j ¼ 2, the ratio is much larger than unity
because the p wave is allowed for the decay into Σ�

cπ while
not for that into Σcπ,

R½Λ�
cð5=2ð2ÞþÞ� ¼

ΓðΣ�
cπÞp þ ΓðΣ�

cπÞf
ΓðΣcπÞf

≫ 1: ð89Þ

THREE-BODY DECAY OF Λ�
cð2765Þ AND … PHYS. REV. D 101, 094023 (2020)

094023-9



For j ¼ 3, p wave is forbidden and only f wave is allowed
for both Σcπ and Σ�

cπ decay channels. Then, the ratio from
the heavy-quark symmetry can be computed as

RHQ½Λ�
cð5=2ð3ÞþÞ� ¼

5

4
×
pðΣ�

cπÞ7
pðΣcπÞ7

¼ 0.15; ð90Þ

which is consistent with the one calculated in the quark
model as in Eq. (88).
For the case of Λ�

cð5=2−Þ, there is only one configuration
for the first orbital excitation in the quark model with j ¼ 2,

R½Λ�
cð1Pρ; 5=2ð2Þ−Þ� ¼ 0.87–0.90: ð91Þ

In this case, only d wave is possible for both decaying
channels, the ratio for Λ�

cð5=2ð2Þ−Þ is obtained by the
heavy-quark symmetry as

RHQ½Λ�
cð5=2ð2Þ−Þ� ¼

7

2
×
pðΣ�

cπÞ5
pðΣcπÞ5

¼ 0.76: ð92Þ

For completeness, we consider Λ�
cð7=2þÞ in which it is

found as a 1D-wave state with mixed λρ mode in the quark
model. The ratio is given by

R½Λ�
cð1Dλρ; 7=2ð3Þþ2 Þ� ¼ 0.41–0.43: ð93Þ

The ratio for Λ�
cð7=2ð3ÞþÞ is computed in the heavy-quark

limit for f wave as

RHQ½Λ�
cð7=2ð3ÞþÞ� ¼ 3 ×

pðΣ�
cπÞ7

pðΣcπÞ7
¼ 0.35: ð94Þ

The ratio is again consistent with the quark model.

B. Magnitudes of decay widths

By now, there is only information about the magnitude of
Λ�
cð2765Þ decay width measured by CLEO in the literature.

The measured decay width is about Γexp ≈ 50 MeV. As
discussed before, the nonresonant contribution is rather
small, and the total decay width is dominated by the

sequential decays through Σð�Þ
c π [8].

As shown in Table III, for negative parity states,
Λ�
cð1Pλ; 1=2ð1Þ−Þ and Λ�

cð1Pρ; 1=2ð1Þ−Þ gives a rather
large decay width due to s-wave nature of the decaying
channel of Σcπ. Λ�

cð1Pλ; 3=2ð1Þ−Þ and Λ�
cð1Pρ; 3=2ð1Þ−Þ

also have a large decay width because of the s-wave
nature of decaying channel Σ�

cπ. On the other hand,
Λ�
cð1Pρ; 3=2ð2Þ−Þ and Λ�

cð1Pρ; 5=2ð2Þ−Þ give a small
decay width due to the d-wave nature of decaying channel

Σð�Þ
c π. For positive parity states, almost all configurations

give a rather small decay width. Among various configu-
rations, four cases have a value consistent with data within
about factor two. However, it is fair to say that from the

comparison of the total decay widths, one cannot determine
the spin and parity. This is the reason that we investigate
Dalitz plots together with the angular correlations in the
next section.

IV. RESULTS FOR THREE-BODY DECAYS

Because Λ�
cð2765Þ is a broad resonance, its mass

distributes over a finite width, not in a narrow region.
Consequently, the experimental Dalitz plot may be a
superposition of Dalitz plots at various initial masses. In
this paper, we first compute various Dalitz plots at the
central value of 2765 MeV in most cases. Second, we will
give some remarks as implied by such figures as Fig. 5,
where an example of Dalitz plots are shown for three
different masses of Λ�

cð2765Þ. Finally, effects of the finite
width will be discussed in detail in subsection IV C. It turns
out that the convoluted Dalitz plots are fairly different from
the one computed at a fixed mass. Therefore, in comparison
with actual experimental data, it is important to know
whether the data is taken from the mass region distributed
over the resonance width or from a fixed (practically within
a very narrow energy bin) mass.

