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Identifying jets formed in high-energy particle collisions requires solving optimization problems over
potentially large numbers of final-state particles. In this work, we consider the possibility of using quantum
computers to speed up jet clustering algorithms. Focusing on the case of electron-positron collisions, we
consider a well-known event shape called thrust whose optimum corresponds to the most jetlike separating
plane among a set of particles, thereby defining two hemisphere jets. We show how to formulate thrust both
as a quantum annealing problem and as a Grover search problem. A key component of our analysis is the
consideration of realistic models for interfacing classical data with a quantum algorithm. With a sequential
computing model, we show how to speed up the well-known OðN3Þ classical algorithm to an OðN2Þ
quantum algorithm, including the OðNÞ overhead of loading classical data from N final-state particles.
Along the way, we also identify a way to speed up the classical algorithm to OðN2 logNÞ using a sorting
strategy inspired by the SISCone jet algorithm, which has no natural quantum counterpart. With a parallel
computing model, we achieve OðN logNÞ scaling in both the classical and quantum cases. Finally, we
consider the generalization of these quantum methods to other jet algorithms more closely related to those
used for proton-proton collisions at the Large Hadron Collider.
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I. INTRODUCTION

Jets are collections of collimated, energetic hadrons
formed in high-energy particle collisions. With an appro-
priate choice of jet clustering algorithm [1], jets are a robust
probe of quantum chromodynamics and a useful proxy for
determining the kinematics of the underlying hard scatter-
ing process. The problem of identifying jets from collision
data is a nontrivial task, however, since the jet clustering
algorithm must be matched to the physics question of
interest. Moreover, it is a computationally intensive task, as
it often involves performing optimizations over potentially
large numbers of final-state particles.
In this paper, we consider the possibility of using quantum

computers to speed up jet identification. We focus on the
well-known problem of partitioning an electron-positron
collision event into two hemisphere jets, though our
results are relevant for other optimization problems beyond

high-energy physics. Our main results are summarized in
Table I, where the computational scaling is given for N
particles in the final state.We show how to improve thewell-
known OðN3Þ classical algorithm [2] to an OðN2Þ quantum
algorithm, which includes the cost of loading the classical
data into a sequential quantum computing architecture.
On the other hand, we also show how to speed up the
classical algorithm to OðN2 logNÞ, using a clever sorting
strategy from Ref. [3], which matches the quantum perfor-
mance up to logN factors. Finally, using parallel computing
architectures, we achieve OðN logNÞ scaling in both the
classical and quantum cases, albeit for very different com-
putational reasons.
Quantum algorithms have been shown to achieve speed-

ups over classical algorithms [4], resulting, in theory, in
time savings which are even more pronounced over large
datasets. That said, many proposed quantum algorithms for
machine learning tasks often omit considerations that
would be needed to actually implement them in practice,
such as a strategy to interface classical data with a quantum
computing architecture. One solution is to assume the
availability of qRAM [5], which would let our quantum
computer access a classical dataset in superposition;
however, this additional hardware requirement may not
be easy to implement in practice. Here, we consider
realistic applications of both quantum annealing [6–8]
and Grover search [9–11] to jet finding, including the
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OðNÞ overhead of loading classical collision data into the
quantum computer.
The specific jet finding algorithm we use is based on

thrust [12–14]. Thrust is an event shape widely measured in
electron-positron collisions [15–27]. The optimum value of
thrust defines the most jetlike separating plane among a set
of final-state particles, thereby partitioning the event into
two hemisphere jets. Algorithmically, it poses an interest-
ing problem because it can be viewed in various equivalent
ways—such as a partitioning problem or as an axis-finding
problem—which in turn lead to different algorithmic
strategies.
We note that practical thrust computations typically

involve only 10–1000 particles per event, so the current
OðN3Þ classical algorithm [2] is certainly adequate to the
task. That said, more efficient jet algorithms are of general
interest, for example, in the context of active area calcu-
lations [28], which can involve up to millions of ghost
particles. We also note that the current default jet algorithm
at the Large Hadron Collider (LHC) is anti-kt [29], which
already runs in OðN logNÞ time [30,31], and it is unlikely
that any quantum algorithm can yield a sublinear improve-
ment. On the other hand, anti-kt is a hierarchical clustering
algorithm (i.e., a heuristic), whereas thrust is a global
optimization problem, and there are phenomenological
contexts where global jet optimization could potentially
yield superior physics performance [32,33]; see also
Refs. [34–47]. Jet finding via global optimization has
not seen widespread adoption, in part because of the
computational overhead, and we hope the quantum and
improved classical algorithms developed here spur more
research on alternative jet finding strategies.
Beyond the specific applications to jet finding, we

believe that the broader question of identifying realistic
quantum algorithms for optimization problems should be of
interest to both the particle physics and quantum computing
communities. Indeed, we regard thrust as a warm-up
problem for the more general development of quantum
algorithms for collider data analysis. (For other quantum
algorithms for collider physics, see Refs. [48,49] for Higgs
boson identification, Refs. [50,51] for parton shower
generation, and Refs. [52–54] for track reconstruction.)

Because collider data are classical (and will likely remain
so for the foreseeable future), understanding the limitations
imposed by data loading is essential to evaluate the
potential of quantum algorithms to speed up or improve
data analysis pipelines. At the same time, it is important to
assess potential classical improvements to existing collider
algorithms, and the sorting strategy of Ref. [3] is an
important example of how new classical strategies can
sometimes match the gains from quantum computation.
Turning now to an extended outline of this paper, our

quantum algorithms build on existing classical strategies to
compute thrust. In Sec. II, we define thrust in its various
equivalent manifestations, as both a partitioning problem
and an axis-finding problem. Then, in Sec. III, we review
classical algorithms for computing thrust based on a search
over reference axes. As already mentioned, the best known
result in the literature requires OðN3Þ time [2]. We show
how to improve it to OðN2 logNÞ using a sorting strategy
inspired by SISCone [3], which appears to have no quantum
analog (see Sec. V D).
The first quantum method we consider in Sec. IV

involves formulating thrust as a quadratic unconstrained
binary optimization (QUBO) problem, which can then be
solved via quantum annealing [6,7]. This comes from
viewing thrust as a partitioning problem and then consid-
ering the brute force enumeration of all candidate parti-
tions. See Refs. [55,56] for other studies of quantum
annealing for clustering with unique assignment.
The core results of this paper are in Sec. V, where we

describe quantum algorithms for computing thrust based on
Grover search [9]. Although naively Grover search offers a
square root speedup over any classical search algorithm, in
practice Grover search cannot yield sublinear algorithms.
The reason is that data loading over a classical database of
size N requires OðNÞ time, which limits the achievable
gains. That said, if the classical search space scales like
OðNαÞ, we can still use the Grover strategy to reduce the
search loop to OðNα=2Þ, though there will be an additional
additive (multiplicative) factor of OðNÞ if data loading has
to happen outside (inside) of the loop. Using the formu-
lation of thrust as a search over reference axes, we show
that α ¼ 2 in the thrust case. Thus, we can attribute our

TABLE I. Summary of classical and quantum thrust algorithms, where the asymptotic scaling is for a single
collision event with N particles. All strategies have a classical space overhead of OðNÞ bits for read access to the
classical data. The classical sorting strategies also require write access to OðN logNÞ bits. For ease of exposition
throughout, we treat each real number as being specified to a constant Oð1Þ bits of precision.
Implementation Time usage Qubit usage Sections

Classical [2] OðN3Þ … Sec. III A
Classical with sort (using [3]) OðN2 logNÞ … Sec. III C
Classical with parallel sort OðN logNÞ … Sec. III D
Quantum annealing Gap Dependent OðNÞ Sec. IV
Quantum search: sequential model OðN2Þ OðlogNÞ Sec. V C
Quantum search: parallel model OðN logNÞ OðN logNÞ Sec. V E
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speedup to the fact that data loading is performed in
superposition, which means that it still requires only
OðNÞ time despite working over a search space of
size OðN2Þ.
The precise speedup achievable in our Grover search

strategy depends on the assumed quantum computing
paradigm. We implement two models for retrieving and
processing the classical data, based on the abstract oper-
ations LOOKUP and SUM. The sequential computing
model requires Õð1Þ qubits and results in an OðN2Þ thrust
algorithm. Here we use Õð·Þ to mean that we neglect factors
that are polylog in N. The parallel computing model
requires ÕðNÞ qubits and results in an OðN logNÞ thrust
algorithm. Both computing models are applicable to any
general problem where the size of the search space scales
like OðNαÞ with α ≥ 2, which are precisely the problems
that can typically be sped up with a realistic application of
Grover search.
In Sec. VI, we assess whether or not there is any

quantum advantage for hemisphere jet finding. Formally,
if one has read access to OðNÞ classical bits but only write
access to OðlogNÞ bits, then one cannot implement the
classical sorting strategy in Sec, III C. In that case, there is a
quantum advantage for both sequential and parallel com-
puting models. With write access to OðN logNÞ classical
bits, though, classical sorting is possible, and the asymp-
totic performance of our classical and quantum algorithms
is identical (up to logN factors) in both the sequential and
parallel cases. This equivalence appears to be special to
algorithms like thrust where the search space scales like
OðN2Þ, and we speculate that larger search spaces might
benefit from Grover speedups even if classical sorting is
possible.
Finally, in Sec. VII, we briefly consider generalizations

of our results to jet algorithms more closely related to those
used at the LHC. We consider jet function maximization
[43–45], showing that, with suitable modifications, it can
be written in QUBO form for quantum annealing. We
consider stable cone finding in the spirit of SISCone [3],
showing how a single-jet variant we dub SINGLECONE is
amenable to quantum search. We also comment on quan-
tum multijet finding motivated by the XCone algorithm

[32,33]. We conclude in Sec. VIII with some broader
lessons about quantum algorithms for collider physics.

