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We formulate the final-state interaction of the a1ð1260Þ resonance decay in a manifestly three-body
unitary parametrization and fit it to the a1ð1260Þ line shape measured by the ALEPH experiment. Dalitz
plots calculated from this fit are presented. The work demonstrates the feasibility to numerically solve a
previously derived amplitude and its generalization to isobars with spin and coupled channels. The model
can also be applied to other meson decays and modified for the finite-volume problem as it arises in lattice
QCD due to its manifest unitarity.
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I. INTRODUCTION

Excited states of strongly interacting matter exhibit a
complex spectrum at low and intermediate energies.
Connecting the underlying nonperturbative realization of
quantum chromodynamics (QCD) to phenomenology is
an ongoing experimental and theoretical challenge. The
quest to understand phenomenology including the decay of
excited states and unravel the microscopic nature of
mesonic and baryonic resonances poses open questions.
Many are related to three-body dynamics. A prime example
of such a riddle in the baryon sector (explored by
CLAS@JLab [1,2], ELSA [3], MAMI [4], and other
facilities) is the dynamical structure of the enigmatic
Roper state Nð1440Þ1=2þ and its mass pattern compared
to the Nð1535Þ1=2− state. While the microscopic features
of the latter state can be parametrized by, e.g., meson-
baryon interactions within chiral unitary approaches [5–9],
the situation is more involved for the Roper state due to
large branching ratios to the ππN channels. The ππN
dynamics is included in many analyses of the baryon
spectrum with varying degrees of rigor [10–13], with
dynamical coupled-channel approaches usually respecting
at least aspects of three-body unitarity [8,14,15]. The
unusually large branching ratios of the Roper resonance
into three-body channels might explain not only its dis-
torted shape [11] but also its unusual signals found in lattice
QCD [16]. The present work deals with a simpler mesonic
resonant three-body system, thus, providing a necessary

stepping stone on the way to tackle more complex baryonic
resonances in the future.
In the meson sector, the GlueX [17] and COMPASS

experiments [18], and the BESIII accelerator [19] search
for the exited states of strongly interacting matter, including
exotics, i.e., states with quantum numbers that cannot
form from two constituent quarks. Thus, it is expected
that the discovery and the understanding of such states
will be a direct indicator for gluonic degrees of freedom in
QCD at low energies. Many of such exotic states as well as
conventional mesons decay dominantly or exclusively into
three particles, which has triggered extended partial-wave
analysis efforts, e.g., by COMPASS [20,21], BESIII
[22,23], in coupled channels using the PAWIAN frame-
work for pp̄-induced meson production [24], or using
Khuri-Treiman equations and related frameworks by the
Bonn group, JPAC, and others for light meson decays
[25–48]. This paper extends the three-body approach of
Ref. [49] that is inspired by the work of Amado et al. [50]
(see Sec. II for a detailed discussion).
Lattice QCD is the nonperturbative tool to access the

QCD Green’s functions at low and intermediate energies
from first principles. In addressing three-hadron systems,
such calculations need to include a large set of operators
including three-hadron operators. This leads to a signifi-
cantly increased computational effort compared to two-
body systems. However, progress has been made over the
last years in calculating lattice spectra [16,51–55], includ-
ing the a1ð1260Þmeson [52]. Such discrete and real-valued
spectra are inherently different from the infinite-volume
ones. The so-called quantization condition allows one to
map between finite and infinite volume, and is an active
field of theoretical research [56–75]. It has been shown in
Ref. [72] that the key to the understanding of three-body
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finite-volume spectra from the lattice lies in the S-matrix
principle of unitarity. There, a simpler version of the
framework underlying the present study [49] (no spin)
was adapted to the finite-volume case demonstrating its
feasibility to provide infinite-volume mappings. Both
finite-volume and lattice computations in the three-body
sector are now capable of addressing simple three-pion
systems [55,76–78] and are about to be extended to more
complicated cases like axial mesons and exotics.
The a1ð1260Þ axial meson has a clean three-pion decay

as the intermediate state in τ decays in which other partial
waves are suppressed, in contrast to pion- or photon-
induced three-pion production; it is also wide [79] indicat-
ing strong and nontrivial three-body effects which make the
a1ð1260Þ a prime candidate to study three-body dynamics.
This is reflected in an increased interest in the structure of
the a1ð1260Þ [41,80–89] which is also the main goal of the
present manuscript.
More specifically, in view of the importance of three-

body unitarity, our goal is to extend the manifestly unitary,
relativistic three-body scattering amplitude derived in
Refs. [49,90] to the coupled-channel case for isobars with
spin, namely the a1ð1260Þ in which the ρπ decay channel is
known to provide the dominant contribution [79]. This also
requires the development of numerical techniques for the
solution of the integral equations. Here, we restrict the
a1ð1260Þ dynamics to the ρπ S- and D-wave channels; a
detailed partial-wave analysis of the three-pion system in τ
decays measured by CLEO [91] has shown that there are
also other channels needed for the detailed description
of Dalitz plots and related observables. Demonstrating the
feasibility of the approach, we fit the amplitude to the
experimental data on the τ− → πþπ−π−ντ line shape
measured in the ALEPH@CERN [92] experiment. Note
that other measurements of the same process have also been
made [93–95] with lower statistics.
This work is organized as follows. In Sec. II the main

definitions of the decay and three-body amplitude are
introduced and compared to other approaches in the
literature. The strategy for solving these equations is
described in Sec. III. Finally, in Sec. IV the result of a
fit to ALEPH data and the calculation of Dalitz plots from
that fit are presented and discussed.

II. FORMALISM

The final-state interaction of the weakly induced decay
process τ− → πþπ−π−ντ is given by the interaction of three
pions with a1ð1260Þ quantum numbers. The presence of
the outgoing neutrino allows the total energy squared, s, of
the three pions to vary. This allows one to “scan” the
spectrum of three pions in the final state, thus obtaining
the so-called mass spectrum or line shape of the a1ð1260Þ
resonance that was measured in the ALEPH [92] experi-
ment and is the main experimental input of the
present work.
To access the mass spectrum theoretically, the decay

process is decomposed into the weak and strong parts
as τ− → W−ντ → ða1ð1260Þ → π−π−πþÞντ (see, e.g.,
Ref. [41]). The strong, final-state interaction of the three
pions is described by the process shown in Fig. 1. As
indicated in the first parentheses it contains a part describ-
ing the production of the ρπ pair in S andD wave. This part
consists of the direct production of the ρπ pair as well as an
intermediate propagation of a1ð1260Þ. The ρπ system then
interacts (second parentheses in the figure) and decays in
the final step into three pions, such that three-body unitarity
is preserved exactly. Note that while the picture suggests a
diagrammatic expansion of the interaction, the approach is
not Lagrangian based as discussed below.
The final-state interaction of three pions is taken into

account nonperturbatively ensuring three-body unitarity.
This is achieved using the formalism developed in
Ref. [49]. In a nutshell, the approach is based on a
decomposition of the scattering amplitude into a connected
and a disconnected part (cf. “connectedness structure” in
Ref. [96]). Each of these pieces is populated by the two-
body subsystem (referred to as “isobar” in the following)
and a spectator. The analytic forms of the Bethe-Salpeter
kernel, B, and the fully dressed isobar propagator τ are
fixed up to real functions of energy and momenta by
matching the Bethe-Salpeter equation with the three-body
unitarity condition [49]. This isobar-spectator amplitude is
depicted symbolically in Fig. 2.
Note that this approach relies on dispersive techniques

taking advantage of unitarity and connectedness structure.
As such, it does not rely on a Lagrangian formalism for the

FIG. 1. The decay of an unpolarized a1ð1260Þ meson parametrized by a source (left parentheses) into a ρ meson (double lines) and a
pion (single lines), with subsequent decay into π−π−πþ and the pertinent symmetrization (not shown). The relativistic, unitary final-state
interaction (parentheses in the middle) is parametrized in terms of the isobar-spectator amplitude T and isobar propagator τ. The
coupling of the ρ to two pions is encoded in the vertex function v.

SADASIVAN, MAI, AKDAG, and DÖRING PHYS. REV. D 101, 094018 (2020)

094018-2



microscopic interaction but provides a clean separation
between on-shell parts and short-range physics encoded in
real-valued contributions indicated as C in Fig. 2 and
referred to as “three-body force” in what follows. We will
describe the implementation and numerical applications of
this approach in more detail below.
The formal decomposition of the entire amplitude into a

short-range and a long-range part (“ladders”) was discussed
in Ref. [48]. It is sometimes referred to as the “two-
potential formalism” used mostly in the baryonic sector
[97,98]. This decomposition is not unique [99] but can be
advantageous for time-consuming fits to large data sets
[98]. The matching of different three-body formalisms,
including the current one and its mapping to Feynman-
diagrammatic expressions was discussed in Ref. [100]. In
that reference, global analytic properties of the three-to-
three amplitude were discussed. Comparing frameworks
like the present one to the analytic properties of the triangle
diagram it was shown that in the subthreshold region,
nonanalyticities can occur depending, e.g., on specific
implementations of the integration over two-body sube-
nergies in the three-body equation.
Early attempts to solve the three-pion problem in the

a1ð1260Þ channel with a nonperturbative final-state inter-
action, in a framework similar to the present one, were
carried out in Refs. [80,101], sharing technical details like
complex-momentum integration with our approach, but
modeling the short-range πρ interaction with effective
Lagrangians. We do not attempt to microscopically resolve
this dynamics which can only be done model dependently,
anyways. The amplitude of Refs. [80,101] was initially
formulated including an unstable ρ isobar, as in the present
case. However, due to problems of how to continue the
solution of the T matrix from complex back to real
spectator momenta, the actual numerical results were
obtained with a stable ρ meson which violates unitarity.
Indeed, the isobar representing the two-body subamplitude
must possess its proper imaginary part for the entire
amplitude to fulfill three-body unitarity [49]. This cannot
be achieved with a stable particle propagator.
The present approach is most closely related to the one

by the EBAC Collaboration (now ANL/Osaka) [86]. There,
Dalitz plots not only for the a1ð1260Þ meson but also for
other three-body decays were predicted. Furthermore,
inelasticities in the two-body subsystems were taken into
account and the a1ð1260Þ was allowed to decay also in σπ

and f2π, apart from the dominant ρπ S-wave channel. On
the other hand, we use here an amplitude that is manifestly
unitary, with the full proof of unitarity first delivered in
Ref. [49], and we also provide data fits and study the energy
dependence of the amplitude by comparing to ALEPH
data. This is particularly relevant for future extensions to
finite-volume calculations for lattice QCD in which mani-
fest unitarity is responsible for a subtle cancellation of
unphysical singularities [72].
In the following we describe our approach to calculate

the decay process. In Sec. II A, we provide the equations
needed to describe each term shown in Fig. 1. In Sec. II B
the partial-wave decomposition is discussed. Finally, in
Sec. II C, we describe how the amplitude can be related to
observables.

