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We study the semileptonic decays of A — A(n)Z"v, in two relativistic dynamical approaches
of the light-front constituent quark model (LFCQM) and MIT bag model (MBM). By considering the
Fermi statistic between quarks and determining spin-flavor structures in baryons along with the
helicity formalism in the two different dynamical models, we calculate the branching ratios (Bs)
and averaged asymmetry parameters (as) in the decays. Explicitly, we find that B(Af — AeTr,) =
(3.36 +0.87,3.48)% and a( Al — AeTv,) = (-0.97 £ 0.03, —0.83) in (LFCQM, MBM), in comparison
with the data of B(AY — Aetv,) = (3.6 £ 0.4)% and a(A; — Aetv,) = —0.86 & 0.04 given by the
Particle Data Group, respectively. We also predict that B(A — netv,) = (0.57 £0.15,3.6 £ 1.5) x
1073 and a(Af - netv,) = (-0.98 £0.02,-0.96 & 0.04) in LFCQM with two different scenarios
for the momentum distributions of quarks in the neutron and B(A] — ne*v,) = 0.279 x 1072 and
a(Af — netv,) = —0.87 in MBM, which could be tested by the ongoing experiments at BESIII, LHCb,

and BELLEII.

DOI: 10.1103/PhysRevD.101.094017

I. INTRODUCTION

Recently, the LHCb Collaboration has published the
newest precision measurements on the antitriplet charmed
baryon lifetimes [1], given by

Tpr =203.5+ 1.0+ 1.3+ 14 fs,
7z+ =456.8 £3.5+£29 £3.1fs,
Tz = 1545+ 1.7+ 1.6 £ 1.0 fs. (1)

Surprisingly, the lifetime of Z) given by LHCb magnifi-
cently deviates from the previous value of 7z = 11273 fs
in the work by the Particle Data Group (PDG) [2].
Meanwhile, the Belle Collaboration has measured the
absolute branching ratios of B(E)—Z2"7z")=(1.8+£0.5)%
[3] and B(Ef - E ztz") = (2.86 £ 1.21 £0.38)% [4],
which are the golden modes to determine other Z0" decay
channels, respectively. It is clear that we are now witnessing
anew era of charm physics. One can expect that there will be
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more and more new experimental data and precision
measurements in the near future, which are also the guiding
light for people to explore new physics beyond the stan-
dard model.

There have recently been many works discussing the
antitriplet charm baryon decays. Because of the compli-
cated baryon structures, particularly the large nonpertur-
bative effects in the QCD, it is very hard to calculate the
baryonic decay amplitudes from first principles. In the
literature, people use the flavor symmetry of SU(3), to
analyze various charmed baryon decay processes, such as
semileptonic and two-body and three-body nonleptonic
decays, to obtain reliable results [5-25]. However, the
SU(3), symmetry is an approximate symmetry, resulting in
about 10% of errors for the predictions naturally. To have
more precise calculations, we need a dynamical QCD
model to understand each process. For simplicity, we only
discuss the semileptonic processes, which involve purely
the factorizable effects without the nonfactorizable ones. In
particular, we focus on the A} semileptonic decays in this
work. There are several theoretical analyses and lattice
QCD (LQCD) calculations on the charmed baryon semi-
leptonic decays with different dynamical models in the
literature [26-33]. In this paper, we will mainly use the
light-front (LF) formalism to study the decays and check
the results in the MIT bag model (MBM) as comparisons.
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The LF formalism is considered as a consistent relativ-
istic approach, which has been very successful in the
mesonic sectors [34,35]. Because of this success, it has
been extended to other systems, such as those involving the
heavy mesons, pentaquarks, and so on [36—47]. In addition,
the bottom baryon to charmed baryon nonleptonic decays
in the LF approach have been done in Refs. [48,49]. For a
review on the nonperturbative nature in the equation of
motion and QCD vacuum structure for the LF constituent
quark model (LFCQM), one can refer to the article of
Ref. [34]. The advantage of LFCQM is that the commu-
tativity of the LF Hamiltonian and boost generators provide
us with good convenience to calculate the wave function in
different inertial frames because of the recoil effect.

