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The aim of this work is to shed light on some lesser known aspects of Polyakov-loop-extended chiral
models (namely, the Polyakov-loop-extended, Nambu–Jona-Lasinio, and quark-meson models), especially
on the correlation of the quark sector with the Polyakov loop. We show that the ordering of chiral and
Polyakov-loop transitions and their difference in temperature as seen in lattice QCD calculations could be
realized with a critical scale of the Polyakov-loop potential that is larger than the one in pure gauge theory.
The comparison of the results for the Polyakov-loop susceptibility obtained using the self-consistent
medium-dependent quark mass with those obtained while keeping these masses at a fixed value allows us to
disentangle chiral-symmetry restoration and center-symmetry breaking effects. Furthermore, a confined
chirally restored phase is identified by a plateau in the quark contribution to thermodynamics and by sigma
and pion spectral functions that coincide but have a small width. We also discuss that, for some large
chemical potential values, the explicit center-symmetry breaking is so strong that statistical deconfinement
is realized at infinitely small temperatures. Both the missing sensitivity of the Polyakov loop to the quark
mass, except at close to the chiral transition, and the Polyakov loop, being zero at zero temperature at all
chemical potentials, can be interpreted as indications of a missing mechanism which accounts for the quark
backreaction on the Polyakov loop.
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I. INTRODUCTION

Recently, and in the near future, there is and will be a big
experimental effort to explore the phase diagram of
strongly interacting matter, be it by the energy scan
program at RHIC [1] and the NA61/SHINE experiment
at CERN [2] or at the future facilities, NICA at JINR [3]
and FAIR at the GSI site [4]. These laboratory experiments
at low and intermediate baryon densities are complemented
by the detection of gravitational waves of inspiraling
neutron stars that allow us to learn about the nature of
QCD matter at very large densities [5]. All these exper-
imental measurements require a theoretical counterpart to
interpret and analyze their results. First principles

calculations are not yet able to be this match in the medium
and large baryon density region. Calculations on a dis-
cretized space-time lattice face the infamous sign problem
[6] and methods which circumvent it as complex Langevin
dynamics are still limited to fundamental theoretical
investigations but are not yet connected to phenomenology
[7–9]. First principles continuum calculations using the
Functional Renormalization Group, perturbation theory, or
variational approaches are still in progress towards the true
number of quark flavors and quark masses [10–13].
Therefore, frameworks which are based on chiral sym-

metry, center symmetry, and eventually scale symmetry are
widely used as alternatives. These symmetries of the
QCD Lagrangian are related to fundamental properties
of strongly interacting matter, namely, the appearance of
constituent quark masses and confinement in the hadronic
phase (and conversely the liberation of light quarks in the
transition to the quark-gluon plasma). The interaction
between constituent quarks that gives them their mass
due to the spontaneous breaking of chiral symmetry can be
described, for example, as a pointlike interaction or by the
exchange of a meson. The former leads to what is called the
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Nambu–Jona-Lasinio (NJL) model [14] and the latter to the
quark-meson (QM) model [15–17]. Extended by the order
parameter of center-symmetry breaking, the Polyakov loop,
these frameworks allow for the phenomenological explo-
ration of the phase diagram for strongly interacting mat-
ter [18,19].
Even though the Lagrangian of such models itself is

invariant under chiral transformations for massless quarks,
the appearance of a nonvanishing quark condensate hq̄qi
breaks chiral symmetry spontaneously. Therefore, the
quark condensate hq̄qi is an order parameter for chiral-
symmetry breaking. The relation between quark masses,
chiral symmetry, and the quark condensate can be exploited
to explain the generation of constituent quark masses by
spontaneous chiral-symmetry breaking. The constituent
quark mass of up and down quarks that are confined in
protons or neutrons is of the order of one third of the mass
of these nucleons, O ∼ 300 MeV, which is significantly
larger than their current quark masses, O ∼ 5 MeV. While
the nonzero current quark masses are responsible for
explicit chiral-symmetry breaking, the constituent quark
masses are dynamically generated by spontaneous chiral
symmetry breaking, m ∼ jhq̄qi1=3j. With the increasing

temperature and/or density of the quarks, the restoration
of chiral symmetry takes place. In the chiral limit (vanish-
ing of current quark masses) this is a phase transition of
second order which turns at the tricritical point into a first-
order one. With explicit chiral-symmetry breaking, when
the nonzero current quark masses are taken into account,
the second-order phase transition becomes washed out into
a crossover which can turn into a first-order phase transition
at a critical endpoint (CEP). The chiral phase structure of
these models is, for example, discussed in Refs. [20–22].
For what concerns center symmetry and deconfinement,

the Polyakov-loop field Φðx⃗Þ is the appropriate order
parameter to study the SUðNcÞ phase structure and it is
associated with ZNc

, the center of SUðNcÞ [23]. In the pure
gauge sector, the corresponding phase transition that occurs
at high temperatures is related to color deconfinement such
that the Polyakov loop is an order parameter for the
deconfinement transition. The spontaneous breaking of
center symmetry can be described by a Polyakov-loop
potential that represents the effective glue potential at finite
temperature. Coupling dynamical quarks to the Polyakov-
loop field breaks explicitly the center symmetry.
Furthermore, one obtains in this way also information
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FIG. 1. Pressure, trace anomaly, chiral condensate, and Polyakov loop as a function of T in a PQM model [25] (for this quantitative
comparison, strange quarks have been taken into account) compared with the LQCD data of Refs. [26–29].
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on the deconfinement of quarks. In a strict sense, however,
quarks are not confined in these models: gluons are not
dynamical and the gluon field is treated as a static back-
ground gauge field that does not change the fact that NJL
and QM models do not confine quarks. Nonetheless the
thermal contributions coming from one and two (anti-)
quarks are suppressed below the transition temperature (but
are not vanishing) [24], thanks to the Polyakov loop. This is
the so-called “statistical confinement.”
In this work, we will discuss several aspects of the

correlation between quarks and the Polyakov loop. We will
also study how to disentangle the effects of the restoration
of chiral symmetry from the effects of the breaking of
center symmetry in order to have a deeper knowledge on
how both are correlated. This allows for a better under-
standing of the current status of the comparison between
the results of these kinds of models and those obtained in
lattice QCD (LQCD) calculations, while at the same time
shedding further light on certain lesser known results of the
models.
The paper is organized as follows. In the next section we

will give a summarized introduction to the Polyakov-loop-
extended Nambu–Jona-Lasinio (PNJL) model and to the
Polyakov-loop-extended quark-meson (PQM) model, put-
ting special emphasis on the correlation between quarks and
the Polyakov loop. In Sec. III we discuss the correlation of
the transition scales of restoration of chiral symmetry and of
the breaking of center symmetry and how it could be
possible to reproduce the splitting that is seen in LQCD
calculations at vanishing densities. Section IV contains the
analysis of the effect of the kinetic contribution of quarks to
the correlation between quarks and the Polyakov loop by
comparing results for a medium-dependent and for a
constant quark mass. The analysis of the effects that can
be found in such a study is extended in Secs. V and VI. In
Sec. VII we analyze and discuss the correlation between the
quark contribution and the Polyakov loop due to the
chemical potential. Section VIII discusses the combination
of both effects which is complemented by an analysis of a
confined chirally restored phase in Sec. IX.
When we do quantitative comparisons with LQCD

results, we include the strange quark (Fig. 1) but otherwise
we will present results for two flavors. Focusing on two
light flavors allows us to disentangle nontrivial correlations
in the strange sector from effects due to the statistical
confinement giving a more comprehensive view of the
physical phenomenon.

II. THE PNJL AND PQM MODELS IN SU(2)

In this section we introduce PNJL and PQM models to
study the thermodynamics of QCD at finite temperature
and density, in the grand canonical ensemble.
The lack of confinement in the NJL and QMmodels does

not allow us to study the very important deconfinement
transition at nonzero temperature. As explained in Sec. I,

the Polyakov loop can be used as an order parameter for
this transition. We will introduce it in the NJL and QM
models and describe its features.
Throughout this section, we will discuss, in particular,

that if the Polyakov loop brings some sort of confinement
(“statistical confinement”), it is not a real confinement. The
Fock space structure of this model still contains quark
degrees of freedom and only the quark occupation numbers
will be modified. As a result, when we discuss confinement
we mean the statistical one, not the true one.

