
 

Rayleigh bubble in quark matter under a strong magnetic field
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The transition of quark-gluon plasma from fluid-dynamical regime to freeze-out is accompanied by the
onset of instabilities. In the present paper, we investigate the impact of the magnetic field on the Rayleigh
instability. We show that extremely strong field generated in peripheral heavy ion collisions has an
insignificant influence on the Rayleigh bubble dynamics. Magnetic “friction” turns out to be much weaker
than the viscous friction.
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I. INTRODUCTION

The evolution of the fireball created in heavy ion
collisions is at the early stages adequately described by
hydrodynamics [1–4]. At a certain phase, hydrodynamics
breaks down, but when and how it happens remains to a
great extent ill understood [5–9]. Numerous attempts have
been performed in recent years to clarify the character of
the transition from the hydrodynamic regime to the
chemical freeze-out stage [7–12]. Different kinds of insta-
bilities accompanying this transition have been predicted
[7–9,13–17]. Here, we focus on one particular instability,
namely cavitation [8,9,18–21] and closely related Rayleigh
collapse [22–26]. To our knowledge, the possibility of the
Rayleigh collapse and sonoluminescence in quark matter
were first discussed in Ref. [21]. Cavitation is a phenome-
non in which rapid change of pressure in a liquid leads to
the formation of small bubbles where the pressure is
relatively low. The mechanism responsible for the forma-
tion of low and even negative pressure has been proposed in
Refs. [8,9,20]. The driving force leading to the negative
effective pressure and to the onset of cavitation is the
enhanced bulk viscosity. Enhanced bulk viscosity also
leads to the anomalous sound attenuation due to
Mandelshtam-Leontovich slow mode formation [27,28].
The theory of bubble dynamics and the bubble collapse
were started by Lord Rayleigh in 1917 [22] when he
investigated cavitation damage of ship propellers. The
Rayleigh equation describing the collapse reads

RR̈þ 3

2
_R2 ¼ 0; ð1Þ

where RðtÞ is the bubble radius. The solution of (1) is the
power law

RðtÞ ∼ ðtC − tÞ2=5; ð2Þ

which leads a divergent wall velocity _RðtÞ ∼ ðtC − tÞ−3=5 at
t → tC. At collapse, the interior of the bubble gets com-
pressed, heats up, emits a shock sound wave, and possibly
emits light. In Sec. II, we shall derive the collapse
singularity on purely dimensional grounds. According to
the present understanding [23–26,29], Eq. (1) gives an
oversimplified picture of the collapse with only inertia
forces accounted for. Depending on what additional factors
and parameters are included in the consideration and what
simplifying assumptions are made, the equation of the
bubble motion and pulsation takes different forms. The
simplest version of the celebrated Rayleight-Plesset (R-P)
equation reads [23,29]

RR̈þ 3

2
_R2 ¼ 1

ϱ
ðpL − p0 − PðtÞÞ; ð3Þ

where ϱ is the liquid density assumed to be a constant, pL is
the pressure in the liquid at the bubble wall, p0 is the
ambient pressure, and PðtÞ is the driving acoustic pressure.
Equation (3) corresponds to the incompressible liquid. For
the compressible liquid, acoustic corrections have been
considered in Ref. [30]. Viscous losses and the surface
tension will be included in Sec. II. The review of a large
number of publications on different aspects of the bubble
dynamics is beyond the scope of this work.
The quark matter formed in heavy ion collisions is

subjected to a strong magnetic field generated by spectator
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protons, and this field may be captured by a fireball,
provided it has a finite electric conductivity. The number of
publications on the magnetic field related phenomena in
quark-gluon plasma (QGP) is overwhelming; see, e.g.,
Refs. [31,32] and references therein. The main message is
that the intense magnetic field has a strong, sometimes
drastic, influence on the QCD phase diagram [33], thermo-
dynamic properties [34], meson masses [35], and transport
coefficients [36,37]. This list can be continued. It is
necessary to emphasize that the above-mentioned numer-
ous calculations have been performed taking the magnetic
field to be time independent and uniform. The solution of a
realistic problem with the magnetic field and the fireball
geometry changing in time remains a task for future work.
The goal of this paper is to investigate the influence of the
magnetic field on the bubble dynamics and collapse in
quark matter. The somewhat unexpected conclusion will be
that strong magnetic field has a negligible impact on the
bubble dynamics. The shear viscosity turns out to be much
more important despite the well-known statement that the
QGP is the most ideal fluid in nature.
The picture of the Rayleigh bubble evolution is com-

plicated. Different authors (see below) include various
factors in the consideration. Our aim is to get a clear-cut
conclusion on the role of the magnetic field in the Rayleigh
instability. In this context, we shall resort to several
approximations specified in what follows.
The paper is organized as follows. In Sec. II, we derive

the Rayleigh collapse solution on purely dimensional
grounds. In Sec. III, the systematic derivation of the R-P
equation with viscous losses and surface tension is pre-
sented. Section IV is the core of the paper. Here, we obtain
the expression for the magnetic force acting on the bubble
and include this term in the R-P equation. In Sec. V, we
show that the effect of an extremely strong magnetic field is
very small and explain the reason for that. In the con-
clusions, Sec. VI, we discuss the possible composition of
matter inside and outside the bubble.