The MBM is a QCD-inspired phenomenological model.
In the MBM, a baryon is described as three free quarks with
current masses confined in a spherical bag with a bag size
R. This simple and intuitive picture helps people to deal
with the interactions between hadrons as well as their mass
spectra. The authors in Ref. [33] calculated all ¢ — s/d
baryonic transition form factors at zero-recoiled points and

|

discussed both the monopole and dipole behaviors, and
others in Refs. [50-52] have further combined the MBM
with the pole model and current algebra to predict various
charmed baryon nonleptonic decays.

This paper is organized as follows. We present our
formal calculations of the baryonic transition form factors
for LFCQM and MBM in Secs. II and III, respectively. We
show our numerical results of the form factors, branching
ratios, and averaged asymmetry parameters in Sec. IV. We
also compare our results with those in the literature. In
Sec. V, we give our conclusions.

II. BARYONIC TRANSITION FORM
FACTORS IN LFCQM

A. Vertex function of baryon

In LFCQM, a baryon with its momentum P and spin § as
well as the z-direction projection of spin S, are considered
as a bound state of three constitute quarks. As a result, the
baryon state can be expressed by [34,35,42,53-55]

1 -
_ 35 VL BE LB 17 S
B.2.S.5) = {5 HEPHE 72 )220 =0 (P= = 2= )
x Z W55 (P1, Pas P3s Ao Aoy A3) CP F ape|qia(Prs 41) 4 (Pas 42)46(P3s 43)). (2)
PR

where W55 (P, Pa, P3» A1, 42, A3) is the vertex function, which can be formally solved from the Bethe-Salpeter equations by
the Faddeev decomposition method; C*" and F ;. are the color and flavor factors; and 4; and p; with i = 1, 2, 3 are the LF
helicities and 3-momenta of the on-mass-shell constituent quarks, defined as

; mi + pi
pi=(p!.pi).  pu=(pi.p}). = Tl (3)
and
dp{ dpi,
Pp =Ll B(5) =6(pT)P(pL),
Pi= 500y (p) =08(p™)5*(pL)
|g34(p.2) = di (. M)]0),  {d%(p/. X).di(p.A)} = 2(27)*8*(p' = P)8:82a0" . (4)

respectively. To describe the internal motions of the constituent quarks, we introduce the kinematic variables of (¢ , &),
(Q1,7n), and Py, given by

+ + +
~ % = P 12 2
Py = Py + P, + Ps, b=—7"r, =——",
“ py+p3 Py
q1 = (1 - 5)P1¢ —¢épais 0, = (1 —’7)<P1L =+ Pu) — NP3, (5)

where (g |, &) characterize the relative motion between the first and second quarks, while (Q |, 7) characterize the third and
other two quarks. The invariant masses of (¢, &) and (Q,,#) systems are represented by [35]

- 'l +m_%+ m3 7
&1=-¢) ¢ 1-¢

2 _ ﬁ_ %% m% (6)
n(l—=n) n 1-g
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respectively. Unlike Refs. [53-55], which treat the diquark as a pointlike object or spectator, we consider the three
constituent quarks in the baryon independently with suitable quantum numbers satisfying the Fermi statistics to have a
correct baryon bound state system. The vertex function of W55 (B, p,, P3, 41, 42, 43) in Eq. (2) can be written as [34,35,56]

Tssz(ﬁ]’i’Z’ i)3’ll’j’2’13)

®(q,.,0,.1)E= =55 (A1, 40, 43), (7)

where ®(q,, &, Q| ,7) is the momentum distribution of constituent quarks and Z55:(4,, 1,, 13) represents the momentum-

dependent spin wave function, given by

= 1 1 1
B (A, Ay A3) = Z </11|RISl></12|R;|52></13|R§|53><§Sl,5527§S3

51,852,853

with  (3s1,750,553|SS.) the usual SU(2) Clebsch-
Gordan coefficient and R; the well-known Melosh trans-
formation, which corresponds to the ith constituent quark,
expressed by

