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We present a new method of exactly calculating neutrino oscillation probabilities in matter. We leverage
the “eigenvector-eigenvalue identity” to show that, given the eigenvalues, all mixing angles in matter follow
surprisingly simply. The CP violating phase in matter can then be determined from the Toshev identity.
Then, to avoid the cumbersome expressions for the exact eigenvalues, we have applied previously derived
perturbative, approximate eigenvalues to this scheme and discovered them to be even more precise than
previously realized. We also find that these eigenvalues converge at a rate of 5 orders of magnitude
per perturbative order which is the square of the previously realized expectation. Finally, we provide
an updated speed versus accuracy plot for oscillation probabilities in matter, to include the methods
of this paper.
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I. INTRODUCTION

While the majority of the parameters in the three-
neutrino oscillation picture have been measured, measure-
ments of the remaining parameters will come by leveraging
the matter effect in long-baseline experiments such as the
currently running T2K and NOνA experiments, the now
funded and under construction T2HK and DUNE experi-
ments, and the proposed T2HKK and ESSnuSB experi-
ments [1–6]. In this context, only a full three-flavor picture
including matter effects is adequate to probe the remaining
parameters. Given the time and effort that is going into
these experiments, it is paramount that we understand
neutrino oscillations in matter as best as we can, both
analytically and numerically, so as to maximize the
oscillation physics output from these major experiments.
The matter effect is the fact that while neutrino propa-

gation in vacuum occurs in the mass basis, in matter since
the electron neutrino experiences an additional potential,
they propagate in a new basis. This effect was first

identified in 1978 by Wolfenstein [7]. Exact analytic
solutions for neutrino oscillation probabilities in constant
matter densities are difficult to fully enumerate; a solution
using Lagrange’s formula appeared in 1980 [8]1 while the
full solution was first written down for three flavors in 1988
by Zaglauer and Schwarzer (ZS) [10]. The exact solution
requires solving a cubic equation which, in the general
case, has the unsightly and impenetrable cosð1

3
cos−1ð� � �ÞÞ

term present in the eigenvalues which are then in nearly
every expression involving neutrino oscillations in matter.2

Given the eigenvalues, there are then several choices of
how to map this onto the oscillation probabilities. ZS
mapped the eigenvalues onto the effective mixing angles
andCP phase in matter; given the phase and the angles, it is
then possible to write down the oscillation probabilities in
matter using the vacuum expressions and the new phase,
angles, and eigenvalues. In 2002, Kimura, Takamura, and
Yokomakura (KTY) presented a new mapping from the
eigenvalues onto the oscillation probabilities by looking at
the products of the lepton mixing matrix that actually
appear in the probabilities [12,13]; see also [14–17].
Another formulation of the exact result in the context of
the time evolution operator is Ref. [18]. Along with these
exact expressions, numerous approximate expressions have
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1For more on Lagrange’s formula in the context of neutrino
oscillations in matter see Ref. [9].

2One interesting expression that does not contain the
cosð1

3
cos−1ð� � �ÞÞ term is the Jarlskog invariant in matter [11].
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appeared in the literature in various attempts to avoid the
cosð1

3
cos−1ð� � �ÞÞ term; for a recent review see Ref. [19].

In this article we use the eigenvector-eigenvalue identity,
that has been recently and extensively surveyed in [20,21],
to write the exact expressions for the mixing angles in
matter in terms of the eigenvalues of the Hamiltonian
and its principal minors. The benefit of this approach is
twofold. First, it makes the expressions for the mixing
angles in matter, clearer, symmetric, and very simple. Since
our approach for the oscillation probabilities in matter is
based on the form of the vacuum expressions, the intuition
that exists for the vacuum still applies in matter. Second, it
allows for a simple replacement of the complicated exact
eigenvalues with far simpler approximate eigenvalues in a
straightforward fashion. We find that since this approxi-
mate approach only relies on approximate expressions for
the eigenvalues, it is more accurate than previous methods,
including Denton, Minakata, and Parke (DMP) [22], with a
comparable level of simplicity. We also explore the con-
vergence rate of the eigenvalues in DMP and find that since
all odd-order corrections vanish, they converge much faster
than expected, at a rate of ∼10−5.

II. AN EIGENVALUE BASED EXACT SOLUTION

The technique of ZS is to determine expressions for the
mixing angles and CP-violating phase in matter (θ̂23, θ̂13,
θ̂12, and δ̂) as a function of the eigenvalues and other
expressions, while KTY derives the general expression for
the product of elements of the lepton mixing matrix,
UαiU�

βj. In this section, we describe a technique of using
both approaches.
First, we note that, given the eigenvalues, the mixing

angles can be determined from various jUαij2 terms. This
employs a simpler version of the main result of KTY.
Then, to address the CP-violation part of the oscillation
probabilities, we use the Toshev identity [23].

A. Mixing angles in matter

The neutrino oscillation Hamiltonian in matter in the
flavor basis is

H ¼ 1

2E

264UPMNS

0B@ 0

Δm2
21

Δm2
31

1CAU†
PMNS

þ

0B@ a

0

0

1CA
375; ð1Þ

where we have subtracted out an overall m2
1

2E 1, a≡
2
ffiffiffi
2

p
GFneE is the Wolfenstein matter potential [7], and

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton
mixing matrix [24,25] is parametrized,

UPMNS ¼

0B@ 1

c23 s23eiδ

−s23e−iδ c23

1CA
0B@ c13 s13

1

−s13 c13

1CA
×

0B@ c12 s12
−s12 c12

1

1CA; ð2Þ

where sij ¼ sin θij, cij ¼ cos θij, and we have shifted the
CP-violating phase δ from its usual position on s13 to s23
which does not affect any observable. For our numerical
studies we use Δm2