II. DERIVATION OF THE RAYLEIGH
COLLAPSE ON DIMENSIONAL GROUNDS

The R-P collapse described by Eq. (3) and its more
involved forms is an intricate physical phenomenon
depending on multiple sets of parameters and boundary
conditions. Following Ref. [38], we shall show that a
singular solution may be found simply on dimensional
grounds provided the important parameters are correctly
chosen. The time development of the collapse depends on
the wall radial coordinate R, the wall radial velocity _R,
density ϱ, pressure p, and temperature T. At the initial
moment, the system is in equilibrium with _R ¼ 0, ϱ ¼ ϱ0,
p ¼ p0, and T ¼ T0. Another important quantity is the
energy E0 inserted into the system. The energy E0 may be
considered as the work done on the bubble by the pressure
which would exist at the location of the center of the bubble

were the bubble not to be present. The dimensional formula
for the bubble radius as a function of time is defined as the
expression in terms of the basic parameters ϱ0, p0, E0 with
proper dimensions. The dimension of E0 deserves a com-
ment. The work done by the pressure results in the change
of the liquid kinetic energy. The kinetic energy has a
dimension MR2=t2. We shall return to this point after
Eq. (13). On physical grounds, the number of essential
parameters may be reduced from 3 to 2. For strong collapse,
the nonlinearity induced by the shock wave from the bubble
is much greater than the nonlinearity in the initial wave
pressure. Therefore, the value of the initial pressure
becomes inessential. This is equivalent to the original
Rayleigh assumption expressed by Eq. (1) that only liquid
inertia mattered. In this way, we arrive at the following
dimensional equation:

Rδ ¼ ϱν0E
μ
0t

ξ ¼ ðMR−3ÞνðMR2=t2Þμtξ: ð4Þ

This yields a system of equations,

−3νþ 2μ ¼ δ;

νþ μ ¼ 0;

−2μþ ξ ¼ 0: ð5Þ

We have three equations for four parameters so that one
parameter remains arbitrary. To proceed, we form the time/
radius relation ξ=δ. Then, from (5), one easily gets
ξ=δ ¼ 2=5, so that

R ¼ At2=5 ð6Þ

in complete agreement with the Rayleigh result (2).
Formula (6) may be looked at as a scaling law.

III. INCLUSION OF VISCOUS LOSSES
AND SURFACE TENSION

The aim of this work is to include the magnetic force into
the R-P equation and to compare its role to that of the
viscous forces. As a first step, we shall explain how to
incorporate the viscous and the surface tension terms into
the R-P equation. For the detailed derivation and the
description of the necessary assumptions, we refer the
reader to Refs. [24,26,30].
The starting point is the Navier-Stokes equation for the

incompressible liquid, which we will write following
Ref. [39],

∂v
∂t þ ðv∇⃗Þv ¼ −

1

ϱ
∇⃗pþ η

ϱ
Δv þ 1

ϱ
f; ð7Þ

where η is the shear viscosity and f refer to the external
forces. In our case, f is the magnetic force which will be
considered in the Sec. IV.
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Alternatively, on more general grounds, one can start
from the relativistic version of the Euler equation [40],

∂v
∂t þ ðv∇⃗Þv ¼ −

1

ðeþ pÞγ2
�
∇⃗pþ v

∂p
∂t

�
; ð8Þ

where e is the total energy density and γ is the Lorentz
factor. We do not follow this approach for two reasons.
First, the addition of viscosity amounts to additional
nondiagonal terms that make the equation very complicated
[40,41]. Second, as it was shown in Ref. [42], the small
difference between nonviscous relativistic and nonrelativ-
istic cases arises at the last stages of the bubble collapse.
However, other factors like sonoluminescence [25,43] are
important at the end of the collapse. Embedding the
Rayleigh collapse into the Bjorken flow [44] is a chal-
lenging and difficult problem to be solved in future. Based
on the results presented below, one can safely ignore the
magnetic field in solving the relativistic or Bjorken-like
Rayleigh collapse.
The flow in (7) is radial, and therefore the viscous term

in (7) is not important. We shall see shortly that viscosity
enters through the pressure difference inside and outside
the wall. Without the external force Eq. (7) for the spherical
bubble with radial velocity takes the form

