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We introduced here the study of a QCD based on a complex group. Our aim is to show that a gauge
theory with a complex symmetry develops some of the features required for the description of a confined
phase. This theory leads to gluons with propagations characteristic of i particles, fundamental constituents
of propagators in the Gribov scenario, together with a gluon propagating with the mode predicted by
’t Hooft for the quark confinement. In this way, we present in this same theory a possible gluon condensate,
together with a confining interquark potential after the coupling to fermions. This is a novelty, as, up to
now, all theories of the Gribov-Zwanziger (GZ) kind do not generate quark confinement.
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I. INTRODUCTION

Along the construction carried out by Zwanziger of
a field theory for the gluon dynamics encompassing
Gribov’s ideas [1] for the confinement (Gribov-
Zwanziger (GZ) theory) [2], several principles emerged
as cornerstones for further developments (a review on this
topic with an extensive list of references is found in [3]).
Among them, we highlight the relation between confine-
ment and the loss of positivity, which in itself explains the
fact that the fundamental field propagators of the theory do
not directly define a physical spectrum. We must also
mention the original idea of creating a theoretical environ-
ment for confinement from the addition of purely trivial
BRST elements to the Yang-Mills Lagrangian, a topologi-
cal sector. The main goal was then to perceive confinement
as an inevitable outcome of pure Yang-Mills theory. Good
agreement with the lattice approach to the gluon confine-
ment should also be remarked [4].
However, to create dynamics from this topological

structure, a process of fixation of Becchi-Rouet-Stora-
Tyutin (BRST) sources is embedded in Zwanziger’s

scheme [5]. This ultimately leads to a soft breaking of
the BRST invariance [6]. In fact, the instability of the BRST
symmetry in the nonperturbative regime was understood a
long time ago [7]. Although the renormalizability of the GZ
theory has been checked in the Landau gauge [8], it soon
became clear that this process implied a gauge dependent
construction [9,10]. Each gauge fixing would require a
different horizon function, which would intrinsically carry
this gauge dependence [11]. The acknowledgment of this
inconsistency led to the further split of the development of
the GZ program into two main lines. One searched the idea
of immersing this original structure into a more complex
field architecture, allowing for the extension of the GZ
theory with an exact BRST symmetry. This was based on a
previous observation of a nonlocal exact BRST symmetry
of GZ in the Landau gauge [12,13]. The theory was
adapted, first to develop the same nonlocal symmetry in
a general linear covariant gauge [14], and then to localize
the BRST symmetry into an infinite polynomial form [15].
This process is based on the introduction of a Stuckelberg
field in the same way as it was once proposed as an
alternative for the non-Abelian Higgs mass picture of the
Yang-Mills theory [16]. At that time, this proposal was
shown to be inconsistent [17,18], as a conflict between
renormalizability and unitarity was proven inevitable [19],
a situation that remains up to now (see, for example, the
review [20]). Another issue of this new version of GZ
theory is that the action itself becomes an infinite series,
imposing the interpretation of a weak coupling expansion
above a nonperturbative vacuum, as it does not converge for
a strong coupling phase [21].

*rubensamaral@id.uff.br
†verlemes@gmail.com
‡ozemar.ventura@cefet-rj.br
§lcqvilar@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 094002 (2020)

2470-0010=2020=101(9)=094002(10) 094002-1 Published by the American Physical Society

https://orcid.org/0000-0002-6105-7583
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.094002&domain=pdf&date_stamp=2020-05-04
https://doi.org/10.1103/PhysRevD.101.094002
https://doi.org/10.1103/PhysRevD.101.094002
https://doi.org/10.1103/PhysRevD.101.094002
https://doi.org/10.1103/PhysRevD.101.094002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Simultaneously, another line of research grew from
another even older observation: there is a way to interpret
the full GZ theory as a spontaneous symmetry breaking
of BRST starting from pure Yang-Mills plus the trivial
topological sector [22]. The mechanism itself generating
this phase transition is not described, but the broken phase
is characterized by the existence of a non-null vacuum
expectation value of a BRST trivial element. Some prob-
lems with the derivation of the GZ theory from this
symmetry breaking point of view were then pointed out,
mainly from the fact that the whole approach depended
explicitly on the spacetime coordinate. Its inconsistency
was argued in [4]. Since then, this criticism was cir-
cumvented by different proposals. Some of the authors
proposed in [23] a spontaneous symmetry breaking mecha-
nism, without any spacetime dependence, based on
Fujikawa’s work [7], generating a refined Gribov propa-
gator with an Abelian dominance, an effect predicted by the
lattice [24]. Alternatively, the implementation of a finite
volume quantization was carried out in [3,25], in a way to
avoid the inconsistency of the original Maggiore-Schaden
construction. And another spontaneous symmetry breaking
effect, also free from the explicit spacetime dependence,
again by the extension of the field content of the theory, was
presented in [26]. Nevertheless, these options were only
developed for the specific Landau gauge (as it was actually
recognized in [26]), and so may suffer from the same gauge
dependence problem that motivated the analysis in [9,10]
(also the existence of preferred directions on the resulting
vacuum seems to be another drawback).
This state of the art briefly resumed does not show a