21 ¼ 7.55 × 10−5 eV2, Δm2
31 ¼

2.5 × 10−3 eV2, s212 ¼ 0.32, s213 ¼ 0.0216, s223 ¼ 0.547,
and δ ¼ 1.32π from [26].
Using the eigenvector-eigenvalue identity [20], the square

of the elements of the lepton mixing matrix in matter are
simple functions of the eigenvalues of the neutrino oscil-
lation Hamiltonian in matter, λi=2E for i ∈ f1; 2; 3g,
and new submatrix eigenvalues, ξα=2E and χα=2E for
α ∈ fe; μ; τg. In general, the squares of the elements of
the mixing matrix are parametrization independent,

jÛαij2 ¼
ðλi − ξαÞðλi − χαÞ
ðλi − λjÞðλi − λkÞ

; ð3Þ

where i, j, and k are all different, and the λi are the exact
eigenvalues, see Appendix A. This result, Eq. (3), can also be
directly obtained from KTY as shown in Appendix B. This
equation is valid for every element of the mixing matrix,
even the μ and τ rows, which are relatively complicated in
the standard parametrization.
Equation (3) is one of the primary results of our paper.

Given the eigenvalues of the Hamiltonian and the eigen-
values of the submatrix Hamiltonian, it is possible to write
down all nine elements of the mixing matrix in matter,
squared. This result is also quite simple and easy to
memorize which is contrasted with the complicated forms
from previous solutions [10,13,27].
The submatrix eigenvalues ξα=2E and χα=2E are the

eigenvalues of the 2 × 2 submatrix of the Hamiltonian,

Hα ≡
�
Hββ Hβγ

Hγβ Hγγ

�
; ð4Þ

for α, β, and γ all different. Explicit expressions for the
Hamiltonian are given in Appendix C and the eigenvalues
of the submatrices, which require only the solution to a
quadratic, are plotted in Fig. 1. We note that while solving a
quadratic is necessary to evaluate the submatrix eigenval-
ues, since only the sum and the product of the eigenvalues
(that is, the trace and the determinant of the submatrix
Hamiltonian) appear in Eq. (3) whose numerator can
be rewritten as λ2i − λiðξα þ χαÞ þ ξαχα, the submatrix
eigenvalues do not have to be explicitly calculated.
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The expressions for the sums and products of the eigen-
values are given in Appendix C.
Given the standard parametrization of the lepton mixing

matrix, this allows us to write all three mixing angles in
matter as simple expressions of the eigenvalues,

s2b12c2b13 ¼ jÛe2j2 ¼ −
ðλ2 − ξeÞðλ2 − χeÞ
ðλ3 − λ2Þðλ2 − λ1Þ

; ð5Þ

s2b13 ¼ jÛe3j2 ¼
ðλ3 − ξeÞðλ3 − χeÞ
ðλ3 − λ1Þðλ3 − λ2Þ

; ð6Þ

s2b23c2b13 ¼ jÛμ3j2 ¼
ðλ3 − ξμÞðλ3 − χμÞ
ðλ3 − λ1Þðλ3 − λ2Þ

; ð7Þ

where the hat indicates that it is the mixing angle in matter.
While similar versions of Eqs. (5) and (6) have previously
appeared in the literature [10], Eq. (7) is original to this
manuscript. The general form of Eq. (3) allows us to write
any term in the lepton mixing matrix, and thus any mixing
angle with considerable ease. In addition, as we will
show in the next section, this also allows us to calculate
the CP-violating phase quite easily.
In Appendix E we show how to use this method in the

vacuum ðθ23; δÞ-rotated flavor basis. Further extensions of
Eq. (3) to an arbitrary number of neutrinos is also discussed
in Appendix F.

B. CP-violating phase in matter

In order to determine the CP-violating phase in matter,
we note that cos δ̂ can be determined, given the other
mixing angles in matter, from jUμ1j2 (or jUμ2j2, jUτ1j2, or
jUτ2j2) from Eq. (3). The sign of δ̂ needs to be separately
determined. We note that the sign of δ̂ must be the same as
the sign of δ. To see this, we employ the Naumov-Harrison-
Scott (NHS) identity [28,29],

Ĵ ¼ Δm2
21Δm2

31Δm2
32

Δcm2
21Δcm2

31Δcm2
32

J; ð8Þ

where J ¼ ℑ½Ue1Uμ2U�
e2U

�
μ1� ¼ s23c23s13c213s12c12 sin δ is

the Jarlskog invariant [30]. We note that the numerator and
denominator in Eq. (8) always have the same sign, so sin δ̂
has the same sign as sin δ. That is, the eigenvalues in matter
never cross.
In practice, it is simpler to determine sin δ̂ from the

Toshev identity [23],

sin δ̂ ¼ sin 2θ23
sin 2θ̂23

sin δ; ð9Þ

and use θ̂23 determined in Eq. (7). An alternative method
for determining the CP-violating phase is given in
Appendix E.