Rl = RM(’?’ QL’M3’M)RM(57 ql’ml’M3)’

Ry = Ry (1, Q1. M3, M)Ry (1 =&, —q ., my, M3),
Ry =Ry(l—n,-Q,,m3, M), (9)
with

m—+xM —ic- (i X q)

Ry(x,pr,m,M) =

. (10)

V(m+xM)? + ¢

where ¢ stands for the Pauli matrix and 7 = (0,0, 1). This
is the generalization of the Melosh transformation from
two-particle systems, which can be derived from the
transformation property of angular momentum operators
[35,57]. We further represent the LF kinematic variables
(£,q,) and (17, Q) in the forms of the ordinary 3-momenta

q and Q,
Eip) = /4 +m%<2>, Ejp =/Q*+ M3,
RCIY)

to get more clear physical pictures of the momentum
distribution wave functions.

It is known that the exact momentum wave function
cannot be solved from the first principle currently due to the
lack of knowledge about the effective potential in the three-
body system in QCD. Hence, we choose the phenomeno-
logical Gaussian-type wave function with suitable shape
parameters to include the diquark clustering effects in A}
and A baryons [35,53]. The baryon spin-flavor-momentum
wave function F ., . ¥5%:(py, ps, P3. A1, 42, 43) should be
totally symmetric under any permutations of quarks to
keep the Fermi statistics. The spin-flavor-momentum wave
functions of A}, A, and n are given by

SSZ>, (8)

Ac) ludc)) + oy (|dcu) — |ucd))

1 n3 _
=7 (3" (|duc)

T i (ledu) —
A) = % (o (|duc) —
T i (|sdu) — |sud))).

|cud))],
|uds)) + o (dsu) — |usd))

1
) =l adu) & )+ wdd)), - (12)
respectively, where

2= (INT> ),

S!

(D + 1) =211,

:76
¢ =N

Q-q

an aQZ 2/1‘2 22 (13)

o¢ 0

and ¢, () has the form by replacing (q, Q) with (q;(2), Q;(2))
in ¢;, with N' =2(27)*(B,Bon)~** and B, belng the
normalized constant and shape parameters, respectively.

Explicitly, q;(;) and Q) are given by
_ p2+< 3) _ Pl
S12) = PEApT me) =1-—5"
( ) TPy tot
q1(2)L —<1_§1 )Pz 2)P3(1

Q1)L = (1 =m@) (P23 L+P3() ) mePie)L  (14)

Here, the baryon state is normalized as

(B.P'.S".S.|B.P.S.S.) =2(21)* P8 (P' = P)dgs . (15)

resulting in the normalization of the momentum wave
function, given by

1

22(2”>6/ dE(12)dn12)d*q(12)1d* Q12 1|31 2))* = 1.

(16)
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(a)
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FIG. 1.

current vertex, with (a) p| — p; =k, (b) p}

We emphasize that the momentum wave functions of
¢; with the different shape parameters of 3, and f3, describe
the scalar diquark effects in A(. For the neutron, the
momentum distribution functions are the same, i.e.,
¢ = ¢3(B, = Pp), for any spin-flavor state due to the
isospin symmetry. Note that there is no SU(6) spin-flavor
symmetry in A even though the forms of these states are
similar to those with SU(6).

B. Transition form factors

The baryonic transition form factors of the V — A weak
current are defined by

(By. PS8, S [gr" (1 —y5)c|B;. P. S.S;)

k
=, (P ) |11 = i ()

B

i

; M"—Lﬁ(k?)] us, (P.S.) — g, (P ) {yﬂgmkﬂ

o Ky K
— i M_Blgz(kz) + M—B,L‘JS(kZ)} ysup, (P.S:),  (17)

where 6#* = £ [y*,y*] and P’ — P = k. We choose the frame
such that P is conserved (k* = 0, k> = —k?) to calculate
the form factors to avoid other x*-ordered diagrams in the
LF formalism [35]. The matrix elements of the vector and
|

i 1
(B, P8 Silar* c|Bi.P.S.5) = 335

515253s s s2

Feynman diagrams for the baryonic weak transitions at the lowest order, where the sign of “Bullet symbol” denotes the V-A