conclusive route to overcome all the theoretical problems.
Anyway, all these developments brings us the impression
that GZ could, in fact, be describing a phase of a larger
theory, when it is already confined. At the same time, it is
natural to expect that a process of spontaneous symmetry
breaking should play a major role, since this is the
mechanism that we find in theoretical physics that can
make this transition and at the same time preserve renor-
malizability and unitarity. Then, we feel that there is room
to look for alternative views. Our search will be for a theory
that after a spontaneous symmetry breaking leads to a
confined phase in the sense of the GZ theory, but defined in
a class of linear covariant gauges.
On the other hand, as it is clearly stressed in [26], the

preservation of a BRST symmetry does not guarantee that a
unitary description will be reached. One should in the end
verify if the theory allows for a positive norm subspace of
the confined degrees of freedom. As in a confined phase,
the elementary excitations are expected not to have asymp-
totic states, this subspace must be searched among the
two point correlators of composite operators constructed
from the basic fields. In fact, it is very hard to describe
correlators with these properties in the GZ theory. Several
developments lead to the foundation of the important

concept of i particles, fundamental elements from which
condensates satisfying positivity criteria would be possible
[27–30]. Propagators of i particles would be behind the
formation of Gribov propagators. However, the fact that the
fundamental fields in GZ do not precisely represent i
particles led to the impossibility of defining condensates
with the necessary properties to describe physical observ-
ables in the theory [2]. A new idea to overcome this
obstacle was the further development of the replica model
[31]. Created in order to associate fundamental fields
directly to i particles, it showed once more the loss of
positivity as an inevitable outcome in this confinement
scenario. But another ingredient appeared: a complex
gauge field is hidden in the replica model.
Complex gauge fields show up once in a while in the

physics literature. Wu and Yang used complex gauge fields
in the study of instantons and duality theory, and raised the
question of “a possible physical meaning to a gauge theory
where the energy is necessarily not positive definite” [32].
There is also the well-known result that three-dimensional
general relativity is related to complex Chern-Simons
theory, where this discussion is avoided because the
Hamiltonian in this theory is zero, and otherwise, as
underlined by Witten, “these gauge groups would be for-
bidden in ordinary Yang-Mills theory” [33,34]. Another
example is the description of the field content of N ¼ 4
supersymmetric Yang-Mills field theory from the com-
plexification of the N ¼ 2 theory [35]. This example is
instructive in the sense that in order to restore positivity,
part of the complex gauge field is constrained in such a way
that it becomes an ordinary vectorial matter field. In fact,
what all these authors point out is that a complex gauge
field theory symmetric under a complex group leads to the
loss of positivity. Then, if we take complex gauge field
theory as an appropriate environment to the description of i
particles, we need to deepen the analysis. As already
mentioned, we will be led to the conclusion that funda-
mental fields are not associated with asymptotic particle
states. This can be seen as a precept to the confinement, but
the main issue is that we must recover the physical
spectrum of excitations of the theory, or else such theory
will remain physically meaningless. A possible path opens
if we assure the possibility of defining condensates from
such fields. In fact, the concept of i particles is born inside
the GZ theory as a building block for condensates. These
would be formed from vertices joining simultaneously pairs
of i particles and anti-i particles. Objects built in this way
would propagate respecting Källén-Lehmann spectral rep-
resentation, and then would define candidates for observ-
able states. And according to what is derived in the replica
model, this combination in pairs of i particles and anti-i
particles is essential for the success of the construction.
From this point on, we derived two main possible

constructions of a complex gauge field theory. One is
found on a standard complex symmetry for all the fields
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that take part in the theory. It presents some candidates for a
gluon condensate. This theory will be fully exhibited in a
forthcoming work. It begins with the usual transformation
of a complex gauge field Aμ in the adjoint representation

Aμ → A0
μ ¼ G−1AμGþ i

g
G−1ð∂μGÞ; ð1Þ

and, in the case of a complex group, we have the possibility
of defining a conjugated field Āμ transforming as