A. Plane-wave amplitudes

The amplitude Γ̂Λλ, describing the decay of the axial
a1ð1260Þ resonance at rest with helicity Λ measured along
the z axis into a π− and a ρ0λ → πþπ− with helicity λ, is
given by

Γ̂Λλðq1;q2;q3Þ¼
1ffiffiffi
2

p ½ΓΛλðq1;q2;q3Þ−ðq1↔q2Þ�;

ΓΛλðq1;q2;q3Þ

¼
�
DΛλðq1Þþ

X
λ0

Z
d3p

ð2πÞ32Ep
DΛλ0 ðpÞτðσðjpjÞÞTλ0λðp;q1Þ

�

×τðσðjq1jÞÞv�λ ðq2;q3Þ; ð1Þ

where q1, and q2 are outgoing π− momenta, and q3 is the
outgoing πþ momentum. In Eq. (1) the dependence on the
squared invariant mass of the three-body system s is
suppressed; isospin indices are provided below; the squared
invariant mass of the ρ, denoted by σðjpjÞ, depends only on
the size of the spectator momentum p and is abbreviated as
σðpÞ≡ σðjpjÞ in the following; confusion with four-vector
notation should be excluded from the context. Furthermore,
σðpÞ ¼ ðP3 − pÞ2 ¼ sþm2

π − 2
ffiffiffi
s

p
Ep with E2

p ¼ m2
π þ p2

and P3 ¼ ð ffiffiffi
s

p
; 0Þ being the total four-momentum of three

pions. Note that throughout this paper we work in the
three-body center-of-mass frame unless stated otherwise.
Due to Bose symmetry, the amplitude is symmetric under
exchange of the two π−. The process is of odd intrinsic
parity and the isospin part of the wave function contains an

FIG. 2. The isobar-spectator amplitude leading to a unitary three-pion scattering amplitude. The interaction kernel (quantity in
parentheses) is determined from unitarity and comprises a complex-valued contribution shown as one-pion exchange, as well as a real-
valued three-body force C.
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additional minus sign under the exchange of the two π−,
restoring the overall Bose symmetry. Some of the terms
appearing in Eq. (1) are shown in Fig. 1 and are defined in
the following. Note also that this three-dimensional
relativistic equation with all pions on their respective
mass shells emerges after carrying out the integration
of zeroth dimension, applying the delta distribution
of the spectator from the isobar-spectator propagation;
see Ref. [49].
The elementary process a1 → πρ is indicated as DΛλ.

It can have scalar or derivative character,

DΛλðq1Þ ¼ ϵΛ;μϵ
�μ
λ ðq1Þð−ma1gsIa1ρπ þ…Þ; ð2Þ

i.e., the a1ρπ coupling is given by a tower of Lagrangians
which we do not aim to explicitly use in this study,
including masses (ma1) coupling constants (gs) and isospin
factors (Ia1ρπ). Instead, we know that symmetry allows for
even ρπ partial waves each with their own energy and
momentum dependence, which we simply parametrize in
the angular momentum basis, further abbreviated as the
JLS basis, directly, where JLS stand for total, orbital, and
spin angular momenta, respectively. See Sec. II B for a
detailed discussion.
The vertex v�λ in Eq. (1) is an elementary part of the ρ0

decay into a πþπ− pair with four-momenta q2 and q3,

v�λ ðq2; q3Þ ¼ I0vλðq2; q3Þ;
vλðq2; q3Þ ¼ −ig1ϵ

μ
λðq1Þðq2 − q3Þμ

× Fððq2 þ q3Þ2; ðq2 − q3Þ2Þ; ð3Þ

where g1 is the ρππ coupling, vλ is the isospin-projected
decay vertex, and I0 describes the transition from isospin
to particle basis as needed only in the final ρ decay. Note
that the latter factor is irrelevant as long as there is only
one isobar (ρ0). Then this factor can be reabsorbed into
the overall normalization of the a1 decay. Furthermore,
due to the azimuthal symmetry of the isobar momentum,
the imaginary part of ϵλ does not contribute to the partial-
wave projected vλðq2; q3Þ. Thus, in this case, the vertex is
strictly real, i.e., vλðq2; q3Þ ¼ v�λðq2; q3Þ. Any additional
momentum dependence of the isobar decay is encoded
in the covariant form factor F that is introduced to
regularize ultraviolet divergences in the two- and three-
body sector. Note that three-body unitarity imposes a
consistent use of the form factor in the self-energy τ
and exchange B, which requires it to be covariant [49].
The choice of these real-valued functions is not unique.
Explicit expressions used in this work are discussed in the
Appendix A.
The three-body unitarity underlying this formalism

implements two-body unitarity automatically [49]. This
constrains the imaginary part of the inverse of the isobar-
spectator propagator. The remaining freedom allows one

to pick a form of the isobar propagator τ that is suitable for
the problem at hand. For example, a two-body scattering
amplitude motivated by chiral perturbation theory was
implemented into the three-body scattering equation in
Refs. [74,77]. This form is very useful for repulsive or
weakly attractive channels [such as, e.g., ππ scattering
in the channel of the atypical f0ð500Þ resonance]. For the
present work, dealing exclusively with the ρ resonance, it
is, however, justified to simply choose

τðσðpÞÞ ¼ 1

σðpÞ −m2
ρ − ΣðσðpÞÞ ð4Þ

as represented in Fig. 3. This particular parametrization of
the vector-isovector channel provides a sufficiently accu-
rate representation of the physical on-shell two-body
amplitude. For alternative forms of τ, e.g., with two
subtractions, see Ref. [49]. Here, mρ is a real-valued free
parameter not fixed by unitarity. We fit it, together with the
coupling g1 from Eq. (3) and the form factor to two-body
ππ phase-shift data [102,103]. Note that the τ in Eq. (4) is
the same as S in Ref. [49]. In Eq. (4), Σ is referred to as the
self-energy. We use the explicit expression

ΣðσðpÞÞ ¼
Z

∞

0

dkk2

ð2πÞ3Ek

ṽðσðpÞ; kÞṽ�ðσðpÞ; kÞ
σðpÞ − 4E2

k þ iϵ
: ð5Þ

This can be evaluated in the isobar rest frame with the
two-body four-momentum P2 ¼ ð ffiffiffiffiffiffiffiffiffiffi

σðpÞp
; 0Þ. The tilde on

ṽ indicates that this vertex is projected to the total angular
momentum of the ρ meson as

ṽðσðpÞ; kÞ ¼
ffiffiffiffiffiffiffiffi
16π

3

r
g1kF̃ðσðpÞ; kÞ; ð6Þ

which is derived from the ρππ vertex in Eq. (3). The form
factor F̃ used here is of the same analytic structure as the F
in Eq. (3) for the on-shell region. It is, however, modified
for technical reasons in the off-shell region, which does not
violate unitarity. See Eq. (A2) in Appendix A for further
details.
The plane wave solution for the isobar-spectator ampli-

tude is obtained as described in Ref. [49], i.e., by solving
the Bethe-Salpeter type relativistic integral equation

FIG. 3. A diagrammatic depiction of the isobar propagator from
Eqs. (4) and (5), representing the resummation of ππ interactions
within the isobar to all orders. Double and single lines denote the
isobar and stable particle propagators, respectively.
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Tλ0λðp; q1Þ ¼ ðBλ0λðp; q1Þ þ CÞ

þ
X
λ00

Z
d3l

ð2πÞ32El
ðBλ0λ00 ðp; lÞ þ CÞ

× τðσðlÞÞTλ00λðl;q1Þ; ð7Þ

where λ0, λ and λ00 are the helicities of the ingoing,
outgoing, and intermediate ρ isobar, and p, q1, and l are
the ingoing, outgoing and intermediate spectator momenta,
respectively. The diagrammatic representation of this equa-
tion is shown in Fig. 2. The first part of the driving term of
Eq. (7), the so-called B term, can be interpreted as the
one-pion exchange process depicted in the first term
inside the parentheses in Fig. 2. In the helicity and isospin
bases it reads

Bλ0λðp; q1Þ

¼ ð−1Þvλ0 ðP3 − p − q1; q1Þv�λðp;P3 − p − q1Þ
ð ffiffiffi

s
p

− Ep − Eq1Þ2 − ðm2
π þ p2 þ q21 þ 2pq1zÞ þ iϵ

;

ð8Þ

with an additional minus sign from the overall isospin
factor of this process. The equation emerges from the sum
of a forward and backward (in time) pion exchange
between two ρππ vertices. We denote the angle between
the in- and outgoing isobars by θ1 and z ¼ cos θ1. The
second part of the driving term of the integral equation (7)
is a real-valued function C of spectator momenta and s, i.e.,
C≡ Cðp; q; sÞ. It arises from the fact that only imaginary
parts of the amplitude are fixed as discussed in Ref. [49].
Physically, this function is related to the three-body contact
term via a decay of the isobar into two in- and outgoing
pions; see e.g., Ref. [100]. To capture the ρπ contact
interaction efficiently, we will model this function in the
next section after projecting the whole integral equation to
the JLS basis.