—p2 =k, and (c) p5 — p3 =k

axial-vector currents at quark level correspond to three
different lowest-order Feynman diagrams as shown in
Fig. 1. Since the spin-flavor-momentum wave functions
of baryons are totally symmetric under the permutation of
quarks, we have that (a) + (b) + (¢) =3(a) =3(b) =3(¢)
[35]. For an illustration, we only present the calculation for
the diagram (c), which contains simpler and cleaner forms
with the notation (¢, Q,&, 7). We can extract the form
factors from the matrix elements through the relations

F102) = 3 (B, P Alar* [ B P.1),
1202) = s (B, P Hlay clB. P ),

91() = 5 (B, P g 7selB, P 1),
() = 5 2 By P g B P ) (18)

Note that f3 and g5 cannot be obtained when k™ = 0, but
they are negligible because of the suppressions of the k?
factors. In addition, the terms associated with f; and g; do
not contribute to the semileptonic decays [22]. As a result,
we set both f3 and g5 to be O in this study. With the help of the
momentum distribution functions and the Melosh trans-
formation matrix, the transition matrix elements can be
expressed as

/ dédnd’q, d*Q (¢ . &, Q' . n)®(q,.E Q. n)F*F 545"

X Z Z (8", 8|8, 55, 55) (51, 52,

(51 IRIR [s1) (s3] Ry R 5)

X 2P (5IRAIAS) (84,381,500 )l R3s3). (19)
A
_ 1 X
<BfﬂP/7S/’S/z - i )= m/d.fdnqulszﬁD(ql,f, 0. m)P(q.. ¢, Qp’?)FdetFabﬁZyZ
XYY (S S s sh $h) (51,52, 53], S) (s RT Rils1) (s3] R5 R |s2)
51,852,853 .\"1 .s’z,xg
X 2Py (S5IR51A5) (5y,43(02) 1, 8eq) (Al R 53). (20)
s
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Using Egs. (18), (19), and (20), we find that

3 :
1102) = 3357 [ AP, PO & 0L 01,8 0L 1) (P o, 338

x> Z (S MIst, s ) (s1,92, 5318, 1) T (SRR s:), (21)
51,552,853 r s2 93 i=1,2,3
() = 2 [ dednq Q. 0(d). & QL )O(qL. & QL) (T F 8y 30 8360)
g1 722(2ﬂ)6 na~q, 1 UARXSR ARy q1.6,<1-M abc®qpqYcq’
X > Y (S st b 55 (510528318, 1) T [ (SRR [s:) (55 R0 R s3). (22)
Yl‘z‘zslss i=1,2
2 3 My, 2 / / def a sbh
fr(k?) = 2000k, dédnd*q, d*Q  ®(q' &, Q' .n)®(q,.E O .n)(F FapceOy,4004:6407)
X D (S Ash s, s5) (515205308, 4) T (siIRIR] Isi), (23)
81,82:83 8'.5%.5% i=123
2 3 MB 42 2 def a sb
g (k%) :W k. dédnd®q d*Q,®(q' . &, Q' .n)P(q1. & Qu.n)(F FupeSy,4004:5402)
x D (S A5t s, s4) 51, 52,8308, 1) T (StRIR] |si) (55| Ry0-RYs3)- (24)
81,582,853 s/],s’z,s; i:1,2
III. BARYONIC TRANSITION = AR} (W' W.i Too + WLWLI),
FORM FACTORS IN MBM f ,
YV =AR(WW’ I,, — Wi WLl )(R/3),
The formalism for MBM can be found in Ref. [33]. In NN )
the calculation of MBM, we take the same notations as VM = AR (WLWL I + WﬂrWUm)(R/ 3),
those in Ref. [33]: In this approach, the current quark R3(W' W{r Lo — Wi WL Io) (R/3),
masses are used, given by ‘ _
AS = AR3(W’+Wi - WLWLT,,/3),
m, g = 0005 GeV,  m, =028 GeV, Ar = ARRWLWLJ,(-2R?/15), (27)
m,. = 1.5 GeV, R=5GeV™!, (25)

where R corresponds to the bag size, which is valid at least
for the charmed baryons [58—61]. Note that the form factors

can only be evaluated at k =0 (k* = (M, — M,)?). For

k # 0, the bag is not at the rest frame of the initial baryon,
and we will face the problem of how to boost the state in
MBM, which is very subtle and beyond the study of this
work [62]. The form factors are decomposed as