Āμ → Ā0
μ ¼ G†ĀμG†−1 þ i

g
G†ð∂μG†−1Þ; ð2Þ

since in a complex group G−1 ≠ G†. In the next step, we
can define covariant curvatures F μν and F̄ μν for Aμ and
Āμ, respectively. Thus we immediately see that invariant
objects built exclusively from these curvatures will be
holomorphic in the sense that once Aμ is found in a
monomial, it will not contain Āμ, and vice versa. For
example, we will be able to define curvature invariants as
TrF 2 and TrF̄ 2. Therefore, there is the inevitable loss of
positivity. Positivity would only be ensured in the non-
holomorphic element TrFF̄ , which is not invariant by the
complex gauge transformations (1) and (2). Naturally, an i
particle will be associated with the Aμ field, and an anti-i
particle with Āμ.
We also assumed that the GZ theory should be embedded

in a larger theory with a spontaneous symmetry breaking
sector. The usual option is to add a scalar sector to the
theory. The first idea would be to work with a complex
scalar field and its conjugate. Then we can follow the
holomorphism of the theory, bringing it to the scalar sector.
But there is an alternative path.
This comes from the freedom that the complex group

gives us. The fact that G−1 ≠ G† allows us an unorthodox
proposition for an adjoint inspired scalar field transformation

ϕ → ϕ0 ¼ G†ϕG ð3Þ

and also

ψ → ψ 0 ¼ G−1ψG†−1: ð4Þ

These scalar fields, in isolation, do not form invariants.
But joining them together we find Trϕψ , which is invariant
under this action of the complex group.
Here we need to take some care to understand what is

implied in the transformations (3) and (4). In these left and
right actions on the field are implicit, which indicate that
the field carries a representation of the algebra, as it occurs
in the traditional adjoint representation. However, as the
transformations in (3) and (4) involve G† and not G−1, we
can conclude that for a general group these transformations

are not closed inside the vectorial space of the algebra. This
means that the admissibility of this pattern of transforma-
tion will depend on specific choices of the gauge group.
Since G−1 ≠ G†, we know that unitary groups are not
eligible. Nevertheless, the transformations (3) and (4)
preserve Hermiticity; i.e., if ϕ and ψ are Hermitians, then
so will be ϕ0 and ψ 0. An Hermitian basis for the algebra is
characteristic of the real unitary groups, but in the complex
extension such a basis is acceptable for the SLðN;CÞ
groups. For instance, in the case of the complex SLð2; CÞ,
we can take the Pauli matrices as the generator basis, or
Gell-Mann matrices for the complex SLð3; CÞ. So, let us
assume that we are working with a complex SLðN;CÞ as
the gauge group. Even so, it is not still warranted that in (3)
and (4) a Hermitian matrix of the slðN;CÞ algebra will be
rotated into another algebra matrix by the action of the
SLðN;CÞ. The minimal cost to obtain a consistent con-
struction is to impose that such matrices of the slðN;CÞ
algebra used to define the scalar fields belong to the
fundamental representation. In this case, we will have a
basis with N2 − 1 N × N matrices, and consistency will be
achieved in (3) and (4) if we suppose the existence of a
further ϕ0 component associated with the N × N identity
(and the same for ψ).
This reasoning will be exposed from another perspective

when we present the BRST invariance of the theory, in
Sec. II. In Sec. III, we will show the theory with asymmetric
vacua taking us to i particles and ’t Hooft propagators, in
the specific case of the complex SLð3; CÞ symmetry. In
Sec. IV, we will present a candidate for the condensate that
arises due to the nonholomorphism of the scalar sector of
the theory, and that after a choice of the nonsymmetric
vacuum will present the form indicated by the replica
model. Then we show how such a condensate leads to a
Källén-Lehmann type spectrum describing a glueball. In
Sec. V, we will couple this theory to a fermionic sector. As a
major novelty of this proposal, we will show how this
theory in this phase that generates the candidate for a gluon
condensate at the same time gives rise to a confining static
fermionic potential, following the criterion for quark
confinement of ’t Hooft [36–38]. Finally, in the conclu-
sions, we discuss some possible future paths to this
research.

II. BRST TRANSFORMATIONS

We start by defining a complex gauge field Aμ and its
associated ghost c transforming in the usual way under
BRST

sAμ ¼ −ð∂μc − ig½Aμ; c�Þ;
sc ¼ −igc2; ð5Þ

and the complex conjugated gauge field Āμ and its
associated ghost c̄ transforming as

PATH TO CONFINE GLUONS AND FERMIONS THROUGH … PHYS. REV. D 101, 094002 (2020)

094002-3



sĀμ ¼ −ð∂μc̄ − ig½Āμ; c̄�Þ;
sc̄ ¼ −igc̄2: ð6Þ

We can also define the usual curvature F μν associated
with Aμ,

F μνðAÞ ¼ ∂μAν − ∂νAμ − ig½Aμ;Aν�; ð7Þ

and its complex conjugate F̄ μν,

F̄ μνðĀÞ ¼ ∂μĀν − ∂νĀμ − ig½Āμ; Āν�: ð8Þ

With these definitions, as anticipated in Sec. I, the element
TrFF̄ is not invariant under the BRST transformations.
Only holomorphic elements as TrF 2 and TrF̄ 2 will be
invariant under the set (5) and (6).
Up to this point, we have been following the standard