A. Dalitz and invariant mass plots

We investigate all possible spins and parities JP ¼ 1=2�,
3=2�, 5=2� and 7=2þ for Λ�

cð2765Þ. Among several
possible configurations for a given JP, we will select the
low-lying configurations of the quark model as follows

Λ�
cð1=2−Þ → Λ�

cð1Pλ; 1=2ð1Þ−Þ; ð95Þ

Λ�
cð3=2−Þ → Λ�

cð1Pλ; 3=2ð1Þ−Þ; ð96Þ

FIG. 5. The Dalitz plots of Λ�
cð2765Þ with mass 2715 (lower),

2765 (middle), and 2815 MeV (upper). The bands formed by
intermediate states Σð�Þ

c are indicated in the figure as eye’s guides.
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Λ�
cð5=2−Þ → Λ�

cð1Pρ; 5=2ð2Þ−Þ; ð97Þ

Λ�
cð1=2þÞ → Λ�

cð2Sλλ; 1=2ð0ÞþÞ; ð98Þ

Λ�
cð3=2þÞ → Λ�

cð1Dλλ; 3=2ð2ÞþÞ; ð99Þ

Λ�
cð5=2þÞ → Λ�

cð1Dλλ; 5=2ð2ÞþÞ; ð100Þ

Λ�
cð7=2þÞ → Λ�

cð1Dλρ; 7=2ð3ÞþÞ: ð101Þ

For Λ�
cð5=2−Þ, we select a ρ-mode excitation because

there is no corresponding λ mode. Note that Λ�
cð7=2þÞ

appears only as a mixed λρ-mode excitation. As there are
also other configurations for the same spin and parity, we
will consider, for example, spin and parity 1=2þ and 3=2þ
with different brown muck spin j

Λ�
cð1=2þÞ → Λ�

cð1Dλρ; 1=2ð1ÞþÞ; ð102Þ

Λ�
cð3=2þÞ → Λ�

cð1Dλρ; 3=2ð1ÞþÞ; ð103Þ

to see the effect of the internal structures.
The Dalitz plots for various spins and parities are shown

in Figs. 6 and 7. There are four resonance bands in Dalitz
plots. Two resonance bands in the middle correspond to
Σ�0
c ð2520Þ and Σ�þþ

c ð2520Þ, while the resonance bands
located on the left and right side correspond to Σ0

cð2455Þ
and Σþþ

c ð2455Þ, respectively. These four resonance bands
appear also in the (m2

23; m
2
13) plots as shown in Fig. 5. In the

comparison of these plots, the interference pattern of Σ�0
c

and Σ�þþ
c , and the far-separated location of the two bands

for Σ0
c and Σþþ

c are commonly observed. Note that the
interference occurs only for a specific initial mass around
2765 MeV. If we choose a higher or lower initial mass such

FIG. 6. The Dalitz plots in the (m2
23; m

2
12Þ plane and the invariant mass plots of Λþ

c π
−. The spins and parities of Λ�

cð2765Þ as
JP ¼ 1=2�, 3=2�, and 5=2�, along with the corresponding brown muck spin j, are indicated in each panel. The Dalitz plots are made by
fixing the initial mass at 2765 MeV.
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as 2715 or 2815 MeV, the interference disappears as seen
from Fig. 5.
The corresponding invariant mass plots of Λþ

c π
− are

shown below each Dalitz plot in Fig. 6. We can also see the

corresponding Σð�Þ
c resonance peaks in the invariant mass

plots. The peaks on the most left and most right side
originating from Σ0

c and Σþþ
c have different height because

the right peak is the kinematical reflection of Σþþ
c in the

Λþ
c π

− invariant mass plot.
The Dalitz and invariant mass plots are sensitive to the

ratio R. If we look at the ratio for negative parity states of
Λ�
cð2765Þ which are given by