A. Pure gauge sector at finite temperature

In the pure gauge sector, the phase transition that occurs
is related to the deconfinement of color at high temper-
atures. Following the arguments given in [18,30–32] to
study the SUðNcÞ phase structure, the appropriate order
parameter [associated with ZNc

, center of SUðNcÞ] is the
Polyakov-loop field Φðx⃗Þ:

Lðx⃗Þ≡ TrcP exp

�
i
Z

β

0

dτA4ðx⃗; τÞ
�
; ð1Þ

Φðx⃗Þ≡ 1

Nc
⟪Lðx⃗Þ⟫β: ð2Þ

In the above, A4 ¼ iA0 is the temporal component of the
Euclidean gauge field ðA⃗; A4Þ, in which the strong coupling
constant gS has been absorbed, P denotes path ordering,
and the usual notation for the thermal expectation value has
been introduced with β ¼ 1=T and the Boltzmann constant
set to one (kB ≡ 1). In general, the Polyakov-loop field is a
complex scalar field Φ ¼ Φr þ iΦi that simplifies to Φ ¼
Φ̄ ¼ Φr in pure gauge theory.
An effective potential that respects the Z3 symmetry of

the original Lagrangian may be built and it is conveniently
chosen to reproduce results obtained in pure gauge lattice
calculations. In this approximation, the Polyakov-loop field
Φðx⃗Þ is simply set to be equal to its expectation value
Φ ¼ const, which minimizes the potential [31,33],

UPolyðΦ; Φ̄;TÞ
T4

¼ −
b2ðTÞ
2

Φ̄Φ −
b3
6
ðΦ3 þ Φ̄3Þ

þ b4
4
ðΦ̄ΦÞ2; ð3Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð4Þ

T0 ¼ 270 MeV is the critical temperature for the decon-
finement phase transition according to pure gauge lattice
results [34]. The transition is from Φ ¼ 0 (confined phase,
T < T0) to the deconfined phase (Φ → 1).
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A fit of the coefficients ai, bi has been performed in
Ref. [33] in order to reproduce thermodynamics lattice data
[35] in the pure gauge sector: a0 ¼ 6.75, a1 ¼ −1.95,
a2 ¼ 2.625, a3 ¼ −7.44, b3 ¼ 0.75, b4 ¼ 7.5. By mini-
mizing this potential, it was possible to compute the
Polyakov-loop expectation value in good agreement with
lattice gauge findings [34].
A popular alternative to this potential is the logarithmic

one [36] that reads

ULogðΦ; Φ̄;TÞ
T4

¼ −
aðTÞ
2

Φ̄Φþ bðTÞ ln½1 − 6Φ̄Φ

þ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2�; ð5Þ
where

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; ð6Þ

and

bðTÞ ¼ b3

�
T0

T

�
3

: ð7Þ

The parameters of the effective potential ULog are given
by a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15.2, and b3 ¼ −1.75.
With these parameters, this effective potential exhibits the
feature of a transition from color confinement to color
deconfinement through a stronger first-order phase tran-
sition than UPoly with the parameters of Ref. [33] (see, e.g.,
Fig. 8 of Ref. [37]).

B. Coupling between quarks and the gauge sector

The PNJL and PQM models aim at describing, in a
simple way, two of the characteristic phenomena of QCD,
namely, deconfinement and chiral-symmetry breaking
[18,19,33]. We start from the two-flavor NJL and QM
description of quarks [global SUcð3Þ symmetric and
chirally invariant pointlike interaction or meson exchange,
respectively], coupled in a minimal way to the Polyakov
loop via the following Lagrangian (the range of applicabil-
ity of these models is limited to temperatures T ≲ 2.5Tc):

LPNJL=PQM ¼ LNJL=QM
chiral þ q̄½iγμðDμ þ μδμ0Þ�q

− UðΦ½A�; ¯Φ½A�;TÞ; ð8aÞ

LNJL
chiral ¼ GS½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2� − m̂0ðq̄qÞ ð8bÞ

LQM
chiral ¼ q̄½gSðσ þ iγ5τ⃗ π⃗Þ�q

þ hσ −
λ2

4
ðσ2 þ π⃗2 − v2Þ2; ð8cÞ

where μ is the chemical potential of the quarks and q ¼
ðqu; qdÞ are the quark fields and where the covariant
derivative reads Dμ ¼ ∂μ − iAμ with AμðxÞ ¼ gSA

μ
aðxÞ λa2

and in the Polyakov gauge Aμ ¼ δμ0A
0, with A0 ¼ −iA4.

The two-flavor current quark mass matrix is m̂0 ¼
diagðmu;mdÞ which breaks chiral symmetry explicitly in
the NJL model (we work in the isospin symmetric limit and
consequently mu ¼ md ¼ m0). In the QM model, the
explicit breaking of chiral symmetry is realized by the
linear tilt hσ of the Mexican hat potential of the meson
fields σ and π which is the last term of Eq. (8c). GS in
Eq. (8b) is the coupling strength of the chirally symmetric
four-fermion interaction and gS in Eq. (8c) is the quark-
meson Yukawa coupling strength. Finally, a tridimensional
ultraviolet cutoff Λ will also be introduced in Eq. (9) in
order to regularize divergent integrals that appear in the
NJL model. This cutoff will only be applied to the vacuum
integrals. The thermal integrals do not need this cutoff to be
finite and besides, as discussed in [38], this prescription
allows us to get the correct Stefan-Boltzmann limit for
thermodynamic quantities, e.g., the pressure, as quark
degrees of freedom are still present in the thermal bath
at high temperatures.
The minimal coupling between quarks and the Polyakov

loop is a first and simple way to take into account
backreactions of the quark sector to the gluonic sector.
In PNJLm0,GS and Λ (in PQM λ, v2, h and gS) are taken

as free parameters, despite the fact that m0 can be estimated
experimentally. The parameters of the pure NJL sector in
Eq. (8) are fixed at zero temperature and density and have the
following values: Λ ¼ 651 MeV, GS ¼ 5.04 GeV−2, and
m0 ¼ 5.5 MeV (taken from Ref. [33]). They are chosen to
reproduce the mass of the pion, mπ ¼ 139.3 MeV, and its
decay constant fπ ¼ 92.3 MeV (obtained in a Hartreeþ
Ring calculation) as well as the chiral condensate (order
parameter of the chiral symmetry) jhq̄qij1=3 ¼ 251 MeV.
The constituent (or dynamical) quark mass in the Hartree
(mean-field) approximation is m ¼ 325 MeV. With the
nucleon mass MN this means m ≃MN=3. The vacuum
meson masses, pion decay constant, and constituent quark
mass of theNJLmodel can beused to fix the parameters λ,v2,
h and gS, of the corresponding QM model. The PNJL/PQM
model gives a simple explanation of the nucleon as
being a state composed of three quarks but their mass is
the corresponding dynamical mass. Even with m0 ¼ 0
(h ¼ 0),m has the same magnitude: essentially the baryonic
mass is due to the “glue,” the interaction energy carried out by
the gauge fields. The mechanism of mass generation via the
spontaneous symmetry breakingwas one of the first interests
of NJL and QM models.
Concerning the NJL parameters, several sets of param-

eters which fit physical observables in the vacuum can be
chosen. In particular, the chosen set of parameters foresees
the existence of a low-density phase of homogeneously
distributed constituent quarks [38] which is unrealistic (see
also [21]). This reflects the missing of confinement in the
NJL model. However, for the study that we are carrying
out, this fact is not eminently relevant and the discussions
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we are going to make remain valid. We discuss only
transition lines that are not affected by this stability issue.
Quantities depending on the correct choice of parameters
are, for example, isentropic lines or the study of quark
matter inside compact stars.