definition of a complex gauge field theory. Nowwe come to
the transformations of a pair of real scalar fields, φ and ψ in
the adjoint representation, where we use the freedom that
the complex theory allows us,

sφ ¼ igφc − igc̄φ;

sψ ¼ igψ c̄ − igcψ : ð9Þ

It is easy to confirm that the BRST operator s is still
nilpotent with these definitions, and that the object Trψφ
becomes invariant under its action, which will be useful to
the construction of our potential and, ultimately, of the
condensate. These transformations (9) can be rewritten in
terms of commutators and anticommutators as follows:

sφ ¼ i
g
2
fφ; c − c̄g þ i

g
2
½φ; cþ c̄�;

sψ ¼ i
g
2
fψ ; c̄ − cg þ i

g
2
½ψ ; c̄þ c�: ð10Þ

In this form, the presence of the anticommutators in
the scalar field transformations becomes transparent.
This makes clear the problem that we pointed out after
Eqs. (3) and (4). As anticommutators are not in general

closed operations inside the vector space of a Lie algebra,
we must define how (10) makes sense. Planning to work
with a complex slðN;CÞ algebra, we know that its
fundamental representation matrices expand the most gen-
eral N × N matrix space together with the N × N identity.
Then, transformations (10), and consequently (9), make
sense if we admit that the scalar field φ, together with the
φi, i ¼ 1;…; N2 − 1, components associated with each
slðN;CÞ generator, also has a φ0 component associated
with the N × N identity (and the same for ψ ).
Once we established the field content of the theory, and

the BRST structure, we can proceed with the construction
of the dynamics. The next step is to define the coupling
among scalar and gauge fields; i.e., we need covariant
derivatives. They are

∇μφ ¼ ∂μφþ igφAμ − igĀμφ;

∇μψ ¼ ∂μψ þ igψĀμ − igAμψ ; ð11Þ

which transform as

s∇μφ ¼ igð∇μφÞc − igc̄ð∇μφÞ;
s∇μψ ¼ igð∇μψÞc̄ − igcð∇μφÞ; ð12Þ

following the covariance established by (9). It is convenient
to show the covariant derivatives explicitly in terms of
commutators and anticommutators

∇μφ ¼ ∂μφþ ig
2
ð−fĀμ −Aμ;φg − ½Āμ þAμ;φ�Þ;

∇μψ ¼ ∂μψ þ ig
2
ðfĀμ −Aμ;ψg − ½Āμ þAμ;ψ �Þ: ð13Þ

These expressions (13) will be useful in the description of
the masses for the vector fields after the choice of the
nonsymmetric vacua, a mechanism that we build in Sec. III.

III. INVARIANT ACTION AND i PARTICLES

Gathering the elements that we have been discussing so
far, we write the BRST invariant action

S ¼
Z

d4x
�
i
4
F a

μνF a
μν −

i
4
F̄ a

μνF̄ a
μν þ Trð∇μφÞð∇μψÞ þ Vðφ;ψÞ

�
þ SGF; ð14Þ

with F and F̄ the curvatures defined in (7) and (8), respectively. The gauge fixing sector SGF will soon have our attention,
but first we present the scalar fields potential with the nonsymmetric vacua,

Vðφ;ψÞ ¼ −
m2

2
φaψa þ λ

4
ðφaψaÞ2: ð15Þ

This potential has minima along the condition

hφaψai ¼ m2

λ
: ð16Þ
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Once a specific vacuum is chosen, the scalar fields will
develop vacuum expectation values (VEVs)

φ ↦ φþ μ;

ψ ↦ ψ þ μ;

Trðμ2Þ ¼ m2

2λ
: ð17Þ

Notice that, for simplicity, we considered equal VEVs for
both fields, which is not mandatory. With this choice, we can
expand the interaction sector among scalar and gauge fields
of the action (14) around this vacuum, obtaining the char-
acteristic bilinear terms of a symmetry breaking process,

�
ig
2

�
2

Trð−fĀμ −Aμ; μgfĀμ −Aμ; μg

þ ½Āμ þAμ; μ�½Āμ þAμ; μ�Þ; ð18Þ
where Eqs. (13) were used. These terms will give massive
poles to the gluon propagators, but the specific nature of the
resultant physics will obviously depend on the original
gauge group and on the specific form of the μ vacuum.
From now on, we will focus on the example of a SLð3; CÞ
gauge invariance. This means that the scalar field φ ¼ φaTa

(and analogously ψ) now have components from a ¼ 0 to
a ¼ 8, with Ti, i ¼ 1;…; 8, representing the eight Gell-

Mann matrices, and T0 ¼
ffiffi
1
6

q
I, with I the 3 × 3 identity

matrix. In this way, the usual relation trðTaTbÞ ¼ 1
2
δab is

preserved. The gauge fields Aμ and Āμ then have eight
complex components each, projected also on the eight Ti