F1=Vo=VyAM? /M, = VyAM,
fo=(=Vo+VuM,+VyAM)M/M,,.
:(I—AM2/2M2 VA + (ArAM — Ay )4M M, AM /M3,
=(ArAM = A, AM /8M M, — Ag)AMIM, /M2, (26)

with AM:MI —Mz, M12 :M] +M2, and

where A is the normalized factor for the baryon, corre-
sponding to the baryon spin-flavor structures in Table I of
Ref. [33]; WZE are associated with the normalized factors
for quarks, given by

= (2Em)

with ¢ = i or f the quark flavor and w? the quark energy;
and / and J stand for the overlap factors for the quark wave
functions, defined by

(28)

1 . .
= [ di (i), n=0.1
0
1 .
= [t (e in(exd). mm =01 (£ m)
0
Lo .
JnEA dit Jl(tx(l))Jl(tx(/;)’ (29)
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TABLE 1. Values of the constituent quark masses (m;) and
shape parameters (f,g and fpg) in units of GeV, where f; ;; =

/}Qn :ﬁqn'

me m my me ﬂqA(

Por,  Par  Poa Pri
1.3 04 026 026 044 0.54 044 0.37 022,044

with j, the Bessel function and x the lowest root of the
transcendental equation of

x4

) = o R = [ + (m R

(30)

IV. NUMERICAL RESULTS

As shown in Sec. II, the baryonic transition form factors
in LFCQM can be evaluated only in the spacelike region
(k* = —k%) because of the condition k™ = 0. Thus, we
follow the standard procedures in Refs. [41,42,54] to
extract the information of the form factors in the timelike
region. These procedures have widely been tested and
discussed in the mesonic sector [63,64]. We fit [ (k?)
and gl<2>(k2) with some analytic functions in the spacelike
region, which are analytically continued to the physical
timelike region (k> > 0). We employ the numerical values of
the constituent quark masses and shape parameters in Table I.
The values of the shape parameters can be determined
approximately by the calculations in the mesonic sectors
[53,65]. Since the strength of the quark-quark (g¢q’) potential
is a half of the quark-antiquark gg’ one, the shape parameters
of the quark pairs g should be /2 smaller than those in the
mesonic sectors [53]. Meanwhile, the reciprocals of the
shape parameters are related to the sizes of systems.
Consequently, we adopt Sy, =2(B,a/ V2), where the
factor of 2 is used to parametrize the effects of the diquark
clusterings, resulting in the light quark pairs to be more
compact. For the quark-diquark shape parameters ﬂQ Ay W
choose the values of /5 .); without any additional factors. The
diquark cluster effectively forms a color antitriplet and hence
shares the same potential strength as the ¢g’ one. Finally,
because of the isospin symmetry, all constitute quarks in the
neutron are expected to have the same momentum distribu-
tion, so that the shape parameters are 3, = f,, = . We use
two scenarios for f§ to describe the quarks in the neutron.
The first one is from the harmonic oscillator picture, which
leads to f; = f,5/ V2 ~0.22 GeV through the quark-quark
interaction, in which the value of 0.22 GeV is consistent
with R =5 GeV~! in the MIT bag model. The other one
is to maintain the shape parameters of 5 = to be the
same, i.€., P11 =Pon=Pgn=Psn, =0.44GeV. By using
Eqgs. (21)-(24), we compute totally 32 points for all form
factors from k> = 0 to k* = —9.7 GeV?2. With the MATLAB