C. Oscillation probabilities in matter

Finally, these can all be combined into any oscillation
probability. For the primary appearance channel at NOνA,
T2K, DUNE, T2HK(K), ESSnuSB [1–6], or any other
long-baseline neutrino experiment, the oscillation proba-
bility can be written in the following compact form:

Pðνμ → νeÞ ¼ jA31 þ e�iΔ32A21j2; ð10Þ

where the upper (lower) sign is for neutrinos (antineutrinos)
and

A31 ¼ 2sb13cb13sb23 sin Δ̂31; ð11Þ

A21 ¼ 2sb12cb13ðcb12cb23e−iδ̂ − sb12sb13sb23Þ sin Δ̂21; ð12Þ

Δ̂ij ¼
ðλi − λjÞL

4E
: ð13Þ

FIG. 1. The two submatrix eigenvalues, ξα and χα, as a function of neutrino energy, are shown in the solid blue curves with α ¼ e, μ, τ
in the left, center, and right figures respectively. For comparison, the full matrix eigenvalues λi are shown in dashed red, green, and
orange in each panel. When a submatrix eigenvalue (solid) overlaps one of the full matrix eigenvalues (dashed) the corresponding
jUαij2 → 0, as seen from the numerator of Eq. (3). Note the Cauchy interlacing condition is satisfied, λ1 ≤ ξα ≤ λ2 ≤ χα ≤ λ3, for each
α ¼ ðe; μ; τÞ and all E, using the convention ξα < χα. See Appendix D for further discussion.
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The above determination of the mixing angles and CP-
violating phase in matter allow for the simple determination
of the oscillation probability in matter for the νμ → νe
appearance channel, or any other channel via the vacuum
oscillation probabilities. Therefore, any physics intuition
already obtained for vacuum oscillation probabilities is
easily transferred to oscillation probabilities in matter.
In addition to all the appearance channels this approach

also works in a straightforward fashion for the disappear-
ance channels as well. For disappearance the oscillation
probabilities in matter can be written as

Pðνα → ναÞ ¼ 1 − 4
X
i<j

jÛαij2jÛαjj2 sin2 Δ̂ij: ð14Þ

Thus the coefficients, jÛαij2jÛαjj2, can be read off as
simple functions of the eigenvalues and the submatrix
eigenvalues, Eq. (3), without any need to even convert to
the mixing angles in matter.

III. APPROXIMATE EIGENVALUES

While the form of the mixing angles in matter presented
above is exact, it still relies on the complicated expression
of the eigenvalues. It has been previously shown, however,
that the eigenvalues can be extremely well approximated
via a mechanism of changing bases as demonstrated by
Denton, Minakata, and Parke [22]; see also Refs. [31–33].
While expressions for the differences of eigenvalues
in DMP are quite compact [34], the expressions in
Eqs. (5)–(7) require the individual eigenvalues so we list
those here as well. Beyond the zeroth-order expressions, it
is possible to derive higher-order terms through perturba-
tion theory [22] or through further rotations [33]. This
approach leads to a smallness parameter that is no larger

than c12s12
Δm2

21

Δm2
31

∼ 1.5% and is zero in vacuum confirming

that the exact solution is restored at zeroth order in vacuum;
see Eq. (23) below.

A. Zeroth-order eigenvalues

The zeroth-order eigenvalues are extremely precise with
a fractional error in the difference of the eigenvalues
of < 10−5 at DUNE. We define eigenvalues of two
intermediate steps. First, the eigenvalues of the unrotated
Hamiltonian, after a constant U23ðθ23; δÞ rotation,3 read

λa ¼ aþ s213Δm2
ee þ s212Δm2

21; ð15Þ

λb ¼ c212Δm2
21; ð16Þ

λc ¼ c213Δm2
ee þ s212Δm2

21: ð17Þ

Next, after an O13 rotation, we have

λ� ¼ 1

2

�
λa þ λc

� signðΔm2
eeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλa − λcÞ2 þ ð2s13c13Δm2

eeÞ2
q �

;

λ0 ¼ λb; ð18Þ

and

sin2 ϕ ¼ λþ − λc
λþ − λ−

: ð19Þ

Finally, after an O12 rotation, the eigenvalues through
zeroth-order are

λ̃1;2 ¼
1

2

�
λ0 þ λ−

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ0 − λ−Þ2 þ ð2 cosðϕ − θ13Þs12c12Δm2

21Þ2
q �

;

ð20Þ

λ̃3 ¼ λþ; ð21Þ

and

sin2 ψ ¼ λ̃2 − λ0
λ̃2 − λ̃1

: ð22Þ

Here x̃ represents an approximate expressions for the
quantity x in matter. At this order, θ23 and δ are unchanged
from their vacuum values. Equations (18)–(22) define the
zeroth-order approximation.
We note that ϕ and ψ are an excellent approximation for

θ̂13 and θ̂12, respectively [22]; see Ref. [33] for the explicit
higher-order correction terms. These are effective two-
flavor approximations to θ̂12 and θ̂13 while Eqs. (5) and (6)
are the full three-flavor exact expressions. We further
discuss the similarity in these expressions in Sec. III F.

B. Second-order eigenvalues

After performing the rotations that lead to the eigenval-
ues in Eqs. (20) and (21), the smallness parameter is

ϵ0 ≡ sinðϕ − θ13Þs12c12Δm2
21=Δm2

ee < 1.5% ð23Þ

and is zero in vacuum since ϕ ¼ θ13 in vacuum. Because
of the nature of the DMP approximation, the zeroth-order
eigenvalues in Eqs. (20) and (21) already contain the first
order in ϵ0 corrections. That is, the first-order corrections
are just the diagonal elements in the perturbing
Hamiltonian which are all zero by construction. The
second-order corrections are simply

3A term ðs212Δm2
21=2EÞ1 could be subtract from the Hamil-

tonian, Eq. (1), to simplify the following expressions.
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λ̃ð2Þ1 ¼ −ðϵ0Δm2
eeÞ2

s2ψ
λ̃3 − λ̃1

; ð24Þ

λ̃ð2Þ2 ¼ −ðϵ0Δm2
eeÞ2

c2ψ
λ̃3 − λ̃2

; ð25Þ

λ̃ð2Þ3 ¼ −λ̃ð2Þ1 − λ̃ð2Þ2 : ð26Þ

It is useful to note that λ̃1 and λ̃2 are related by the 1-2
interchange symmetry [22]. The 1-2 interchange symmetry
says that all oscillation observables in matter are indepen-
dent of the following transformations:

λ̃1 ↔ λ̃2; c2ψ ↔ s2ψ ; and cψsψ → −cψsψ : ð27Þ

It is clear that λ̃ð2Þ3 is invariant under this interchange, and

λ̃ð2Þ2 follows directly from λ̃ð2Þ1 and the interchange.
As with ϕ in Eq. (19), ψ is an excellent approximation

for θ̂12. The fractional precision of the eigenvalues at
zeroth and second order are shown in Fig. 2. Since ϕ and
ψ are good approximations for θ̂13 and θ̂12 respectively,
and since θ̂23 and δ̂ do not vary very much in matter, one
could imagine using the vacuum probabilities with the
approximate eigenvalues and replacing only θ13 and θ12
with ϕ and ψ , respectively. This is exactly the DMP
approach at zeroth order. Thus one way to quantify the
improvement of this approach over DMP is to compare
the precision with which we can approximate θ̂13 and θ̂12
with either ϕ and ψ which result from a two-flavor
rotation [see Eqs. (19) and (22)] or with Eqs. (3), (6),
and (5). We have numerically verified that the full three-
flavor approach to calculating the mixing angles
improves the precision on the mixing angles in matter
(and thus the oscillation probabilities) compared with the
two-flavor approach that leads to ϕ and ψ .
Next, we note that for similar reasons that the first-

order corrections vanish, λð1Þi ¼ 0, all the odd corrections

vanish within the DMP framework.4 That is, λðkÞi ¼ 0 for
all i ∈ f1; 2; 3g and any k odd; see Appendix G. While it
would appear that, given a perturbing Hamiltonian ∝ ϵ0
that the precision would converge as ϵ0, this shows that, in
fact, the precision converges considerably faster at ϵ02.
This result had not been previously identified in the
literature.
We now compare the precision of sine of the mixing

angles and CP-violating phase in matter using the

approximate eigenvalues through zeroth order and
second order to the exact expressions in Fig. 3. Using
the zeroth-order eigenvalues to evaluate the angles and
the phase is quite precise even at zeroth order, at the 1%
level or much better. Adding in the second-order correc-
tions dramatically increases the precision by about 4
orders of magnitude for neutrinos and 6 orders of
magnitude for anti-neutrinos, consistent with the fact
that ϵ0 is ∼10−2 in the limit as E → ∞ and ∼10−3 in the
limit as E → −∞. We also see that we recover the exact
answers in vacuum, a trait that many approximation
schemes do not share [19].
Next, we show the precision of the appearance oscil-

lation probability for DUNE in Fig. 4.5 The scaling law of
the precision remains the same as previously shown and we
have verified that it continues at the same rate to even
higher orders. In fact, as we continue to higher orders we
find that all the odd corrections to the eigenvalues vanish;
see Appendix G.
Finally, in an effort to roughly quantify the “simplicity”

of our results, we computed the speed with which we can
calculate one oscillation probability as shown in Fig. 5. For
comparison we have included many other approximate and

FIG. 2. The fractional precision of the zeroth-order and the
second-order DMP eigenvalues are shown in solid and dashed
curves, respectively. We plot the difference in eigenvalues so
that we are insensitive to an overall shift in the eigenvalues.
Continuing to higher order in the eigenvalues continues to
increase the precision by comparable levels since all odd-
order corrections to the eigenvalues in DMP are zero (see
Appendix G).

4In fact, the conditions for the odd corrections to vanish can be
generally achieved in an arbitrary three- or four-dimensional
Hamiltonian, but not for general higher-dimensional Hamilto-
nians; see the end of Appendix G.

5We also compared calculating the oscillation probabilities
with the approximate eigenvalues using the Toshev identity to
determine δ and the NHS identity to determine δ through the
Jarlskog, and found that the Toshev identity performs better. This
is due to the fact that the δ̂ and θ̂23 both do not vary very much in
matter while all the other parameters do.
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exact expressions as previously explored in [19]. For the
sake of openness, the Nu-Pert-Compare code used for each of
these is publicly available [35]. We note that while our new
results using DMP eigenvalues are not as fast as others,
adding in higher-order corrections is extremely simple, as
indicated in Eqs. (24)–(26) which give rise to an impressive
6 orders of magnitude improvement in precision for almost
no additional complexity. All points use δ ¼ −0.4π except
for OS and Exp where δ ¼ 0; for a detailed discussion
see Ref. [19].
Computational speed is a useful metric not only for

simplicity but also for long-baseline experiments which
must compute oscillation probabilities many times when
marginalizing over a large number of systematics and
standard oscillation parameters. In addition, performing
the Feldman-Cousins method of parameter estimation is
known to be extremely computationally expensive [38].

IV. CONCLUSIONS

In this article we have used the eigenvector-eigenvalue
identity to develop a new way to write neutrino oscillation
probabilities in matter, both exactly and with simpler
approximate expressions. The primary new result involves
determining the mixing angles in matter which has the
benefit in that intuition gained about vacuum oscillations
still applies to oscillations in matter. The CP-violating
phase in matter is then determined in a straightforward
fashion from θ̂23 and the Toshev identity [23]. Given the

FIG. 3. The fractional precision of sine of the mixing angles and the CP-violating phase in matter in Eqs. (5)–(9). The precision using
the zeroth-order DMP eigenvalues is shown with solid curves and with the second-order eigenvalues with dashed curves.