RðΛ�
cð1=2−ÞÞ ¼ 0.04–0.06; ð104Þ

RðΛ�
cð3=2−ÞÞ ¼ 5.60–7.80; ð105Þ

RðΛ�
cð5=2−ÞÞ ¼ 0.87–0.90; ð106Þ

they are different from each other by one oder of magni-
tude. When the ratio is relatively small, the decay process is
dominated by the Σc resonance. The Σc band dominates
over the Σ�

c as observed in the Dalitz and invariant mass plot
of Λ�

cð1=2−Þ decay as shown in Fig. 6(a). On the contrary,
when the ratio is relatively large as in Λ�

cð3=2−Þ case, the
strong peak of Σ�

c resonance is observed. Moreover, if the
ratio is nearly unity as in Λ�

cð5=2−Þ, both Σ�
c and Σc bands

appear with equal strength. These observations also apply
to positive parity cases.
In fact, there are several possible quark model configu-

rations for the same spin and parity. As discussed in the
previous section, they differ by the magnitude of the decay
width and the ratio R. First, we have checked that the
change of the magnitude will not affect the structure on the
Dalitz plot provided that the ratio R remains the same.

Second, we investigate other configurations with the same
spin and parity, but different j, by making other Dalitz plots
for Λ�

cð1=2þÞ and Λ�
cð3=2þÞ with j ¼ 1 as depicted in

Fig. 7(g) and (h). One may notice that the Σ�
c peaks look

very different for Λ�
cð3=2þÞ with j ¼ 1 and j ¼ 2 even

though both decaying channels into Σ�
cπ are p wave. The

difference is governed by the heavy-quark symmetry, as
discussed in Eqs. (77) and (78).

B. Angular correlations

It has been known that angular correlation (dependence)
can help to determine the spin of particles as in gamma-ray
spectroscopy in nuclear physics. A similar analysis can also
be applied to hadronic systems. For instance, the spin 1=2
of Σcð2455Þ charmed baryon is determined by analyzing
B− → Λþ

c π
−p̄ decay by BABAR [32]. Since initial B-meson

has spin 0 and proton has spin 1=2, there is helicity
conservation such that the Σc intermediate state in Λcπ
final state will only have a helicity 1=2 component. If Σc ’s
spin is 1=2, the angular correlation will be flat. On the
contrary, if Σc has spin 3=2, it will exhibit a concave
structure experimentally. The angular correlation has been
found to be flat, confirming that Σcð2455Þ has spin 1=2. A
similar analysis can also be done in Λ�

c → Λcππ decay.
Ideally, the angular correlations are determined by the spins
of the relevant particles. In the helicity formalism [33], it is
dictated by the Wigner’s D-functions, which in the present
formalism is encoded in the structure of the vertex
functions. The relevant algebra is also done by the tensor
formalism [34,35].
From the Dalitz plots in Fig. 6 and 7, we can observe the

angular correlations along the Σcð2455Þ look rather flat for
all spins and parities of Λ�

cð2765Þ. This is because only
helicity 1=2 is possible for Σc resonance which is related to
d1=2hfhi

ðθ12Þ matrix where hi and hf are helicities of initial

FIG. 7. The same as in Fig. 6 for the spins and parities of Λ�
cð2765Þ as 1=2þ and 3=2þ with different configurations, and 7=2þ.
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and final states, respectively. Taking the sum over hi and hf
for the absolute squared amplitude gives a flat structure in
θ12 dependence.
On the other hand, the angular correlations along the Σ�

c
resonance bands show characteristic structures through the
rank 3=2 d-functions, d3=2hfhi

ðθ12Þ. If Λ�
cð2765Þ’s spin is 1=2,

then the initial helicity takes only hi ¼ �1=2. Summing the
absolute squared amplitudes over hf we find the angular
correlation 1þ 3 cos2 θ12. If Λ�

cð2765Þ’s spin is 3=2 or
higher, the terms from hi ¼ �3=2 can also contribute.
Summing the absolute squared amplitude again over hf, we
find the correlation 3 sin2 θ12. In general there are contri-
butions of hi ¼ 1=2 and 3=2 with a weight of the helicity
amplitudes AhiðΛ�

c → Σ�
cπÞ for Λ�

cð2765Þ,

Wðθ12Þ ∝ jA1=2ðΛ�
c → Σ�

cπÞj2 × ð1þ 3 cos2 θ12Þ
þ jA3=2ðΛ�

c → Σ�
cπÞj2 × 3 sin2 θ12: ð107Þ

In Fig. 8, we plot the angular correlations Wðθ12Þ as
functions of θ12 by considering only one of Σ�

c resonances
appearing in the left diagram of Fig. 2 for various spin and
parity assignments for Λ�

cð2765Þ. The angular correlations
are computed by normalizing A1=2 equal to one,

Wðθ12Þ ∝ 1 × ð1þ 3 cos2 θ12Þ þ R̃ × 3 sin2 θ12: ð108Þ

where the ratio R̃ is defined by

R̃ ¼ jA3=2ðΛ�
c → Σ�

cπÞj2
jA1=2ðΛ�

c → Σ�
cπÞj2

¼ jðJ 3
2
L0j 3

2
3
2
Þj2

jðJ 1
2
L0j 3

2
1
2
Þj2 ; ð109Þ

with J the spin of Λ�
cð2765Þ and L the relative angular

momentum of πΣ�
c. The ratio R̃ and the resultingWðθ12Þ are

summarized in Table IV. The Clebsh-Gordan coefficients
completely determine this ratio R̃. Therefore, the angular
correlation can be used to determine the spin of Λ�

cð2765Þ
in a model-independent way.
Figures 8(a) and 8(d) show the angular correlations for

Λ�
cð2765Þ with spin 1=2 proportional to 1þ 3 cos2 θ12 with

FIG. 8. The typical angular correlations along Σ�
c resonance band where we consider only one of the Σ�

c resonances appearing in the
left diagram of Fig. 2 and neglect any interference terms. The spin and parity JP of Λ�

cð2765Þ along with the brown muck spin j are
indicated in each figure.

TABLE IV. Angular correlations along Σ�
c resonance band

denoted by Wðθ12Þ with various spins and parities of
Λ�
cð2765Þ. The relative angular momentum of πΣ�

c is denoted
by L where the forbidden one is indicated as =L. The ratio R̃ is
defined by R̃ ¼ jA3=2ðΛ�

c → Σ�
cπÞj2=jA1=2ðΛ�

c → Σ�
cπÞj2. We also

list the ratio R ¼ ΓðΛ�
c → Σ�

cπÞ=ΓðΛ�
c → ΣcπÞ from Table III for

completeness.

JðjÞP L R̃ R Wðθ12Þ
1=2ð0Þ− =d � � � � � � � � �
1=2ð1Þ− d 0 0.05 1þ 3 cos2 θ12
1=2ð0Þþ p 0 0.80 1þ 3 cos2 θ12
1=2ð1Þþ p 0 0.20 1þ 3 cos2 θ12

3=2ð1Þ− s, d 1 6.70 1
3=2ð2Þ− =s; d 1 0.22 1
3=2ð1Þþ p; =f 9 1.99 1þ 6 sin2 θ12
3=2ð2Þþ p, f 9 0.07 1þ 6 sin2 θ12

5=2ð2Þ− d; =g 6 0.76 1þ ð15=4Þ sin2 θ12
5=2ð2Þþ p, f 2=3 13.3 1þ ð1=3Þ cos2 θ12
5=2ð3Þþ =p; f 3=2 0.15 1þ ð3=8Þ sin2 θ12
7=2ð3Þþ f; =h 5 0.35 1þ 3 sin2 θ12
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a concave structure. Moreover, for the case of JP ¼ 1=2þ
with different brown muck spin j, the angular correlation
also shows a concave structure as depicted in the Dalitz
plot in Fig. 7(g). Since both positive and negative parity
assignments to Λ�

cð2765Þ give a similar structure, the ratio
R, as discussed in the previous section, helps to differ-
entiate the parities of states with the same spin. For the
higher spin states of Λ�

cð2765Þ, the helicity 3=2 component
has a considerable contribution, turning on the sin2 θ12
dependence as described in Eq. (108). If A1=2 and A3=2

amplitudes are equal, the sin2 θ12 dependence will cancel
out the cos2 θ12 dependence so that the angular correlation
would be flat. This happens only whenΛ�

c → Σ�
cπ decays in

s wave, namely for the case of Λ�
cð3=2Þ−. For other cases,

the angular correlations exhibit rather flat or convex
structures depending on the value of R̃. As we have
discussed in section II.B, there are several cases where
brown muck selection rules apply. For example, for
Λ�
cð5=2ð3ÞþÞ, the p-wave decay into πΣ�

c is forbidden.
In this case, f-wave is dominant and the angular correlation
changes from a concave structure sin2 θ12 of Λ�

cð5=2ð2ÞþÞ
to a convex structure cos2 θ12 as shown in Fig. 8, though
their angular dependence is rather weak.
So far, we have looked at the angular correlations along

one of the Σ�
c resonances. In fact, there is an interference

between Σ�0
c and Σ�þþ

c as shown in Dalitz plots in Fig. 6.
Therefore, the angular correlations along Σ�

c will be
contaminated due to the interference, especially near
cos θ12 ¼ −1. Note that the interference occurs only in
the narrow region of the initial mass of Λ�

cð2765Þ. For
instance, if we plot the angular correlation at initial mass
2780 MeV or above, the interference effect is no longer
significant as there are no overlapping resonance bands. In
this case, the angular correlation can be seen more clearly
without significant contaminations.

C. Effects of the finite width

So far, all of the Dalitz plots and other observables are
obtained by choosing a fixed value of the initial mass. It is a
good approximation for a narrow resonance such as
Λ�
cð2625Þ with Γ < 0.97 MeV. However, Λ�

cð2765Þ is a
broad resonance with Γexp ≈ 50 MeV. Hence, a convolu-
tion is needed to directly compare theoretical results with
experimental data that integrate signals over a finite mass
range. To perform a convolution, we use a Breit-Wigner
form to model the mass distribution of Λ�

cð2675Þ;

Γ̃ ¼ 1

N

Z ΓðM̃Λ�
c
ÞdM̃Λ�

c

ðM̃Λ�
c
−MΛ�

c
Þ2 þ Γ2

Λ�
c
=4

; ð110Þ

where ΓðM̃Λ�
c
Þ is the calculated decay width of Λ�

cð2765Þ
which depends on the mass M̃Λ�

c
. The normalization factor

N is defined by

N ¼
Z

dM̃Λ�
c

ðM̃Λ�
c
−MΛ�

c
Þ2 þ Γ2

Λ�
c
=4

: ð111Þ

We have used PDG values for the mass and width of
Λ�
cð2765Þ denoted by MΛ�

c
and ΓΛ�

c
, respectively.

To see the effect of the convolution, we show as an
example of the Dalitz plot for Λ�

cð1=2þÞ with j ¼ 0 in
Fig. 9. In the (m2

23, m
2
13) plane, four resonance bands of Σc

and Σ�
c are commonly observed. On the other hand, Σþþ

c
and Σ�þþ

c resonance bands are smeared out leaving two
resonance bands corresponding to Σ0

c (left) and Σ�0
c (right)

in (m2
23, m

2
12) plane. In the invariant mass plot, the peaks

due to kinematical reflections disappear, as shown in the
bottom panel of Fig. 9.
To discuss the angular correlation along Σ�0

c resonance
band, one needs to transform the convoluted Dalitz plots

FIG. 9. The convoluted Dalitz and invariant mass plots for
Λ�
cð2765Þ with JðjÞP ¼ 1=2ð0Þþ.
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in Fig. 9 into a so-called square Dalitz plot, which is a
two-dimensional plot as a function of cos θ12 and m23 as
shown in Fig 10. In the convoluted square Dalitz plot, the
angular correlations can be seen clearly because the Σ�0

c
resonance band is always spanned from cos θ12 ¼ −1 to
cos θ12 ¼ þ1 for each plot with a fixed initial mass. If we
make a narrow cut around Σ�0

c , i:e.MΣ�0
c
� ΓΣ�0

c
, and fit the

angular correlations with a polynomial of cos θ12,
we obtain

Waðθ12Þ ∝ 1þ 2.9 cos2 θ12; ð112Þ

Wbðθ12Þ ∝ 1þ 2.9 cos2 θ12 − 0.3 cos θ12; ð113Þ

Wcðθ12Þ ∝ 1þ 6.0 cos2 θ12 − 0.5 cos θ12; ð114Þ

where subscripts a, b, and c in Wðθ12Þ correspond to
those labels in Fig. 10. If we neglect other contributions