∂v
∂t þ v

∂v
∂r þ

1

ϱ

∂p
∂r ¼ 0: ð9Þ

For the radial and irrotational motion, the velocity can be
represented in terms of a potential φ as v ¼ ∇⃗φ, or
v ¼ ∂φ=∂r. Then,

vðr; tÞ ¼ R2ðtÞ
r2ðtÞ

_RðtÞ; ϕðr; tÞ ¼ −
R2ðtÞ
rðtÞ

_RðtÞ: ð10Þ

In terms of φ, Eq. (9) takes the form

∂2φ

∂t∂rþ
1

2

∂
∂r

�∂ϕ
∂r

�
2

þ 1

ϱ

∂p
∂r ¼ 0: ð11Þ

Integrating over r, we arrive at

∂φ
∂t þ

1

2

�∂ϕ
∂r

�
2

¼ −
pðrÞ − p0

ϱ
; ð12Þ

where p0 is the static pressure outside the bubble wall.
Using expression (10) for φ and evaluating (12) at r ¼ R,
we obtain

RR̈þ 3

2
_R2 ¼ pL − p0

ϱ
; ð13Þ

where pL is the liquid pressure at the outer interface of the
bubble.

Expression (10) for the bubble expansion or contraction
velocity allows us to calculate the kinetic energy entering in
the dimensional equation (4). Consider the evolution of the
liquid spherical shell with the surface area 4πr2 and the
thickness dr. The corresponding kinetic energy is

E¼ 4πϱ

Z
∞

R
drr2

�
R2ðtÞ
r2

_RðtÞ
�
2

¼ 4πϱR3 _R2∼M
R2

t2
: ð14Þ

The confirms the choice of the energy dimension in (4).
Next, we have to include the surface tension and the

viscous correction. To this end, we consider the pressure
difference between the outside value pL and the inside one
pi. We use the Laplace-Young expression for the surface
tension [41] and assume that the fluid is a Newtonian one so
that the Cauchy viscous stress is linearly proportional to the
radial strain ∂v=∂r [41]. The matching condition reads

pi −
�
pL − 2η

∂v
∂r

�
¼ pi − pL − 4η

_R
R
¼ 2σ

R
; ð15Þ

or

pL ¼ pi −
2σ

R
− 4η

_R
R
: ð16Þ

Substitution of this into (13) leads to [25]

RR̈þ 3

2
_R2 ¼ 1

ϱ

�
pi − p0 −

2σ

R
− 4η

_R
R

�
: ð17Þ

At this point, we note that to describe the Rayleigh collapse
of the QGP clusters Shuryak and Staig [21] used the
following approximation form of (15):

RR̈þ 3

2
_R2 ¼ −

4η _R
ϱR

: ð18Þ

The authors of Ref. [21] came to the conclusion that the
viscous dissipative flow may turn the collapse into a “soft
landing.” The discussion of this conclusion will be
found below.

IV. BUBBLE DYNAMICS IN THE
MAGNETIC FIELD

The quark matter formed in heavy ion collisions at
Relativistic Heavy Ion Collider and LHC is subjected to a
strong magnetic field generated by spectator protons. At the
initial stage, the value of the field reaches eB ≃ 1019 G [45–
47]. The time dependence of the created field is determined
by the QGP electrical conductivity and by the evolution of
the fireball geometry. We shall not discuss this complicated
and controversial problem [48–52].
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To get insight into the bubble dynamics in the magnetic
field, we shall greatly oversimplify the problem and make
several approximations. The external magnetic field is
supposed to be constant and homogeneous. It will be
assumed that the bubble always remains spherical. The
fluid surrounding the bubble is assumed to be incompress-
ible, irrotational (v ¼ ∇⃗φ), and Newtonian (shear stress is
proportional to the rate of shear strain). Dissipation is due
to the two sources: viscous losses and magnetic friction
(see below). Magnetohydrodynamics of such a liquid has
been considered in Refs. [41,53], and the expression for the
magnetic force has been derived in Refs. [41,54]. For the
formalism developed in Refs. [41,54] to be applicable,
the fluid needs to satisfy certain requirements in addition to
the ones listed above. The fluid magnetic Mach number
RM¼4πμσlv [41,54] should be small, RM≪1. Here, μ, σ, l,
and v are respectively the magnetic permeability, the
electrical conductivity, the characteristic linear dimension,
and the characteristic velocity. For the bubble in the QGP,
the condition RM ≪ 1 is easily satisfied. The fluid mag-
netic permeability μ ∼ 1 (see below). The electrical con-
ductivity has been calculated in a great number of papers;
see, e.g., Refs. [36,55–59]. A crude estimate σ ∼ 0.1 fm−1