II. DEFINITION OF THRUST

We start by defining thrust [12–14], noting that it has
multiple equivalent definitions that suggest different algo-
rithmic strategies, as shown in Fig. 1. Thrust can be viewed
as a partitioning problem, which lends itself naturally to
quantum annealing. Thrust can alternatively be viewed as
an axis-finding problem, which we can frame as a quantum
search problem. Both definitions of thrust can be stated in
terms of operator norms, and through this lens, they are in
fact dual to each other.

A. Thrust as a partitioning problem

Consider a set of N three-momenta fp⃗ig in their center-
of-momentum frame, where p⃗i ¼ fpx

i ; p
y
i ; p

z
ig,

XN
i¼1

p⃗i ¼ 0: ð1Þ

An intuitive formulation of thrust (though not exactly the
original one [12,13]) is to separate the particles into a
partition HL ∪ HR such that momenta on each side are as
“pencil-like" as possible. That is, we seek to maximize the
quantity

TðHLÞ ¼
2jPi∈HL

p⃗ijP
N
i¼1 jp⃗ij

¼ 2jPi∈HR
p⃗ijP

N
i¼1 jp⃗ij

; ð2Þ

where the second equality follows from momentum con-
servation. The quantity known as “thrust” corresponds to
the maximum obtainable value,

T ¼ max
HL

TðHLÞ: ð3Þ

The factor of 2 in Eq. (2) is conventional such that
1=2 ≤ T ≤ 1, where T ¼ 1 corresponds to a perfectly
pencillike back-to-back configuration and T ¼ 1=2 is an
isotropic event.

FIG. 1. Two equivalent definitions of thrust as (left) a partitioning problem and (right) an axis-finding problem. The best known
classical algorithm is based on plane partitioning via a reference axis r̂ (which in general differs from the thrust axis).
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There is an equivalent geometric formulation of Eq. (2)
due to Ref. [57]. Consider sequentially summing the three-
momenta fp⃗ig to form a closed polygon. Each sequence
yields a different polygon, and computing thrust is equiv-
alent to maximizing twice the diagonal of the polygon over
all possible polygons, normalized by the circumference of
the polygon. The diagonal splits the polygon into two
halves, which yield the partition HL ∪ HR. The particles in
HL are said to be in the “left hemisphere jet" and the
particles in HR are said to be in the “right hemisphere jet.”
This definition immediately suggests a naive, brute-force

classical strategy for computing thrust. We can enumerate
all Oð2NÞ possible partitions (which can be reduced to
Oð2N−1Þ using momentum conservation), and then we sum
the momenta in each to determine the maximum, resulting
in an OðN2NÞ algorithm. This is the version of thrust we
will use for the quantum annealing formulation in Sec. IV,
which corresponds to attacking the problem using quantum
brute force.

B. Thrust as an axis-finding problem

An alternative definition of thrust is as an axis-finding
problem, which is a bit closer to the historical definition
[12,13]. Let n̂ be a unit norm vector and define

Tðn̂Þ ¼
P

N
i¼1 jn̂ · p⃗ijP
N
i¼1 jp⃗ij

: ð4Þ

Thrust can then be determined by the maximum value of
Tðn̂Þ over n̂,

T ¼ max
jn̂j¼1

Tðn̂Þ: ð5Þ

The optimal n̂ is known as the thrust axis,

n̂opt ≡ argmax
jn̂j¼1

Tðn̂Þ: ð6Þ

To gain some intuition for why Eqs. (3) and (5) are
equivalent, note that once we find the thrust axis n̂opt, we
can partition the particles into those with n̂opt · p⃗i > 0 and
those with n̂opt · p⃗i < 0. (It is an interesting bit of computa-
tional geometry to show that n̂opt · p⃗i can never be exactly
zero for a finite number of particles.) Said another way, the
plane normal to n̂opt partitions the event into left and right
hemispheres. Starting from a nonhemisphere partition, it is
always possible to increase the value of thrust in Eq. (2) by
flipping a particle from one side to the other, so the optimal
partition will be defined by a plane. Because of this
equivalence between axis finding and plane partitioning,
the thrust objective is sometimes written as

Tðn̂Þ ¼ 2
P

N
i¼1Θðn̂ · p⃗iÞðn̂ · p⃗iÞP

N
i¼1 jp⃗ij

; ð7Þ

where the Heaviside theta function picks out particles in
just one hemisphere.
Note that the optimal partitioning plane is not unique,

since there can be multiple planes that yield the same
partition. We can exploit this fact to find a computationally
convenient partitioning plane, defined by a normal refer-
ence axis r̂. This reference axis will in general be different
from the thrust axis n̂opt but nevertheless yield the same
value of thrust via Eq. (2). Specifically, once the optimal
partition is known via a reference axis, the thrust axis can be
determined from the total three-momentum in the left
hemisphere,

n̂opt ¼
P

i∈HL
p⃗i

jPi∈HL
p⃗ij

: ð8Þ

We will use this reference axis approach for the classical
thrust algorithms in Sec. III and for the quantum search
strategies in Sec. V.

C. Duality of thrust definitions

Using the formalism of operator norms, we can show that
these two definitions of thrust are in fact dual to each other.
LetM∶V → W be a map from V ¼ Rm with norm k · kα

to W ¼ Rn with norm k · kβ. The operator norm of M,
known as the induced α-to-β norm, is defined as

kMkα→β ≡ max
kvkα¼1

kMvkβ: ð9Þ

That is, we search over all vectors v in V with norm 1 and
find the maximum norm for the vector Mv in W. The case
when α and β are both the usual L2 norm corresponds to the
largest singular value of M, but in general kMkα→β can be
NP hard to estimate [58]. (Here NP is the class of problems
whose solution can be verified in polynomial time, so an
NP hard problem is one that is at least as difficult as the
hardest problem in NP.) By duality, we can rewrite this as

max
kvkα¼1

kMvkβ ¼ max
kykβ�¼1

kMTykα ¼ kMTkβ�→α; ð10Þ

where y is in W�, the vector space dual to W, defined as
W� ¼ Rn with dual norm k · kβ�. Thus, the α-to-β norm of
M is the same as the β�-to-α norm of MT .
In the context of thrust, we are interested in the following

norms for a vector v ∈ Rn:

kvk1 ¼
X
i

jvij; ð11Þ

kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX
i

v2i
r

; ð12Þ

kvk∞ ¼ max
i
jvij: ð13Þ

These are known, respectively, as the one-norm, two-norm,
and sup-norm. By Hölder’s inequality, the space of vectors
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endowed with the p norm is dual to the space of vectors
endowed with the q norm, where 1

p þ 1
q ¼ 1. In particular,

the one-norm is dual to the sup-norm, and the two-norm is
dual to itself.
Now consider the matrix Mij ¼ ðp⃗iÞj, whose rows are

the N three-momenta and whose columns are the px, py,
and pz components. This is a map from R3 to RN . Letting
α ¼ 2 and β ¼ 1, the induced 2-to-1 norm of M is

kMk2→1 ¼ max
kn̂k2¼1

kMn̂k1 ¼ max
n̂2¼1

XN
i¼1

jn̂ · p⃗ij: ð14Þ

We recognize the last term as the numerator of Tðn̂Þ in
Eq. (4). Since the denominator of Tðn̂Þ is independent of n̂,
this is equivalent to the definition of thrust via axis finding
in Sec. II B. Thus, thrust takes the form of an induced 2-to-1
norm problem.
By duality, with β� ¼ ∞, thrust can alternatively be

viewed as a sup-to-2 norm problem,

kMTk∞→2 ¼ max
ksk∞¼1

ksMk2 ¼ max
si∈f−1;þ1g

����
XN
i¼1

sip⃗i

����
2

: ð15Þ

This corresponds to the definition of thrust via partitioning
in Sec. II A, since setting si ¼ −1 denotes flipping the
orientation of vector p⃗i relative to the partitioning plane,
while setting si ¼ 1 retains the orientation of p⃗i.
Therefore, we see that the problem of computing thrust

in particle physics is in fact a special instance of the more
general problem of computing induced matrix norms.
While there exist choices of α and β for which efficient
algorithms for computing kMkα→β exist for arbitrary M, it
is believed that the general problem of computing the
induced 2-to-1 norm and that of computing the induced
∞-to-2 norm are both NP hard [59–61]. This suggests that
thrust is an excellent test bed to explore possible gains from
quantum computation.

D. Alternative duality derivation

There is alternative language to understand this thrust
duality that will be useful for the generalizations in
Sec. VII. This approach is based on Ref. [62], which
showed that different jet finding strategies can sometimes
be derived from a common metaoptimization problem.
Consider a partition H (not necessarily defined by a

plane) with total three-momentum,

P⃗ ¼
X
i∈H

p⃗i: ð16Þ

Our analysis is based on the following objective function
that depends on both a choice of partition and a choice
of axis:

OðP⃗; n̂Þ ¼ n̂ · P⃗þ λðn̂2 − 1Þ; ð17Þ

where λ is a Lagrange multiplier to enforce that the axis n̂
has unit norm. At this point, P⃗ and n̂ are completely
independent entities, and n̂ does not play any role in
determining the partition H.
For fixed P⃗, we can optimize OðP⃗; n̂Þ over n̂,

n̂opt ¼
P⃗

jP⃗j : ð18Þ

Plugging this into Eq. (17) yields

OðP⃗Þ≡OðP⃗; n̂optÞ ¼ jP⃗j; ð19Þ

which is (half) of the thrust numerator in Eq. (2).
For fixed n̂, we can optimize OðP⃗; n̂Þ over P⃗ (or

equivalently, over the partition H),

P⃗opt ¼
XN
i¼1

Θðn̂ · p⃗iÞp⃗i: ð20Þ

Plugging this into Eq. (17) yields

Oðn̂Þ≡OðP⃗opt; n̂Þ ¼
XN
i¼1

Θðn̂ · p⃗iÞðn̂ · p⃗iÞ; ð21Þ

which is (half) of the thrust numerator in Eq. (7).
Since the order of optimization is irrelevant to the final

optimum, this again shows that the two thrust definitions
are dual. Either way, the maximum value of the objective
function will be

OðP⃗opt; n̂optÞ ¼ jP⃗optj; ð22Þ
which, following Ref. [57], is just the maximum achievable
polygon diagonal.