Gell-Mann matrices. Notice that the presence of anticom-
mutators in (18) will bring consequences rather different
from the usual for the gluon poles. For instance, as the
anticommutators are not tensors of the gauge algebra, we
highlight that the masses that the eight complex gauge fields
Aa
μ (and of their conjugate Āa

μ) will develop after the choice
of μ are deeply dependent of this selection of Gell-Mann
matrices in the construction of the fields.
Before specifying the μ vacuum, we display the gauge

fixing SGF. It is well known that in a symmetry breaking
process, the adequate gauge fixing is the ’t Hooft gauge. It
is a fundamental tool in order to study the physical content
of the broken phase while explicitly retaining the renor-
malizability properties of the theory. We will adapt this
gauge fixing to our complex case. In the end, as we will see,
it will be extremely useful in the calculation of the
condensate. Then, to implement this gauge fixing we begin
by introducing two gauge conditions,

G ¼ ∂μAμ þ
gα
2

�
ψμ − μφ −

1

3
Trfψμ − μφgI

�
;

Ḡ ¼ ∂μĀμ þ
gα
2

�
μψ − φμ −

1

3
Trfμψ − φμgI

�
; ð19Þ

where α is a gauge parameter and a pair of anti-ghosts q and
q̄, and their respective Lagrange multipliers b and b̄,
transform into BRST doublets

sq ¼ −ib; sb ¼ 0;

sq̄ ¼ ib̄; sb̄ ¼ 0: ð20Þ

Our gauge fixing takes the form

SGF ¼ s
Z

d4xðTrð−2qG − 2q̄ Ḡþαqbþ αq̄ b̄ÞÞ; ð21Þ

so that, once we integrate out the Lagrange multipliers b
and b̄, we get from (21), besides Faddeev-Popov–like
terms, the contribution i

αTrðG2 − Ḡ2Þ to the action. Then,
using the definitions in (19), we see that this element will
cancel the term mixing the gauge fields and the Goldstone
bosons in the action (14) after a VEV μ is chosen, one of the
main goals of the ’t Hooft gauge. Also, we will be left with
the standard gauge fixing i

2α ðð∂μAa
μÞ2 − ð∂μĀ

a
μÞ2Þ, appro-

priated to the definition of the gauge field propagators.
After completing the presentation of our gauge fixed

invariant action, we can now discuss the effect of the back-
ground μ vacuum. There are some inequivalent choices of
this vacuum, representing different phases of this theory,
some of them leading to the generation of i particles. In
what follows, we select a specific phase where we will
show the presence of these fundamental objects. But
actually, this phase stands out among the others mainly
for the existence of a condensate with a Källén-Lehmann–
like propagation, which will be the subject of Sec. IV. This
vacuum is given by

μ ¼ 2νffiffiffi
3

p ð
ffiffiffi
2

p
T8 − T0Þ; ν ¼

ffiffiffiffiffiffi
m2

4λ

r
; ð22Þ

satisfying (17). In this phase, the gauge fields Aa
μ and Āa

μ,
with a ¼ ð1; 2; 3Þ, will remain massless, reflecting a SL(2,
C) residual invariance of the vacuum. In fact, as can easily
be seen by direct inspection, these directions commute and
anticommute with that of the vacuum (22), which is the
sense of gauge invariance in this theory. In the directions
a ¼ ð4; 5; 6; 7Þwewill find the i particles, with propagators

hĀa
μĀ

a
νi ¼

i
k2 þ ig2ν2

θμν þ
iα

k2 þ iαg2ν2
ωμν;

hAa
μAa

νi ¼ −
i

k2 − ig2ν2
θμν −

iα
k2 − iαg2ν2

ωμν; ð23Þ

where
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θμν ¼ δμν −
kμkν
k2

;

ωμν ¼
kμkν
k2

: ð24Þ

These i particles are not particles in the standard sense, as
they do not have asymptotic physical states. This is still a
consequence of the loss of positivity of our starting action,
i.e., of its complex gauge symmetry. But as explained in
Sec. I, such i particles were identified as the building blocks
of a Hilbert space in theories based on the development of
Gribov’s ideas for confinement. Their emergence here is
most welcome.
The last direction, a ¼ 8, commutes with the vacuum

(22), but obviously does not have a trivial anticommutator
with it. This is the peculiarity of this theory, and we see that
the propagators along this direction have a different form
from the previous,

hĀ8
μĀ

8
νi ¼

ik2 þ 4
3
g2ν2

k4
θμν þ

iαk2 þ 4
3
α2g2ν2

k4
ωμν;

hĀ8
μA8

νi ¼
4g2ν2

3k4
fθμν þ α2ωμνg;

hA8
μA8

νi ¼ −
ik2 − 4

3
g2ν2

k4
θμν −

iαk2 − 4
3
α2g2ν2

k4
ωμν: ð25Þ

These propagators, although inappropriate for a gluon
condensation, have a well studied form, playing a special
role in the Wilson loop approach of fermion confinement.
The simultaneous presence of both kinds of gauge propa-
gators in the same phase is the novelty of this theory. We
will explore this property when we couple this theory to
fermions in Sec. V. For now, we will continue with this
scalar-vector field sector, exploring a possible condensate.
In Secs. IV and V, we will take the gauge parameter
as α ¼ 1.