would suffice for our purposes since this research is aimed
at the qualitative description of the phenomena. It is worth
mentioning that the value σ ∼ 0.1 fm−1 is about 5 orders of
magnitude larger than that for mercury or liquid copper.
Nonetheless, the condition RM ≪ 1 may be fulfilled
even for such a “huge” electrical conductivity. The bubble
dimension is of the order l ¼ R ∼ 1 fm. Therefore,
σl ∼ 10−1. According to Ref. [21], the collapsing bubble
may have a velocity about 4 km=s, or v ≃ 10−6 in natural
units c ¼ 1. As a result, RM ≪ 1.
We shall calculate the effect of the magnetic field on the

bubble dynamics in two alternative ways. Both approaches
will lead to the same result. First, we follow the reasoning
provided in Refs. [39,54]. The volume density of the force
in magnetic field f (with dimensionM5) is given by a well-
known formula [39],

f ¼ ½j ×B�: ð19Þ

The force f is due to the currents induced in the liquid
moving with respect to the bubble. By virtue of the
smallness of the magnetic Reynolds number, the magnetic
field in the current-carrying region is assumed to be
equal to the uniform and time-independent external one.
Neglecting the perturbative expansion for B, we may put
rotB ¼ divB ¼ 0. The current in the moving liquid is

j ¼ σð½v × B� þ EÞ: ð20Þ

The electric field E is potential since rotE ¼ − ∂B
∂t ¼ 0.

Then, E ¼ −∇⃗φ, and the equation (20) is replaced by

j ¼ σð½v ×B� − ∇⃗φÞ: ð21Þ

Next, we note that

div½v ×B� ¼ B½∇⃗ × v� − v½∇⃗ ×B� ¼ 0; ð22Þ

since the liquid is supposed to be irrotational and magnetic
field is uniform. We also note that the term ½v ×B� has
no component perpendicular to the bubble surface. It means
that there is no induction of the electric charges on
the bubble surface and divj ¼ 0. Equation (21) with
div½v × B� ¼ divj ¼ 0 yields Δϕ ¼ 0, and the only con-
tribution to the volume force stems from the first term
in (21):

f ¼ σ½½v ×B� ×B� ¼ −σfvB2 −BðvBÞg: ð23Þ

Only the first “drag” term in (23) contributes to the total
force. The second term vanishes after integration over the
polar angle with B taken as a polar axis.
Another way to calculate the force f is to consider the

rate of the Joule energy dissipation [39]. The Joule heating
rate is caused by the currents induced in the liquid. The
volume rate is equal to [39]

Q ¼ j2=σ: ð24Þ

Resorting to the arguments presented above, we conclude
that only magnetic friction is responsible for the energy
dissipation,

Q ¼ σ½v ×B�2: ð25Þ

The heat dissipation during the time interval δt is
Qδt ¼ −fvδt, so that Q ¼ −fv. Then,

f ¼ −σfvB2 −BðvBÞg: ð26Þ

As expected, this result is identical to (23). The presented
derivation does not contradict the affirmation that Lorentz
force does not produce work over the moving charge [39].
Now, we can write the R-P equation with the magnetic

field contribution included,

RR̈þ 3

2
_R2 ¼ 1

ϱ

�
pi − p0 −

2σ

R
− 4η

_R
R
− σB2R _R

�
; ð27Þ

All terms in this equation are nondimensional. One can
ask a question [25] of whether any term in the right-hand
side of (21) can halt the collapse. According to the
scaling discussed in Sec. II, the left-hand side of (21)
behaves as ðtc − tÞ−6=5, the surface term σ=R∝ðtc−tÞ−2=5,
η _R=R ∝ ðtc − tÞ−1, and σB2R _R ∝ ðtc − tÞ−1=5. Therefore,
it may be expected that none of these terms can prevent the
bubble from the collapse. As stated in Ref. [21], the above
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scaling may be violated by strong viscous dissipation (the
term 4η _R=R). The Rayleigh collapse turns into a “soft
landing” if ηT=ϱ≳ 0.6. Note that the shear viscosity is a
pronounced function of the temperature [60]. Close to Tc,
η=s, where s is the entropy density, takes its minimal value
predicted to be η=s ¼ 1=ð4πÞ [61]. The physics at the last
stages of the collapse is complicated. The equation of state
of the media inside the bubble may play an important role.
The sound radiation at t → tc is very important since it
diverges as ðtc − tÞ−13=5 [21,25].