III. CLASSICAL ALGORITHMS

We now describe the best known classical algorithm
for thrust in the literature, which requires OðN3Þ time, and
then show how it can be improved to OðN2 logNÞ using a
sorting technique from Ref. [3]. We start by assuming a
sequential classical computing model in this section and
end with a brief discussion of parallel classical computing.

A. Plane partitioning via a reference axis

The best known classical thrust algorithm [2] uses the
reference axis approach discussed at the end of Sec. II B.1

This is the thrust algorithm implemented in PYTHIA as of

1Strangely, Ref. [2] claims OðN2Þ usage, which only includes
the number of partitions to check, not the computation of
thrust itself.
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version 8 [63].2 The key realization is that, because of
Eq. (8), one only needs to search over inequivalent plane
partitions. Two particles are sufficient to determine a
separating plane, so there are OðN2Þ inequivalent plane
partitions to consider. For each partition, determining
TðHLÞ takes OðNÞ, leading to an OðN3Þ algorithm.
More specifically, for each pair of particles p⃗i and p⃗j,

one determines a reference axis r̂ij normal to the plane
spanned by them,

r̂ij ≡ p⃗i × p⃗j

jp⃗i × p⃗jj
: ð23Þ

Then, each particle p⃗k is either assigned to the hemisphere
Hij if r̂ij · p⃗k > 0 or ignored if r̂ij · p⃗k < 0. Cases where
r̂ij · p⃗k ¼ 0 are ambiguous, and we provide a general
strategy to deal with this in Sec. III B below. At minimum,
we have to treat the cases where k ¼ i or j, which requires
testing 2 × 2 ¼ 4 possibilities for whether or not p⃗i and/or
p⃗j should be included in Hij, for a total of 4NðN − 1Þ
partitions. (This can be reduced by a factor of 2 using
momentum conservation, since r̂ij and r̂ji define the same
hemispheres.) The final hemisphere jets are determined by
the partition that maximizes

Tij ≡ TðHijÞ: ð24Þ
Note that, in general, none of the OðN2Þ reference axes

considered will align with the actual thrust axis.
Nevertheless, the partitions defined by r̂opt and n̂opt will
be identical. (In the idealized case of infinitesimal radiation
everywhere in the event, all possible separating planes
would be considered, so r̂opt would then equal n̂opt.) Once
the optimal partition is known, the thrust axis itself is
determined by Eq. (8).
In terms of computational complexity, for a fixed hemi-

sphere Hij, it takes OðNÞ time to compute the hemisphere
three-momentum in Eq. (16). The thrust denominator
Tdenom ¼ P

N
i¼1 jp⃗ij also takes OðNÞ time, but it can be

precomputed since it is independent of the partition. Once
P⃗ij and Tdenom are known, though, it only takes Oð1Þ time
to determine the value of Tij,

Tij ¼
2jP⃗ijj
Tdenom

; ð25Þ

where we used Eq. (8) to derive this expression. For the best
known classical algorithm, there are OðN2Þ partitions, and
we have to do an OðNÞ computation of TðHijÞ for each

partition, leading to theOðN3Þ scaling. In Sec. III C, we can
improve on this runtime by iteratively updating P⃗ij in a
special order.

B. Doubling trick

To simplify the thrust algorithm, it is convenient to
artificially double the number of particles. Starting from N
three-momenta, we create a list of length 2N by including
both p⃗k and its negative −p⃗k. Because p⃗k and −p⃗k can
never be in the same hemisphere, and because of the
momentum conservation relation in Eq. (2), this doubling
trick has no effect on the value of thrust. It does, however,
provide us with a convenient way to deal with the fourfold
ambiguity above, since we can now define the hemisphere
Hij to always include particle i and particle j.
To deal with cases where r̂ij · p⃗k ¼ 0 (i.e., any time three

or more particles are coplanar), we offset the reference
axis by

r̂ij → r̂ij þ ϵq⃗ij; q⃗ij ≡ p⃗i

jp⃗ij
þ p⃗j

jp⃗jj
; ð26Þ

and then take the formal ϵ → 0 limit. Specifically, if
r̂ij · p⃗k¼0, then particle p⃗k is included in Hij if q⃗ij · p⃗k >0

and ignored otherwise.
Crucially, Eq. (26) ensures that p⃗i and p⃗j are always in the

hemisphere Hij, but −p⃗i and −p⃗j are not. (One has to be
mindful of the pathological situation where p⃗i and p⃗j are
exactly antiparallel, though in this case, thrust is determined
by one of the other hemisphere partitions.) The hemisphere
three-momentum is now

P⃗ij ¼
1

2

X
k∈Hij

p⃗k; ð27Þ

where the factor of 1
2
compensates for the artificial doubling.

We will use this doubling trick repeatedly in this paper,
though not for quantum annealing in Sec. IV where it is
counterproductive. To simplify the description of the
algorithms, we will leave implicit the treatment of all
r̂ij · p⃗k ¼ 0 cases via Eq. (26). It is worth mentioning that
an alternative way to deal with coplanar configurations is to
offset the momenta by a small random amount, but we find
the doubling trick to be more convenient in practice since it
avoids the fourfold ambiguity automatically.

C. Improvements via sort

The OðN3Þ algorithm can be further improved to run in
time OðN2 logNÞ.3 This can be achieved using a strategy
from SISCone [3] which uses a clever choice of traversal
order. Note that SISCone is intended for proton-proton

2Version 6 of PYTHIA [64] uses a heuristic to approximate
thrust, via an iterative procedure that updates the partition starting
from seed axes. While this method converges very quickly, it only
finds a local maximum, not the global one [57], though this may
be sufficient for practical applications. See related discussion in
Ref. [32]. 3We thank Gregory Soyez for discussions related to this point.
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collisions, whereas our interest here is in electron-positron
collisions, but the same basic strategy still applies.
The goal of SISCone is to find conical jet configurations J

where the enclosed particles are within a distance R from
the cone axis n̂J. Moreover, these cone jets must be stable,
meaning that the jet three-momentum P⃗J ¼

P
i∈J p⃗i is

aligned with the cone axis n̂J. Like thrust, SISCone involves
solving a partitioning problem where the naive brute-force
approach requires OðN2NÞ time. Like for thrust, one can
reduce the naive runtime for SISCone toOðN3Þ using the fact
that two points lying on the circumference of a circle are
sufficient to determine the cone constituents. There is an
eightfold ambiguity in the cone assignments, which we
discuss further in Sec. VII C.
The key insight of Ref. [3] is that one need not

recompute P⃗J for all OðN2Þ candidate cones. Ignoring
the eightfold ambiguity, let the candidate cones be labeled
by i and j. For fixed i, one can define a special traversal
order for j such that only one particle enters or leaves the
cone at a time. There are N particles labeled by i, and for
fixed i, sorting over j takes OðN logNÞ time. After the
initial OðNÞ determination of P⃗J for the first j values in the
sorted list, updating the value of P⃗J for each j iteration only
requires Oð1Þ time, since you need to only add the
momentum of a point entering the cone or subtract the
momentum of a point leaving the cone. Thus, the final
algorithm is OðN2 logNÞ.
We can apply exactly the same sorting strategy to the

computation of thrust, as shown in Fig. 2. The reason is that
the reference axis r̂ij depends only on the cross product
p⃗i × p⃗j. This means that for fixed p⃗i, we can choose an
ordering of the p⃗j such that the partitions induced by
fr̂i1;…; r̂iNg are specified by a single sortable parameter.