IV. A GLUON CONDENSATE

The absence of positive definite elements in the action
(14) is an expected consequence of a theory based on a
complex gauge group. The new gauge transformation for
the scalar fields as proposed in (9) allowed the concurrence
of A and Ā in some of the terms of the scalar-gauge
interaction, as we found in (18). Anyway, this still does not
assure the positiveness of any invariant object at the level
of the action. The search for a physical positive norm
space must be done in composite objects, as condensates,
possibly with an apparent higher dimension. The idea is
that once the VEV μ is fixed, the dimension of such an
object must get limited to that of spacetime. Then we hope
to find a candidate mixing together scalar fields, attaining
their background VEVs, together with gauge fields with the
i particle structure just met. For this kind of mixing, we can
get inspiration in ’t Hooft-Polyakov’s Abelian projection of

a scalar-gauge (Georgi-Glashow) theory [39,40], a mecha-
nism responsible for quark confinement in three dimen-
sions as shown in [41]. The whole object should be gauge
invariant, and observing the gauge transformations defined
by (5), (6), and (9), we can find such a generalization as
follows:

OðxÞ ¼ TrðφFψF̄ Þ: ð26Þ

In the phase defined by the vacuum of (22), this operator
becomes

OðxÞ ¼ 2ν2

3
F 8

μνF̄ 8
μν: ð27Þ

We find that in the phase of (22), the operator OðxÞ
becomes positive definite. Now we can study the two-
point correlation function hOðkÞOð−kÞi of this operator.
We intend to show that this correlator presents a Källén-
Lehmann spectral representation, with a positive spectral
density

hOðkÞOð−kÞi ¼
Z

∞

τ0

dτ
ρðτÞ
τ þ k2

; ð28Þ

with

ρðτÞ ≥ 0; τ0 ≤ τ ≤ ∞: ð29Þ

As we are assuming that in this phase the theory enters a
confinement regime, we should look for such spectral
representation in the dominant contribution in the gauge
coupling g. This is given by the g4 element

hOðkÞOð−kÞig4 ¼
ν4g4

4

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

Z
d4l
ð2πÞ4

× Ioðq; l;þig2ν2ÞI0ðp; ς;−ig2ν2Þ;

I0ðq; l;þig2ν2Þ ¼ 1

ðq2 þ ig2ν2Þðl2 þ ig2ν2Þ ;

I0ðp; ς;−ig2ν2Þ ¼ 1

ðp2 − ig2ν2Þðς2 − ig2ν2Þ ;

ς ¼ k − p − q − l: ð30Þ

To obtain the spectral density in the Källén-Lehmann
representation, it is just enough to rewrite the integral in a
form where it becomes apparent. We can use the known
result regarding the correlator of a pair of i particles (see
[27] for this and other details of the following calculations):

Z
d4l
ð2πÞ4

1

ðl2 þ ig2ν2Þððk − p − q − lÞ2 − ig2ν2Þ

¼
Z

∞

t0

dt
ρðtÞ

tþ ðk − p − qÞ2 ; ð31Þ
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where

t0 ¼ 2g2ν2;

ρðtÞ ¼ 1

16π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 4g4ν4

p
t

; ð32Þ

so that in (30), we obtain

hOðkÞOð−kÞig4 ¼
Z

∞

t0

dtρðtÞ
Z

d4p
ð2πÞ4

1

tþ ðk−pÞ2CðpÞ;

CðpÞ ¼
Z

d4q
ð2πÞ4

1

ðq2 þ ig2ν2Þððp− qÞ2 − ig2ν2Þ :

ð33Þ

Again, using the same procedure for CðpÞ

hOðkÞOð−kÞig4 ¼
Z

∞

t0

dtρðtÞ
Z

d4p
ð2πÞ4

1

tþ ðk − pÞ2

×
Z

∞

t0

dv
ρðvÞ
vþ p2

: ð34Þ

Finally,

hOðkÞOð−kÞig4 ¼
Z

∞

t0

dtρðtÞ
Z

∞

t0

dvρðvÞ

×
Z

∞

ð ffiffi
t

p þ ffiffi
v

p Þ2
dr

ρ1ðr; t; vÞ
rþ k2

; ð35Þ

in which the branch cut for two real masses needs the
integration from ð ffiffi

t
p þ ffiffiffi

v
p Þ2 and [30]

