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Assuming a certain continuity property, we prove, using the old results of Itzykson and Martin, that,
except for an obvious ambiguity, there are only at most two amplitudes reproducing an elastic differential
cross section at a given energy.
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I. HISTORICAL INTRODUCTION

Given a differential cross section at one energy in the
elastic region, can one find the scattering amplitudes? We
restrict ourselves to the spinless case. Forgetting kinemati-
cal factors (more precisely, we neglect 1=k in the amplitude
and 4π=k2 in the integrated cross section), the scattering
amplitude is given by

fðcos θÞ ¼
X
l

ð2lþ 1ÞflPlðcos θÞ; ð1Þ

with fl ¼ sin δl expðiδlÞ. The δl’s are the phase shifts.
The differential cross section is given by F2, where

F ¼ jfðcos θÞj: ð2Þ

It seems that it was first realized by T Y. Wu and T. Ohmura
in 1962 [1] that the phase ϕ of the scattering amplitude such
that

fðcos θÞ ¼ Fðcos θÞ exp½iϕðcos θÞ�; ð3Þ

satisfies a nonlinear integral equation which, using num-
bers to designate directions, is

Fð12Þ sinϕð12Þ

¼ 1

4π

Z
dΩ3Fð13ÞFð23Þ cos½ϕð13Þ − ϕð23Þ�: ð4Þ

However, they did not go very far in the possible solutions
of this equation. One obvious ambiguity is that one can
change the sign of all phase shifts or, equivalently change f
to −f�, but the question is whether (1) has one or more
solutions. J.H. Crichton, in 1966, pointed out that there are
cases where the solution of (1) is not unique [2] and he
exhibited a twofold ambiguity in the simple situation where
there are only 3 partial waves, l ¼ 0, 1, 2. Later, in 1968,
A. Martin [3] and R. Newton [4] found a condition under
which the solution of (1) is unique and reached by a
contraction mapping. This condition was:

sup
Fð13ÞFð23Þ

Fð12Þ < 0.79: ð5Þ

Later A. Gangal and J. Kupsch [5] succeeded in
replacing 0.79 by 0.89. Nobody realized that condition
(5) implies supFð11Þ < 0.79, and by the optical theorem,

σtot < 0.79: ð6Þ

What happens if this condition is violated? One can go a
little further as was done by C. Itzykson and A. Martin [6]
assuming that there is a finite number of partial waves and
showing that if the cross section is less than 1.38, the
solution is unique. Since the maximum l is arbitrarily
large, we believe that this holds also for an infinite number
of partial waves. In fact one can go further than that and
show that for a given total cross section σ, the maximum
number of solutions is less than 28σ=7 (see Appendix A).
However, after the Crichton example, it was discovered
that there are other situations with 2 and only 2 solutions.
Courageously F. Berends and S. Ruijsenaars [7] and inde-
pendently H. Cornille [8] proved that if l ¼ 0, 1, 2, 3, there
are only 2 solutions, and H. Cornille and J.-M. Drouffe

*j-m.richard@ipnl.in2p3.fr
†andre.martin@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW D 101, 094014 (2020)

2470-0010=2020=101(9)=094014(6) 094014-1 Published by the American Physical Society

https://orcid.org/0000-0001-6459-765X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.094014&domain=pdf&date_stamp=2020-05-14
https://doi.org/10.1103/PhysRevD.101.094014
https://doi.org/10.1103/PhysRevD.101.094014
https://doi.org/10.1103/PhysRevD.101.094014
https://doi.org/10.1103/PhysRevD.101.094014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


made the “tour de force” to prove the same for maximum
l ¼ 4 [9].
C. Itzykson and A. Martin [6] undertook a different

approach, assuming that the scattering amplitude is a
genuine entire function, i.e., not a polynomial, and suc-
ceeded to prove that in most cases there are not more than 2
solutions. In this paper we shall utilize their result to go
further. First we give a short lecture on entire functions in
the next section, then we rederive some of the results of [6].
In the following section we modify a polynomial ampli-
tude, to make it an entire function and succeed to prove that
for polynomial amplitudes of arbitrarily large degree there
are only 2 solutions. Finally, we move to amplitudes with
infinite number of partial waves and succeed, we believe, in
proving that there are only 2 solutions.