B. Partial-wave amplitudes

The Bethe-Salpeter type integral equation given in
Eq. (7) is part of the production amplitude given in
Eq. (1). Analytic solutions of such dynamical equations
are only known for driving terms consisting of contact
interactions; see e.g., Refs. [9,104]. Therefore, the
equation will be solved numerically here, by discretizing
momenta, and thus, transforming the integral equation into
algebraic ones.
The technical challenge in doing so is that the B term,

and with it T, depends on the in- and outgoing spectator
three-momenta, p and q1, making numerical inversions
computationally demanding. However, only one of the
terms of the partial-wave decomposition in Eq. (10) enters
the production amplitude Eq. (1) for the quantum numbers
of the a1ð1260Þ resonance, i.e., the one for J ¼ 1.

The implementation of physical constraints on the three-
body force induced term C in Eq. (7) can be made in the
JLS basis. The latter basis encodes the total, relative
(between isobar and spectator) and intrinsic (spin) angular
momenta, respectively. In this basis we assume a general
form of CL0L accounting for the partial-wave dependence.
Expressing the contact term in terms of a propagating
a1ð1260Þ connecting the initial and final isobar and
spectator, as shown in Fig. 4, one may write

CL0Lðp; q1Þ ¼ −
�

p
mπ

�
L0�q1

mπ

�
L m2

πgfLgfL0HðpÞHðq1Þ
s −m2

fit

:

ð9Þ

Here gfL, gfL0 are the bare couplings that characterize the
strength of the decay vertex and mfit is the bare mass of the
a1ð1260Þ. These parameters are fixed to reproduce physical
data on the a1ð1260Þ line shape. The form factor H is
discussed in Appendix A. Note that factors of mπ are
included such that the above contact term is dimensionless.
The term Tλλ0 in Eq. (1) describes the isobar-spectator

interaction symbolized in Fig. 2. For the purpose of the
present paper only the part projected to total angular
momentum J ¼ 1, the quantum number of a1ð1260Þ, is
required. Taking into account the azimuthal symmetry the
plane-wave isobar-spectator amplitude is related to the
partial-wave amplitudes as

Aλ0λðp; q1Þ ¼
X
J

2J þ 1

4π
dJλ0λðzÞAJ

λ0λðp; q1Þ; ð10Þ

where A ∈ fT; Bg and dJλλ0 ðcos θÞ denotes the small Wigner
d function.
In the JLS basis and with in- and outgoing orbital

angular momenta, L0 and L, Eq. (7) becomes

TJ
L0Lðp;q1Þ¼ðBJ

L0Lðp;q1ÞþCL0Lðp;q1ÞÞ

þ
X
L00

Z
∞

0

dll2

ð2πÞ32El
ðBJ

L0L00 ðp;lÞþCL0L00 ðp;lÞÞ

×τðσðlÞÞTJ
L00Lðl;q1Þ: ð11Þ

FIG. 4. Graphical representation of the isobar-spectator contact
term C via a propagation of a bare a1ð1260Þ. The coupling
to ρπ states is chosen consistently to that appearing in Fig. 1.
See Eq. (9) and text below it for more details.

DALITZ PLOTS AND LINESHAPE OF a1ð1260Þ FROM A … PHYS. REV. D 101, 094018 (2020)

094018-5



The a1ð1260Þ is constrained by parity conservation and
conservation of angular momentum to decay into ρπ with
angular momentum L ¼ 0 or L ¼ 2. Thus, we work in a
basis in which the T matrix can have two JLS states,
namely 121 and 101 for both in- and outgoing states.
To obtain the B term in the partial-wave (JLS) basis we

employ a two-step procedure. First, from the B term (8) in
the helicity basis the relevant partial wave is extracted,
exploiting the orthonormality of Wigner d functions,

BJ
λ0λðp; q1Þ ¼ 2π

Z þ1

−1
dz dJλ0λðzÞBλ0λðp; q1Þ: ð12Þ

Then, the expression in the partial-wave basis is obtained
from a linear transformation

BJ
L0Lðp; q1Þ ¼ UL0λ0BJ

λ0λðp; q1ÞUT
Lλ; ð13Þ

where the superscript ð..ÞT denotes the transposition oper-
ation. The transformation matrix U is given by

ULλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

2J þ 1

r
ðL01λjJλÞð1λ00j1λÞ; ð14Þ

expressed in usual Clebsch-Gordan coefficients [105],
while the summation over identical indices in Eq. (13) is
understood.
The above equations (11), (12) and (9) complete the

main part of the final-state interaction to be solved numeri-
cally below. Ultimately, the solution of Eq. (11) in the JLS
basis needs to enter the decay amplitude (1) as follows.
First, for the a1ð1260Þ → ρπ vertex, D is modeled to
include the correct spectator momentum dependence
for each partial wave, i.e., DLðpÞ ∼ pL. Furthermore, the
production process itself may contain first-order singular-
ities. The necessity of this contribution is explained at the
end of Sec. III A. Overall, the vertex is parametrized as

DL0 ðpÞ ¼ DfL0HðpÞ
�

p
mπ

�
L0

þm2
πgfL0Df̃HðpÞ
s −m2

fit

�
p
mπ

�
L0

;

ð15Þ

where DfL0 for L0 ¼ 0, 2 and Df̃ are free parameters that
are fit to the line shape data as described below. The
parametrization of Eq. (15) is similar to the one used in
dynamical coupled-channel approaches for the photoexci-
tation of resonances (see, e.g., Ref. [106]), where it allows
to excite resonances and background independently with-
out spoiling Watson’s theorem.
Including the contact interactions C and D as in Eqs. (9)

and (15), respectively, we construct the decay amplitude in
the JLS basis. We use the breve symbol on Γ̆ to denote
the inclusion of all terms represented diagrammatically in
Fig. 1 except the final vertex (v), i.e., the diagram to the
right of the parentheses. It can be separated into the

contributions from the connected and the disconnected
part with Γ̆ ¼ Γ̆C þ Γ̆D, where

Γ̆Lðq1Þ¼DLðq1Þτðσðq1ÞÞ

þ
Z

dpp2

ð2πÞ32Ep
DL0 ðpÞτðσðpÞÞTJ

L0Lðp;q1Þτðσðq1ÞÞ;

ð16Þ

with a sum over L0.
Finally, this term is related to the amplitude in Eq. (1) by

transforming into the helicity basis and multiplying the
final ρππ vertex with

ΓΛλðq1; q2; q3Þ ¼
ffiffiffiffiffiffi
3

4π

r
D1�

Λλðϕ1; θ1;−ϕ1Þ
× Γ̆Lðq1ÞULλvλðq2; q3Þ ð17Þ

where it is again summed over angular momentum L and
DJ

Λλðϕ1; θ1;−ϕ1Þ denotes the capital Wigner D function
with angles θ1 and ϕ1 giving the polar and azimuthal angles
of q1. We use the convention of Jacob and Wick [107]
for the arguments of the function, DJ

Λλðϕ; θ;−ϕÞ, rather
than the alternative convention DJ

Λλðϕ; θ; 0Þ. The latter
convention implies an additional phase factor.
Note also that, while the small Wigner d function may be

used for the evaluation of the angular integration appearing
in the partial-wave decomposition of Eq. (10), one must use
the capital Wigner D functions and their ϕ dependence for
the back-transformation to plain waves because in the
symmetrized decay a1 → πþπ−π− of Eq. (1) the final ρ0

isobars can be produced in different directions. In the next
section we describe how the observables can be obtained
from the production amplitude given above.

C. Relation to observables

After having specified the analytic expressions leading to
the production amplitude Γ we demonstrate in the follow-
ing how it can be related to three-body observables. In
particular, this will allow us later to fix free parameters of
the framework, i.e., gfL;DfL0 ; mfit, and Df̃. Recall that
the parameters g1;Λ; mρ are already fixed to the two-body
data—the ππ phase shifts in the isovector channel. The
three-body observables considered in this paper are Dalitz
plots, projected Dalitz plots and the line shape.
The line shape is a one-dimensional scalar function of

the total three-body energy
ffiffiffi
s

p
. It is given by integrating

over all three pion four-momenta in the final state

Lð ffiffiffi
s

p Þ ¼ 1ffiffiffi
s

p
Z

d3q1
ð2πÞ3

d3q2
ð2πÞ3

d3q3
ð2πÞ3

1

2Eq12Eq22Eq3

× ð2πÞ4δ4ðP3 − q1 − q2 − q3Þ ¯jΓðq1; q2; q3Þj2:
ð18Þ
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Here the bar over the production amplitude Γ denotes
the usual summation over helicity indices, i.e., jΓj2≡
1=3

P
Λ j

P
λ ΓΛλj2.