V. ITTY-BITTY MAGNETIC FRICTION

According to common lore, a huge magnetic field eB ∼
Λ2
QCD created in heavy ion collisions brings substantial

changes in physical observables like hadron masses, trans-
port coefficients, etc. [32–37,59,62,63]. It turns out that this
is not the case for the bubble dynamics. To see this, let us
first estimate the value of the magnetic force parameter
σB2. Predictions for the electrical conductivity both with-
out and with magnetic field vary in a wide range [32,
55–59,62,63]. The variance is really large as can be seen
from Fig. 2 of Ref. [63]. A reasonable estimate would be
σ ≃ 0.1 fm−1. As it was mentioned above, this is a very
high value as compared to the conductivity of the normal
materials. What is the value of the magnetic field at the
onset of a possible cavitation is a tough question. The
time evolution of the magnetic field from its initial value
1019 G is a subject of discussions [45–52]. We assume
that magnetic field is diminished by 4–5 orders of magni-
tude from initial value, i.e., is equal to 1014 G. Then,
σB2 ≃ 10−13 GeV5. The ratio of the electromagnetic force
to viscous force is characterized by the Hartmann number
[39] Ha ¼ ðσB2l2=ηÞ1=2. The QGP shear viscosity depends
on the temperature, density, and magnetic field [60,64,65].
Practically all calculations present the results in the form
η=s, where s is the entropy density. This expression is
physically important as it shows that the QGP is the most
ideal fluid in nature [60,61]. The value of the shear
viscosity itself η ≤ 5 × 1011 Pa · s ≃ 0.1 GeV3 at T ¼
2 × 1012 K ≃ 170 MeV may be found in Ref. [3]. It is
interesting to estimate the value of η corresponding to the
critical value of the parameter ηT=ϱ ¼ 0.6 [21]. Above this
point, the Rayleigh collapse turns into a soft landing. It is
worth mentioning that the parametrization ηT=ϱ ≥ 0.6
provides a correct dimension of η but is misleading if
one tries to deduce from it the temperature dependence of
the shear viscosity [60,66,67]. If we assume that cavitation
takes place near Tc, we may take T ¼ 170 MeV and ϱ ≃
ð0.18–0.5Þ GeV=fm3 [3,68]. Such density is either slightly

or a few times larger than the normal nuclear density. For
definiteness, we take ϱ ¼ 0.3 GeV=fm3. The critical mag-
nitude of η corresponding to these values of T and ϱ is
η ≃ 10−2 GeV3. By the order of magnitude, this is close to
the results of Ref. [69]. With B ¼ 1014 G, l ¼ R ¼ 1 fm,
σ ¼ 0.1 fm−1, and η ¼ 10−2 GeV3, one gets

Ha ≃ 1.6 × 10−5: ð28Þ

Note that ðHaÞ2=4 gives the ratio of magnetic and viscous
terms in the R-P equation (27).

VI. SUMMARY AND DISCUSSION

We came to the conclusion that an extremely strong
magnetic field has only a tiny, not to say negligible, effect
on the bubble dynamics in QGP. Its role is definitely small
as compared to the viscous damping. In other words, the
Joule magnetic dissipation is much smaller than the viscous
dissipation. The simple reason for this is that the QGP shear
viscosity is very large, albeit the QGP is the most ideal
fluid in nature. As an example, consider a bubble with a
radius R ¼ 0.01 cm in the sea water at T ¼ 25 °C. The
shear viscosity is η ¼ 8.9 × 10−4 Pa · s ≃ 2 × 10−16 GeV3,
the electrical conductivity σ ¼ 5 S=m ≃ 1.5 × 10−13 fm−1

(numbers are from Wikipedia). Then, H > 1 already for
B > 107 G.
Finally, we would like to rectify an important omission

concerning the possible composition of matter inside and
outside the bubble. Here, we have to resort to frankly
speculative considerations. The driving force for cavitation
is the enhanced bulk viscosity [8,9]. As it was shown in a
number of works, quark matter near Tc possesses this
property; see, e.g., Refs. [70–74] and references therein.
The role of a gas, or vapor, inside the bubble may be played
by the hadron gas surrounded from the outside by quark
matter. An interesting point in this case is that the magnetic
permeability inside and outside will be different. The
thermal QCD medium around the transition temperature
is paramagnetic [75,76], while the hadron gas inside may
be weakly diamagnetic [75].
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