To see this, it is convenient to transform to a coordinate
system where p⃗i points in the z direction, i.e., p⃗i ¼
jp⃗ijð0; 0; 1Þ. For any j ≠ i, we can write p⃗j in spherical
coordinates as p⃗j ¼ jp⃗jjðsin θj cosϕj; sin θj sinϕj; cos θjÞ,
where θj is the polar angle and ϕj is the azimuthal angle.
Then r̂ij ¼ ð− sinϕj; cosϕj; 0Þ, so the partition is indeed
determined by the single parameter ϕj, independent of θj.
Specifically, particle k is in hemisphere Hij if

r̂ij · p̂k ¼ sin θk sinðϕk − ϕjÞ ð28Þ

is positive. This implies that 0 < ϕk − ϕj < π, where azi-
muthal angle differences are calculated modulo 2π.
Furthermore, because of the doubling trick, there is a

simple way to determine which particles are in the partition.
With the doubling, there are 2N possible choices for i, and
by Eq. (26) we know that the doubler −p⃗i cannot be in the
same partition as p⃗i. Using the above coordinate system,
we can sort the remaining 2N − 2 vectors according to their
ϕ coordinates, so that 0 ≤ ϕj1 ≤ ϕj2 ≤ � � � ≤ ϕj2N−2

< 2π.
(In cases where two particles happen to have identical
values of ϕj, their relative ordering does not matter for the
argument below, as long as the doublers are also put in the
same order.) Crucially, for a particle at position a in this
sorted list, its doubler (which is π away in azimuth) must be
at position aþ N − 1. To see why, note that a hemisphere
either contains a particle or contains its doubler, so there
must be exactly N particles in each hemisphere. Particle i is
already accounted for, meaning that any candidate partition
must contain N − 1 entries from the sorted list. Since the
sorted list is ordered by azimuth, and since the partitioning
is determined by azimuth alone via Eq. (28), the N − 1
elements from position a to position aþ N − 2 inclusive
must be in a common partition, and the doubler must be the
next one on the list. Therefore, candidate thrust partitions
always take the form

Hi;ja ¼ fi; ja; jaþ1;…; jaþN−2g: ð29Þ

(Note that, as in Eq. (26), both particle i and particle ja are
always contained in Hi;ja .)
These observations allow us to construct an OðN2 logNÞ

algorithm for thrust. The outer loop involves iterating over all
2N choices for i. The inner loop involves the following
OðN logNÞ algorithm. We perform the sorting procedure
above for fixed i, which takesOðN logNÞ time. For the first
element in the sorted list, we determine the partition Hi;j1

using Eq. (29) with a ¼ 1. We can readily compute P⃗i;j1 via
Eq. (27) in timeOðNÞ and then compute the associated thrust
value via Eq. (25) in Oð1Þ. For the subsequent 2N − 3
elements of the sorted list, we step through them one by one,
updating the partition from Hi;ja ¼ fi; ja; jaþ1;…; jaþN−2g
toHi;jaþ1

¼ fi; jaþ1; jaþ2;…; jaþN−1g. In doing so, we need

FIG. 2. Illustration of the sorting algorithm around the p⃗i axis
(seen from the top down). The dashed vectors correspond to the
doubling trick. As the blue partitioning plane sweeps in azimuth,
the hemisphere momentum is updated according to Eq. (30).
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to subtract p⃗ja and add p⃗jaþN−1
(which is the same as−p⃗ja by

the doubling trick), leading to the update step,

P⃗i;jaþ1
¼ P⃗i;ja − p⃗ja ; ð30Þ

where one has to remember the factor of 1
2
in Eq. (27). From

the updated momentum, we recompute the associated thrust
value via Eq. (25) inOð1Þ time. The total time from stepping
through the 2N − 3 partition momenta isOðNÞ, so the inner
loop is dominated just by the initialOðN logNÞ sorting step.
The maximum Tij over all i and sorted j determines the final
hemisphere jets.

D. Parallel classical algorithm

The sorting algorithm above requires OðN2 logNÞ oper-
ations. In a model with a single CPU and random-access
memory, this corresponds to time OðN2 logNÞ as well. We
can also consider parallel computing models in which theN
words of memory are accompanied by N parallel process-
ors; see Ref. [65] for more discussion of these models. In
this case, we will see that a runtime of OðN logNÞ can be
achieved. For simplicity, we do not consider the general
case in which the number of parallel CPUs and the amount
of memory can be varied independently, nor will we discuss
the varying models of parallel computing in Ref. [65].
We briefly sketch here how the sorting strategy in

Sec. III C can be sped up with parallel processors. There
are three main computational bottlenecks: iterating over
all particles i (Citer), sorting over particles j for fixed i
(Csort), and determining the hemisphere constituents over
each j for fixed i (Chemi), leading to a runtime of
OðCiterðCsort þ ChemiÞÞ. For sequential classical computing,
we found Citer ¼ OðNÞ, Csort ¼ OðN logNÞ, and Chemi ¼
OðNÞ. A parallel computer cannot improve on Citer, but
there are parallel computing algorithms for sorting [66]
and partial sums [67] that would allow us to achieve
Csort ¼ Chemi ¼ OðlogNÞ, leading to a OðN logNÞ run-
time. We will compare the quantum and classical parallel
architectures in Sec. VI.

IV. THRUST VIA QUANTUM ANNEALING

The first quantum algorithm we describe is based on
quantum annealing [6,7]. In a quantum annealer such as
the D-Wave system [8], the solution to an optimization
problem is encoded in the ground state of a target
Hamiltonian. Such a Hamiltonian takes the form of an
Ising model,

HðfsigÞ ¼
XN
i¼1

hisi þ
XN
i<j¼1

Jijsisj; ð31Þ

where each of the N Ising spins si ∈ f−1;þ1g corresponds
to a qubit, and the fhig and fJijg correspond to program-
mable weights and couplings between qubits, respectively.

Equivalently, under the transformation si ¼ 2xi − 1, we
can frame the optimization problem as a QUBO problem,
where the objective function takes the form

OðfxigÞ ¼
XN
i;j¼1

Qijxixj ð32Þ

for xi ∈ f0; 1g. Note that the fact that i, j are now summed
with repeated indices and the fact that x2i ¼ xi allow us to
absorb the linear terms into the quadratic terms.
For the thrust problem, it is convenient to first define the

three-momentum of a candidate partition as

P⃗ðfxigÞ ¼
XN
i¼1

p⃗ixi; ð33Þ

where xi ¼ 1 if particle p⃗i is in the partition and xi ¼ 0
otherwise. Following Eq. (25), the thrust of this partition is
given by

TðfxigÞ ¼
2jP⃗j
Tdenom

¼ 2

Tdenom

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i;j¼1

p⃗i · p⃗jxixj

vuut : ð34Þ

Because of the square root factor, this is not a QUBO
problem, but since the optimal partition is the same for
any monotonic rescaling of TðfxigÞ, we can optimize the
squared relation

TðfxigÞ2 ¼
4

T2
denom

XN
i;j¼1

p⃗i · p⃗jxixj; ð35Þ

which now takes the form of the QUBO problem in
Eq. (32), as desired. Finding the ground state of
−TðfxigÞ2 (note the minus sign) is the same as determining
thrust.
The space usage of a quantum annealing algorithm is

OðNÞ, corresponding to one qubit for each xi. The
annealing time required depends on the spectral gap of
the particular Hamiltonian, and we leave the question of
determining the spectral gap of the thrust objective function
to future work.

V. THRUST VIA QUANTUM SEARCH

We now describe a quantum algorithm for thrust based
on Grover search. We first describe the algorithm in terms
of two abstract operations, LOOKUP and SUM, both of
which perform data loading in superposition. Then, we
describe two computing models for loading the classical
data into quantum memory: the sequential model and the
parallel model. Key to the algorithmic speedups we achieve
is the fact that even if quantum data loading takes time
OðNÞ, other calculations inside the Grover search loop also
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take OðNÞ in both the classical and quantum models, so
we gain from decreasing the effective search space from
OðN2Þ to OðNÞ. The sequential model results in an
algorithm that requires OðN2Þ time and OðlogNÞ qubits.
The parallel model requires OðN logNÞ time and
OðN logNÞ qubits. We also assess how the resource
requirements of these algorithms scale with the precision
of the computation.

A. Algorithm overview

Our quantum thrust algorithm is based on the quantum
maximum finding algorithm of Dürr and Høyer [11], which
returns the maximum element of an unsorted array with K
elements in Oð ffiffiffiffi

K
p Þ time, assuming quantum query access

to the array. This algorithm is itself a generalization of
Grover search [9].
In this context, quantum query access means that for an

array A½1�;…; A½K�, we can efficiently perform a unitary
operation U such that

UAjiij0i ¼ jiijA½i�i; ð36Þ

along with its inverse U†. The first register, containing jii,
should have dimension at least K, so that j1i;…; jKi are
each orthogonal states of the register, and the second
register should be large enough to store the values A½i�.
Note that Eq. (36) does not fully specify the unitary UA
since it does not specify its action when the second register
is not initially in the state j0i. One possible way to define
UA fully is to have Ujiijxi ¼ jiijxþ A½i�i with addition
defined over an appropriately sized finite ring such as Zn

2 ,
but this is not necessary for applications such as in
Refs. [9,11]. Quantum query access to an array A is more

demanding than simply having A stored on disk, as we will
discuss below.
Recall that Grover search finds one marked item out of

an array of K items, assuming the ability to reflect about
the marked item. Reference [10] further extends Ref. [9] to
find one marked item when there are t > 1 marked items,
assuming the ability to reflect about the multiple marked
items. Generic Grover search then consists of the follow-
ing steps:
(1) Prepare the initial state jψ0i ¼ 1ffiffiffi

K
p

P
K
i¼1 jii.

(2) Repeat Oð ffiffiffiffiffiffiffiffi
K=t

p Þ times:
(a) Reflect about the marked states.
(b) Reflect about the initial state jψ0i.

When the number t of marked items is unknown,
Ref. [10] employs an exponential searching algorithm that
guesses the number of marked items, increasing the guess
by a constant factor each time. This is a probabilistic
algorithm that performs a measurement for each guess,
finding a solution in overall expected time Oð ffiffiffiffiffiffiffiffi

K=t
p Þ.

The maximum finding algorithm of Ref. [11], summa-
rized in Fig. 3, is based on this probabilistic exponential
searching algorithm. It keeps track of the current best
maximum seen so far and considers marked states to be
those that have a larger array entry value than the current
maximum. It employs the Grover-based exponential
searching algorithm of Ref. [10] for an unknown number
of marked states, performing measurements to obtain the
maximum with probability at least 1=2. If desired, we can
improve the success probability to 1 − η with η > 0, at
the cost of an extra Oðlog 1=ηÞ factor, by performing
Oðlog 1=ηÞ rounds of the algorithm.
Our quantum thrust algorithms are then a direct appli-

cation of quantum maximum finding, but now to an array
with K ¼ OðN2Þ entries corresponding to the choice of
separating plane. To deal with the fourfold ambiguity, we

FIG. 3. Quantum search algorithm due to Dürr-Høyer to find the index corresponding to the maximum entry of an array A½i� with K
elements [11]. The number of Grover steps is chosen at random, since this is a search over an unknown number of marked times [10].
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use the doubling trick of Sec. III C, including each original
vector p⃗k and its negative −p⃗k in the list of three-momenta
to obtain a search space of size K ¼ 4N2. Our problem,
now, is to find the maximum value of Tij with i and j each
ranging over 2N possible indices. This requires us to be
able to load the momentum vectors corresponding to each
array index, which means that the quantum algorithm must
have some means of accessing the classical data.