FIG. 4. Top: oscillation probability Pðνμ→νeÞ at L ¼ 1300 km
in the normal ordering. Bottom: fractional precision of the
probability using the zeroth- (second-) order DMP eigenvalues
in blue (orange). The vertical red bands show DUNE’s region of
interest. The precision is comparable in the inverted ordering.

FIG. 5. We have plotted the fractional precision at the first
oscillation maximum for DUNE at δ ¼ −0.4π versus the time to
compute one oscillation probability on a single core. Our results
are labeled DPZ and are in orange. ZS [10] and Diag are two
exact solutions where Diag represents an off-the-shelf linear
algebra diagonalization package. Two other exact solutions from
[18] are labeled OS (using the Cayley-Hamilton method) and Exp
(exponentiating the Hamiltonian) which do not account for CP
violation (δ ¼ 0). We only plot expressions that reach at least 1%
precision at the first oscillation maximum. The remaining
expressions are MP [32], AM [36], MF [37], AKT [31], and
DMP [22]. For a detailed discussion see Ref. [19].
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mixing angles and the CP-violating phase in matter,
writing down the oscillation probability in matter follows
directly from the simple vacuum expression.
This technique benefits from the simplicity of using the

expression for the oscillation probability in vacuum, and
the clear, compact, expressions for the mixing angles in
matter, and can be applied to any oscillation channel. There
is also the fact that by explicitly writing the mixing angles
as simple functions of the eigenvalues, they can be replaced
with simple approximate expressions, such as those derived
by Denton, Minakata, and Parke [22]. The new technique
presented here is more precise than that in DMP, order by
order, since this result is effectively complete to all orders
in the eigenvectors and only requires correction to the
eigenvalues.
The primary new results of this article are as follows:
(i) Equation (3), reproduced here,

jÛαij2 ¼
ðλi − ξαÞðλi − χαÞ
ðλi − λjÞðλi − λkÞ

;

which presents a simple, clear, and easy to remember
way to determine the norm of the elements of the
mixing matrix and hence the mixing angles in matter
given the eigenvalues. Then the oscillation proba-
bilities can be calculated in a straightforward fashion
using the CP-violating phase in matter from the
Toshev identity.

(ii) The form of Eq. (3) allows for the direct substitution
of approximate eigenvalues, such as those from
DMP. As shown here for the first time, the DMP
eigenvalues converge extremely quickly, ∼10−5 per
step since all the odd-order corrections to the
eigenvalues vanish.

(iii) The form of Eq. (3) is trivially generalizable to any
number of neutrinos.

Given the formalism presented here, we have a clear and
simple mechanism for calculating the oscillation proba-
bilities in matter either exactly or approximately.
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APPENDIX A: THE EXACT EIGENVALUES
IN MATTER

From Refs. [8,10,39], the exact eigenvalues in matter are

λ1 ¼
1

3
A −

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p �
Sþ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2

p �
;

λ2 ¼
1

3
A −

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p �
S −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2

p �
;

λ3 ¼
1

3
Aþ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p
S: ðA1Þ

The terms A, B, and C are the sum of the eigenvalues,
the sum of the products of the eigenvalues, and the triple
product of the eigenvalues, while S contains the
cosð1

3
cos−1ð� � �ÞÞ terms,

A ¼ Δm2
21 þ Δm2

31 þ a; ðA2Þ

B ¼ Δm2
21Δm2

31 þ a½Δm2
31c

2
13 þ Δm2

21ð1 − c213s
2
12Þ�;

ðA3Þ

C ¼ aΔm2
21Δm2

31c
2
13c

2
12; ðA4Þ

S ¼ cos

	
1

3
cos−1

�
2A3 − 9ABþ 27C

2ðA2 − 3BÞ3=2
�


; ðA5Þ

where a≡ 2E
ffiffiffi
2

p
GFne is the matter potential, E is the

neutrino energy, GF is Fermi’s constant, and ne is the
electron number density.
As an example of the analytic impenetrability of S,

setting a ¼ 0 and recovering the vacuum values for
the eigenvalues ð0;Δm2

21;Δm2
31Þ is a highly nontrivial

exercise.

APPENDIX B: DERIVATION FROM KTY

Since only the product of elements of the PMNS matrix
are necessary to write down the oscillation probabilities, we
start with the definition of the product of two elements of
the lepton mixing matrix in matter from Eq. (39) in KTY,
Ref. [13],

ÛαiÛ
�
βi ¼

p̂αβλi þ q̂αβ − δαβλiðλj þ λkÞ
ðλj − λiÞðλk − λiÞ

; ðB1Þ

where x̂ is the quantity x evaluated in matter and the λi’s
are the exact eigenvalues in matter6; see Appendix A. We
note that a similar approach was used in [27].
The matrix p̂ is just the Hamiltonian in matter,

p̂αβ¼ð2EÞHαβ¼
P

iλiÛαiÛ
�
βi; see Appendix C. The other

6Note that the eigenvalues in matter can also be expressed in a

longer notation as λi ¼ cm2
i.
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term, q̂, is given by q̂αβ ¼
P

i<j λiλjÛαkÛ
�
βk for k ≠ i, j. It

is also equivalent to q̂αβ ¼ ð2EÞ2ðHγβHαγ −HαβHγγÞ for
γ ≠ i, j.
We evaluate Eq. (B1) in the case of α ¼ β,

jÛαij2 ¼
λ2i − λið2EÞðHββ þHγγÞ þ q̂αα

ðλj − λiÞðλk − λiÞ
; ðB2Þ

where α, β, and γ are all different, as are i, j, and k. We can
then write the numerator as ðλi − ξαÞðλi − χαÞ where ξα and
χα satisfy

ξα þ χα ¼ ð2EÞðHββ þHγγÞ; ðB3Þ

ξαχα ¼ ð2EÞ2ðHββHγγ −HβγHγβÞ: ðB4Þ

That is, ξα and χα are the eigenvalues of Hα, the 2 × 2
submatrix of the Hamiltonian.