The Dalitz plots are calculated in a similar fashion,
taking, however, the phase-space integral for fixed invariant
masses σ23 and σ13 made up of the two outgoing pions
given in the subscript, with 3 labeling the πþ and 1,2
labeling the two π−,

Dð ffiffiffi
s

p
; σ23; σ13Þ ¼

1

ð2πÞ5
1

32
ffiffiffi
s

p
3

Z
dΩq1dϕ12

× jΓðσ23; σ13;Ωq1 ;ϕ12Þj2: ð19Þ

Note that the delta function, δ4ðP − q1 − q2 − q3Þ for
energy-momentum conservation has been evaluated, which
accounts for the elimination of the differential d3q3 and one
of the angles. The latter angle is chosen to be the angle
between q1 and q2, denoted by θ12. The azimuthal angle
between the same momenta, denoted by ϕ12, remains in the
integration.
Finally, taking the Dalitz distribution of Eq. (19) and

integrating over one of the invariant masses, the projected
Dalitz plot is obtained with

Dpð
ffiffiffi
s

p
; σ23Þ ¼

1

ð2πÞ5
1

32
ffiffiffi
s

p
3

×
Z

dΩq1dϕ12dσ13jΓðσ23; σ13;Ωq1 ;ϕ12Þj2:

ð20Þ

The numerical treatment for these integrals is discussed
in Sec. III C and results are shown in Sec. IV.

III. NUMERICAL IMPLEMENTATION

A. Inversion of the Bethe-Salpeter equation

The Bethe-Salpeter type integral equation given in the
plane-wave basis in Eq. (7) and the partial-wave basis in
Eq. (11) must be solved in order to calculate the observ-
ables discussed in Sec. II C. This is done numerically by
discretizing the analytic functions of in- and outgoing
momenta in the T, τ, B and C terms.
We start the discretization by introducing indices p and

q1 (not to be confused with four-momenta). They both
sample the region ð0;∞Þ on a suitably mapped Gaussian
quadrature, consecutively for L ¼ 0 and L ¼ 2; see Fig. 5
for an example.
This mapping allows one to write the terms BJ

LL0 ðp; q1Þ
and TJ

LL0 ðp; q1Þ in a compact matrix form BJ
pq1 and TJ

pq1 ,
respectively, preserving the dependence on L and L0. In this
notation Eq. (11) reads

TJ
pq1 ¼ ðBJ

pq1 þ Cpq1Þ þ ðBJ
pl þ CplÞτ̃lTJ

lq1
; ð21Þ

where the summation over equal indices is understood.
To simplify the notation, factors of l2=ðð2πÞ32ElÞ and
Gaussian integration weights are absorbed into the isobar
propagator, indicated by the diagonal expression τ̃. The
solution of this equation reads

TJ
pq1 ¼ ð½1 − ðBJ þ CÞτ̃�−1ÞplðBJ

lq1
þ Clq1Þ; ð22Þ

with 1 denoting the unit matrix in the above defined space,
i.e., the direct product of momenta and angular momenta.
We introduce a discretized version of Γ̆ following Eq. (16)

Γ̆q1 ¼ ðDq1τq1 þDpτ̃pTJ
pq1τq1Þ: ð23Þ

The L dependence is implicit in the q1 index.
Before proceeding to further details of the numerical

implementation we return to the discussion of the D term
in Eq. (15) and why it is important to include the same
singularity in theD term as in the C term. Consider first the
three-body contact term Cpq1 that is the discretized version
of Eq. (9), which diverges for

ffiffiffi
s

p
→ mfit. Following

Eq. (22), in this limit TJ
pq1 → −1=τ̃q1δpq1 . Subsequently,

this yields for the production amplitude Eq. (23), Γ̆q1 →
ðDq1τq1 −Dpδpq1τq1Þ ¼ 0. There is, however, no physical
reason for the amplitude to vanish at this specific point.

FIG. 5. Discretized version of ℜBJ
p;q1 from Eq. (21). The x and

y axes correspond to the in- and outgoing combined momentum
and angular momentum index as explained in Sec. III A. Note
that the momenta are not uniformly distributed.
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Adding a contribution, singular at s ¼ m2
fit, such as the

second term in Eq. (15), solves this issue.

B. Integration contour

While the quantities of interest Γ̆L and TJ
pq1 read quite

straightforwardly in Eqs. (22) and (23), there is a compli-
cation hidden in the analytic structure of its building blocks.
The main issue in this respect deals with the cuts of the B
matrix and self-energy given by Eq. (12) and Eq. (5).
Utilizing analyticity, we avoid these cuts by deforming the
integration contour, i.e., sampling all momentum magni-
tudes on a line in the complex plane as, e.g., ℑk=ℜk ¼ −α
[108]. In order to solve Eq. (21) with respect to T, one has
to choose both momenta p and q1 along the same deformed
integration contour. This contour, used for the momentum
integration in Eq. (16), is depicted by the red line in Fig. 6.
The figure also illustrates the singularities of the B matrix
(blue lines) which are circumvented by the deformed
integration contour. The form factors regularizing the T
matrix [see Eqs. (3) and (9)] also develop similar poles. We
have made sure for all moving singularities appearing in the
problem that they do not cross the integration contour, and
that these singularities respect the þiϵ prescription of
Eq. (8) for energies

ffiffiffi
s

p
above threshold.

The fact that the integration contour avoids poles
guaranties analyticity of the three-body scattering ampli-
tude T. In principle, the integration contour is not unique
and other choices are possible, but there are certain
constraints on it. On the one hand, α needs to be small
enough, such that the analytic extrapolation (see below) is a
good approximation of Γ̆q1 for real q1. On the other hand, it
needs to be large enough to maintain numerical stability.

After extensive exploration, we choose α ¼ 0.2 fulfilling
the above constraints. Recall that the pole structure of the
self-energy in Eq. (5) is not as intricate. For simplicity, we
choose the same integration contour for it as for the B term.
This also ensures that the correct Riemann sheet for the
self-energy is picked.
The integration for the self-energy and the integration

over the internal spectator momentum, p in Eq. (1), are
taken over all momenta. Thus, integration on our chosen
contour is identical to integration along the real axis. This is
ensured by the form factors which cause the integrand to
vanish at large momenta. However, the outgoing spectator
momentum, q1 is real. Because q1 can be observed, Γ̆ is
integrated to the physical limit determined by

ffiffiffi
s

p
in the

calculation of observables. In order to relate the results for
momenta on the chosen contour to those on the real axis we
fit a Padé approximant to the numerically obtained values
of Γ̆ at complex q1. We then extrapolate this function to the
real axis. Note that this is possible because there are no
further nonanalyticities between the complex contour and
the real q1 axis. Furthermore, the incoming momentum p of
the T matrix is always complex and we never encounter the
situation with both p and q1 real, which could induce
further singularities into the B matrix [108].
To parametrize Γ̆, its known asymptotic (q1 → 0,

q1 → ∞) behavior can be explicitly incorporated into the
Padé approximant as

Γ̆Lðq1Þ ¼
�
q1
mπ

�
L
Hðq1Þ

P
m
j¼0 a

L
j ðq1=mπÞjP

n
k¼0 b

L
k ðq1=mπÞk

; ð24Þ

which approximates the right-hand side of Eq. (16). The
complex coefficients, aLj and bLk are fit to the values of Γ̆q1
of Eq. (23), that is calculated only for discrete, complex q1.
The Padé approximant is then extrapolated to real values of
q1. The inclusion of the asymptotic behavior ensures that
one only needs a small number of free parameters to
accurately fit Γ̆q1 .
We have extensively checked the validity of this pro-

cedure, e.g., by ensuring that the extrapolated function is
independent of the choice for α with sufficient precision.
The numerical precision also depends on the number of
Gauss points used for the discretization of Eq. (23). Tests
have shown that with 30 Gauss points for each partial wave
one achieves a discretization error of similar size as the
extrapolation error, which is the number employed in
this study.

C. Monte Carlo integration

After having calculated the production amplitude Γ we
need to perform the phase-space integrations of Eqs. (18),
(19) and (20), leading to the line shape and Dalitz plots. We
do this numerically using Monte Carlo (MC) integration

FIG. 6. Illustration of the singularity structure of the B term.
The red and blue lines mark the integration contour for the
momentum p and the moving singularities in the B term,
respectively. Each of the blue lines is fixed by one complex
q1 for various values of cos θ ∈ ð−1; 1Þ. The former values are
representative for the problem at hand, while

ffiffiffi
s

p ¼ 1.260 GeV.
Note that changing the integration contour affects both, the red
and blue lines.
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which involves summation over the function for randomly
generated values of relevant kinematic variables.
The number of integration variables in Eq. (18) is

reduced from nine to five, accounting for conservation
of four-momentum encoded in the delta function. In
doing so, we replace the differential d3q1d3q2d3q3 with
dq1dq2dϕ1d cos θ1dϕ12. The angles ϕ1 and θ1 are the
angles, which q1 forms with the z direction. The angle ϕ12

is the azimuthal angle between q1 and q2.
The integral is then calculated using the Monte Carlo

method, implemented similarly to Ref. [109]. This involves
N randomly generated sets each consisting of the corre-
sponding integration variables. Each value is denoted with
a subscript; for example, the ith value of ϕ12 is denoted
ϕ12i. Furthermore, the allowed values for q1 and q2 must
satisfy the condition j cos θ12j < 1, where cos θ12 is fixed
by the delta function to be

cos θ12ðq1; q2Þ ¼
ð ffiffiffi

s
p

− Eq1 − Eq2Þ2 −m2
π − q21 − q22

2q1q2
:

ð25Þ
The explicit formula for the MC integration of the line
shape reads

Lð ffiffiffi
s

p Þ ¼ 1

ð2πÞ4
PL

N
1

8
ffiffiffi
s

p

×
XN
i¼1

q1iq2i
Eq1iEq2i

jΓðq1i; q2i; cos θ1i;ϕ1i;ϕ12iÞj2;

ð26Þ
where N is the number of MC points and Ps is the phase-
space factor, given by integration over the volume. For the
line shape it is

PL ¼
Z

dq1dq2d cos θ1dϕ1dϕ12Θð1 − cos2θ12ðq1; q2ÞÞ;

ð27Þ
where Θ is the Heaviside function. In a similar way the
Dalitz plot

Dð ffiffiffi
s

p
; σ23; σ13Þ ¼

1

ð2πÞ4
PD

N
1

32
ffiffiffi
s

p
3

×
X
i

jΓðσ23; σ13; cos θ1i;ϕ1i;ϕ12iÞj2

ð28Þ
and the projected Dalitz plot

DPð
ffiffiffi
s

p
;σ23Þ¼

1

ð2πÞ4
PP

N
1

32
ffiffiffi
s

p
3

×
X
i

jΓðσ23;σ13i;cosθ1i;ϕ1i;ϕ12iÞj2 ð29Þ

are calculated. The phase-space factors for the Dalitz plot
and projected Dalitz plots are PD ¼ R

d cos θ1dϕ1dϕ12

and PP ¼ R
dσ13d cos θ1dϕ1dϕ12Θð1 − cos2θ12ðσ13; σ23ÞÞ

respectively.

IV. RESULTS

In the following we present the results of the approach in
terms of the Dalitz plot, projections thereof, and line shape,
i.e.,D,Dp, and L calculated from Eqs. (28), (29), and (26),
respectively.
The free parameters of the framework are mρ, g1, Λ, gfL,

DfL, Df̃, mfit, where the first three are fixed by a fit to the
two-body data, i.e., isovector ππ phase shifts. They read:
mρ ¼ 1.38 GeV, g1 ¼ 7.26, and Λ ¼ 1.04. As discussed
below, there is not much sense in determining statistical
uncertainties for these quantities for the present purpose.
Note that Λ, appearing in the form factor F in the ρππ
vertex of Eq. (3), regularizes not only the isovector two-
body amplitude but also the three-body amplitude through
the appearance in the B term of Eq. (8). This induces the
usual and unavoidable regulator dependence in the three-
body amplitude which is absorbed in the contact term (9),
that by itself contains a form factor to render the three-body
equation well defined.
The remaining six parameters (note the index L ¼ 0, 2

above) are determined from a fit to the line shape from the
ALEPH [92] experiment. The best-fit parameters read:
Df0 ¼ 3.4 × 10−4 GeV−1=2, Df2¼4.9×10−4 GeV−1=2 for
the nonresonant ρπ production vertices of Eq. (15), Df̃ ¼
1.7 × 10−3 GeV−1=2 for the strength of the bare a1 com-
ponent in the production process in Eq. (15), gf0 ¼
5.3 × 102, gf2 ¼ 1.2, and mfit ¼ 0.51 GeV for the bare
a1 decays into S- and D-wave ρπ and the a1 bare mass of
Eqs. (9) and (15), respectively. The result of the fit is
presented in Fig. 7 together with the experimental data.
According to the PDG [79], the a1ð1260Þ mostly decays

into the ρπ and σπ channels. The σπ branching ratio was
determined in Ref. [91] to be ΓðσπÞ=Γtotal ¼ 0.1876,
whereas relative to the ρπ channel it was quoted in
Ref. [110] as ΓðσπÞ=ΓðρπÞ ¼ 0.06. Both of these results
show that the ρπ channel is largely dominant, but the σπ
channel is non-negligible. Since the present analysis does
not include the σπ channel, a χ2 close to 1 would only
indicate that the free parameters are capable of accounting
for effects that are probably not due to the physical
processes they describe. Therefore, we do not preform a
statistical analysis on our fit of the line shape data and
accept that the fit starts diverging from the line shape data at
high energies as shown in Fig. 7. Furthermore, at higher
energies the ρ channel itself exhibits structures that are not
included in our parametrization of the ππ amplitude, in
terms of increasing inelasticity and resonances such as
the ρð1450Þ.
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We can make a very rough estimate of the D-wave
branching ratio (BR) from the line shape at the resonance
position

ffiffiffi
s

p
≈ 1.26 GeV. We obtain ΓðρπÞD=Γtot ≈ 1.5%.

This is comparable to the PDG value [79], i.e.,
ΓðρπÞD=Γtot ¼ ð1.30� 0.60� 0.22Þ%.
Also, comparing to other determinations of BRs is

difficult because in BRs for sequential decays, integrals
are often performed over the mother and/or daughter
resonances. This contribution depends on integration lim-
its, the nonresonant background and the parametrization
of the line shapes of mother and daughter resonances. A
unique and background-independent definition is provided
by the residue at the pole [8,99], which for unstable
daughter resonances will be a function of the spectator
momentum; the analytic continuation of the amplitude to
the a1 pole, as performed in Ref. [41], is beyond the scope
of this work because the moving three-body singularities
appearing in our unitary formalism require special attention
for complex energies [8].
In the upper row of Fig. 8 we show the result of our

calculation of the Dalitz plots using the parameters from the
fit to the line shape. In those, we note the clear outline of the

FIG. 8. Upper row: Dalitz plots for various three-body invariant masses. Each Dalitz plot has been rescaled separately to emphasize
qualitative features. The blue/red colors represent higher/lower values, respectively. The dark bands at σ.. ∼ 0.59 GeV2 are the outline of
the ρmeson. Middle row: Projected Dalitz plots. An effect of this integration is the kinematic reflection of the peak from the ρmeson at a
value of σ13 lower than the mass of the ρ. Lower row: The ratio between Dp and D0

p, the equivalent projected Dalitz plots calculated
without the rescattering terms normalized to the integral over Dp.

FIG. 7. Three-pion line shape from the decay τ− → π−π−πþντ
(data from Ref. [92]). The solid blue line shows the fit result. We
also include the component of the fit that comes only from the S
wave (red line). As expected, the S-wave channel dominates. We
also see that the D-wave provides a larger contribution at higher
values of

ffiffiffi
s

p
.
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ρ meson at σ ∼ 0.59 GeV2 for the plots with large enough
available phase space. The maxima of the plots lie at the
intersection of the bands, meaning that the amplitudes
exhibit a constructive interference. As such, this is con-
sistent with the symmetry of the amplitude Γ̂Λλðq1; q2; q3Þ
under the exchange of the two π− due to Bose symmetry;
see Eq. (1) and discussion below it.
The central row of Fig. 8 shows the projected Dalitz

plots. We once again see peaks in each plot at the ρ mass as
well as its kinematic reflections. To understand the impor-
tance of the connected contributions, we show in the
bottom row of the figure the quotient of the full and
disconnected contributions, cf. Eq. (1). We observe a
contribution from rescattering at the order of ∼5%. We
note that this contribution is small but of similar order as the
branching ratios to some inelastic channels (not included in
this analysis); see Ref. [79]. Thus, the incomplete inclusion
of rescattering might lead to incorrect extraction of the
resonance parameters in these channels.

V. SUMMARY

In this paper, we have adopted a relativistic unitary
formalism for three-to-three scattering to address the decay
of the a1ð1260Þ resonance to three pions. The free param-
eters of the approach, related to the production mechanism,
two-body subchannel interaction and the three-body contact
term were fixed to the two- and three-body data.
The key technical part of the approach is the relativistic

Bethe-Salpeter type equation, which depends on the
momenta of the in- and outgoing pions. First, this integral
equation was reduced by a partial-wave decomposition.
This coupled-channel equation was then discretized for
momenta on a complex contour, leading to an algebraic
equation. Solutions of the latter were extrapolated to real
momenta, for which the amplitudes were then related to
observables. These include line shape, Dalitz plots, and
projected Dalitz plots.
Fitting the free parameters of the approach to the line

shape from the ALEPH experiment, we observed a dom-
inant S-wave contribution. The Dalitz plots and projected
Dalitz plots show the outline of the ρ meson and its
kinematic reflections. The rescattering effects are small
but non-negligible for this particular system, and could
affect the extraction of resonance parameters in a more
complete description. Work is currently being done on the
inclusion of σπ and other channels and the direct analysis of
Dalitz plots. This would allow for an accurate determi-
nation of the pole position of the a1ð1260Þ through analytic
continuation to the complex energy plane.
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APPENDIX A: FORM FACTORS

The integral equations, appearing in the main text, are
regularized using form factors. Apart from suppressing
large spectator or loop momenta, the requirements on the
form factor in the ρ → ππ decay v are as follows:
(1) As a consequence of three-body unitarity, the ρππ

decay v in the self-energy of Eq. (5), in the π
exchange of Eq. (8), and in the final decay of Eq. (1)
must be consistent [49]. In particular, the form factor
must be Lorentz invariant because it is evaluated in
the three-body rest frame as well as the isobar rest
frames.

(2) To preserve unitarity, the previous requirement must
be fulfilled if the pions of the ρ decay are on shell,
but may be dropped if they are off shell.