II. LECTURE ON ENTIRE FUNCTIONS

We begin by recalling some facts on entire functions
which can be found in the book by Boas [10]. An entire
function, fðzÞ is analytic in the full complex plane. This, of
course, includes polynomials. We are interested only in
genuine entire functions which are such that if MðrÞ is the
maximum of jfðzÞj on jzj ¼ r

lnMðrÞ
ln r

→ ∞ for r → ∞: ð7Þ

An entire function is of order ρ if lim lnMðrÞ=rρ is finite.
For instance exp z is of order 1. A product of 2 functions of
order ρ is also of order ρ. An alternative definition is
obtained from a power series expansion of f

f ¼
X
n

anzn: ð8Þ

Then

ρ ¼ lim sup
n

n ln n
− ln an

: ð9Þ

An important property of functions of order strictly less
than 1 is that they can be written as a convergent product
over the zeros of the function

fðzÞ ¼ zm
Y
i

ð1 − z=ziÞ: ð10Þ

This will be the case of functions of order 1=2 like

f ¼ cosð ffiffiffi
z

p Þ ¼
Y
n

�
1 −

z
ððnþ 1=2ÞπÞ2

�
: ð11Þ

Let us point out that the only functions of order 1 which
have no zero are proportional to expðczÞ.

Now, we can also define entire functions as Legendre
polynomial expansions.

fðzÞ ¼
X
l

ð2lþ 1ÞflPlðzÞ: ð12Þ

The connection between polynomial expansion and
power-series expansion is rather obvious because of the
inequalities

jzjl < jPlðzÞj < ð1þ
ffiffiffi
2

p
Þljzjl; ð13Þ

for jz� > 1 (see Appendix B). So, again, the order of the
expansion (12) is given by

ρ ¼ lim sup
l

l lnðlÞ
− ln jflj

: ð14Þ

III. SOME RESULTS OF ITZYKSON-MARTIN [6]

We consider only the situation where the scattering
amplitude is an entire function of order 1. It is given by
(12). The unitarity condition is

Im fl ¼ jflj2: ð15Þ

If f is entire, of order 1

lim sup
l

l lnl
− ln jflj

¼ 1: ð16Þ

Then

lim sup
l

l lnl
− lnðIm flÞ

¼ 1

2
: ð17Þ

So the absorptive part

A ¼
X
l

ð2lþ 1ÞIm flPlðzÞ ¼
1

2i
½fðzÞ − f�ðz�Þ�; ð18Þ

is of order 1=2, while the dispersive part

D ¼
X
l

ð2lþ 1ÞRe flPlðzÞ ¼
1

2
½fðzÞ þ f�ðz�Þ�; ð19Þ

is of order 1.
Suppose we have 2 amplitudes with the same differential

cross section:

f ¼ Dþ iA; f0 ¼ D0 þ iA0; jfj2 ¼ jf0j2; ð20Þ

then
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D2 −D02 ¼ A02 − A2 ¼ Q: ð21Þ

Q is a function of order 1=2 and, therefore, can be written as
a convergent product

Q ¼ zp
Y
i

ð1 − z=ziÞ: ð22Þ

But

−Q ¼ ðD0 −DÞðD0 −DÞ: ð23Þ
The zeros of D0 −D and D0 þD form two complementary
subsets of the zeros of Q. So

D0 −D ¼ MðzÞzm
Y
α

ð1 − z=zαÞ; ð24Þ

where MðzÞ has no zero and the product is still convergent
and of order 1=2. Similarly

D0 þD ¼ NðzÞzn
Y
β

ð1 − z=zβÞ; ð25Þ

where NðzÞ has no zero.M and N being of order 1 without
zeros can only be of the form expðczÞ; expðc0zÞ, but since
they disappear in the product, c0 ¼ −c. So

2D ¼ expðczÞmðzÞ þ expð−czÞnðzÞ; ð26Þ
where mðzÞ and nðzÞ are of order 1=2.
Suppose now that we have a third amplitude,

f” ¼ D”þ iA”. Then D and D” will have a different
decomposition:

2D ¼ expðdzÞpðzÞ þ expð−dzÞqðzÞ
¼ expðczÞmðzÞ þ expð−czÞnðzÞ: ð27Þ

Suppose c > d > 0. Then the term containing expðczÞ
dominates. The second equality is impossible and neces-
sarily, c ¼ d. Then we have

expð2czÞðm − pÞ þ n − q ¼ 0; ð28Þ

but m, p, n, and q being of order 1=2 this is impossible. So
the decomposition (26) is unique, and there are at most two
solutions.