We also note that Eq. (3) leads to the following identity
also presented in Ref. [13]:

ðλ2 − λ1Þðλ3 − λ1Þðλ3 − λ2Þsb12cb12sb13c2b13
¼ Δm2

21Δm2
31Δm2

32s12c12s13c
2
13; ðB5Þ

which is the NHS identity [28,29] divided by the Toshev
identity [23]. That is, this quantity

ðλ2 − λ1Þðλ3 − λ1Þðλ3 − λ2ÞjÛe1jjÛe2jjÛe3j ðB6Þ

is independent of the matter potential.

APPENDIX C: THE HAMILTONIAN

Here we multiply out the Hamiltonian in matter for
use in the above expressions. First, we define ð2EÞH ¼
O13ðθ13ÞO12ðθ12ÞM2O†

12ðθ12ÞO†
13ðθ13Þ þ diagða; 0; 0Þ, a

real matrix, which is

H ¼ 1

2E

0BB@
aþ Δm2

ees213 þ Δm2
21s

2
12 c13s12c12Δm2

21 s13c13Δm2
ee

· Δm2
21c

2
12 −s13s12c12Δm2

21

· · Δm2
eec213 þ Δm2

21s
2
12

1CCA; ðC1Þ

where Hαβ ¼ Hβα and Δm2
ee ≡ c212Δm2

31 þ s212Δm2
31 [40]. Then the Hamiltonian in the flavor basis is H ¼

U23ðθ23; δÞHU†
23ðθ23; δÞ which is

H ¼

0BB@
Hee s23e−iδHeτ þ c23Heμ c23Heτ − s23eiδHeμ

· c223Hμμ þ s223Hττ þ 2s23c23 cos δHμτ eiδ½s23c23ðHττ −HμμÞþðc223e−iδ − s223e
iδÞHμτ�

· · c223Hττ þ s223Hμμ − 2s23c23 cos δHμτ

1CCA; ðC2Þ

where Hαβ ¼ H�
βα.

Then the eigenvalues of the submatrices ξα and χα are
given by

ξe þ χe ¼ ð2EÞðHμμ þHττÞ; ðC3Þ

ξeχe ¼ ð2EÞ2ðHμμHττ −H2
μτÞ; ðC4Þ

ξμ þ χμ ¼ ð2EÞðHee þ c223Hττ þ s223Hμμ

− 2s23c23 cos δHμτÞ; ðC5Þ

ξμχμ ¼ ð2EÞ2½Heeðc223Hττ þ s223Hμμ − 2s23c23 cos δHμτÞ
− jc23Heτ − s23e−iδHeμj2�: ðC6Þ

The ξτ and χτ eigenvalues are the same as ξμ and χμ under
the interchange s223 ↔ c223 and s23c23 → −s23c23. Note that

the complicated Hμτ term does not appear in the ξe and χe
terms since the eigenvalues of the 2 × 2 submatrix He are
the same as those of He.
For illustration, we write down the electron

submatrix eigenvalues, although we note that explicit
calculation of the submatrix eigenvalue is not necessary
since Eq. (3) depends only on the sum and product
of the eigenvalues which are directly given in
Eqs. (C3)–(C6),

ξe; χe ¼
Δm2

ee

2

�
c213 þ ϵ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc213 − ϵÞ2 þ ð2s13s12c12ϵÞ2

q �
;

ðC7Þ

where ϵ≡ Δm2
21=Δm2

ee. [This ϵ is different from ϵ0 ¼
sinðϕ − θ13Þs12c12Δm2

21=Δm2
ee used as our perturbative

expansion parameter; see Eq. (23).]
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APPENDIX D: ASYMPTOTICS OF SUBMATRIX
EIGENVALUES

For convenience we define ξα < χα. Then we note that
the submatrix eigenvalues are asymptotically the same as
certain full eigenvalues,

lim
E→−∞

λ2 ¼ lim
E→∞

λ1 ¼ ξe; ðD1Þ

lim
E→−∞

λ3 ¼ lim
E→∞

λ2 ¼ χe; ðD2Þ

lim
E→−∞

λ1 ¼ lim
E→−∞

ξμ ¼ lim
E→−∞

ξτ; ðD3Þ

lim
E→∞

λ3 ¼ lim
E→∞

χμ ¼ lim
E→∞

χτ; ðD4Þ

lim
E→−∞

χμ ¼ lim
E→∞

ξμ ¼ m2
τ ; ðD5Þ

lim
E→−∞

χτ ¼ lim
E→∞

ξτ ¼ m2
μ; ðD6Þ

where

m2
α ¼

X
i

m2
i jUαij2: ðD7Þ

Since m2
μ ≈ c213s

2
23Δm2

31 and m2
τ ≈ c213c

2
23Δm2

31, changing
the octant changes which of m2

μ and m2
τ are larger. This in

turn swaps the ordering of the μ and τ submatrix
eigenvalues.
Furthermore, the eigenvalues of H and its principal

minors, λi’s and ξα’s, χα’s (ξα < χα), satisfy the Cauchy
interlacing identity, λ1≤ ξα≤ λ2≤ χα≤ λ3 for α ¼ ðe; μ; τÞ,
for all values of the matter potential.