B. Data loading considerations

Wecan describe our quantum thrust algorithms in terms of
two abstract operations, LOOKUP and SUM. Their imple-
mentation will be described in Sec. V C for the sequential
model and Sec. V E for the parallel model. Beyond thrust,
these operations are quite general in their application to
loading classical data into quantum algorithms.
Note that our search space is of size OðN2Þ, while data

loading over N items in a classical database takes time
OðNÞ. Therefore, we can conceptualize our quantum
speedup as resulting from being able to perform data
loading over the superposition of search space items. It
is important here that the set of search space items is not the
same as the set of data points. In general, any application of
Grover search over a search space of sizeOðNαÞwith α ≥ 2
will result in a square root speedup, whereas for α < 2, the
cost of the algorithm will be dominated by the OðNÞ data
loading cost.
The LOOKUP operation is queried with one index

corresponding to a given particle, returning the momentum
corresponding to that index,

ULOOKUPjiij0⃗i ¼ jiijp⃗ii: ð37Þ
Note that the second register, initialized as j0⃗i, has to be
large enough to store the three-momenta to the desired
(qu)bit accuracy. To make ULOOKUP unitary, we define
ULOOKUPjiijq⃗i ¼ jiijq⃗þ p⃗ii for general vectors q⃗, where
the addition is done modulo some value larger than the
maximum momentum encountered in the problem. To deal
with pairs of particles, we can call ULOOKUP twice on
different registers to map jiijjij0⃗ij0⃗i → jiijjijp⃗iijp⃗ji. This
LOOKUP operation will be used to determine all OðN2Þ
reference axes r̂ij, taking OðNÞ time in the sequential
model and OðlogNÞ time in the parallel model.
The SUM operation returns the sum over all momenta,

possibly with a transformation fðp⃗; cÞ applied to each
momentum vector,

USUMjcij0i ¼ jcij ΣN
k¼1

fðp⃗k; cÞi; ð38Þ

where c represents possible control qubits. From a given
reference axis r̂ij, SUMwill be used to calculate the value of
Tij. It is crucial that calculating Tij for fixed i and j takes the
same runtime as LOOKUP, i.e., OðNÞ for sequential and

OðlogNÞ for parallel. Notably, a wide class of collider
observables can be computed in linear runtime [68], even
those that would naively scale like a high polynomial power.
Using LOOKUP and SUM, our quantum thrust algo-

rithm is described in Fig. 4. As with standard Grover
search, we need to be able to reflect about the initial state
and the marked states, namely, those whose corresponding
values of thrust are larger than the best maximum seen so
far. To identify the marked states, we compute thrust for
each choice of separating plane, using LOOKUP and SUM
to interface the quantum algorithm with the classical data.
We uncompute intermediate steps of our calculations using
standard methods (e.g., Sec. 3.2 of Ref. [4]) to make sure
that, after computing Tij, the system can be reflected about
the initial state.
Let CLOOKUP be the asymptotic cost of LOOKUP and

CSUM be the asymptotic cost of SUM. The runtime of this
algorithm is OðNðCLOOKUP þ CSUMÞÞ since there is an
OðNÞ outer Grover search loop, while the inner loop is
dominated by one application of LOOKUP and one
application of SUM. Note that the computation of the
initial guess for the maximum, Tmn, can be performed
in OðNÞ time classically, while preparation of the initial
state and reflection about the initial state can each be
performed in OðlogNÞ time, the time required to perform a
Hadamard gate.

C. Sequential computing model

The first computing model we consider is one in which
one gate, classical or quantum, can be executed per time
step. We should think of the classical computer as con-
trolling the overall computation. In a single time step, it can
either (a) perform a classical logic gate, (b) choose a
quantum gate or measurement, or (c) read a word from the
input (e.g., a single momentum). Another way to think
about this model is that we measure cost by the circuit size,
i.e., the total number of gates.
While fault-tolerant quantum computers are expected to

require parallel control to perform error correction, there
are still plausible models in which the cost of the compu-
tation will be proportional to the number of logical gates.
One possibility is that the cost is dominated by generating
magic states or by long-range interactions. Another pos-
sibility is that we are using a small quantum computer
without fault tolerance, but in an architecture such as a one-
dimensional ion trap, where the available gates are long
range and cannot be parallelized.
Under this sequential model, the operations LOOKUP

and SUM each take OðNÞ time and require OðlogNÞ
qubits. Specifically, LOOKUP requires a register of size
OðlogNÞ to store the query index i, along with a register to
store the requested three-momentum p⃗i. It operates by
performing a sequential scan through all N items in the
classical database to fetch and return p⃗i. More concretely,
in Oð1Þ time, we can perform ULOOKUP;i, defined by
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ULOOKUP;ijiij 0!i ¼ jiijpi
!i; ð39aÞ

ULOOKUP;ijjij 0!i ¼ jiij 0!i; if j ≠ i: ð39bÞ

Then we implement ULOOKUP in Eq. (37) by performing
ULOOKUP;1ULOOKUP;2 � � �ULOOKUP;N in timeOðNÞ. Similarly,

SUM takes time OðNÞ because it also performs one pass
through allN items in the classical databasewhile computing
and returning the sum

P
N
i¼1 fðp⃗i; cÞ.

With this implementation of LOOKUP and SUM, with
CLOOKUP ¼ CSUM ¼ OðNÞ, the Grover-search based thrust
algorithm inFig. 4 requiresOðN2Þ time andOðlogNÞ qubits.

FIG. 4. Our Grover-based quantum thrust algorithm, written in terms of the abstract LOOKUP and SUM operations. The symbols j0⃗i,
j0̂i, and j0i refer to initial states for a three-momentum, normalized axis, and real number, respectively. Note that we have applied the
doubling trick from Sec. III B, such that each p⃗k has its negative −p⃗k in the set of three-momenta. Cases where r̂ij · p⃗k ¼ 0 are treated
implicitly via Eq. (26). A key difference compared to Fig. 3 is that the quantity to maximize, Tij, is calculated quantumly via the COMP_T
subroutine.
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D. Quantum improvements via sort?

One might wonder whether the runtime of the quantum
thrust algorithm could be reduced from OðN2Þ to
OðN3=2 logNÞ, using the same strategy that we used in
Sec. III C to reduce the classical thrust algorithm time from
OðN3Þ to OðN2 logNÞ. The answer is yes, in principle,
but it would require a computing model beyond the
sequential one.
Recall that two points define the partitioning plane, and

after selecting the first point, we could sort the second point
according to a special traversal order. This allowed us to
avoid the OðNÞ cost of resumming the momenta for each
candidate plane. Quantum algorithms require ΩðN logNÞ
time for sort [69], which means that they cannot be used to
speed up this part of the classical algorithm. In principle,
though, we could still obtain a Grover square root speedup
when searching over theOðNÞ candidates for the first point
determining the partitioning plane. Combining the Oð ffiffiffiffi

N
p Þ

Grover search over the first point with the OðN logNÞ sort
over the second point would then yield an OðN3=2 logNÞ
overall algorithm.
The challenge here is that to perform quantum sort, all of

the data need to be stored somehow in quantum memory,
which goes beyond the sequential computing model above
where only one data point is ever accessed in a given time
step. We leave to future work the design of a quantum
computing architecture suitable for loading and sorting data
from a classical database.
Assuming that such a sort-friendly architecture exists,

one might ask about the origin of the OðN2 logNÞ to
OðN3=2 logNÞ speed up. Such an improvement is only
possible since the strategy in Sec. III C converts thrust into
a structured search problem [70,71], which evades the
naive bounds on quantum search performance. Of course,
no matter the degree of structure, we can never do better
than the OðNÞ cost to examine each data point once.