(3) For the B term, it cannot have poles on the chosen
integration contour; this requirement needs to be
fulfilled for all scattering angles, spectator momenta,
and three-body energies

ffiffiffi
s

p
. Also, it cannot contain

poles in the region around the contour and the real-
momentum axis, due to the extrapolation procedure
to obtain the amplitude for real outgoing momenta
from complex ones described in Sec. III B.

Obviously, the above requirements do not fix the form
factor uniquely. Various analytic forms were studied and
discussed in Ref. [111]. For theB term and the final ρ → ππ
decay, we choose a form factor for Eq. (3) that reads

Fðσ; Q2Þ ¼ Λ4

Λ4 þ e1þðQ2=4−ðσ−4m2
πÞÞ=ð1 GeV2Þ ðA1Þ

for σ ¼ ðq2 þ q3Þ2, Q2 ¼ ðq2 − q3Þ2. As demanded by
condition 1 in the above list, a consistent choice needs
to be made for the form factor in the self-energy (5).
However, since the latter only includes vertices projected to
P wave, the form factor will have a different momentum
dependence. It reads

F̃ðσ; kÞ ¼ Λ4

Λ4 þ e1þðð4ð ffiffi
σ

p
−2EkÞ2−4k2Þ=4−ðσ−4m2

πÞÞ=ð1 GeV2Þ :

ðA2Þ

Note, that the term ð ffiffiffi
σ

p
− 2EkÞ2 vanishes for the on-shell

momentum, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ −m2

π

p
=2, which is the value leading to

an imaginary part of the self-energy integral (5). Therefore,
we can multiply this term by an arbitrary factor and still
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satisfy condition 1 for the form factors. We multiply it by a
factor of 4 to allow the form factor to suppress large
momenta k for the case when σðpÞ ¼ 0.
Another form factor appears in the three-body term C of

Eq. (9) and similarly in the a1ð1260Þ → ρπ vertex of
Eq. (15). Both of these contributions are real valued and
thus respect the unitarity requirement and furthermore enter
only in a fixed (center-of-mass) reference frame. Hence,
they do not have to follow the above constraints, and are
chosen for simplicity as

HðpÞ ¼ Λ04

Λ04 þ p4
: ðA3Þ

In principle this factor allows for an additional parameter
Λ0. We varied it but found no significant improvement of
the fits. Thus, we choose the cutoff Λ0 ¼ 1.0 GeV.

APPENDIX B: POLARIZATION VECTORS
AND KINEMATICS

The ρ → ππ vertex in Eq. (3) includes the four-product
ϵμλðq1Þðq2 − q3Þμ with λ indicating the helicity of the isobar.
The polarization vector or its complex conjugate is assigned
to a given in- or outgoing isobar. Explicitly, the corre-
sponding polarization vectors read,

ϵ0¼
1

m

0
BBB@

p

0

0

Ep

1
CCCA; ϵ�1¼

1ffiffiffi
2

p

0
BBB@

0

∓1

−i
0

1
CCCA; ϵ�0¼

1

m

0
BBB@

k

Eq1 sinθ1cosϕ1

Eq1 sinθ1 sinϕ1

Eq1 cosθ1

1
CCCA; ϵ��1¼

1ffiffiffi
2

p

0
BBB@

0

∓ cosθ1cosϕ1þ isinϕ1

−icosϕ1∓ cosθ1 sinϕ1

�sinθ1

1
CCCA; ðB1Þ

where the ingoing isobar with momentum p points in the z
direction; see, e.g., Eq. (7). In order to simplify the partial-
wave projection of Eq. (12), azimuthal symmetry allows us
to choose a reference frame, in which the outgoing isobar at
momentum q1 lies in the xz plane with scattering angle θ1
and ϕ1 ¼ 0.
The polarization vectors are also used for the calculation

of the final vertex in Eq. (1). In this case, we work with a
more general expression of the momenta in the phase space
as defined in the integral of Eq. (19). We choose to define
the angles of q2 relative to q1, i.e., the angle θ12 and the
azimuthal angle ϕ12. Thus, one defines the explicit com-
ponents of q2 in terms of θ12, ϕ12, and the angles of the
rotation of q1 from the z axis in its actual direction. We
introduce the rotation matrices Rq1ðϕ12Þ and Rq1⊥ðθ12Þ,
where the subscript specifies the vector about which they

are rotated and the argument gives the angle by which
they are rotated. The vector q1⊥ is calculated by
Rzðϕ1ÞRyðθ1ÞRzð−ϕ1Þŷ. Explicitly, one has

q1 ¼ −q1ðRzðϕ1ÞRyðθ1ÞRzð−ϕ1Þẑ Þ;
q2 ¼ q2ðRq1ðϕ12ÞRq1⊥ðθ12ÞRq1ð−ϕ12Þq̂1 Þ; ðB2Þ

whereas q3 is fixed to be −q3 ¼ q1 þ q2 in the overall
center-of-mass frame. The labeling of momenta changes
through the symmetrization of the two π− indicated in
Eq. (1). The components of the polarization vectors change
depending on whether q1 or q2 is designated to be the
spectator. If q1 is the spectator, the polarization vectors will
have the same components as the right two equations of
Eq. (B1), whereas if q2 is the spectator, the equations read

ϵ0 ¼
1

m

0
BBB@

k

Rq1ðϕ12ÞRq1⊥ðθ12ÞRq1ð−ϕ12ÞRzðϕ1ÞRyðθ1ÞRzð−ϕ1Þ

0
B@

0

0

Ep

1
CA

1
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and

ϵ�1 ¼
1ffiffiffi
2

p

0
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0
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0
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∓ 1

−i
0

1
CA

1
CCCA: ðB4Þ

SADASIVAN, MAI, AKDAG, and DÖRING PHYS. REV. D 101, 094018 (2020)

094018-12



[1] M. Ripani et al. (CLAS Collaboration), Phys. Rev. Lett.
91, 022002 (2003).

[2] I. G. Aznauryan et al. (CLAS Collaboration), Phys. Rev. C
78, 045209 (2008).

[3] V. Sokhoyan et al. (CBELSA/TAPS Collaboration), Eur.
Phys. J. A 51, 95 (2015); 51, 187(E) (2015).

[4] J. Ahrens et al. (GDH and A2 Collaborations), Phys. Lett.
B 551, 49 (2003).

[5] N. Kaiser, P. B. Siegel, andW.Weise, Phys. Lett. B 362, 23
(1995).

[6] T. Inoue, E. Oset, and M. J. Vicente Vacas, Phys. Rev. C
65, 035204 (2002).

[7] J. Nieves and E. Ruiz Arriola, Phys. Rev. D 64, 116008
(2001).

[8] M. Döring, C. Hanhart, F. Huang, S. Krewald, and U.-G.
Meißner, Nucl. Phys. A829, 170 (2009).

[9] P. C. Bruns, M. Mai, and U.-G. Meißner, Phys. Lett. B 697,
254 (2011).

[10] D. M. Manley, R. A. Arndt, Y. Goradia, and V. L. Teplitz,
Phys. Rev. D 30, 904 (1984).

[11] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L.
Workman, Phys. Rev. C 74, 045205 (2006).

[12] V. I. Mokeev, V. D. Burkert, T.-S. H. Lee, L. Elouadrhiri,
G. V. Fedotov, and B. S. Ishkhanov, Phys. Rev. C 80,
045212 (2009).

[13] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V.
Sarantsev, and U. Thoma, Eur. Phys. J. A 48, 15 (2012).

[14] H. Kamano, B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama,
and T. Sato, Phys. Rev. C 79, 025206 (2009).

[15] V. Shklyar, H. Lenske, and U. Mosel, Phys. Rev. C 93,
045206 (2016).

[16] C. B. Lang, L. Leskovec, M. Padmanath, and S. Prelovsek,
Phys. Rev. D 95, 014510 (2017).

[17] H. Al Ghoul et al. (GlueX Collaboration), Phys. Rev. C 95,
042201 (2017).

[18] M. Alekseev et al. (COMPASS Collaboration), Phys. Rev.
Lett. 104, 241803 (2010).

[19] D. M. Asner et al., Int. J. Mod. Phys. A 24, 499 (2009).
[20] C. Adolph et al. (COMPASS Collaboration), Phys. Rev. D

95, 032004 (2017).
[21] M. Aghasyan et al. (COMPASS Collaboration), Phys. Rev.

D 98, 092003 (2018).
[22] B. S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537 (2003).
[23] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 607,

243 (2005).
[24] M. Albrecht et al., arXiv:1909.07091.
[25] G. Colangelo, S. Lanz, and E. Passemar, Proc. Sci., CD09

(2009) 047 [arXiv:0910.0765].
[26] B. Kubis and S. P. Schneider, Eur. Phys. J. C 62, 511

(2009).
[27] S. P. Schneider, B. Kubis, and C. Ditsche, J. High Energy

Phys. 02 (2011) 028.
[28] K. Kampf, M. Knecht, J. Novotny, and M. Zdrahal, Phys.

Rev. D 84, 114015 (2011).
[29] F. Niecknig, B. Kubis, and S. P. Schneider, Eur. Phys. J. C

72, 2014 (2012).
[30] S. P. Schneider, B. Kubis, and F. Niecknig, Phys. Rev. D

86, 054013 (2012).
[31] P. Guo, R. Mitchell, M. Shepherd, and A. P. Szczepaniak,

Phys. Rev. D 85, 056003 (2012).

[32] A. Martinez Torres, K. Khemchandani, and E. Oset,
Phys. Rev. C 79, 065207 (2009).

[33] A. Martinez Torres, K. Khemchandani, D. Jido, and
A. Hosaka, Phys. Rev. D 84, 074027 (2011).