C. Statistical confinement at finite temperature
and density in the Hartree approximation

1. Grand canonical potential, mean-field equations,
and the modified Fermi-Dirac distribution functions

In the mean-field approximation, the usual techniques
can be used to obtain the PNJL/PQM grand canonical
potential from the Hartree propagator (see, for instance,
Refs. [24,33,39]),

ΩðΦ; Φ̄; m;T; μÞ

¼ UNJL=QM
chiral ðmÞ þ UðΦ; Φ̄; TÞ − 2NcNf

Z
Λ

0

d3p
ð2πÞ3 Ep

− 2NfT
Z þ∞

0

d3p
ð2πÞ3 fTrc ln½1þ L†e−ðEp−μÞ=T �

þ Trc ln½1þ Le−ðEpþμÞ=T �g; ð9aÞ

UNJL
chiral ¼

ðm −m0Þ
4GS

; ð9bÞ

UQM
chiral ¼

λ2

4
ðσ2 − v2Þ2 − hσ; m ¼ gSσ: ð9cÞ

In the above equation, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
is the Hartree

single quasiparticle energy (which includes the constituent
or dynamical quark mass m and not the current mass m0).
Performing the trace for Nc ¼ 3 we define for simplicity,

zþΦðEpÞ ¼ Trc ln ½1þ L†e−ðEp−μÞ=T �
¼ ln f1þ 3Φ̄e−ðEp−μÞ=T þ 3Φe−2ðEp−μÞ=T

þ e−3ðEp−μÞ=Tg; ð10Þ

z−ΦðEpÞ ¼ Trc ln ½1þ Le−ðEpþμÞ=T �
¼ ln f1þ 3Φe−ðEpþμÞ=T þ 3Φ̄e−2ðEpþμÞ=T

þ e−3ðEpþμÞ=Tg: ð11Þ

The solutions of the mean-field equations are obtained
by solving the equations of motion for m, Φ, and Φ̄,
namely, ∂Ω∂Φ ¼ 0, ∂Ω∂Φ̄ ¼ 0, and ∂Ω

∂m ¼ 0. In the NJL model, the
latter equation can be simplified to the gap equation,

m −m0 ¼ 2GSNfNc

Z þ∞

0

d3p
ð2πÞ3

2m
Ep

½θðΛ2 − p2Þ

− fþΦðEpÞ − f−ΦðEpÞ�; ð12Þ

where the modified Fermi-Dirac distribution functions fþΦ
and f−Φ have been introduced:

fþΦðEpÞ ¼
ðΦþ 2Φ̄e−βðEp−μÞÞe−βðEp−μÞ þ e−3βðEp−μÞ

1þ 3ðΦþ Φ̄e−βðEp−μÞÞe−βðEp−μÞ þ e−3βðEp−μÞ ;

ð13Þ

f−ΦðEpÞ ¼
ðΦ̄þ 2Φe−βðEpþμÞÞe−βðEpþμÞ þ e−3βðEpþμÞ

1þ 3ðΦþ Φ̄e−βðEpþμÞÞe−βðEpþμÞ þ e−3βðEpþμÞ :

ð14Þ
The equations presented above, which were introduced

for the first time in [24], allow us to straightforwardly
generalize the results for the thermodynamics of the NJL/
QM model to those of the PNJL/PQM model by replacing
the usual Fermi-Dirac occupation numbers by the modified
ones given by Eqs. (13) and (14).
The explicit form of the mean-field equations for Φ and

Φ̄, which can be found for example in [24], will be given in
Sec. II C 2 where we will discuss in detail the correlation
between quarks and the Polyakov loop.
Here, we want to point out that in PNJL-model calcu-

lations, we choose not to use the Fock terms (exchange
diagrams) because, if added, we would obtain the same
equations with the replacement GS → GSð1þ 4=NcÞ.
Indeed, for the local four-point interaction, exchange
diagrams can always be rewritten in the form of direct
diagrams via a Fierz transformation. The Hartree-Fock
approximation is then equivalent to the Hartree approxi-
mation with the appropriate redefinition of the coupling
constants [21,39]. Since GS is a parameter to be fixed, it is
not very important to include the Fock term. We can also
notice that the Hartree term is of order OðN1

cÞ, the Fock
term isOðN0

cÞ, and the ring approximation can be shown to
be also OðN0

cÞ. As discussed in Ref. [40], the Hartree term
may be seen as the first term in a 1=Nc expansion. Then,
when going beyond the mean-field approximation, the
Fock term should be added for coherence.
Furthermore, it is important to mention that at nonzero

chemical potential the kinetic quark-antiquark contribution
in Eq. (9) adds an imaginary part to the effective potential,
Ωth

qq̄ ¼ ΩR
qq̄ þ iΩI

qq̄. This is the manifestation of the fermion
sign problem in the Polyakov-loop extension of the NJL
and QM models [41–43]. One way to avoid the sign
problem is to neglect the imaginary part of the effective
potential as a lowest-order perturbative approximation
[42,43]. Doing this implies that the imaginary part of
the Polyakov loop Φi is zero, i.e., Φ ¼ Φ̄ also at μ ≠ 0.
Here, we will follow the more common approach to
circumvent the sign problem (see, e.g., Ref. [33]), that
is, to redefine the Polyakov loop Φ and its complex
conjugate Φ̄ as two independent, real variables. But our
results do not depend on this choice and also hold true for
the aforementioned approach.
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2. The influence of quarks on the gauge fields

To study the influence of quarks on the gauge fields
(contained in the Polyakov loop definition) we will push
the model in later sections to a very high density scale,
probably well beyond the range of validity of the model.
However, we find these calculations interesting as they lead
us to understand what ingredients are probably missing in
the model to get a more faithful representation of QCD in
the high density region.
Obviously, in QCD quark fields act upon gauge fields via

quark loops in the gluon self-energy. Such an effect is
lacking in the NJL and QM models since there are no
dynamical gluon fields (although, in some sense the strong
interaction carried by the gluons is present in the model via
the NJL contact interaction).
In the PNJL and PQM models there is still no dyna-

mical gluons but there is an interaction between the static
gauge field and the quarks via the covariant derivative
Dμ ¼ ∂μ − iAμ. As a result, the mean-field equation for Φ
does have a dependence on quarks (see the previous
section). Explicitly for two flavors, we have for Φ (the
discussion for Φ̄ goes along the same lines) the following:

∂Ω
∂Φ¼ 0⇔

0¼ T4
∂U
∂Φ− 6T

X
fi¼u;dg

Z
d3p
ð2πÞ3

�
e−2βðEpþμÞ

ez
þ
ΦðEpÞ þ e−βðEp−μÞ

ez
−
ΦðEpÞ

�
;

ð15Þ

with zþΦðEpÞ and z−ΦðEpÞ given by Eqs. (10) and (11),
respectively. The mean-field equations for Φ and Φ̄ are the
same in the PQM and PNJL models since they do not
depend explicitly on the chiral part of the grand poten-
tial UchiralðmÞ.
The second term in Eq. (15) adds some quark corrections

to the first term (that describes the pure gauge sector) and
interesting information can be extracted from this equation
as we will discuss later. Without quarks, the solution would
be the pure gauge one, i.e., ∂U=∂Φ ¼ 0. The model would
then have a first-order phase transition.