APPENDIX E: USING THE ðθ23;δÞ-ROTATED
FLAVOR BASIS

In this appendix, we use the eigenvector-eigenvalue
identity in the vacuum ðθ23; δÞ-rotated flavor basis and
recover the full PMNS matrix in matter by performing the
vacuum ðθ23; δÞ-rotated at the end. The ðθ23; δÞ-rotated
flavor basis is defined as

U†
23ðθ23; δÞ

0BB@
νe

νμ

ντ

1CCA with U23ðθ23; δÞ ¼

0BB@
1

c23 s23eiδ

−s23e−iδ c23

1CCA: ðE1Þ

In this basis the Hamiltonian, H, is given as

H ¼ 1

2E

0BB@
aþ Δm2

ees213 þ Δm2
21s

2
12 c13s12c12Δm2

21 s13c13Δm2
ee

· Δm2
21c

2
12 −s13s12c12Δm2

21

· · Δm2
eec213 þ Δm2

21s
2
12

1CCA: ðE2Þ

Note, it is now real and independent of θ23 and δ and the
same as Eq. (C1).
This Hamiltonian can be diagonalized by the following

unitary matrix:

V̂ ≡ V̂23ðαÞÛ13Û12; ðE3Þ

with only real entries, with7

s2b13 ¼ jV̂e3j2 ¼
ðλ3 − ξ0eÞðλ3 − χ0eÞ
ðλ3 − λ1Þðλ3 − λ2Þ

;

s2b12c2b13 ¼ jV̂e2j2 ¼ −
ðλ2 − ξ0eÞðλ2 − χ0eÞ
ðλ2 − λ1Þðλ3 − λ2Þ

;

s2αc2b13 ¼ jV̂μ3j2 ¼
ðλ3 − ξ0μÞðλ3 − χ0μÞ
ðλ3 − λ1Þðλ3 − λ2Þ

; ðE4Þ

where the sum and the product of ξ0 ’s and χ0’s are given in
Table I and are obtained from the trace and determinant of
the principal minors ofH, Eq. (E2). The expressions for θ̂12
and θ̂13 are the same as Eqs. (5) and (6), since ξ0e ¼ ξe and
χ0e ¼ χe, Eqs. (C3) and (C4). jαj is tiny (< 0.01) and is zero
in vacuum.
For the full PMNS matrix in matter, we combine

U23ðθ23; δÞ with V̂23ðαÞ into U23ðθ̂23; δ̂Þ, as follows:

7The relationship between this work and Ref. [10] is sin2 α ¼
F2=ðE2 þ F2Þ and F2 ¼ ðλ3 − ξ0eÞðλ3 − χ0eÞðλ3 − ξ0μÞðλ3 − χ0μÞ
and E2 ¼ ðλ3 − ξ0eÞðλ3 − χ0eÞðλ3 − ξ0τÞðλ3 − χ0τÞ. The characteris-
tic equation, using λ3 as the solution, is needed to prove this
equivalence.
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�
c23 s23eiδ

−s23e−iδ c23

��
cα sα
−sα cα

�

¼
�
eiρ

eiσ

� cb23 sb23eiδ̂
−sb23e−iδ̂ cb23

!
: ðE5Þ

The solution is σ ¼ −ρ with

c23cα − s23sαeiδ ¼ cb23eiρ;
and sαc23 þ cαs23eiδ ¼ sb23eiðρþδ̂Þ:

Therefore

s2b23 ¼ c2αs223 þ s2αc223 þ 2sαcαs23c23 cos δ;

cos δ̂ ¼ ðcos δs23c23ðc2α − s2αÞ þ ðc223 − s223ÞsαcαÞ=ðsb23cb23Þ;
ðE6Þ

sin δ̂ ¼ ðsin δs23c23Þ=ðsb23cb23Þ: ðE7Þ

The equation for sin δ̂ is exactly the Toshev identity [23].
The full PMNS matrix in matter is then by

ÛPMNS ¼ U23ðθ̂23; δ̂ÞU13ðθ̂13ÞU12ðθ̂12Þ; ðE8Þ

with θ̂23, δ̂, θ̂12, and θ̂13 given by Eqs. (E6), (E7), (5), and
(6), respectively, in total agreement with what was obtained
in Ref. [10], using a different method.

APPENDIX F: EXTENSION TO AN ARBITRARY
NUMBER OF NEUTRINOS

Equation (3) can be generalized in a straightforward
fashion to an arbitrary number of neutrinos. As an initial
illustrative example, for two flavors in matter we have
that the elements of the diagonalized mixing matrix in
matter are

jÛαij2 ¼
λi − ξα
λi − λj

: ðF1Þ

(This two-flavor approach was exploited in a three-flavor
context in DMP via two two-flavor rotations.)
To evaluate this, we find the eigenvalues of the

Hamiltonian and its submatrix. The Hamiltonian is

H ¼ Δm2

4E

�
a=Δm2 − cos 2θ sin 2θ

sin 2θ cos 2θ − a=Δm2

�
: ðF2Þ

The eigenvalues, λ1;2=2E, of this 2 × 2 system are

λ1;2 ¼∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − Δm2 cos 2θÞ2 þ ðΔm2 sin 2θÞ2

q
; ðF3Þ

and the submatrix eigenvalues, ξe;μ=2E are trivially

ξe ¼
1

2
ðΔm2 cos 2θ − aÞ; ξμ ¼

1

2
ða − Δm2 cos 2θÞ: ðF4Þ

Then we can write down the mixing matrix in matter, where
we note that the off-diagonal term squared is sin2 θ̂,

sin2 θ̂ ¼ jÛe2j2 ¼
λ2 − ξe
λ2 − λ1

¼ 1

2

�
1 −

Δm2 cos 2θ − affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2 cos 2θ − aÞ2 þ ðΔm2 sin 2θÞ2

p �
;