[34] I. V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu,
D. Schott, M. Shi, and A. P. Szczepaniak, Phys. Rev. D 91,
094029 (2015).

[35] P. Guo, I. V. Danilkin, and A. P. Szczepaniak, Eur. Phys.
J. A 51, 135 (2015).

[36] P. Guo, I. V. Danilkin, D. Schott, C. Fernández-Ramírez,
V. Mathieu, and A. P. Szczepaniak, Phys. Rev. D 92,
054016 (2015).

[37] P. Guo, I. V. Danilkin, C. Fernández-Ramírez, V. Mathieu,
and A. P. Szczepaniak, Phys. Lett. B 771, 497 (2017).

[38] T. Isken, B. Kubis, S. P. Schneider, and P. Stoffer, Eur.
Phys. J. C 77, 489 (2017).

[39] M. Albaladejo and B. Moussallam, Eur. Phys. J. C 77, 508
(2017).

[40] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and
S. P. Schneider, J. High Energy Phys. 10 (2018) 141.

[41] M. Mikhasenko, A. Pilloni, M. Albaladejo, C. Fernández-
Ramírez, A. Jackura, V. Mathieu, J. Nys, A. Rodas, B.
Ketzer, and A. P. Szczepaniak (JPAC Collaboration), Phys.
Rev. D 98, 096021 (2018).

[42] A. Jackura, C. Fernández-Ramírez, V. Mathieu, M.
Mikhasenko, J. Nys, A. Pilloni, K. Saldaña, N. Sherrill,
and A. P. Szczepaniak (JPAC Collaboration), Eur. Phys. J.
C 79, 56 (2019).

[43] J. Gasser and A. Rusetsky, Eur. Phys. J. C 78, 906
(2018).

[44] E. Oset and L. Roca, Phys. Lett. B 782, 332 (2018).
[45] V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W.

Jackura, M. Mikhasenko, A. Pilloni, and A. P. Szczepaniak
(JPAC Collaboration), Phys. Rev. D 100, 054017 (2019).

[46] M. Albaladejo, D. Winney, I. V. Danilkin, C. Fernández-
Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni, J. A.
Silva-Castro, and A. P. Szczepaniak (JPAC Collaboration),
Phys. Rev. D 101, 054018 (2020).

[47] M. Mikhasenko et al., Phys. Rev. D 101, 034033 (2020).
[48] M. Mikhasenko, Y. Wunderlich, A. Jackura, V. Mathieu,

A. Pilloni, B. Ketzer, and A. P. Szczepaniak, J. High
Energy Phys. 08 (2019) 080.

[49] M. Mai, B. Hu, M. Döring, A. Pilloni, and A. Szczepaniak,
Eur. Phys. J. A 53, 177 (2017).

[50] R. Aaron, R. Amado, and J. Young, Phys. Rev. 174, 2022
(1968).

[51] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, M. J.
Savage, and A. Torok, Phys. Rev. Lett. 100, 082004
(2008).

[52] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, J.
High Energy Phys. 04 (2014) 162.

[53] B. Hörz and A. Hanlon, Phys. Rev. Lett. 123, 142002
(2019).

[54] A. J. Woss, C. E. Thomas, J. J. Dudek, R. G. Edwards, and
D. J. Wilson, Phys. Rev. D 100, 054506 (2019).

[55] C. Culver, M. Mai, R. Brett, A. Alexandru, and M. Döring,
arXiv:1911.09047.

[56] S. R. Sharpe, Phys. Rev. D 96, 054515 (2017).
[57] H. W. Hammer, J. Y. Pang, and A. Rusetsky, J. High

Energy Phys. 10 (2017) 115.

DALITZ PLOTS AND LINESHAPE OF a1ð1260Þ FROM A … PHYS. REV. D 101, 094018 (2020)

094018-13

https://doi.org/10.1103/PhysRevLett.91.022002
https://doi.org/10.1103/PhysRevLett.91.022002
https://doi.org/10.1103/PhysRevC.78.045209
https://doi.org/10.1103/PhysRevC.78.045209
https://doi.org/10.1140/epja/i2015-15095-x
https://doi.org/10.1140/epja/i2015-15095-x
https://doi.org/10.1140/epja/i2015-15187-7
https://doi.org/10.1016/S0370-2693(02)03008-3
https://doi.org/10.1016/S0370-2693(02)03008-3
https://doi.org/10.1016/0370-2693(95)01203-3
https://doi.org/10.1016/0370-2693(95)01203-3
https://doi.org/10.1103/PhysRevC.65.035204
https://doi.org/10.1103/PhysRevC.65.035204
https://doi.org/10.1103/PhysRevD.64.116008
https://doi.org/10.1103/PhysRevD.64.116008
https://doi.org/10.1016/j.nuclphysa.2009.08.010
https://doi.org/10.1016/j.physletb.2011.02.008
https://doi.org/10.1016/j.physletb.2011.02.008
https://doi.org/10.1103/PhysRevD.30.904
https://doi.org/10.1103/PhysRevC.74.045205
https://doi.org/10.1103/PhysRevC.80.045212
https://doi.org/10.1103/PhysRevC.80.045212
https://doi.org/10.1140/epja/i2012-12015-8
https://doi.org/10.1103/PhysRevC.79.025206
https://doi.org/10.1103/PhysRevC.93.045206
https://doi.org/10.1103/PhysRevC.93.045206
https://doi.org/10.1103/PhysRevD.95.014510
https://doi.org/10.1103/PhysRevC.95.042201
https://doi.org/10.1103/PhysRevC.95.042201
https://doi.org/10.1103/PhysRevLett.104.241803
https://doi.org/10.1103/PhysRevLett.104.241803
https://doi.org/10.1142/S0217751X09046801
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevD.98.092003
https://doi.org/10.1103/PhysRevD.98.092003
https://doi.org/10.1140/epja/i2002-10135-4
https://doi.org/10.1016/j.physletb.2004.12.041
https://doi.org/10.1016/j.physletb.2004.12.041
https://arXiv.org/abs/1909.07091
https://arXiv.org/abs/0910.0765
https://doi.org/10.1140/epjc/s10052-009-1054-7
https://doi.org/10.1140/epjc/s10052-009-1054-7
https://doi.org/10.1103/PhysRevD.84.114015
https://doi.org/10.1103/PhysRevD.84.114015
https://doi.org/10.1140/epjc/s10052-012-2014-1
https://doi.org/10.1140/epjc/s10052-012-2014-1
https://doi.org/10.1103/PhysRevD.86.054013
https://doi.org/10.1103/PhysRevD.86.054013
https://doi.org/10.1103/PhysRevD.85.056003
https://doi.org/10.1103/PhysRevC.79.065207
https://doi.org/10.1103/PhysRevD.84.074027
https://doi.org/10.1103/PhysRevD.91.094029
https://doi.org/10.1103/PhysRevD.91.094029
https://doi.org/10.1140/epja/i2015-15135-7
https://doi.org/10.1140/epja/i2015-15135-7
https://doi.org/10.1103/PhysRevD.92.054016
https://doi.org/10.1103/PhysRevD.92.054016
https://doi.org/10.1016/j.physletb.2017.05.092
https://doi.org/10.1140/epjc/s10052-017-5024-1
https://doi.org/10.1140/epjc/s10052-017-5024-1
https://doi.org/10.1140/epjc/s10052-017-5052-x
https://doi.org/10.1140/epjc/s10052-017-5052-x
https://doi.org/10.1007/JHEP10(2018)141
https://doi.org/10.1103/PhysRevD.98.096021
https://doi.org/10.1103/PhysRevD.98.096021
https://doi.org/10.1140/epjc/s10052-019-6566-1
https://doi.org/10.1140/epjc/s10052-019-6566-1
https://doi.org/10.1140/epjc/s10052-018-6378-8
https://doi.org/10.1140/epjc/s10052-018-6378-8
https://doi.org/10.1016/j.physletb.2018.05.056
https://doi.org/10.1103/PhysRevD.100.054017
https://doi.org/10.1103/PhysRevD.101.054018
https://doi.org/10.1103/PhysRevD.101.034033
https://doi.org/10.1007/JHEP08(2019)080
https://doi.org/10.1007/JHEP08(2019)080
https://doi.org/10.1140/epja/i2017-12368-4
https://doi.org/10.1103/PhysRev.174.2022
https://doi.org/10.1103/PhysRev.174.2022
https://doi.org/10.1103/PhysRevLett.100.082004
https://doi.org/10.1103/PhysRevLett.100.082004
https://doi.org/10.1007/JHEP04(2014)162
https://doi.org/10.1007/JHEP04(2014)162
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevLett.123.142002
https://doi.org/10.1103/PhysRevD.100.054506
https://arXiv.org/abs/1911.09047
https://doi.org/10.1103/PhysRevD.96.054515
https://doi.org/10.1007/JHEP10(2017)115
https://doi.org/10.1007/JHEP10(2017)115


[58] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, J. High
Energy Phys. 09 (2017) 109.

[59] P. Guo and V. Gasparian, Phys. Lett. B 774, 441 (2017).
[60] P. Guo, Phys. Rev. D 95, 054508 (2017).
[61] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 95, 034501

(2017).
[62] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 93, 096006

(2016); 96, 039901(E) (2017).
[63] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 93, 014506

(2016).
[64] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509

(2015).
[65] U.-G. Meißner, G. Ríos, and A. Rusetsky, Phys. Rev. Lett.