3. Statistical confinement

In the modified Fermi-Dirac functions, Eqs. (13) and
(14), entering in the grand potential, Eq. (9), the confine-
ment mechanism that exists in Polyakov-loop-extended
models can be seen. It is not a true confinement (the quarks
are still asymptotically free and we will see that they can be
produced, e.g., by the sigma meson decay in vacuum; see
also Ref. [24]). We call this effect “statistical confinement”
as it is due to the suppression of the one and two (anti-)
quark Boltzmann factors.
Indeed, it can be seen that in the grand potential, Eq. (9),

the contributions coming from one and two (anti-)quarks

are suppressed below Tc (when Φ; Φ̄ → 0, the confined
phase of the model) due to their coupling with Φ and Φ̄ but
the three-(anti-)quark Boltzmann factor is not. The inter-
pretation is that there are still unconfined (anti-)quarks in
the vacuum part (the Dirac sea) of the grand potential but in
the thermal bath only three-(anti-)quarks contributions are
present (a reminder of the fact that in QCD only colorless
combinations can exist in the confined phase). This reduces
significantly the number of (anti-)quarks in the thermal
bath since it requires 3 times more energy for the (anti-)
quarks to be thermodynamically active.
As a result the Polyakov-loop extension corrects a

problem of NJL and QM models. It is known that, at a
given value of T and μ, pure NJL and QM models always
overestimate the density (see Ref. [33]), even if they merge
for large temperatures with the PNJL/PQM model (when
Φ → 1). At fixed values of T and μ, the PNJL/PQM-model
value for the density is much lower than in the NJL/QM-
model case. In fact, all the possible contributions to the
density turn out to be somehow suppressed: the one- and
two-quark contributions because of Φ; Φ̄ → 0, while the
thermal excitation of three quarks has a negligible
Boltzmann factor. We would be tempted to identify these
clusters of three dressed (anti-)quarks with precursors of
(anti-)baryons but no binding for these structures is
provided by the model. In any case, it is encouraging that
coupling the chiral Lagrangian (whose parameters are
chosen to reproduce zero temperature properties) with
the Polyakov-loop field (described by a pure gauge
effective potential) leads to results that point in the right
direction at finite density.
Another important effect of statistical confinement is that

the chiral transition will occur in a smaller temperature
range than in the NJL/QM model. It is seen from Eqs. (10)
and (11) that before the transition, the pressure (for
example) is kept low by the effect that we have just
discussed. Then, quark degrees of freedom are liberated
in a narrow temperature range when Φ → 1. As seen in
Ref. [44], the transition in the PNJL/PQM model is indeed
much “faster” that the one in the pure NJL/QM model.
Another connection between the gauge sector and quarks

is discussed in Ref. [45], where a moderately strong vector
repulsion between quarks parametrized by a four-fermion
interaction in terms of nonperturbative gluon exchange in
QCD in the Landau gauge is considered and the effects of
quark masses estimated.
The mesonic contribution to the pressure is also impor-

tant (about 10%) and this effect has to be included in the
mean-field description, e.g., with the Beth-Uhlenbeck
formalism [46] to the PNJL model [47] which is another
way of doing RPA or by applying the functional renorm-
alization group framework to the QMmodel [17] and to the
PQM model [25].
Nowadays this allows us to fit well the most recent LQCD

results with physical quark masses [48,49]. A detailed
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discussion of the results in the mean-field approximation can
be found in [44]. For a review on modeling hadronic and
quark matter see Refs. [50–52].

D. Coincidence between chiral and
deconfinement transition

One of the first successes of both PNJL and PQMmodels
was the observation that without any additional tuning,
chiral and deconfinement transitions almost coincide in a
small range of temperatures at zero density (see Fig. 7). It
was an interesting test as LQCD calculations predicted this
coincidence (even if recent LQCD results show that there is
no perfect coincidence between them [26]).
What is not obvious is the fact that by mixing the

deconfinement scale T0 ¼ 270 MeV and the chiral resto-
ration scale (about 220 MeV in the NJL model and in the
QM model if the same mass of the σ meson and of the
constituent quarks as in the NJL model are used), the two
transitions automatically coincide at a lower temperature.
The minimal coupling in PNJL/PQM models is enough to
have some sort of backreaction effect that produces this
matching.
This is also a quite stable feature [33]: we can take T0 ¼

190 MeV and still get a quite good coincidence. The
motivation to change the value of T0 was to get a better
agreement with the value of the LQCD calculations for the
chiral transition temperature. It can be justified since in an
effective model we are mixing physical sectors with
different scales in a symmetry based (Landau) framework.
It is then understandable that the absolute scale of the two
sectors can be slightly adjusted to get a better agreement
with phenomenology. In other words, we authorize our-
selves to consider T0 as a free parameter of the model with
a loose constraint on it coming from LQCD calculations,
exactly as it is done in the chiral sector with the constituent
quark massm0 despite the fact that there are some estimates
of it.

III. ADJUSTING CHIRAL AND DECONFINEMENT
PHASE SCALES

The most problematic aspect for PNJL/PQM-type mod-
els is probably the fact that the difference between the chiral
transition and the raise of Φ in the QGP in recent LQCD
data is larger than previously seen. This is shown in Fig. 1
for a PQM-model calculation but also holds true for the
PNJL model as shown, e.g., in Ref. [49]. For this
quantitative comparison with LQCD data we use the
PQM model with 2þ 1 quark flavors [25]. In this figure,
t is the reduced temperature adjusted to the chiral crossover
temperature Tc: t ¼ T=Tc − 1. The pressure plot, or the
quark number density one, shows that at Tc (t ¼ 0) quark
degrees of freedom are liberated. But there are two
mechanisms responsible for this liberation: the chiral
restoration and the deconfinement transition. This can be

easily studied in effective models since we have control on
how these phenomena are coupled.
In Fig. 1, bottom left, it is possible to see that at t ¼ 0

chiral symmetry goes towards its restoration. There is a
liberation of thermodynamical degrees of freedom simply
because m → m0; hence, the quark Boltzmann factor has a
bigger contribution to the pressure. This occurs at the chiral
transition scale. On the bottom right panel, it is seen that the
results for Φ from LQCD and PQM-model calculations do
not agree. The same occurs in the PNJL model (see
Ref. [49]). The (statistical) deconfinement occurs at a
higher temperature than in the PQM model (at t ¼ 0, the
PQMmodel givesΦ ≃ 0.5 whereas it is only 0.1 for LQCD
results). This means that the (statistical) deconfinement
scales differ in LQCD data and in the PQM/PNJL model.
One subtlety concerning the Polyakov loop is that there

are different order parameters. The standard order param-
eter is the expectation value hΦ½A0�i. The functional
dependence indicates that the Polyakov loop derives from
the temporal component of the gauge field Aμ. The
expectation value of the latter hA0i relates to another
Polyakov-loop order parameter, Φ½hA0i�.
LQCD results are for hΦi since this is the easily

accessible quantity in these calculations. In Polyakov-
loop-extended effective models for QCD the Polyakov-
loop potential is adjusted to LQCD results on hΦi in pure
gauge theory while it is actually the gauge field that appears
initially in the fermionic determinant [see Eq. (9)] which is
then rewritten into a dependence on the Polyakov loopΦ in
Eqs. (10) and (11). Both Polyakov-loop order parameters
are related in general by hΦ½A0�i ≤ Φ½hA0i� [53].1 This
condition shows that the transition scales of both Polyakov-
loop order parameters might differ with that of hΦi being
larger than that of Φ½hA0i�. The results shown in Fig. 1 are
consistent considering this condition.
The origin of both these Polyakov-loop order parame-

ters, their derivations, and their relation is discussed in
detail in Ref. [54]. The temperature dependence of Φ½hA0i�
is calculated in continuum approaches such as the func-
tional renormalization group, with Dyson-Schwinger equa-
tions and the 2PI formalism as well as in the Hamiltonian
approach, covariant variational approach, and in perturba-
tive approaches. For pure gauge theory, available results on
Φ½hA0i� in different continuum approaches are shown
together with those for hΦ½A0�i of different LQCD calcu-
lations in Fig. 2. Interestingly enough, for the perturbation
theory calculations, the leading-order result for Φ½hA0i�
agrees with the results of the other continuum approaches
while the evaluation of the next-to-leading-order result for
hA0i with the leading-order relation between the