E. Parallel computing model

The parallel computing model reduces the time usage
of the sequential model at the expense of additional
space usage.4 Under this model, the operations LOOKUP
and SUM each take OðlogNÞ time but require OðN logNÞ
qubits.
An abstract version of this model is the standard

quantum circuit model, in which on N qubits we can
perform up to N=2 two-qubit gates on as many disjoint
pairs of qubits as we like. A controlling classical computer
with the same parallelism can also be used to process the
measurement outcomes and feed the results back in to
the quantum computer. To implement this in an actual
quantum computer, we would need to assume long-range

connectivity but not all-to-all connectivity. For example,
Brierley [72] describes how connecting each qubit to four
other qubits is enough to simulate full connectivity with
OðlogNÞ time overhead. In what follows, we neglect any
OðlogNÞ or other factors from converting the abstract
circuit model to a concrete architecture.
Parallel data retrieval requires first preloading all N

database items into the OðNÞ qubits. This can be done in
Oð1Þ time, since it requires only parallel copy (or CNOT)
operations from the classical bits onto the qubits. (Even a
cost of OðNÞ at this stage would not change the asymptotic
runtime, so one could also consider input models in which
the data could only be accessed sequentially, such as tape
storage.) This results in the state

j1ij0⃗ij2ij0⃗i…jNij0⃗i ↦ j1ijp⃗1ij2ijp⃗2i…jNijp⃗Ni: ð40Þ

Note that this is not the same as qRAM [5], since we are
loading the classical data into a product state once, and not
assuming any kind of query access to the data.
Now, given our preloaded data, we can perform

LOOKUP in time OðlogNÞ by performing binary search
on the query index i to locate qubits jiijpii. The binary
search can be made unitary using a series of OðNÞ SWAP
gates. Letting i ¼ i1i2…iM in binary, if i1 ¼ 1 we swap the
first N=2 ði; piÞ pairs with the last N=2 ði; piÞ pairs, if
i2 ¼ 1we swap the first N=4 ði; piÞ pairs with the nextN=4
ði; piÞ pairs, and so on. After OðlogNÞ swaps, we end up
with qubits jiijp⃗ii in the first position. We can then copy
jp⃗ii into a blank register and uncompute the swaps.
Similarly, we can perform SUM in time OðlogNÞ by

combining the entries level by level up a binary search tree
indexed by i, with OðNÞ additional registers to store the
intermediate steps. That is, we first add all pairs of entries
corresponding to indices i, i0 where i1 ¼ i01; i2 ¼ i02;…;
iM−1 ¼ i0M−1 and iM ≠ i0M. Then we have N=2 entries
indexed by j ¼ j1j2…jM−1, and again we add all pairs of
entries corresponding to indices j, j0 where j1 ¼ j01; j2 ¼
j02;…; jM−2 ¼ j0M−2 and jM−1 ≠ j0M−1. Repeating this proc-
essOðlogNÞ times allows us to sumall the entries in parallel.
Thus, the quantum thrust algorithm for the parallel

data loading model, with CLOOKUP ¼ CSUM ¼ OðlogNÞ,
requires OðN logNÞ time and OðN logNÞ qubits.

F. Resource requirements

In the above discussion, we focused on the scaling of our
Grover-based quantum thrust algorithm in terms of the
number of particles N. Here, we want to provide more
information on the practical resource requirements for this
algorithm in terms of the required precision of the thrust
computation.
Thus far, we have been working with data in the form

of three-vectors p⃗i, where we assumed that the register
holding p⃗i is of constant size. Just how large is this
constant, given that using a finite number of qubits would

4We thank Iordanis Kerenidis for discussions related to this
point.
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result in digitization error? For typical collider physics
applications, such as anticipated for a future eþe− collider,
we would want a dynamic range on momenta from the
MeV scale (i.e., per-mille accuracy on GeV-scale hadrons)
to the TeV scale (i.e., the rough energy scale for CLIC), or
around 6 orders of magnitude. This means b ¼ log2 106 ≈
20 bits of accuracy. Since we are keeping track of d ¼ 3
dimensions, the register holding the p⃗i must be of size
db ¼ 3b. Thus, the total number of qubits required
is Oðlog2N þ dbÞ for the sequential algorithm and
OðNðlog2N þ dbÞÞ for the parallel algorithm.
To be more specific, the sequential version of the

algorithm in Fig. 4 requires two registers with log2 N
qubits, four registers with db qubits, and one register with b
qubits, apart from any ancillas used in arithmetic oper-
ations, for a total of 2 log2N þ ð4dþ 1Þb qubits. For N ¼
128 particles (after the doubling trick), which is reasonable
for most eþe− applications, this is around 300 qubits. Such
a device is not far beyond current ≈50-qubit computers, so
it is naively plausible that the first quantum computer able
to run the sequential quantum thrust algorithm (without
error correction) could be ready in time to compute realistic
thrust distributions at a future eþe− collider. Of course, this
depends on the gate connectivity of such a device as well as
the achievable coherence time, and as discussed below,
circuit depth may be more constraining than the number of
qubits. For the parallel architecture, we need Nðlog2N þ
dbÞ additional qubits for initial data loading [see Eq. (40)],
though more qubits would most likely be required to
simulate full connectivity and to store intermediate steps
of the SUM operation. This points to an Oð104Þ qubit
device, which is rather optimistic on the 20 year timescale,
though this could be made more realistic by preclustering
particles to reduce N or by using a smaller value of b.
Next, we consider the number of gates required by the

Grover-based thrust algorithm. We first apply 2 log2ð2NÞ
Hadamard gates to obtain the initial state, a uniform
superposition over the indices i, j. We then apply OðNÞ
iterations of the Grover operatorG, whereG consists of two
reflections: the reflection over all states with a thrust value
greater than the current maximum, an operation requiring
the subroutine COMP_T, and the reflection about the initial
state. Note that the reflection about the initial state can be
effected with an application of H⊗2N , followed by a
reflection about the all-zeros state, followed by an appli-
cation of H⊗2N . The Hadamards require 4 log2 2N gates
total, while the reflection about the all-zeros state can
be obtained using a controlled-Z operator controlled on
having the state j0i in the first log2N registers, which
requires log2N CNOT gates. Similarly, after performing
COMP_T, we can perform the reflection over all states with a
thrust value greater than the current maximum using a
controlled-Z operator controlled on the b bits representing
the thrust value, an operation requiring b CNOT gates.
Thus, the total gate usage of the algorithm scales like

OðNðlog2N þ CCOMP T þ bÞÞ, where CCOMP T is the gate
cost of the COMP_T subroutine.
What is COMP_T? To estimate this, we consider the steps

in COMP_T from Fig. 4, noting that these steps consist of
either data loading operations like LOOKUP and SUM, or
elementary arithmetic operations like addition, multiplica-
tion, and division.
In step 1, we load p⃗i, p⃗j using LOOKUP. Note that the

circuit that implements this looks like the following: first,
we have an ancilla bit controlled on each bit in the index
register jii ¼ jilog2N…i2i1i0i; that is, we have a Clog2 N NOT

gate connecting the ancilla to each index register jiki. This
requires a total of log2N CNOT gates [73]. Then, controlled
on whether or not the ancilla bit is set, we want to transform
the blank register j0⃗i into the register jp⃗ii. We set each bit
of p⃗i controlled on whether or not the ancilla bit is set, so in
total we require db CNOT gates. Finally, we uncompute the
ancilla bit by again applying the Clog2 N NOT gate connect-
ing the ancilla to the jii register, again requiring log2 N
gates. In Fig. 5, we give an example circuit for i ¼ i1i0,
indexing two bits corresponding to items 0, 1, 2, 3 with
example values. We have such a circuit for all indices i,
requiring OðNðlog2N þ dbÞÞ gates in total. For fault-
tolerant quantum computers, this procedure can be further
optimized [74], but this does not significantly change the
resource scaling.
The remaining steps in COMP_T involve performing basic

arithmetic operations like addition, multiplication, and
division. Circuits for elementary operations like addition
and multiplication can be found in Ref. [75], while fault-
tolerant versions can also be found in the literature [76,77].
Note that for an input of n bits, addition requires OðnÞ
gates, while multiplication and division require Oðn2Þ
gates.5 Steps 2 and 4 in COMP_T involve a series of
multiplications and divisions with n ¼ db bits, thus requir-
ing Oðd2b2Þ gates. In step 3, we apply SUM controlled on
the sign of each r̂ij · p⃗k. Here, we first compute each r̂ij · p⃗k

FIG. 5. An example loading circuit mapping jiij0ij0i ↦
jiij0ijxii. In our example, i ¼ i1i0 is two bits and ðx0; x1;
x2; x3Þ ¼ ð3; 2; 3; 1Þ. The CCNOT gates are drawn with open
(closed) circles if they are controlled on the source bit being
zero (one).

5Asymptotically faster multiplication circuits exist, but they do
not yet outperform theOðn2Þ algorithm until n ∼ 103−4; we thank
Craig Gidney for pointing this out.
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and then set an ancilla bit depending on the sign of the dot
product, requiringOðNd2b2Þ gates total. Next, for each p⃗k,
we need to both load the value (using a circuit similar to the
one from step 1, requiring OðNðlog2N þ dbÞÞ gates total),
and then add it to a running sum using an adder circuit
if the ancilla bit is set, requiring OðNðlog2N þ dbÞÞ gates
total. Thus, CCOMP T ¼ OðNðlog2N þ d2b2ÞÞ, and the total
gate usage of the entire algorithm will scale like
OðN2ðlog2N þ d2b2ÞÞ.
Finally, we consider circuit depth, which involves con-

sidering which gates can be run in parallel. Note that the
OðNÞ Grover iterations G must come one after the other.
Likewise, within each Grover iteration G, the two reflec-
tions must come after each other. The parallelization
happens within the subroutine COMP_T, where we can
parallelize LOAD and SUM in the parallel computing
model via preloading; that is, we execute the loading
circuits in parallel so that all the p⃗i are in memory, and
then we process the p⃗i in parallel.
First, we perform all N preloads in parallel, resulting in a

gate depth of 2 log2 N þ db gates; this involves performing
all N operations in the sequential LOAD operation at once.
After everything has been preloaded in parallel memory, we
can perform either LOAD or SUM. To perform LOAD, we
want to execute a series of log2N swaps and then a copy,
which requires Oðlog2N þ dbÞ CNOT gates, so that the
whole LOAD operation has a depth of Oðlog2N þ dbÞ.
Meanwhile, to perform the SUM operation after everything
has been preloaded in parallel memory, we note that we
must execute the parallel LOAD operation for each p⃗k, then
calculate and control on the quantity r̂ij · p⃗k for each p⃗k,
and then we must finally sum all the N vectors. The parallel
load requires a gate depth ofOðlog2 N þ dbÞ, while the dot
product calculation requires a gate depth of Oðd2b2Þ.
Finally, we need to perform a series of log2N additions,
which requires db log2 N gates. Thus, the SUM operation
requires a total circuit depth of Oðdb log2N þ d2b2Þ. Then
CCOMPT

¼ Oðdblog2N þ d2b2Þ, and the circuit depth of the
entire parallel algorithm scales like OðNðdb log2Nþ
d2b2ÞÞ. Note that for the sequential model, the circuit
depth is just the same as the gate count of OðN2ðlog2N þ
d2b2ÞÞ since we are not running operations in parallel.
Thus, again taking an example with N ¼ 128 particles

(after the doubling trick), we would expect a circuit depth
of around 107 gates for the sequential model and 105 for the
parallel model. On a noisy device, we currently do not
expect to be able to execute an algorithm requiring more
than 103 gates [78], so again we believe that preclustering
particles to reduceN or using a small value of b could make
these algorithms more realistic on a NISQ device. We note
that because circuit depth and qubit usage come at a
tradeoff, circuit depth is the limiting factor for the sequen-
tial model, while qubit usage is the limiting factor for the
parallel model.