114, 091602 (2015); 117, 069902(E) (2016).
[66] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003

(2014).
[67] R. A. Briceño and Z. Davoudi, Phys. Rev. D 87, 094507

(2013).
[68] S. Kreuzer and H.W. Grießhammer, Eur. Phys. J. A 48, 93

(2012).
[69] L. Roca and E. Oset, Phys. Rev. D 85, 054507 (2012).
[70] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48, 67

(2012).
[71] S. Kreuzer and H.W. Hammer, Phys. Lett. B 673, 260

(2009).
[72] M. Mai and M. Döring, Eur. Phys. J. A 53, 240 (2017).
[73] M. Döring, H. W. Hammer, M. Mai, J. Y. Pang, §. A.

Rusetsky, and J. Wu, Phys. Rev. D 97, 114508 (2018).
[74] M. Mai, Proc. Sci., LATTICE2018 (2018) 050 [arXiv:

1810.00604].
[75] M. T. Hansen and S. R. Sharpe, Annu. Rev. Nucl. Part. Sci.

69, 65 (2019).
[76] T. D. Blanton, F. Romero-López, and S. R. Sharpe, Phys.

Rev. Lett. 124, 032001 (2020).
[77] M. Mai and M. Döring, Phys. Rev. Lett. 122, 062503

(2019).
[78] M. Mai, M. Döring, C. Culver, and A. Alexandru, Phys.

Rev. D 101, 054510 (2020).
[79] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[80] G. Janssen, J. W. Durso, K. Holinde, B. C. Pearce, and J.

Speth, Phys. Rev. Lett. 71, 1978 (1993).
[81] M. F. M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A730,

392 (2004).
[82] L. Roca, E. Oset, and J. Singh, Phys. Rev. D 72, 014002

(2005).
[83] M. Wagner and S. Leupold, Phys. Lett. B 670, 22 (2008).
[84] M.Wagner and S. Leupold, Phys. Rev. D 78, 053001 (2008).
[85] M. F. M. Lutz and S. Leupold, Nucl. Phys. A813, 96

(2008).
[86] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato,

Phys. Rev. D 84, 114019 (2011).
[87] H. Nagahiro, K. Nawa, S. Ozaki, D. Jido, and A. Hosaka,

Phys. Rev. D 83, 111504 (2011).

[88] X. Zhang and J.-J. Xie, Commun. Theor. Phys. 70, 060
(2018).

[89] L. R. Dai, L. Roca, and E. Oset, Phys. Rev. D 99, 096003
(2019).

[90] M. Mai, B. Hu, M. Döring, A. Pilloni, and A. Szczepaniak,
Proc. Sci., Hadron2017 (2018) 140.

[91] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D 61,
012002 (1999).

[92] S. Schael et al. (ALEPH Collaboration), Phys. Rep. 421,
191 (2005).

[93] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 58,
61 (1993).

[94] R. Akers et al. (OPAL Collaboration), Z. Phys. C 67, 45
(1995).

[95] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 426,
411 (1998).

[96] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C.
Polkinghorne, The Analytic S-Matrix (Cambridge Univer-
sity Press, Cambridge, England, 1966).

[97] A. Matsuyama, T. Sato, and T. S. H. Lee, Phys. Rep. 439,
193 (2007).

[98] D. Ronchen, M. Döring, F. Huang, H. Haberzettl, J.
Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner,
and K. Nakayama, Eur. Phys. J. A 49, 44 (2013).

[99] M. Döring, C. Hanhart, F. Huang, S. Krewald, and U.-G.
Meißner, Phys. Lett. B 681, 26 (2009).

[100] A. W. Jackura, S. M. Dawid, C. Fernández-Ramírez, V.
Mathieu, M. Mikhasenko, A. Pilloni, S. R. Sharpe, and
A. P. Szczepaniak, Phys. Rev. D 100, 034508 (2019).

[101] G. Janssen, K. Holinde, and J. Speth, Phys. Rev. C 49,
2763 (1994).

[102] S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-
Galtieri, S. M. Flatte, J. H. Friedman, T. A. Lasinski, G.
R. Lynch, M. S. Rabin, and F. T. Solmitz, Phys. Rev. D 7,
1279 (1973).

[103] P. Estabrooks and A. D. Martin, Nucl. Phys. B79, 301
(1974).

[104] M. Mai, From meson-baryon scattering to meson photo-
production, Ph. D. thesis, Bonn University, HISKP,
2013.

[105] S. U. Chung, http://cds.cern.ch/record/186421 (1971).
[106] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.

Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner,
and K. Nakayama, Eur. Phys. J. A 50, 101 (2014); 51, 63
(E) (2015).

[107] M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959);
281, 774 (2000).

[108] J. H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
(1965).

[109] M. Döring, E. Oset, and U.-G. Meißner, Eur. Phys. J. A 46,
315 (2010).

[110] P. Salvini et al. (OBELIX Collaboration), Eur. Phys. J. C
35, 21 (2004).

[111] D. Sadasivan, Ph.D. Thesis, GWU, 2020.

SADASIVAN, MAI, AKDAG, and DÖRING PHYS. REV. D 101, 094018 (2020)

094018-14

https://doi.org/10.1007/JHEP09(2017)109
https://doi.org/10.1007/JHEP09(2017)109
https://doi.org/10.1016/j.physletb.2017.10.009
https://doi.org/10.1103/PhysRevD.95.054508
https://doi.org/10.1103/PhysRevD.95.034501
https://doi.org/10.1103/PhysRevD.95.034501
https://doi.org/10.1103/PhysRevD.93.096006
https://doi.org/10.1103/PhysRevD.93.096006
https://doi.org/10.1103/PhysRevD.96.039901
https://doi.org/10.1103/PhysRevD.93.014506
https://doi.org/10.1103/PhysRevD.93.014506
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1103/PhysRevLett.114.091602
https://doi.org/10.1103/PhysRevLett.114.091602
https://doi.org/10.1103/PhysRevLett.117.069902
https://doi.org/10.1103/PhysRevD.90.116003
https://doi.org/10.1103/PhysRevD.90.116003
https://doi.org/10.1103/PhysRevD.87.094507
https://doi.org/10.1103/PhysRevD.87.094507
https://doi.org/10.1140/epja/i2012-12093-6
https://doi.org/10.1140/epja/i2012-12093-6
https://doi.org/10.1103/PhysRevD.85.054507
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1140/epja/i2012-12067-8
https://doi.org/10.1016/j.physletb.2009.02.035
https://doi.org/10.1016/j.physletb.2009.02.035
https://doi.org/10.1140/epja/i2017-12440-1
https://doi.org/10.1103/PhysRevD.97.114508
https://arXiv.org/abs/1810.00604
https://arXiv.org/abs/1810.00604
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.1146/annurev-nucl-101918-023723
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevLett.124.032001
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevLett.122.062503
https://doi.org/10.1103/PhysRevD.101.054510
https://doi.org/10.1103/PhysRevD.101.054510
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.71.1978
https://doi.org/10.1016/j.nuclphysa.2003.11.009
https://doi.org/10.1016/j.nuclphysa.2003.11.009
https://doi.org/10.1103/PhysRevD.72.014002
https://doi.org/10.1103/PhysRevD.72.014002
https://doi.org/10.1016/j.physletb.2008.10.025
https://doi.org/10.1103/PhysRevD.78.053001
https://doi.org/10.1016/j.nuclphysa.2008.09.005
https://doi.org/10.1016/j.nuclphysa.2008.09.005
https://doi.org/10.1103/PhysRevD.84.114019
https://doi.org/10.1103/PhysRevD.83.111504
https://doi.org/10.1088/0253-6102/70/1/60
https://doi.org/10.1088/0253-6102/70/1/60
https://doi.org/10.1103/PhysRevD.99.096003
https://doi.org/10.1103/PhysRevD.99.096003
https://doi.org/10.1103/PhysRevD.61.012002
https://doi.org/10.1103/PhysRevD.61.012002
https://doi.org/10.1016/j.physrep.2005.06.007
https://doi.org/10.1016/j.physrep.2005.06.007
https://doi.org/10.1007/BF01554080
https://doi.org/10.1007/BF01554080
https://doi.org/10.1007/BF01564820
https://doi.org/10.1007/BF01564820
https://doi.org/10.1016/S0370-2693(98)00347-5
https://doi.org/10.1016/S0370-2693(98)00347-5
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1016/j.physrep.2006.12.003
https://doi.org/10.1140/epja/i2013-13044-5
https://doi.org/10.1016/j.physletb.2009.09.052
https://doi.org/10.1103/PhysRevD.100.034508
https://doi.org/10.1103/PhysRevC.49.2763
https://doi.org/10.1103/PhysRevC.49.2763
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1103/PhysRevD.7.1279
https://doi.org/10.1016/0550-3213(74)90488-X
https://doi.org/10.1016/0550-3213(74)90488-X
http://cds.cern.ch/record/186421
http://cds.cern.ch/record/186421
http://cds.cern.ch/record/186421
https://doi.org/10.1140/epja/i2014-14101-3
https://doi.org/10.1140/epja/i2015-15063-6
https://doi.org/10.1140/epja/i2015-15063-6
https://doi.org/10.1016/0003-4916(59)90051-X
https://doi.org/10.1006/aphy.2000.6022
https://doi.org/10.1103/PhysRev.137.B935
https://doi.org/10.1103/PhysRev.137.B935
https://doi.org/10.1140/epja/i2010-11047-4
https://doi.org/10.1140/epja/i2010-11047-4
https://doi.org/10.1140/epjc/s2004-01811-8
https://doi.org/10.1140/epjc/s2004-01811-8