ρ1ðr; t; vÞ ¼
1

16π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r − ðvþ tÞ�2 − 4vt

p
r

: ð36Þ

Now we need to perform the convolution of spectral
representations. To do that we will first take into account
the last two integrals,

GðkÞ ¼
Z

∞

t0

dvρðvÞ
Z

∞

ð ffiffi
t

p þ ffiffi
v

p Þ2
dr

ρ1ðr; t; vÞ
rþ k2

; ð37Þ

where
ffiffi
t

p
≥

ffiffiffiffi
t0

p
. Performing the substitution

ffiffiffiffi
ω

p ¼ffiffi
t

p þ ffiffiffi
v

p
we obtain that

GðkÞ ¼
Z

∞

ð ffiffiffi
t0

p þ ffiffi
t

p Þ2
dωρ̄ðωÞ

Z
∞

ω
dr

ρ1ðr; t;ωÞ
rþ k2

: ð38Þ

The new spectral density ρ̄ðωÞ can be written in terms of the
old one as

ρ̄ðωÞ ¼
ffiffiffiffi
w

p
−

ffiffi
t

p
ffiffiffiffi
w

p ρ½ð ffiffiffiffi
w

p
−

ffiffi
t

p Þ2�; ð39Þ

and its positivity ρ̄ðωÞ ≥ 0 is still assured when ω ≥
ð ffiffiffiffi

t0
p þ ffiffi

t
p Þ2. Now we can change the order of integration

in (38)

GðkÞ ¼
Z

∞

ð ffiffiffi
t0

p þ ffiffi
t

p Þ2
dr

1

rþ k2

Z
∞

ð ffiffiffi
t0

p þ ffiffi
t

p Þ2
dωρ̄ðωÞρ1ðr; t;ωÞ;

ð40Þ

arriving at the form

GðkÞ ¼
Z

∞

ð ffiffiffi
t0

p þ ffiffi
t

p Þ2
dr

ρ2ðr; tÞ
rþ k2

; ð41Þ

where

ρ2ðr; tÞ ¼
Z

∞

ð ffiffiffi
t0

p þ ffiffi
t

p Þ2
dωρ̄ðωÞρ1ðr; t;ωÞ ≥ 0: ð42Þ

Inserting this result again on hOðkÞOð−kÞig4 and perform-
ing the same procedure, we obtain

hOðkÞOð−kÞig4 ¼
Z

∞

4t0

dr
ρ3ðrÞ
rþ k2

; ð43Þ

with

ρ3ðrÞ ¼
Z

∞

4t0

dωρ̄ðωÞρ2ðr;ωÞ ≥ 0: ð44Þ

Equations (43) and (44) state the desired Källén-Lehmann
form of the correlator (30).

V. THE FERMIONIC POTENTIAL

We begin this section by describing the coupling of A
and Ā to a set of fermionic fields ξ, χ and their conjugated
fields ξ̄, χ̄ in the action

SF ¼ e−iθχ̄ðγμDμ þ iMÞξþ eiθξ̄ðγμD̄μ þ iMÞχ; ð45Þ

where the covariant derivatives are

ðDμξÞi ¼ ∂μξ
i − igðTaÞijAa

μξ
j;

ðD̄μχÞi ¼ ∂μχ
i − igðTaÞijĀa

μχ
j: ð46Þ

The action (45) is invariant under the BRST transforma-
tions (5), (6) and these for the fermionic fields

sξi ¼ −igðTaÞijcaξj; sχ̄i ¼ igχ̄jðTaÞjica;
sχi ¼ −igðTaÞijc̄aχj; sξ̄i ¼ igξ̄jðTaÞjic̄a: ð47Þ

In this sense the derivatives (46) are covariant
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sðDμξÞi ¼ −igðTaÞijcaðDμξÞj;
sðD̄μχÞi ¼ −igðTaÞijc̄aðD̄μχÞj: ð48Þ

At this point we must call attention to the θ coefficients
appearing in front of the elements in the action (45). In
principle, they are allowed by the fact that each element of
(45) is independently gauge invariant, the reality of the
action being the only request to relate them. In the end, as
we will see, they will play an interesting physical role in the
fermionic potential.
The method for the computation of the interquark poten-

tial in the one-gluon-exchange approximation is described
in [42,43]. In [44] this method was applied to the case of the
GZ theory, showing the nonconfining character of the GZ
gluon propagator, just confirming a result that was already
known for some time by other means [45]. The potential is
obtained as a Fourier transformation,

Vðx⃗Þ ¼ −ð2πÞ3
Z

d3ke−ik⃗·x⃗TfiðkÞ; ð49Þ

of the scattering amplitude Tfi defined in terms of the S
matrix as

Sfi ¼ hf; outji; ini ¼ δfi þ ið2πÞ4δ4ðPf − PiÞTfi: ð50Þ
The standard procedure is to consider the heavy-quark