IV. AMBIGUITIES FOR POLYNOMIAL
AMPLITUDES

We consider an amplitude

FL ¼
XL
l¼0

ð2lþ 1ÞflPlðcos θÞ ¼ DL þ iAL;

with Im fl ¼ jflj2; ð29Þ

where L is arbitrary. We shall complete this amplitude by a
unitary amplitude extending from Lþ 1 to infinity and
manufacture in this way an entire function of order 1. We
add to FL:

RLðλÞ ¼
X∞
Lþ1

ð2lþ 1ÞrlðλÞPlðcos θÞ;

with rlðλÞ ¼ Rerl þ iImrl; ð30Þ

and we take, with jλj < 1=2,

Rerl ¼ λ

2

Z þ1

−1
PlðxÞ exp x dx: ð31Þ

Though this can be calculated explicitly term by term, we
need only an asymptotic estimate for large l (see
Appendix B).

Rerl ≃
1

2

1

l!
λ

2l

ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − 1=2

p : ð32Þ

The dispersive part of the new amplitude is:

DL þ
X∞
Lþ1

ð2lþ 1ÞRerlPlðzÞ: ð33Þ

It is an entire function of order 1. The absorptive part is
constructed to satisfy elastic unitarity for all l’s. So, for
l ≤ Lþ 1,

ImrlðλÞ ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðRerlÞ2

p
2

: ð34Þ

Notice that as soon as

Rerl <
2

5
; ð35Þ

we have

Imrl <
5

4
jRerlj2: ð36Þ

So, asymptotically

Imrl <
5

4

�
1

2

1

l!
1

2l

�
2 λ2π

l − 1=2
: ð37Þ

This means that the new absorptive part of the amplitude

AL þ
X∞
Lþ1

ð2lþ 1ÞImrlPlðzÞ; ð38Þ

is an entire function of order 1=2. So the Itzykson-Martin
theorem applies to this amplitude, and there cannot be more
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than one amplitude giving the same differential cross
section. The differential cross section is a continuous func-
tion of λ, including λ ¼ 0. it is even real analytic in a
neighborhood of λ ¼ 0. We do not see how extra ampli-
tudes (in finite number from Appendix A) could appear at
λ ¼ 0. If they did, they should also be present for λ different
from zero. This is a continuity assumption, which seems to
us reasonable, but which could be criticized.

V. AMBIGUITIES FOR NONPOLYNOMIAL
AMPLITUDES

Suppose we have an amplitude which is neither a
polynomial nor an entire function. This amplitude could
exist on the interval ½−1;þ1� or be analytic in the complex
plane with some singularities: Its partial wave expansion
will converge in an ellipse with foci f−1;þ1g touching the
nearest singularity. This is the case in local field theory
[11]. Then with fl ¼ sin δl expðiδlÞ,
Re fl < expð−klÞ; and Im fl < expð−2klÞ: ð39Þ
Now we replace δl by δl expð−λl lnlÞ and correspond-

ingly fl by flðλÞ. The new dispersive partDðλÞ is an entire
function of order 1 and the absorptive part AðλÞ an entire
function of order 1=2. So with this amplitude there is at
most a two-fold ambiguity. This persists as λ goes to zero
and we do not see how extra solutions could appear out of
nowhere. This is an assumption which seems reasonable.

VI. CONCLUDING REMARKS

We consider that we have solved a longstanding prob-
lem. However, purists could object that we rely on a
limiting process and that we do not know if a catastrophe
could occur in the limit. We do not believe this because the
differential cross section remains continuous at the limit.
We apply “Goldberger’s principle” that “nature cannot be
so unkind” [12]. We hope that someone else can make our
argument more rigorous. However there is a big problem
left which is the existence of solutions. For physical cross
sections like ππ scattering, physics tells us that the solution
exists, but assuming an arbitrary differential cross section is
there at least one acceptable amplitude? It is only under a
condition similar to (5), where 0.79 is replaced by 1 [3],
that we are certain of the existence of a solution.
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APPENDIX A: BOUND ON THE NUMBER
OF AMPLITUDES