VI. IS THERE A QUANTUM ADVANTAGE?

Starting from the previously best known OðN3Þ classical
algorithm on a sequential computer, we found an improved
OðN2 logNÞ classical algorithm and an OðN2Þ quantum
algorithm. Because these scalings are identical up to a
logN factor, one might wonder if there is any real quantum
advantage for the task of hemisphere jet finding.
Formally, there is a quantum advantage if we make a

rather restricted assumption about the computing model.
The sequential quantum computing model in Sec. V C only
requires read access to the OðNÞ classical dataset, whereas
the sorting strategy in Sec. III C requires write access to
OðN logNÞ classical bits. Thus, if one restricts the com-
puting model to have write access to only OðlogNÞ
classical bits, then the classical sorting strategy cannot
be implemented. In that case, the best classical algorithm
would be the OðN3Þ one from Ref. [2], which would be
bested by our OðN2Þ quantum algorithm.
For any realistic application of thrust, this computing

model is overly limited, since data from a single collider
event can easily be read into random-access classical
memory. On the other hand, it is not possible to read in
the entire LHC dataset into memory, and indeed some
collider datasets are only stored on tape drives. For this
reason, there may be interesting quantum advantages for
clustering algorithms that act on ensembles of events
(instead of on ensembles of particles in a single event).
See Ref. [79] for recent developments along these lines.
For the parallel computing models, there is no formal

limit with a quantum advantage, since we need ÕðNÞ (qu)
bits with read-write access in both the quantum and
classical cases. Note that the speed up in the classical
and quantum cases come from rather different sources.
Classical sorting splits the OðN2Þ search space into an
OðNÞ outer loop and an OðlogNÞ inner loop. By contrast,
the quantum algorithm searches the OðN2Þ search space as
a whole in Oð

ffiffiffiffiffiffi
N2

p
Þ runtime.

This last observation suggests that for even larger search
spaces, there might be a quantum advantage even if there
exist classical sorting strategies. If classical sorting can only
sort s of the search dimensions, then for an OðNαÞ search
space, the classical runtime would scale proportional to
OðNα−s logs NÞ. The quantum runtime would scale propor-
tional to OðNα=2Þ, which would be faster than the classical
case for α > 2s. This might be relevant for the M-jet
finding problem mentioned in Sec. VII D with an OðN2MÞ
search space.

VII. GENERALIZATIONS

In this section, we discuss how to apply the quantum
algorithms from Secs. IV and V to jet identification
methods that generalize thrust. These algorithms are more
closely related to the ones used at the LHC, since they
involve a jet radius parameter R.
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We start with algorithms that divide the event into
a single jet and an unclustered region, as in Fig. 6.
(For the thrust problem, R ¼ π=2 and the unclustered
region is the opposite hemisphere.) We then mention
strategies to identify multiple jets. To simplify the dis-
cussion, we continue to use the ðpx; py; pzÞ coordinate
system for electron-positron collisions, noting that the
methods below can be adapted to the standard proton-
proton coordinate system of transverse momentum (pT),
rapidity (y), and azimuth (ϕ).

A. SingleCone

The generalizations we consider are all based on or
inspired by the analysis of Ref. [62], which showed that the
thrust duality in Sec. II D holds for a one-parameter family
of jet finding algorithms. No matter which dual formulation
is used, we refer to this jet finding strategy as SINGLECONE,
since it finds a single stable cone jet of radius R.
To match the literature, we use four-vector notation in

this section. The four-momentum of a particle is

pμ
i ¼ ðEi; p⃗iÞ; ð41Þ

where the energy Ei ≡ p0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
i þm2

i

p
depends on the

mass mi of particle i. The four-momentum of a candidate
partition H is

Pμ ¼
X
i∈H

pμ
i ≡ ðE; P⃗Þ; ð42Þ

where E≡ P0 is the total energy of the partition. A lightlike
axis is given by

nμ ¼ ð1; n̂Þ; ð43Þ

with n̂2 ¼ 1. We contract indices with the mostly minus
metric,

pμqμ ¼ p0q0 − p⃗ · q⃗: ð44Þ

The SINGLECONE jet finder is based on maximizing the
following objective function [62]:

OðPμ; nμÞ ¼ E −
nμPμ

1 − cosR
þ λðnμnμÞ;

¼ n̂ · P⃗ − E cosR
1 − cosR

þ λðn̂2 − 1Þ; ð45Þ

where λ is again a Lagrange multiplier, and we maximize
over both the choice of partition and the choice of axis. The
second line makes it clear that R ¼ π=2 returns the thrust
objective function in Eq. (17).
Performing the same manipulations as in Sec. II D, the

optimum axis (for fixed partition) is

nμopt ¼
�
1;

P⃗

jP⃗j

�
: ð46Þ

Since the optimum axis is aligned with the jet three-
momentum, this is an example of a stable cone algorithm;
see Sec. VII C below. The reduced SINGLECONE objective
function is

OðPμÞ≡OðPμ; nμoptÞ ¼
jP⃗j − E cosR
1 − cosR

; ð47Þ

which is an example of a jet function maximization
algorithm [43–45]. The optimum solution partitions the
event into a clustered region H and an unclustered region
(the complement of H). This definition of the problem
naturally lends itself to quantum annealing in Sec. VII B.
Doing the dual manipulation, the optimum partition (for

fixed axis) is

Pμ
opt ¼

XN
i¼1

pμ
iΘðEið1 − cosRÞ − nμp

μ
i Þ: ð48Þ

Writing the Heaviside theta function requirement in three-
momentum language,

n̂ · p⃗i

Ei
> cosR; ð49Þ

we see that for massless particles (Ei ¼ jp⃗ij), the jet
constituents are those within an angular distance R of
the jet axis. For R ¼ π=2, this yields the thrust hemisphere
regions. The reduced SINGLECONE objective function
is now

OðnμÞ≡OðPμ
opt; n

μÞ

¼
XN
i¼1

Ei −
XN
i¼1

min

�
Ei;

n · pi

1 − cosR

�
; ð50Þ

where we dropped the Lagrange multiplier term for
compactness. The second term in Eq. (50) is an example
of an N-jettiness measure [80–82] with N ¼ 1, whose

FIG. 6. Partitioning an event into a stable cone jet of radius R
and an unclustered region. This is the same as Fig. 1
when R ¼ π=2.
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minimum yields the XCone jet algorithm [32,33]. This
definition of the problem naturally lends itself to quantum
search in Sec. VII C.

B. Jet function maximization

In the jet function maximization approach of Refs. [43–
45], the goal is to optimize Pμ for a global jet function. The
original jet function from Ref. [43] can be written as

OGeorgiðPμÞ ¼ E −
1

2ð1 − cosRÞ
M2

E
; ð51Þ

where the jet mass is

M2 ≡ PμPμ ¼ E2 − P⃗2: ð52Þ

In the limit M ≪ E, this matches the reduced SINGLECONE

objective function of Eq. (47), though they yield different
optimal jet regions for finite-mass jets.
Since jet function maximization is a kind of partitioning

problem, it is natural to try to write these objective
functions in QUBO form. However, the original jet
function from Eq. (51) is not quadratic since it involves
a 1=E factor, and the SINGLECONE function in Eq. (47) is
not quadratic since jP⃗j involves a square root. Thus, these
cannot be rewritten as QUBO problems without some kind
of modification.
In the analysis of Sec. IV for thrust, we got around this

issue by squaring the thrust objective function, which
nevertheless yielded the same partitioning solution. This
approach does not work in this more general case because
of nonquadratic cross terms.
What we can do, however, is square the SINGLECONE

objective in Eq. (47) but only keep the lowest nontrivial
term in the M ≪ E limit.6 (Squaring and expanding
Eq. (51) yields the same result.) This gives the following
QUBO objective function:

OQUBOðPμÞ ¼ E2 −
M2

1 − cosR

¼ P⃗2 − E2 cosR
1 − cosR

¼
XN
i;j¼1

�
p⃗i · p⃗j − EiEj cosR

1 − cosR

�
xixj; ð53Þ

where again xi ∈ f0; 1g. Taking R ¼ π=2 in Eq. (53) then
recovers the thrust (squared) problem. It is interesting that
Eq. (53) has the same form as the generalized jet functions
in Ref. [44] (Ref. [45]) with n ¼ 2 (α ¼ 2).
This objective function corresponds to a QUBO problem

and can thus be solved on a quantum annealer. It will,

however, generally yield a different solution compared to
SINGLECONE. Unlike SINGLECONE, which yields perfectly
conical jets for massless particles via Eq. (49), this QUBO jet
finder has an effective jet radius that depends on the mass
of the jet [44,45]. Quadratic objective functions are also
explored in Ref. [47] for jet clustering at the LHC. In future
work, we plan to characterize the general phenomenological
properties of jets identified using QUBO objectives.