(nonrelativistic) approximation, and that the quarks inside a
hadron are in a color-singlet state [42]. In our case, we
identify four different graphic contributions, presented in
the Figs. 1–4, to the one-gluon exchange scattering
amplitude (noticing that, as usual, all pair annihilation
contributions to this one-gluon approximation vanish), i.e.,

Tfi ¼
1

ð2πÞ6 ðt1 þ t2 þ t3 þ t4Þ: ð51Þ

The contributions from t1 and t2 give the same result,

t1 ¼ t2 ¼
2g4ν2

9

1

k4
; ð52Þ

whereas the last two contributions are the complex con-
jugate of each other,

t3 ¼ t�4 ¼
2g2e−2iθ

3

�
−

i
k2

−
i

k2 − ig2v2
þ g2v2

3k4

�
: ð53Þ

Then, the scattering amplitude (51) is

Tfi ¼
2g2

3ð2πÞ6
�
g2v2

3k4

þ e−2iθ
�
−

i
k2

−
i

k2 − ig2v2
þ g2v2

3k4

�
þ c:c:

�
; ð54Þ

which, using (49), leads to the interquark potential

Vðx⃗Þ ¼ g2

3π

�
x
g2v2ð1þ cos 2θÞ

6

þ 1

x

�
sin 2θ þ e−

ffiffi
2

p
2
xgv sin

�
2θ −

ffiffiffi
2

p
xgv
2

���
: ð55Þ

In this potential (55), we find the confining linear
dependence, together with a Coulomb-like contribution,
which characterizes a potential of the Cornell type [46–48].
Then we understand that the role played by the θ

FIG. 1. t1-incoming ξ particle and ξ antiparticle.

FIG. 2. t2-incoming χ particle and χ antiparticle.

FIG. 3. t3-incoming ξ particle and χ antiparticle.

FIG. 4. t4-incoming χ particle and ξ antiparticle.
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coefficients appearing in the action (45) is associated
with spatially compact states, i.e., to the size of the
quark bags.

VI. CONCLUSIONS

We have introduced here the study of a QCD based on a
complex group, defining a complex gauge field theory. Our
main intention was to show that, although not well suited
for Yang-Mills theory in a perturbative regime, a gauge
theory with a complex symmetry develops some of the
features required for the description of a confined phase. In
particular, such a theory seems to be the natural environ-
ment for the generation of i particles, fundamental con-
stituents of propagators in the Gribov scenario. In our
present case, we explored the freedom that is present in the
way that scalar fields may transform under the action of a
complex group. After the choice of a nonsymmetric
vacuum, this theory leads to some gluons with propagations
characteristic of i particles, together with a gluon propa-
gating with the mode predicted by ’t Hooft for the quark
confinement. With this, we have outlined in the same
theory a possible gluon condensate, together with a con-
fining quark potential after the coupling to fermions. This is
a novelty, as, up to now, all theories of the GZ kind do not
generate quark confinement.
Now we should stress that the picture presented here is

just a sketch of the work that needs to be faced in order to
build up a consistent theory. Several points must be
addressed. For example, one should immerse this structure
inside a larger theory in order to actually describe a
symmetry breaking mechanism. In fact, up to now we
have not said a word about the previous symmetric phase
before the choice of the vacuum expectation value of the
scalar fields, when the i particles show up. But we can at
least present an argument for a general characteristic of this
symmetric phase. We imagine it to be described by a
topological field theory. The reason for this is not only for
the close relationship that complex gauge theory has with

topology when it appears in the literature, as we pointed out
in Sec. I (as can be seen, for example, in [33,34]). Mainly
because once we observe that the action (14) prior to the
symmetry breaking already lacks positivity, we understand
that the immersion that we have been suggesting for this
phase must lead to the recovery of the energy bound. This
can be achieved by the increase of the level of symmetry for
this symmetric phase, possibly a high level of supersym-
metry leading to a topological field theory. Actually, this is
not altogether new, as a theory with some of these
characteristics has already been described as the low energy
field theory limit of M theory in three dimensions [49].
There, a theory with a twisted Chern-Simons action reduces
to the difference of two standard Chern-Simons terms with
two gauge fields. Then, the accomplishment of these ideas
would possibly allow the association of the observable
condensates after symmetry breaking with topological
invariants of the symmetric phase.
Also, only after this development will one be able to aim

at the renormalization problem, for the condensate, for the
potential, and for the whole theory. Other points are the
search for new condensates and the use of different
symmetry groups, which may be adequate to settle the
discussion of a grand unified theory in this scenario.
As a final comment, we call attention to the residual

SL(2,C) which remains as a symmetry of the vacuum (22).
Its algebra is isomorphic to the Lorentz group algebra
so(3,1), and may be expected to occur after the breaking of
higher SL(N,C) groups. Anyway, this interesting feature
here remains as a mere coincidence.
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