In Ref. [6], we have shown that if the scattering
amplitude is a polynomial of degree L, and, therefore,
the differential cross section a polynomial of degree 2L, the

scattering amplitude is unique if the cross section is less
than 1.38. It is tempting to assume that this result,
independent of L is also valid for an infinite number of
partial waves. Here, we want to generalize this result and
prove that, given the total cross section, one can find a
bound on the maximum number of amplitudes compatible
with the differential cross section which is independent of L
and depends only on the value of the total cross section,
while, naively one would expect a bound of 2L−1. The
method is the same as in [6]. It consists in starting with the
maximum l, i.e., L, and descending in values of l. From
the Legendre polynomial expansion of the differential cross
section:

X2L
0

ð2lþ 1ÞClPlðcos θÞ; ðA1Þ

we see that the value of sinðδLÞ is fixed by the knowledge of
C2L (we choose δ between 0 and π=2). Then, from C2L−1,
we get

ReðfL−1f�LÞ: ðA2Þ
This defines in the Argand diagram a straight line which
intersects the unitarity circle in 2 points (if they do not
intersect, the differential cross section is not acceptable). If
only one of these 2 points is acceptable (and we shall see
that soon) we can continue the procedure down to a value
l ¼ M. Suppose now that at l ¼ M we have the 2
solutions, fM and gM. Then we have

ReðfM − gMÞf�L ¼ 0: ðA3Þ

So fM − gM is perpendicular to the segment ½0; fL�. The
point ðfM þ gMÞ=2 is on a line parallel to ½0; fL� going
through the center of the unitarity circle. See Fig. 1. It is
easy to see that since the segment ½fM; gM� must at least
touch the circle we must have

FIG. 1. Notations used in Appendix A.
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Im fM þ Im gM
2

>
1 − sin δL

2
: ðA4Þ

So the total cross section, common to both amplitudes,
should be larger than

ð2M þ 1Þ 1 − sin δL
2

þ ð2Lþ 1Þsin2 δL: ðA5Þ

Minimizing with respect to δL, and noticing thatM < L we
get

σtot > ð7=8ÞðM þ 1=2Þ: ðA6Þ

If, on the other hand,

ð7=8ÞðM þ 3=2Þ > σtot > ð7=8ÞðM þ 1=2Þ; ðA7Þ

we see that there cannot be any ambiguity for l ≥ M þ 1,
which we anticipated, and we must choose the solution
with the smallest imaginary part.
At this stage we can have ambiguities at each step

descending to l ¼ 1. As l ¼ 0 is fixed, an upper bound on
the number of solutions is

2ðM−1Þ < 27=ð8σtotÞ: ðA8Þ

This bound is independent of L. We believe that this also
holds for an infinite number of partial waves. What really
matters for the rest of this paper is that the number of
solutions is finite.

APPENDIX B: PROOF OF THE
INEQUALITIES EQ. (13)

jPlðzÞj > Plðjzj for jzj > 1. The Legendre polynomials
have zeros between −1 and þ1. Hence, taking for instance
l even

jPlðzÞj ¼ Clj
Y
i

ðz2 − x2i Þj > Cl

Y
i

ðjzj2 − x2i Þ ¼ PlðjzjÞ:

ðB1Þ

Now, PðxÞ for x real larger than 1 can be written as

PlðxÞ ¼
1

π

Z
π=2

0

h�
xþ cosϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
l

þ
�
x − cosϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
l
i
dϕ > xl: ðB2Þ

This proves the left hand inequality. The second inequality
follows from the above integral representation: for jzj ≥ 1,

jPlðzÞj <
jzjl
π

Z
π

0

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=jzj2

q �l
dϕ

< jzjlð1þ
ffiffiffi
2

p
Þl: ðB3Þ

APPENDIX C: ASYMPTOTIC BEHAVIOR
OF Re rl FOR LARGE l

We have

Rerl ¼ λ

2

Z þ1

−1
PlðxÞ exp xdx: ðC1Þ

From the definition of Legendre polynomials

PlðxÞ ¼
1

2ll!

�
d
dx

�
l
ðx2 − 1Þl; ðC2Þ

we can integrate the right-hand side of (C1) l times by
parts:

Re rl ¼ λ

2ll!

Z þ1

−1
cosh xð1 − x2Þldx: ðC3Þ

This gives for large l

Re rl ≃
λ

2

1

2ll!

Z þ∞

−∞
exp½−ðl − 1=2Þx2�dx

¼ λ

2

1

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

l − 1=2

r
: ðC4Þ
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