1This relation has to be taken insofar with care as the lattice
results involve a nontrivial renormalization factor such that for
pure gauge theory hΦ½A0�i exceeds unity in a certain temperature
range, whereas Φ½hA0i� ≤ 1.
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expectation value of the gauge field and the Polyakov loop
Φ½hA0i� (see also Ref. [55]) is very close to the LQCD
results for hΦ½A0�i.
The information given by LQCD calculations is that the

scales of chiral-symmetry restoration and center-symmetry
breaking do not match perfectly. In general, in the PNJL/
PQM model families, this scale separation is not achieved.
Even worse, with common parametrizations as the one we
use in the PNJL-model (T0 ¼ 190 MeV), the scale hier-
archy is inverted ; see Fig. 7.
In effective models it is possible to have control over this

hierarchy as we will show in the following. The short-
coming, however, is that the model output for the absolute
temperature of the transitions will not be correct. This is a
problem but not to the point of making the model mean-
ingless. Indeed, in the spirit of Landau theory, two systems
with the same universal behavior cannot be directly
compared but they have to be compared relatively to a
given scale. This is of course not a complete justification
for what we will do in the following but it will illustrate
which information can be obtained about some mechanism
that is probably missing in the model. We recall that a scale
adjustment was already done at the beginning of PNJL/
PQM-model studies: for example, in Ref. [33] the scale T0

was modified to get a complete agreement with the chiral
transition temperature given by LQCD results.
So, the point is that we want to have in the model the

correct scale hierarchy for the transitions. In both, PNJL
and PQM models, we have two sectors to determine the
respective scales, the NJL/QM one (fitted to chiral-sym-
metry breaking phenomenology in vacuum, a scale related
to the strength of the condensate) and the gluonic one (fixed
by pure gauge results at finite temperature with the scale
T0). The coupling is done via the covariant derivative but if
we allow T0 to vary then we can control the relative scales
of the transitions. This is done in Fig. 3: we see that the

correct hierarchy can indeed be achieved with T0 ≃
400 MeV but the price to pay is that both chiral and
deconfinement transitions occur at too high temperatures.
The message is that some mechanism is missing to get

the correct scale hierarchy and we should try to understand
which mechanism would allow us to have the same effect
as our rather artificial increase of T0. Since up to now no
model can reproduce this fact, we probably need to look
outside of the existing mechanisms of the PNJL/PQM
models. Our guess is that introducing a minimal dynamics
to the gauge sector [60] may be the correct way.
We also notice that in PQM-model calculations, shown

in Fig. 1, the pressure and quark density are probably a little
bit overestimated for t > 0when compared to LQCD. If the
correct scale hierarchy could be implemented, it is possible
that the later liberation of quarks via statistical deconfine-
ment could reduce this excess. This is a somewhat far
fetched conclusion since the excess is low (statistically it
seems to be a small but constant ≃1 sigma deviation) and in
the PQM-model mesonic degrees of freedom tend to
survive in the QGP phase [48].
Finally, for what concerns this aspect of quark and

Polyakov-loop correlations, we also notice in Fig. 3 that the
transition for the full calculation for Φ from Eq. (15) and
for the one keeping the mass m at a fixed value mfix in
Eq. (15)2 coincide, except when the difference between the
chiral temperature and the fixed m deconfinement
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FIG. 2. Comparison of the temperature dependence of the
Polyakov-loop order parameter hΦ½A0�i on the lattice [34,56,57]
and Φ½hA0i� in different continuum approaches [54,55,58,59].
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FIG. 3. Chiral (black line) and deconfinement (magenta line
and green dots) transition temperatures [together with the size of
the transition regions T1;2 and for deconfinement, the full (green)
and fixed mass (magenta) calculations are presented] as functions
of the pure gauge deconfinement scale T0 for the PNJL model.
We use the polynomial Polyakov-loop potential [Eq. (3)]. We
point out that we have the same feature with the ULog potential
[Eq. (5)] but at a much higher scale.

2This is obtained by solving the mean-field equations, not self-
consistently as usual, but simply by fixing the mass m to a given
value mfix in this equation. We will explore further this method in
the following.
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temperature is smaller than about 25 MeV. This means that
the order parameters Φ and the chiral condensate are
weakly coupled by the mean-field equations because,
except for a small 25 MeV ≪ ΛQCD scale difference, the
uncorrelated calculation (fixed m) gives the same result as
the correlated one. We will discuss this kind of analysis in
more detail in the next section.
At low T0 the chiral transition is below its NJL/QM value

(around 220 MeV) and it happens at a large (but below 1)
value of the Polyakov loop while at high T0 the chiral
transition occurs for a small value (around zero) of the
Polyakov loop. Thus, in the PNJL/PQM model the chiral
transition always behaves differently from what happens in
the NJL/QMmodel due to the backreaction of the Polyakov
loop, explaining the success of the model. The shortcoming
of the model is essentially in the behavior of the Polyakov
loop with respect to quarks but nevertheless, it seems that
the action of the Polyakov loop on quarks, namely, the
statistical confinement, captures most of the effect needed
to correctly describe LQCD thermodynamics.
The general conclusion is that quite certainly this class of

models underestimates some effects for the lack of dynami-
cal quark loop effect on the Polyakov loop. The only effect
present is due to the presence of thermodynamical quarks
(via the quark Boltzmann factor in the mean-field equation)
that results from the minimal coupling q̄Aμq. But, since Aμ

is not dynamical this term will not generate quark loops in a
diagrammatic approach (Aμ acts as an external constant
gauge field only).

IV. DYNAMICAL THERMAL QUARKS EFFECT

In this section we will consider the effect of the kinetic
contribution of quarks in Eq. (15). At zero density (μ ¼ 0)
and with infinite quark mass, the second term disappears
as it should. Indeed, quarks are then no more dynamical
(they are quenched) and the system is in its pure gauge or

Yang-Mills limit. The Z3 symmetry is then exact (for the
grand potential) but spontaneously broken at T > T0.
When quarks are considered dynamical again, by low-

ering their masses approaching the respective physical
values, the Z3 symmetry gets also an explicit breaking term
(see Secs. 2.2.2 and 2.3.2 in Ref. [25]) due to the kinetic term
in the Lagrangian. This mechanism can be understood in
detail by solving the mean-field equations of the PNJL or
PQM model, not self-consistently as usual, but simply by
fixing m to a given value mfix in Eq. (15), as already
mentioned previously. In Figs. 4 and 5 we plot the behavior
of the Polyakov loop for different masses, and hence
changing the ratio between the mass energy Em and the
kinetic energy Ek of a quark: increasing the mass reduces
the ratio Ek=Em; when this ratio is zero (quenched quarks)
the symmetry is restored. To better illustrate if there is a
stronger or weaker explicit breaking of theZ3 symmetry, we
use as Polyakov-loop potential a parametrization that has a
strong first-order phase transition in the pure gauge sector
[the ULog potential, Eq. (5)]. If the transition becomes
smoother (crossover like transition) it indicates that we
have a stronger explicit breaking of the Z3 symmetry.
Figures 4 and 5 also show the impact of varying the

chemical potential. Indeed, there is a contribution to the
kinetic energy due to the Fermi momentum of quarks:
increasing μ increases the ratio Ek=Em and the symmetry is
more strongly broken. We will discuss further this effect in
Sec. VI but for now, we focus on the zero density scenario
where there is only one contribution to the kinetic energy.
We observe that a lowering of the mass term introduces a

stronger explicit breaking of Z3 symmetry as seen by the
large crossover obtained and the respective smooth
Polyakov-loop susceptibility,

χΦ ¼ dΦ
dT

����
μ¼0

: ð16Þ

FIG. 4. Φ and χΦ ¼ dΦ=dT (Polyakov-loop susceptibility) as functions of T for different values of the constituent quark massm in the
PNJL model at zero density (left) and at finite density (right) where the Fermi momentum contributes to the kinetic energy. Varying the
mass changes the strength of explicit breaking of the Z3 symmetry: when the mass is lower, the transition becomes a larger crossover.
The higher the chemical potential, the higher the mass is needed to restore the symmetry and to have a first-order phase transition.
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On Fig. 6 we notice that, except when very close to the
chiral transition (where m changes quickly) the Polyakov-
loop susceptibility is not much altered if the mass is kept
constant. Thus, the transition properties are hardly affected
by the exact value of the mass. Again, it is probable that this
lack of sensitivity to the mass of the quark indicates a
missing mechanism to account for the quark backreaction
on Φ because of the lack of dynamical quark loops in its
calculation. For this reason, in the literature it is proposed to
that one adds phenomenologically more sources of back-
reactions by using, for example, in the entangled PNJL
(EPNJL) model a scalar coupling GS that depends on Φ
[61]. Fitting this dependence is quite difficult (due to the
lack of enough data) and some authors proposed to use the
Roberge-Weiss transition at imaginary chemical potential
[62] to fit this dependence. Other sources of backreaction
may be added by using a μ-dependent gauge transition
temperature T0ðμÞ [63] or even a μ-dependent Polyakov-
loop potential UðΦ;T; μÞ [64].