but Σð�Þ0
c , the angular correlation is the same as tabulated

in Table IV. Note that a small difference in cos2 θ12
coefficient is due to Σ0

c contribution. When we add other

contributions from Σð�Þþþ
c without including interference

terms, the angular correlation becomes slightly asym-
metric because there is an overlap between Σ�0

c and Σ�þþ
c

resonances in the lower region of the upper Dalitz plot in
Fig 9. Finally, if we consider the interference terms, the
angular correlation considerably changes as shown in
Eq. (114), but it still exhibits a concave structure as seen
in Fig. 10. In general, the interference terms modify the
angular correlations, but they do not change the charac-
teristic shape of the angular correlations in Fig. 8. For
Λ�
cð2765Þ, there is an accidental interference between Σ�0

c
and Σ�þþ

c resonances. However, for higher excited states
of Λ�

c baryons, e.g., Λ�
cð2880Þ, those Σ�

c resonances are
well separated such that the analysis becomes easier.

V. SUMMARY

In this work, we have investigated the three-body decay
of Λ�

cð2765Þ → Λþ
c π

þπ−. Here, we focus on the sequential

processes going through Σð�Þ
c resonances, by accepting that

the contribution of the nonsequential process is small
through the experimental observation [8].
We have performed the Dalitz plot analysis with various

spin and parity assignments of Λ�
cð2765Þ. Employing

effective Lagrangians in the nonrelativistic framework,
we have computed all possible two-body decays of

Λ�
cð2765Þ → Σð�Þ

c π by means of the quark model for all
possible configurations up to 2ℏω regions. The results are
transformed into various coupling constants in the effective
Lagrangians.
It turns out that geometric and dynamical factors

determine the structures of the Dalitz plots. Geometric
factors are model-independent and are characterized by the
spin and parity of participating particles and underlying
symmetry. They are angular correlations that are deter-
mined by spin, and the ratios R that are dominated by the
parity that determines the partial wave of decaying par-
ticles. In contrast, dynamical factors are model-dependent
such as the interaction strengths and form factors. The
dynamical factor is taken into account by using the quark

(a)

(b)

(c)

FIG. 10. The convoluted square Dalitz plots for Λ�
cð2765Þ with

JðjÞP ¼ 1=2ð0Þþ which consider (a) only Σð�Þ0
c , (b) Σð�Þ0

c and

Σð�Þþþ
c , and (c) total amplitudes including interference terms.

Note that we do not include any interference terms for (a) and (b).
Their corresponding angular correlations along Σ�0

c with a mass
cut MΣ�0

c
� ΓΣ�0

c
are given in the bottom panel.
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model as input, which characterizes the strengths of the Σð�Þ
c

intermediate states.
From absolute values of decay widths, one can not

decide which quark model configuration is suitable for
Λ�
cð2765Þ. However, the ratios R are sensitive to the

configurations, which are reflected in Dalitz and invariant
mass plots. Moreover, it is found that the angular corre-
lations along the Σ�

c resonance band in the Dalitz plots are
sensitive to the spin and parity of Λ�

cð2765Þ. Finally, we
have investigated the effect of the finite width of Λ�

cð2765Þ
and the interference terms. In convoluted Dalitz plots, we
have found that the kinematical reflections are smeared out,
but the angular correlations can be still observed clearly.
The interference terms can contaminate the angular corre-
lation but do not change its characteristic shape. Therefore,
the information about the ratio R and the angular corre-
lation would shed the light on the spin and parity
of Λ�

cð2765Þ.
A similar angular correlation analysis can also be

done for three-body decays of charm-strange baryons, in

particular for Ξ�
cð2970Þ → Ξcππ decay [36,37]. In this

case, there is no kinematical reflection of Ξ�
cð2645Þ

intermediate state and Ξ0
c has a negligible width, result-

ing no significant contaminations from interferences.
Furthermore, we can apply the analysis to the bottom
sectors such as recently observed Λ�

b baryons in Λbππ
invariant mass [38–40] in determination of their spin and
parity. We will discuss these issues elsewhere.
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