1 2 T T T T T T T T T

2

. I‘ v.s. Kk
A "

1r — — 95% conf. bnds. |

I o fyvs K

fs
— — 95% conf. bnds. |7

FIG. 2. Vector form factors of f, with respect to the transfer
momentum k> in unit of GeV? for A} — A.

curve fitting toolbox, we present our results of A7 — A in
Figs. 2 and 3 and A — n in Figs. 4 and 5 based on
95% confidence bounds given in Appendix, respectively. To
fit the k> dependences of the form factors in the spacelike
region, we use the form

__ KO
=gk 4 gkt
We present our fitting results in Table II.

For thr MBM, we assume the k> dependence of the form
factors as

F(k?) (31)

(1+dy)f:(0)

(k2 =
£i(2) s
gi(k2):w (32)

2
(1-32)? +4d,
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0'9 T T T T T T T T T
! g vsk®

0.8} /" 9,

I — — 95% conf. bnds.

0.7

0.6

25 1 1 1 1 1 1 1 1

k% (GeV?)

FIG. 3. Axial-vector form factors of g;, with respect to the
transfer momentum k? in unit of GeV? in A7 — A.

where M,=2.112(2.010)GeV and M ,=2.556(2.423)GeV,
while d; and d,, are fitted to be 0.2 and d, = 0.1, respec-
tively. We will call the k’>-dependent forms in Eq. (32)
the Lorentzian type. We list f;(0) = f; and ¢;(0) = g; in
Table III.

To calculate the decay branching ratios and
other physical quantities, we introduce the helicity

amplitudes of H/‘l/z(;:/)’
pictures and simpler expressions when discussing
the asymmetries of the decay processes, such as the
integrated (averaged) asymmetry, also known as the
longitudinal polarization of the daughter baryon.
Relations between the helicity amplitudes and form

factors are given by

which give more intuitive physical

FIG. 4. Legend is the same as Fig. 2 but for A} — n.

MB~+MB-
H%Vl =/2K_ <—f1 —7'MB ‘fz),

i

VK_ K2
H%‘i):\/k—i (MBi+MBf)f]+M7Bif2v

VKT %
H;:\/k_z (MBi+MBf)f1+M—Bif3’

Mg — Mg
Hfl =V 2K+ (gl - - fQZ)a
2 Mg

RV K2
H%O = _\/k_2 (_(MBi - Mg,)g +M—Bigz>v
2
. VKo k
Hj, = e (—(MBi — Msy,)g: +M—Bi93>’ (33)

where K, = (Mg, — My )* — k.
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1

0.8

0.6

0.2

0.3

k? (GeV?)

FIG. 5. Legend is the same as Fig. 3 but for A} — n.

The differential decay widths and asymmetries can be
expressed in the analytic forms in terms of the helicity
amplitudes, which can be found in Ref. [22]. In our
numerical calculations, we use the center value of 7+ =
203.5 x 107 s in Eq. (1) [1]. Our predictions of the
decay branching ratios (Bs) and asymmetries (as) are
listed in Table I'V. In Table V, we compare our results with
the experimental data and various other calculations in the
literature.

In LF [32] and the heavy effective theory (HQET)
[26], the authors use a specific spin-flavor structure of
c(ud — du)ys? for the charmed baryon state, in which only
the permutation relation is considered between light quarks.
In addition, they assume that the diquarks from the light
quark pairs are spectators and structureless. These simpli-
fications make the results in Refs. [26,32] be not good
compared with the experimental data as shown in Table V.
Based on the Fermi statistics, the overall spin-flavor-
momentum structures are determined, from which the
parameters like quark masses, baryon masses, and shape
parameters can recover the spin-flavor symmetry. It is
interesting to see that when we consider scenario II in the
neutron the same shape parameters of g and f g in our
study imply the totally symmetric momentum distribution
of three constituent quarks in the baryon. In addition, the
flavor symmetry breaking effect due to the quark masses
seems to get canceled due to the clustering effect of the
shape parameters in the momentum distribution functions.
Our numerical results indicate that the form factors follow
the Lorentzian functions of F(k?)=F(0)/(1—q,k*+q,k*)
in both A} — A(n) processes. Our results of f;(k*) #
gi(k*) show that the heavy quark symmetry is broken
because the constituent charm quark mass is not heavy
enough.