ðF5Þ

which agrees with the standard two-flavor expression [41].
What is powerful about this method is that it can extend

to more neutrinos as well. For four neutrinos, we can write
down the elements of the mixing matrix in matter in the
related, easy to remember form as the two- or three-flavor
cases,

jÛαij2 ¼
ðλi − ξαÞðλi − χαÞðλi − ζαÞ
ðλi − λjÞðλi − λkÞðλi − λlÞ

; ðF6Þ

for i; j; k;l all different and where ξα, χα, and ζα are the
three eigenvalues of the associated submatrix. This method
can be extended in a straightforward fashion to an arbitrary
number of neutrinos.
The general form of Eq. (3) for any n × n matrix with

possibly degenerate eigenvalues is

TABLE I. The sum and product of the eigenvalues of the principal minors of the rotated Hamiltonian, Eq. (E2),
and their relationship to eigenvalues of the full Hamiltonian

P
j λjðHÞ ¼ A and

P
j>k λjðHÞλkðHÞ ¼ B given in

Appendix A.

ξ0 þ χ0 ξ0χ0

e Δm2
31c

2
13 þ Δm2

21ð1 − c213s
2
12Þ ðΔm2

31c
2
13ÞðΔm2

21c
2
12Þ

μ aþ Δm2
31 þ Δm2

21s
2
12 aðΔm2

31c
2
13 þ Δm2

21s
2
12s

2
13Þ þ Δm2

31Δm2
21s

2
12

τ aþ Δm2
31s

2
13 þ Δm2

21ð1 − s213s
2
12Þ aΔm2

21c
2
12 þ ðΔm2

31s
2
13ÞðΔm2

21c
2
12Þ

Sum 2ðaþ Δm2
31 þ Δm2

21Þ ¼ 2A aðΔm2
31c

2
13 þ Δm2

21ð1 − c213s
2
12ÞÞ þ Δm2

31Δm2
21 ¼ B
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jÛαij2
Yn

k¼1;k≠i
ðλi − λkÞ ¼

Yn−1
k¼1

ðλi − ξα;kÞ; ðF7Þ

where the k in ξα;k covers the n − 1 eigenvalues of the α
submatrix; see [20].

APPENDIX G: HIGHER ORDER EIGENVALUES

As mentioned in the text, the first-order corrections to the
eigenvalues are zero. The second-order corrections are
given in Eqs. (24)–(26). We also find that the third-order
corrections are zero.
Given an 3 × 3 Hamiltonian

H ¼ H0 þ V; ðG1Þ

where H0 ¼ diagðλ1; λ2; λ3Þ is a nondegenerate zeroth-
order diagonal matrix and V, which is Hermitian, is the
perturbing part of the Hamiltonian in DMP,

V ¼ ϵ0
Δm2

ee

2E

0B@ −sψ
cψ

−sψ cψ

1CA: ðG2Þ

Because all diagonal elements of V vanish, it is straightfor-
ward to see that the first-order eigenvalue corrections are
zero. Next we calculate the third-order corrections to
eigenvalues

λð3Þi ¼
X
j;k≠i

VijVjkVki

ðλj − λiÞðλk − λiÞ
−
X
j≠i

ViiVijVji

ðλj − λiÞ2
; ðG3Þ

where Vij ¼ hijVjji. The rightmost term is clearly zero
since Vii ¼ 0. In the first summation if j ¼ k, Vjk ¼ 0 for
the same reason. If not then the numerator contains the
product of all three off-diagonal terms. Since one of these

terms is zero in DMP (V12) we have that λð3Þi is zero.

In fact, all λðmÞ
i ¼ 0 for m odd. A brief proof is that when

m is odd λðmÞ
i is a summation of terms proportional either to

a diagonal element of V or the product V12V23V31.

The above conclusion is a special case of a more general
statement. Let us consider an n × n perturbing Hamiltonian
Vn×n for which there is an r such that 0 ≤ r ≤ n wherein

Vij ≠ 0 only if i ≤ r < j or i > r ≥ j; ðG4Þ

i.e., Vn×n has the block form

Vn×n ¼
�

0r×r Vr×ðn−rÞ
Vðn−rÞ×r 0ðn−rÞ×ðn−rÞ

�
: ðG5Þ

If the above condition is satisfied, themth-order eigenvalue

corrections λðmÞ
i ¼ 0 for m odd. DMP is the case of

n ¼ 3, r ¼ 2.
We list the even-order corrections through sixth order.

We note that we only need to write down the λðnÞ1

corrections since λðnÞ2 is related to λðnÞ1 by the 1-2 inter-

change symmetry [22] as given by Eq. (27) and
P

i λ
ðnÞ
i ¼

0 which allows for the determination of λðnÞ3 ,

λð2Þ1

ðϵ0Δm2
eeÞ2

¼ −
s2ψ
Δλ31

; ðG6Þ

λð4Þ1

ðϵ0Δm2
eeÞ4

¼ s2ψ
Δλ21ðΔλ31Þ3

ð−c2ψΔλ31 þ s2ψΔλ21Þ; ðG7Þ

λð6Þ1

ðϵ0Δm2
eeÞ6

¼ s2ψ
ðΔλ21Þ2ðΔλ31Þ5

½−c4ψ ðΔλ31Þ2 þ c2ψs2ψð3Δλ21
þ Δλ31ÞΔλ31 − 2s4ψ ðΔλ21Þ2�: ðG8Þ

For three neutrinos, the Jacobi method ensures that the
conditions that the odd corrections to the eigenvalues can
always be met by rotating one off-diagonal element of the
perturbing Hamiltonian to zero. The necessary conditions
can also be met for four neutrinos by rotating two off-
diagonal elements in disconnected sectors (say, U12 and
U34). For general matrices this condition cannot be met for
more than four neutrinos.
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