We will not discuss further the EPNJL model but we
would like to emphasize that it is interesting to understand
the multiple aspects of backreaction already in the PNJL/
PQM models before resorting to this type of model with
reinforced backreaction. Furthermore, models with many
sources of backreaction [GðΦÞ, T0ðμÞ] introduce many new
parameters and it is not easy to parametrize them consis-
tently without overestimating the backreaction. In this
regard, more constraining data would be very helpul:
LQCD data at finite density; high density data, e.g., the
measurement of the position of the CEP in Heavy Ions
Collision (HIC) experiments. It is interesting to note that
LQCD data at finite imaginary chemical potential exists
[65–69] and it is assumed that the continuation iμ → μ is
analytic (this can be easily seen in the grand canonical
potential of the PNJL/PQM model). Therefore, constraints
at imaginary μ are relevant for models to be used at real μ.
Let us mention a final comment on Fig. 6: as already

discussed in Sec. II C 3, the main effect of the Polyakov

FIG. 5. Φ and χΦ ¼ dΦ=dT in the PNJL model as functions of T for different values of the chemical potential at zero quark mass (left)
and large quark mass m ¼ 2Λ (right). A higher chemical potential implies a larger kinetic term and explicit Z3-symmetry breaking. A
larger mass is required to get back a weak explicit breaking and a first-order phase transition.

FIG. 6. Quark condensate normalized to its vacuum value (σ=σ0) and the Polyakov loop as a function of T at zero and nonvanishing
chemical potential (left and right). The Polyakov loop is computed either with a fixed mass (m0, the mass in the vacuum mvac or
mmean ¼ m0þmvac

2
) or by fully solving the mean-field equations.
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loop on the quark condensate is to obtain a steeper
crossover transition and in the left panel of Fig. 6 we
see that, indeed, when χΦ [see Eq. (16)] is at its maximum it
also introduces a dominant peak in χσ.

V. MEAN-FIELD PHASE DIAGRAM

Using the techniques described in [44] we will now
investigate the phase structure of a common two-flavor
PNJL model, computed in this case with the logarithmic
Polyakov-loop potential.3 To investigate the deconfinement
transition we study the Polyakov-loop susceptibility at
finite chemical potential,

χΦ ¼ dΦ
dT

����
μ

; ð17Þ

and extract from it the characteristic pseudocritical tran-
sition temperature associated to deconfinement, defined as
the maximum of the susceptibility. In fact, we could also
use χΦ̄ ¼ dΦ̄=dT to obtain the transition temperature being
that χΦ ¼ χΦ̄ at μ ¼ 0. At finite density Φ ≠ Φ̄ and the
transitions temperatures obtained by the two susceptibil-
ities are slightly different but very close to each other.
Some details of the numerical calculations for a similar

model, which are not of importance for our quantitative
discussions, can be found in [71]. To obtain the susceptibil-
ities the “easy way” is to compute them as numerical
derivatives. This is both inefficient (it is quite long since
for each step in temperature themean-field equations have to
be solved several times) and inaccurate. The inaccuracy will
show up as a numerical fluctuation in the transition line plot
which shows the maxima of the susceptibilities. A more
accurate and faster way is to compute analytically (or at least
semianalytically in the sense that the nonanalytic thermal
integrals are kept as numerical integrals) all first- and
second-order partial derivatives of the grand potential with
respect to the order parameters and the thermodynamic
parameters, T and μ. Then we combine them to get the
desired susceptibilities (see [71,72]).
Results for the order parameters m and Φ are presented

in Fig. 7. Concerning the chiral properties, they behave as
discussed in the Introduction and we observe a first-order
phase transition line that starts at zero temperature and ends
with increasing temperature at the CEP, where a second-
order phase transition occurs at (TCEP, μCEP), continued by
a crossover for further increasing temperatures and decreas-
ing chemical potentials.
For what concerns the deconfinement transition we see

that for chemical potentials ≳250 MeV χΦ has several
maxima or divergent peaks (Fig. 8) but the order parameter

always shows a crossover transition. Indeed if we look at
the Polyakov-loop susceptibility in Fig. 8, we see that there
is a divergence at the chiral transition temperature but
physically this is not the signal of the deconfinement
transition. We see that at this chiral first-order transition,
Φ increases only about 5% and stays below 0.2: this is not a
(first-order) deconfinement transition because quarks are
still statistically confined when Φ ¼ 0.2. There is also a
bump in χΦ, and there Φ changes between 0.4 and 0.7 and
the system reaches the statistically deconfined phase.
Hence, we will consider the temperature at the maximum
as the one of the deconfinement crossover.
For the sake of completeness, we also have plotted in the

phase diagram of Fig. 7, besides the maximum of χΦ, its

FIG. 7. Phase diagram obtained in the (T, μ) plane for the PNJL
model. The red dashed and solid lines represent the chiral
crossover and critical line. The blue dashed line marks the
deconfinement crossover and is within the transition region
which is outlined by the blue solid lines (and defined within
the main text). The yellow line represents the minimum of the
Polyakov-loop susceptibility, χΦ. The transition region of the
chiral crossover is within the green solid lines.

FIG. 8. Polyakov loop, Φ, and its susceptibility for chemical
potentials: (red) below the one of the chiral CEP in the PNJL
model; (green) at the CEP chemical potential; (blue) above the
CEP chemical potential.

3The results in this section do not depend on the precise details
of the model. They are features shared by all Polyakov-loop-type
models (see Refs. [38,70] for results with the polynomial
Polyakov-loop potential).
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inflection points (which estimate the “extent” of the
crossover region) and also the minimum of χΦ, when it
exists, between the bump of the deconfinement crossover
and the peak of the first-order phase transition of chiral
symmetry.
It should be noted that both transitions appear to be

strongly correlated below μ ≲ 250 MeV and then become
uncorrelated at higher chemical potentials, indicating the
mutual influence between chiral and deconfinement sectors.
The topic of the quark-Polyakov-loop correlation deserves
therefore special attention as discussed in Sec. II C 2.

VI. QUARK CONDENSATE AND
POLYAKOV-LOOP CORRELATION

Here we continue our study of the finite density (finite
chemical potential) region using the PNJL model and we
compare results obtained with and without fixing the mass.
At zero density, the pseudocritical transition temperatures
for the partial chiral-symmetry restoration and deconfine-
ment coming from LQCD results are very close, differing
by approximately 20 MeV [26]. At finite density the status
is not clear (different model parametrizations give very
different results). Experimentally, there is a lack of high
temperature and density experiments. Furthermore, it is
also difficult to extract information about the chiral sector
only or the deconfinement sector only.
We will study the high density regions and the possible

opening of a new phase near the CEP [this feature is model
dependent and will eventually disappear by considering a
T0ðμÞ parametrization, see Ref. [73] ]. From Fig. 7 and
starting at μ ¼ 0, it is seen that as the chemical potential
increases the chiral and the deconfinement crossover lines
approach each other as one approaches the CEP. Then they
merge for μ < μCEP. This property of the QCD phase
diagram has been used to estimate a lower bound for the
chemical potential at the CEP (see for example Fig. 1 of
Ref. [74]). Still, near the CEP, chiral and deconfinement
transitions decouple.
In Fig. 9 the Polyakov-loop susceptibility is computed

(using the polynomial Polyakov-loop potential) with the
full mean-field equations, and with a mass fixed to the
mean value of its value in the vacuum and the current quark
mass m0, mmean ¼ m0þmvac