C. Stable cone finding

Stable cone algorithms search over candidate jet
regions of radius R and select ones that are stable [34,83],
meaning that the center of the jet region aligns with the jet
momentum. As shown in Eqs. (46) and (49), SINGLECONE
is an example of a stable cone algorithm, which is closely
related to SISCone [3].
It is worth emphasizing two key differences between

SINGLECONE and SISCone. First, SINGLECONE finds a single
jet, whereas SISCone finds all stable cones, and a separate
split/merge step is needed to determine the final jet regions.
That said, it is possible to run SISCone in progressive
removal (PR) mode, where one finds the most energetic
stable cone, removes the found jet constituents, and repeats
the SISCone procedure on the unclustered particles. In this
way, SISCone-PR acts like an iterated application of
SINGLECONE. Second, SINGLECONE finds the jet region
with the largest value of Eq. (47) (¼ E −OðM2=EÞ),
whereas SISCone-PR would typically take the stable cone
with the largest plain energy E. As we will see below,
though, it is still possible to develop quantum algorithms
for stable cones with alternative jet hardness sorting
schemes.
It is straightforward to implement the SINGLECONE

algorithm (a.k.a. SISCone-PR with Eq. (47) ordering) via
quantum search. Just as two points define a partitioning
plane, two points are enough to determine a cone region of
radius R [3]. (This is true up to an eightfold ambiguity,
which is twice that of the thrust case because the two
candidate cones are not complements of each other as they
are for hemispheres.) We can use the LOOKUP operation
to determine allOðN2Þ candidate reference axes (which are
not the same as the jet axes, but yield the same partitions).
We can then use SUM to calculate Eq. (47) for a fixed
reference axis, since finding Pμ for the particles in the
candidate jet region is a linear operation. We finally use
Grover search to find the partition that maximizes Eq. (47),
and we are guaranteed that the found cone jet will be stable
via Eq. (46). This algorithm now has the identical structure
to thrust, with the same asymptotic scaling as in Table I,
taking us from a classical OðN3Þ algorithm (without sort)
to a quantum OðN logNÞ algorithm (with parallel data
loading).
Note that the quantum maximum finding algorithm only

returns one maximum element of an array, so we cannot use
it to speed up an algorithm for identifying all stable cones.6We thank Eric Metodiev for discussions related to this point.
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We can, however, use it to find one stable cone with a
different objective function from Eq. (47). For example, to
implement SISCone-PR with standard energy ordering, we
can use a subroutine consisting of two SUM operations in
series. The first SUM determines Pμ for the candidate jet
region, while the second SUM finds P̃μ for all particles
within a radius R of Pμ. This subroutine would return P0 if
Pμ ¼ P̃μ, while it would return 0 if Pμ ≠ P̃μ. One would
then use Grover search to find the maximum subroutine
output, with the same asymptotic quantum gains as in the
SINGLECONE case.

D. Multiregion optimization

Typical collider studies involve more than one jet per
event, so it is interesting to ask whether these quantum
methods can be adapted to the multijet case. As already
mentioned, one can use a PR strategy to identify multiple
jet regions, so finding M jets just requires M iterations of
the algorithms above. Except in specialized circumstances,
the number of desired jet regions does not grow with N and
is at most Oð1=R2Þ, so the runtime of SINGLECONE-PR
would scale linearly with M. That said, we are interested
in simultaneously optimizing the jet regions as in XCone

algorithm [32,33], in order to treat the overlapping jet
regions in a more sophisticated way than just PR.
The QUBO objective in Eq. (53) can be easily gener-

alized to the M-jet case using OðNðM þ 1ÞÞ qubits,
suitable for quantum annealing. Instead of a binary assign-
ment of each particle to the clustered or unclustered region,
we can do a one-hot encoding with M þ 1 qubits per
particle to indicate their assignment to one of the M jet
regions or to the unclustered region. Specifically, let xir ∈
f0; 1g for i ∈ f1;…; Ng and r ∈ f0; 1;…;Mg. We assign
xi0 ¼ 1 if particle i is in the unclustered region, xir ¼ 1
if particle i is in jet region r for r ∈ f1;…;Mg, and
xir ¼ 0 otherwise. We then add a penalty term to the
objective function such that, for fixed i, xir ¼ 1 for only
one value of r.
The multijet QUBO objective function is

OQUBOðfxijgÞ ¼
XM
r¼1

XN
i;j¼1

�
p⃗i · p⃗j − EiEj cosR

1 − cosR

�
xirxjr

þ Λ2
XN
i¼1

�
1 −

XM
r¼0

xir

�2

: ð54Þ

Here, there is a copy of Eq. (53) for each of the M jet
regions, taking the schematic form of O ¼ −

P
i;j Qijxixj.

The coefficient of the penalty term must be taken to be
Λ2 > Nmaxij Qij to ensure that it is never favorable for a
particle to be assigned to more than one jet region. Because
Eq. (54) is quadratic in the momentum, it will not have the
same behavior as XCone (which has a linear objective
function), though we expect the results to be similar for

well-separated jets of comparable energies. This objective
function does not penalize empty jet regions, so it might be
interesting to run this algorithm with a large value of M to
let the number of nonempty jet regions be determined
dynamically.
Compared to the single-jet case, the multijet case will

likely be more difficult to implement on currently available
quantum annealing hardware. Previous numerical studies
[55] have shown that clustering problems that use multiple
qubits to implement one-hot encoding are prone to errors.
The reason is that on annealing hardware, qubit couplings
have a maximum dynamic range, which in turn limits the
effectiveness of the Λ penalty term. In practice, this means
that annealers often output a fuzzy assignment rather than a
hard assignment to one cluster. We would also like to argue
that this problem is conceptual in origin. The search space
of the single-jet QUBO problem is 2N , whereas the search
space of the multijet QUBO problem is 2MN . However, the
QUBO quantum search space contains many extra unphys-
ical states, since the actual (non-QUBO) search space is
size MN ¼ 2N logM. While the most natural way to address
this would be to use qudits with d ¼ M instead of qubits,
such hardware is not currently available.
Turning to the quantum search case, finding M conical

jet regions naively requires searching a space of OðN2MÞ,
with the added complication of needing to treat overlapping
jet regions. We are unaware of any classical approach to
this problem apart from brute force, though one expects
an OðN2Mþ1Þ algorithm for the XCone objective should be
feasible, though it likely requires a more sophisticated
treatment of reference axes. (The current implementation
of XCone in FASTJET CONTRIB 1.041 [31,84] only finds a
local minimum starting from suitable seed axes.) Using
quantum search with sequential (parallel) data loading,
one might hope that this could be improved to OðNMþ1Þ
(OðNM logNÞ), though one would have to generalize the
LOOKUP and SUM operations to deal with the multijet
case. At minimum, LOOKUP would have to load the
momenta into 2M registers (to label the candidate parti-
tions), and SUM would have to have M distinct outputs
(for each of the M jet regions). Even with quantum gains,
this is computationally daunting, motivating future studies
of multijet algorithm whose computational complexity
grows only polynomially with M.

VIII. CONCLUSIONS

In this work, we demonstrated how quantum computers
could be applied to a realistic collider physics problem,
which requires interfacing a classical dataset with a
quantum algorithm. We focused on maximizing thrust to
identify hemisphere jets, but the quantum methods devel-
oped here are relevant to a broader range of optimization
and cluster-finding problems. The asymptotic performance
of our quantum annealing and quantum search algorithms
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is summarized in Table I. We found a way to improve the
previously best known OðN3Þ classical thrust algorithm to
anOðN2Þ sequential quantum algorithm. Along the way, we
found an improved OðN2 logNÞ classical algorithm, based
on the sorting strategy of Ref. [3]. Both the quantum
and improved classical algorithms can be implemented
on parallel computing architectures with asymptotic
OðN logNÞ runtime. Formally, we found a quantum advan-
tage, but only when assuming a computing model with read
access to OðNÞ (qu)bits but write access to only OðlogNÞ
(qu)bits.
Going beyond thrust, we briefly generalized our quantum

methods to handle structurally similar jet clustering algo-
rithms. These involvemaximizing an objective functionwith
a radius parameterR, which partitions the event into a conical
jet region and an unclustered region. While we focused on
electron-positron collisions, it is known how to adapt these
methods to proton-proton collisions [45,47,62]. In future
work, we plan to investigate the phenomenological perfor-
manceof these “quantumfriendly” jet algorithms at theLHC,
to assess whether they offer improved physics performance
relative to hierarchical clustering schemes like anti-kt.
The main take home message from this work is that the

overhead of data loading must be carefully accounted for
when evaluating the potential for quantum speedups on
classical datasets. In many ways, optimization-based jet
algorithms are an ideal platform to think about quantum
algorithms for collider physics, since these problems tend
to involve searching over a large space of possibilities,
OðNαÞ with α ≥ 2, and therefore benefit from Grover
search methods. By contrast, even though the number of
events in a collider data sample (Nevents) is usually much
larger than the number of final-state particles in a jet,

typical collider tasks like filling a histogram involve
OðNeventsÞ operations, such that data loading is already
the limiting factor. On the flip side, this motivates further
quantum investigations into classically OðN2

eventsÞ data
manipulation strategies, such as the metric space approach
recently proposed in Ref. [79], since they might be
reducible to OðNeventsÞ quantum algorithms under suitable
circumstances. We also note that Grover search is limited to
a square-root speedup on unstructured search, whereas
collider data have additional structures like symmetries and
heuristics which might lead to further quantum gains.
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