TABLEII. Fitting results of the form factors in LFCQM, where (I) and (I) represent the two scenarios of #; = 0.22 and f;; = 0.44 for

A}l — n, respectively.

AF > A
S 2 91 9

F(0) 0.67 +0.01 0.76 = 0.02 0.59 £ 0.01 —(1.59 £0.05) x 1073
q; (GeV2) 1.45+£0.29 1.42 +£0.29 1.198 £ 0.26 0.53 £0.24
q> (GeV™) 2.39 £045 2.34 + 044 1.904 £ 0.36 1.03 +0.23

A —>n
¢)) Sfi fa g1 9
F(0) 0.34 £0.01 0.40 £0.01 0.30 £0.01 —-0.14 £ 0.01
q, (GeV™?) 1.79 £0.36 1.83 +0.37 1.56 +0.33 2.08 +0.41
q> (GeV™) 3.59 £ 0.68 3.65 +0.69 3.03 £ 0.56 4.24 £0.83
(Im) fi fa 9 92
F(0) 0.83 £0.02 1.05 £0.02 0.71 £0.02 0.27 £0.01
q1 (GeV~2) 1.25+£0.26 1.20 £0.25 0.94 £0.22 1.37 £0.27
4> (GeV™) 1.85+0.34 1.77 £0.33 1.36 £0.25 2.08 £0.28
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TABLE III.  Fitting results of the form factors in MBM.

f1 /2 91 92
Af = A 0.54 0.22 0.52 —0.06
Af —>n 0.40 0.22 0.43 -0.07

TABLE IV. Predictions of the decay branching ratios and
asymmetry parameters in the LFCQM and MBM, where (I)
and (II) represent the two scenarios of ff = 0.22 and 0.44 for
Al — n, respectively.

LFCQM MBM

B(%) a B(%) «
Af—>Aetv, 3.36+0.87 —0.97+0.03 348 —0.83
Ab—=Apty, 3.21£0.85 —0.97+0.03 3.38 —0.82

Af > nety, 0.0574£0.015 (1) —0.984+0.02 (I) 0.279 —0.87
0.36 £ 0.15 (I) —0.96+0.04 (1)
0.054£0.015 (I) —0.98+0.01 (I) 0.273 —0.87
0.34+0.14 (I) —0.96-:0.04 (II)

+ +
A —nu'y,

As shown in Table IV, we predict that B(A — Ae*v,) =
(3.364-0.87) x 1072 and a(Af — Aetv,) =-0.96+0.03,
and B(Af - netv,) = (0.57 +0.15,3.6 + 1.5) x 1073,
and a(A} —netv,)=(—0.98+0.02,—-0.96 +£0.04) with
the two scenarios of (I) and (II) in LFCQM, in which
the value of B(a) for the mode of Af — Ae'v, is lower
(higher) than but acceptable by the experimental one
(3.6 £0.4) x 1072(—0.86 4 0.04) in PDG [2]. The errors
in our results mainly come from the numerical fits of the
MATLAB curve fitting toolbox given in Appendix, in which
the 95% confidence bounds are broadened and tightened
in the timelike and spacelike regions, respectively. Our

results are also consistent with those in LQCD [27,28], the
relativistic quark model (RQM) [29], and the covariant
confinement quark model (CCQM) [30,31]. For the MBM,
although the semileptonic processes have been fully stud-
ied in Ref. [33], their results are mismatched with the
current data. By using the same formalism with the same
input parameters, we are able to get the same values of the
form factors at the zero recoil point. By taking the
Lorentzian k2 dependences for the form factors, inspired
from our LF calculations, we obtain much better results as
shown in Table V. It is interesting to see that our results for
A} = ne'v, in LFCQM with scenario II is consistent with
most of models. One the other hand, the prediction of
scenario I is much smaller than those in the other
calculations. This suppression comes from the wave func-
tion mismatching between the diquark in the charmed
baryon and ordinary quark pairs in the neutron.