2
(dashed lines). We can see that

for a chemical potential that gives a first-order phase
transition for the chiral transition (red full line), there is
a peak in the Polyakov-loop susceptibility at the chiral
transition. Having in mind the discussion of the previous
section, at this peak, the Polyakov-loop only varies from
0.2 to 0.3. There is also a bump in dΦ=dT at higher
temperatures and around this bump, Φ goes from 0.4
(essentially confined phase) to 0.7 (essentially deconfined).
Our interpretation is the following: the peak in χΦ is not a
sign of a first-order deconfinement transition because the
value of the Polyakov-loop remains small. But there is a
smooth crossover towards the deconfined phase at higher

temperatures (at the bump). These two transitions are
relevant because they are related to the physical effects
of the thermodynamic potential we are using, the grand
canonical potential: the peak (the chiral first-order tran-
sition) manifests itself as a singularity of the derivative of
the grand potential; the bump gives a small region where
there is a sharp increase then decrease (but continuous) of
the derivative of the grand potential with respect to the
order parameters. It is a manifestation of the deconfinement
crossover. These two transitions show their imprint on the
pressure as we will discuss in Sec. IX where a plot of the
relative pressure difference (compared to the Stefan-
Boltzmann one, Fig. 12) clearly shows that both transitions
delimit three distinct regions in the phase diagram. This
interpretation opens the possibility to describe an inter-
mediate phase, that we call confined chirally restored phase
(CCS). Indeed, it can be explicitly shown that in this phase,
quark matter is still (statistically) confined. However, we
postpone the detailed discussion to Sec. IX.
In Fig. 9 it can also be seen that when using a constant

mass, the chiral peak in the Polyakov-loop susceptibility
disappears (dashed lines). This is understandable since we
argued that there is not a significant variation in Φ at these
temperatures but only a very strong mass change that creates
the large derivative.Φ itself does not varymuch sincewe saw
that it is not very sensitive to mass variations below ΛQCD.
When the mass is fixed the maximum is approximately

the same as in the full calculation, not taking into account
the possible divergent peak. This shows that taking m fixed
really allows us to decorrelate the chiral condensate effects
because the shape of the Polyakov-loop susceptibility does
not change significantly when the mass varies strongly (in
the interval T ∈ ½100 MeV; 250 MeV� the mass goes
approximately from 320 to 150 MeV). All the remaining
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FIG. 9. Polyakov-loop susceptibility as a function of T for
different chemical potentials (given in GeV). The dashed lines are
the calculation with fixed m ¼ mmean (see definition in the main
text); the full line is the fully consistent calculation. Notice in the
region of low temperature that for high chemical potentials, χΦ
has no more maximum.
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effects are only due to the chemical potential, an aspect that
we will discuss in the next section about the Fermi
momentum effect.
Another important aspect is that the use of a fixed mass,

mfix, is also very useful numerically. If we want to draw a
phase diagram, but the exact behavior of the Polyakov loop
near the CEP is not so relevant, we can use this trick and get
a faster algorithm since only two mean-field equations have
to be solved.4 This method can be helpful even to compute
the full solution: it can greatly increase the calculation
speed if we start to compute the approximated mfix value
and then incorporate it in the solving algorithm for the full
equations. This kind of algorithm (root polishing when the
approximate solution is known) is particularly helpful when
the dimension of the problem increases (here three dimen-
sions since there are three mean-field equations; including
the strange sector and without isospin symmetry it would
be five dimensions).
It is possible to qualitatively compare both methods,

fixed mass and full calculation, by looking to the phase
diagram in Fig. 10 (here the Polyakov-loop potential is the
polynomial one but qualitatively our results are indepen-
dent of the choice of this potential). The conclusion is that
except in the region of the CEP it does not differ from the
previous one found in Fig. 7, Sec. V. The extra features will

be discussed in the next section since they concern large
density effects.

VII. FERMI MOMENTUM EFFECT

In the previous section, we have seen in detail one
important aspect of the chiral transition/deconfinement
transition correlation by carefully considering the effect
of the quark masses on the field equations. As mentioned,
there is another quark effect in the mean-field equations via
the quark chemical potential, which originates from a
nonzero Fermi momentum of the quarks.
Because of the covariant derivative and the inclusion of μ

in the Lagrangian, there is a dependence on μ in Eq. (15) that
can have a strong effect on the system. In fact, the Fermi
energy will act exactly as any kinetic energy (in the
Lagrangian μγ0 acts as ∂0γ

0) and increases the explicit
breaking of Z3 symmetry. As seen in Fig. 9, where we
computed χΦ for several chemical potentials, at some point,
the breaking of the symmetry is so strong that the transition
cannot be defined even as a crossover anymore (at least
according to our definition). From the moment that the
Polyakov-loop susceptibility does not have a maximum
anymore, our interpretation is that the transition goes so
fast from Φ ¼ 0 to 1 (and without the characteristic of a
crossover transition where correlation lengths quickly
increase then decrease) that we can almost say that the
system is deconfined even at zero temperature (in Fig. 10, Φ
is already 0.5 at T ¼ 50 MeV for large values of μ). Φ is
forced to be zero at zero temperature but in the large μ limit,
Φ ¼ 1 at any nonvanishing temperature. Hence, the model
basically tells us that, apart from a small missing ingredient,
a form of effective deconfinement only induced by the
density is possible. This missing ingredient is again probably
related to the quark backreaction on the gauge fields.
Here, we want to point out that it is quite remarkable that,

in their simple versions, the PNJL and PQMmodels already
allow a deconfinement transition caused only by the density
(with a small temperature), without any sort of ad hoc
backreaction added.
In the phase diagram presented in Fig. 10, more relevant

features can be found. It is interesting to have an idea of the
value of the order parameter, Φ, with respect to the
transition lines, so we add the Φ ¼ 0.5 characteristic line
(magenta dashed curve). More importantly, we show in this
diagram that there is a kind of “crossover end point” in this
model calculation. At very high μ the explicit breaking of
Z3 symmetry is so strong that χΦ has no longer a maximum
(except at T ¼ 0, see also Fig. 9). Somehow, this explicit
symmetry breaking is dominant in the Lagrangian and after
this point it is no longer possible to talk about a transition,
even a crossover one. The symmetry is completely
destroyed by this breaking term.
As a conclusion, we emphasize that only the careful

assessment of the sources of correlations in the mean-field
equations allowed us to see those effects. We advocate that
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4We also expect that in some reasonable limits an analytical
solution can be found.
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even in this simple model some mechanisms, such as the
Fermi momentum action, can be seen. The use of more
realistic models [e.g., SU(3) PNJL/PQM models] would
also be interesting to get more faithful results. However, we
think that those models, with many interplays between
physical sectors whose contributions are controlled by
parameters adjusted to phenomenology, are complementary
to the simpler models and both have their merit.

VIII. COMBINED EFFECTS OF CHIRAL
CONDENSATE AND FERMI MOMENTUM

To complement our discussion on the influence of
changing the chiral condensate (by varying m) and the
Fermi momentum (by varying μ) onΦ, Fig. 11 presents the
results for the deconfinement temperature obtained when
varying both μ and the fixed mass mfix.
Taking μ ¼ 0, the deconfinement transition for mfix ¼ 0

is a crossover with a transition temperature that is about the
same as the chiral one (for this model parametrization it is
about 220 MeV). This corresponds to the usual situation of
the PNJL/PQM model when both transitions almost
coincide at zero density. As already explained when dis-
cussing Fig. 4, by increasing the mass (thus decreasing the
explicit Z3-symmetry breaking) the temperature increases
until it reaches a value where the crossover becomes a first-
order phase transition, at a temperature of about 270 MeV
(which is the value of T0 in this parametrization).
Now, looking at mfix ¼ 0 and increasing μ, we see a

lowering of the deconfinement crossover temperature until
a value where the crossover cannot be defined anymore.
The symmetry breaking induced by the Fermi momentum
is so strong that after this point, Z3 is no more a valid
symmetry of the model.
Finally, by varying both μ and mfix it is always possible

to go to a first-order phase transition if the mass is

sufficiently high compared to μ in order to counteract
the explicit breaking of Z3 symmetry.