V. CONCLUSIONS

We have studied the semileptonic decays of A —
A(n)¢v, in the two dynamical approaches of the
LFCQM and MBM. We have used the Fermi statistics
to determine the overall spin-flavor-momentum structures
and recover the spin-flavor symmetry with the quark and
baryon masses and shape parameters. We have found that
B(Af - Aefv,) =(3.36 £0.87)% and 3.48% in the
LFCQM and MBM, respectively, which are consistent
with the experimental data of (3.6 4 0.4) x 1072 [2] as
well as the values predicted by SU(3). [22], LQCD
[27,28], RQM [29], and CCQM [30,31] but about a factor
of 2 larger than those in HQET [26] and LF [32]. We have
also obtained that a(Al — Ae'v,) = (—0.97 + 0.03) and
—0.83 in the LFCQM and MBM, which are lower and
higher than the experimental data of —0.86 + 0.04 [2],

TABLE V. Our results in comparisons with the experimental data and those in various calculations in the literature.

Af = Aefy,

+ +
AL — ne'y,

B(%) a B(%) a

LECQM 3.36 + 0.87 ~0.97 £ 0.03 0.057 £ 0.015 (I) ~0.98 £ 0.01 (I)
0.36 £ 0.15 (1) —0.96 £ 0.04 (I)

MBM 3.48 -0.83 0.279 -0.87
Data [2] 3.6+04 —0.86 £ 0.04 e e
SU(3) [22] 32403 —0.86 + 0.04 0.51+0.04 —0.89 £ 0.04
HQET [26] 1.42 S
LF [32] 1.63 0.201
MBM* [33] 2.6 0.20
NRQM [33] 3.2 0.30
LQCD [27,28] 3.80 £0.22 0.410 £0.029
RQM [29] 3.25 e 0.268
CCQM [30,31] 2.78 —-0.87 0.202

“Although the values of f; and g, are the same at the zero recoil point (§ = 0), we use the Lorentzian type of the k> dependences for

the form factors instead of the dipole ones in this work.
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respectively. We have predicted that B(A — ne™v,) =
(0.57 £0.15,3.6 £ 1.5) x 10* and a(A}f - netv,)=
(—0.98 £0.02,-0.96 4 0.04) with the two different scenar-
ios of (I, II) in the LFCQM and B(Af—-netv,)=
0.279%x1072 and a(Af—ne'v,)=-0.87 in the MBM,
in which our results of B(Al — ne*v,) in the MBM
and LFCQM (II) are consistent with those in the RQM [29]
and CCQM [31] but about two times smaller than the
values in SU(3), [22] and LQCD [27,28]. On the other
hand, our results of B(A — ne*v,) in the LFCQM () is
much smaller than other calculations. This additional
suppression could be understood by the wave function
mismatching between the diquark and ordinary quark pairs.
It is clear that our predicted values for the decay branching
ratio and asymmetry in A} — ne'v, could be tested in the
ongoing experiments at BESIII, LHCb, and BELLEIL
Finally, we remark that our calculations in LFCQM and
MBM can be also extended to the other charmed baryons,

such as B ’0, and even b-baryons.
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APPENDIX: FORM FACTORS IN THE LFCQM

We now show our numerical results for the form factors
in Egs. (21)—(24) in the LFCQM. In Fig. 2, we plot the
vector form factors of f1, with respect to the transfer
momentum k> in the unit of GeV? for A7 — A, where
the symbol of ¢ denotes the value calculated by Egs. (21)
and (23) from k* =0 to —9.7 GeV? with Mathematica,
while the blue line corresponds to the fitted function
by the MATLAB curve fitting toolbox, and the dashed line
represents the 95% confidence bounds (conf. bnds.) of the
fit. Similarly, we depict the axial-vector form factors of g; ,
in Fig. 3. The corresponding results for A7 — n are given
in Figs. 4 and 5.
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