IX. CONFINED CHIRALLY RESTORED PHASE

In this section we will take a closer look to the CCS
phase, a phase where chiral symmetry and deconfinement
are decorrelated.
In PNJL/PQM models it is always necessary to remem-

ber that quarks are not confined in the strict sense and when
we talk about confinement we mean statistical confinement
as given by the definition in Sec. II C 3. These types of
models cannot tell us the true nature of quark confinement.
To explore the CCS phase, we want to count the number

of thermal quark degrees of freedom (the only one affected
by statistical confinement). For this reason we need to
subtract the quarks in the vacuum, present due to the lack of
confinement (we have seen that their contribution is quite
reasonable by looking to the quark number density in
Sec. II C 3). Hence, we calculate a relative pressure differ-
ence by subtracting the pressure at zero temperature and
normalizing it to the Stefan-Boltzmann pressure:

ΔP≡ PðT; μÞ − PðT ¼ 0; μÞ
PSBðT; μÞ − PSBðT ¼ 0; μÞ : ð18Þ

This quantity is adequately related to the thermal quark
degrees of freedom and indeed it shows signs of statistical
confinement in the CCS phase (see Fig. 12). In the hadronic
phase, ΔP is zero (the black region), meaning that the
PNJL/PQM model will not thermodynamically create any
quarks in the hadronic phase (besides those already present
in vacuum). In the QGP phase (the yellow region), thermal
quarks are very active thermodynamically. Finally, in the
CCS phase a quite stable “plateau” (the red/orange region
at large chemical potential and small temperature) at around
0.2 is found. At a given (small) temperature, there is a
discontinuous jump from 0 to 0.2 when increasing μ across
the first-order phase transition. So, in the CCS phase some
quarks have been liberated by the system due to the chiral
transition but their contribution to thermodynamics remains
low. It seems that in this phase, where the chiral symmetry
is restored, the model tells us that quarks still are far from
being asymptotically free. Phenomenologically, this could
have rather important effects on experimental observables
in HICs (viscosity, hadronic abundances, etc.). If this
hypothetical phase exists in QCD, the PNJL/PQM model
cannot say if quarks are really confined (no asymptotic
states) or if they are deconfined but the model predicts that
the interaction is still strong allowing the existence of
mesonic resonance as we will show. Performing the same
calculation in the pure NJL/QM model, i.e., without
statistical confinement, one observes at small temperature
that ΔP has the same jump at the chiral transition and then
increases slowly without a “plateau” behavior.

FIG. 11. Deconfinement characteristic temperature as a func-
tion of the fixed mass and for different chemical potentials. The
full line is the crossover temperature and the dotted lines are the
metastable limit of a first-order phase transition.
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It is also relevant to notice that, at those densities, an
important missing effect is the presence of diquark con-
densates. The strange sector is also important and it
deserves further investigation.
To confirm this finding and that it may lead to significant

differences in HICs, we study a more direct observable,
namely, we check if mesonic probes act as it is expected in
a confined but chirally symmetric phase.
We compute in the PNJL model the spectral functions

(see Ref. [24]) in the meson to quarks channel at zero
momentum and show them in Fig. 13. The finite width of
the sigma in vacuum indicates that quarks are not confined
(this channel is open) but there is a strong interaction and
thus it is a sharp resonance.
The expected behavior for mesons in a CCS is observed in

the same Fig. 13: chiral symmetry is effectively restored
when the sigma and pion spectral functions essentially
coincide [24] but the statistical confinement is still strong
as can be seen by the fact that their width is small (right
panel) when compared to the fully deconfined phase
(central panel).

Finally, as already mentioned, other parametrizations, for
example a T0ðμÞ, will essentially close this CCS phase [73].
Yet, we think it is still interesting to try to understand better
the CCS phase. We also think that T0ðμÞ is a too strong
a priori generalization to introduce in the model. This
dependence is justified theoretically in Ref. [63], where it is
argued that this generalization is needed, because otherwise
the confinement-deconfinement transition has a higher
pseudocritical temperature than the chiral transition, which
is an unphysical scenario since QCD with dynamic mass-
less quarks in the chirally restored phase cannot be
confining because the string breaking scale would be zero.
However, the problem is that it is poorly constrained. Using
this parametrization, the hypothesis is basically that decon-
finement and chiral restoration coincide. Of course, the
CCS phase will then not exist anymore but in our opinion
this is not a sufficient argument against the existence of a
CCS phase in general. It can eventfully be an argument
against the CCS phase only if this a priori generalization is
correct but this has to be put on a firmer basis and, in
particular, be better constrained.
In the meantime, we think that it is still interesting to

consider models with a CCS phase even if in the future it
will be contradicted by experimental data, which will be the
ultimate judgement. Anyway, it is still a nice exercise to see
what physical information can be gathered by using
effective models.

X. CONCLUSIONS AND OUTLOOK

At the beginning of this work we present the current
status on how accurately effective models based on the
restoration of chiral symmetry and on the breaking of
center symmetry (to describe the deconfinement transition
of QCD) can reproduce the results coming from LQCD
calculations. Based on the observation that there is a
substantial quantitative difference in the temperature
dependence of the Polyakov loop relative to that of the
chiral condensate, we have analyzed several aspects of the
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correlation between the chiral sector and the Polyakov
loop.
By examining how the pseudocritical temperatures for

chiral and the Polyakov-loop transitions depend on the cri-
tical scale of the Polyakov-loop potential, T0, we see that the
correct ordering of chiral and Polyakov-loop transitions (and
their difference in temperature), as given by LQCD calcu-
lations, can be achieved with a T0 larger than the one given
by pure gauge theory (270 MeV). The absolute temperature
scale of the QCD transition would then be larger than the one
in LQCD. In the spirit of Landau theory, however, effective
models should be considered on relative scales.
For studying the effect of the kinetic contribution of

quarks to the correlation between quarks and the Polyakov
loop, we compared the behavior of the latter between
calculations using a self-consistent medium-dependent
quark mass and for several values of constant quark masses,
mfix. Except very close to the chiral transition (where m
changes quickly), the Polyakov-loop susceptibility is not
much altered by keeping the mass constant at the value
mmean so that even the transition properties are almost not
affected by the precise value of the mass. We interpret this
lack of sensitivity to the mass of the quark as a sign of a
missing mechanism to take into account the quark back-
reaction on the Polyakov loop due to the lack of dynamical
quark loops in its calculation. Comparing the Polyakov-
loop susceptibility for a medium-dependent and a constant
mass at finite density allows us to disentangle a smooth
crossover proper to the breaking of center symmetry from a
peak in the susceptibility introduced purely by a chiral first-
order phase transition but at which the value of the
Polyakov loop remains small, so in the confined regime.
This picture opens the possibility to discuss an intermediate
phase, which, in our model, is a confined chirally restored
phase. Probing the number of thermal quark degrees of
freedom within this phase, indeed, one sees signs of
statistical confinement with a quite stable “plateau” where
some quarks have been liberated due to the chiral transition
but where their contribution to thermodynamics remains
low. Furthermore, meson spectral functions behave as they
are expected in a confined but chirally symmetric phase: the

sigma and pion spectral functions essentially coincide but
their width is small.
Another contribution to the correlation between quarks

and the Polyakov loop at nonvanishing density comes from
the fact that the Fermi energy acts exactly as any kinetic
energy and increases the explicit breaking of center
symmetry. From some large chemical potential on this
explicit breaking of the symmetry is so strong that the
Polyakov-loop susceptibility does not have a maximum
anymore except at T ¼ 0. Hence, apart from a missing
ingredient, deconfinement induced only by the density
seems to be realizable within the model. This missing
ingredient is again probably related to quark backreaction
on the gauge fields.
Overall, the goal of this work is to shed light on some

lesser known aspects of Polyakov-loop-extended chiral
models to motivate certain paths for future improvements
and detailed quantitative analysis.
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