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Precise scientific analysis in collider-based particle physics is possible because of complex simulations
that connect fundamental theories to observable quantities. The significant computational cost of these
programs limits the scope, precision, and accuracy of Standard Model measurements and searches for new
phenomena. We therefore introduce Deep neural networks using Classification for Tuning and
Reweighting (DCTR), a neural network-based approach to reweight and fit simulations using all kinematic
and flavor information—the full phase space. DCTR can perform tasks that are currently not possible with
existing methods, such as implementing uncertainties on nonperturbative models without rerunning the
simulation. The core idea behind the new approach is to exploit powerful high-dimensional classifiers to
reweight phase space as well as to identify the best parameters for describing data. Numerical examples
from eþe− → jets demonstrate the fidelity of these methods for simulation parameters that have a big and
broad impact on phase space as well as those that have a minimal and/or localized impact. The high fidelity
of the full phase-space reweighting enables a new paradigm for simulations, parameter tuning, and model
systematic uncertainties across particle physics and possibly beyond.
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I. INTRODUCTION

In collider-based high-energy physics, parton-, particle-,
and detector-level Monte Carlo (MC) simulation programs
enable scientific inference by connecting fundamental
theories to observable quantities. However, these tools
are often computationally slow and emulate probability
distributions that are analytically intractable. This has
resulted in three key simulation challenges for particle
physics: (1) an insufficient number of simulated events,
(2) unaccounted for biases from simulation parameters, and
(3) the inability to utilize all kinematic and flavor infor-
mation (“the full phase space”) for parameter tuning.
A variety of approaches have been proposed to address

the above challenges. The two existing solutions to (1) are
to use more [1–3] and/or faster computers or accelerators
[4,5] or to build fast surrogate models (“fast simulation”).
Machine learning tools hold great promise for augmenting
[6] or replacing [7–20] current fast detector simulation
approaches, but are not yet precise enough to match the
full, physics-based detector simulators that are often the
limiting factor in the overall software pipeline. Deep

learning methods to circumvent expensive simulations
for hypothesis testing were studied in the context of
effective field theory fits [21–23]; related ideas will be
useful also for reweighting. The only solution for (2) aside
from generating a large set of simulations or interpolating
between bins of low-dimensional histograms [24] is to
assign event weights for parameter variations. Currently,
this is only possible for a small number of perturbative
parameters in parton shower programs [25–27] and for
parton distribution functions [28,29]. Semiautomated pro-
cedures exist for tuning parton shower models [24,30], but
the format of the existing public data means that these
algorithms are restricted to a set of mostly one-dimensional
inputs that must be assumed to be independent. The
variational method proposed in Ref. [31] has been dem-
onstrated with high-dimensional data, but utilizes a mini-
max optimization technique and requires running the
simulator many times during training.
This paper introduces Deep neural networks using

Classification for Tuning and Reweighting (DCTR, pro-
nounced “doctor”), a new approach to solve all three
computational challenges. In particular, deep neural net-
work-based classifiers are used to (continuously) reweight
one particle-level simulation into another and additionally
use the full phase space to fit parameters within a given
model. When the nominal particle-level sample has a
corresponding detector-level simulation, then this pro-
cedure produces a new detector-level sample as well.
Nondeep machine learning tools have been used in the
past for discrete reweighting [18,32–34] with a small
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number of observables. Deep-learning-based discrete
weighting was considered in [18,35] and continuous single
observable reweightings were presented in [36]. The
reweighting presented here combines a full phase-space
deep learning architecture [37] with parametrization
[38,39] to fully morph one simulation into another. This
approach can naturally accommodate high-dimensional
feature spaces and many model parameters. In addition
to reweighting, we show how DCTR can be used with a
differentiable reweighting function (such as the one just
mentioned) to optimize simulation parameters. Fitting
parameters based on the parametrized classifiers was
proposed in Ref. [38]; here, the fitting procedure uses a
classifier to construct the loss function, which can readily
incorporate all of the information from the (potentially
high-dimensional) input features and be optimized using
standard deep learning tools.

II. METHODS

The first ingredient to the full phase-space reweighting
procedure is a prescription to derive event weights.
Consider two simulations that describe the same phase
space Ω and are described by probability densities p0ðxÞ
and p1ðxÞ, for x ∈ Ω. Assuming that p0 and p1 have the
same support,1 the function wðxÞ ¼ p0ðxÞ=p1ðxÞ is the
ideal per-event weight to morph the second simulation into
the first one. Awell-known key observation is that w can be
well approximated by training a machine learning classifier
to distinguish the two simulations. For example, let fðxÞ be
a neural network and trained with the binary cross-entropy
loss:

lossðfðxÞÞ ¼ −
X

i∈0
log fðxiÞ −

X

i∈1
logð1 − fðxiÞÞ; ð1Þ

where 0 and 1 represent sets of examples from the two
simulations. Then a well-known result is that,
fðxÞ=ð1 − fðxÞÞ ≈ p0ðxÞ=p1ðxÞ. The benefit of parame-
trizing f as a neural network is that deep learning can
readily analyze all of Ω, which was not possible with
shallow learning attempts with a similar statistical founda-
tion. The closest attempt to a full phase-space approach
directly tried to learn piðxÞ using the full kinematic (i.e.,
nonflavor) part of Ω [35,40], but this is much harder than
learning the ratio.
An important reweighting scenario is when the two

simulations are from the same simulation program, but with
a subset of different model parameters, θ. For example,
when model uncertainties are evaluated, one may want to
transform pθðxÞ into pθþδθðxÞ. When these uncertainties

are profiled in a fit, it is important that the transformation
procedure be able to continuously interpolate between
model parameters. The neural network reweighting
approximation can be extended to this continuous case
by adding θ as a feature [38,39]: fðx; θÞ. In the examples
presented below, the training data are generated with a
uniform distribution in θ, but this probability density can be
optimized per application and can even be discrete.
Even though generators have many parameters that must

be fit to data, gradient methods cannot be used directly with
the models as the full phase space they produce is not
usually differentiable (or at least the derivative is intrac-
table) with respect to their model parameters. Surrogate
generative models built from neural networks can be used
for gradient-based parameter fitting, but may not have
sufficient quality to be reliable. Reweighting is a robust
alternative to surrogate generative models. A neural net-
work-based continuous reweighting function is essentially
a differentiable (in model parameters) version of the
original simulator and can be used to perform inference
on the parameters themselves. This is especially powerful
for particle-level parameter tuning to data where one
sample with a computational expensive full detector sim-
ulation can be continuously reweighted to other parameter
points with the same detector model at no extra simula-
tion cost.
An ideal loss function used to fit model parameters

makes use of the full observable phase space. Typical
metrics such as the χ2 between histogram approximations
to probability densities become impractical when Ω is high
dimensional because the number samples needed to pop-
ulate the histogram bins grows exponentially with the
number of features. As described above, classifiers are
powerful tools for accessing all of the available informa-
tion. Therefore, one can use a classifier for the loss. When a
classifier trained to distinguish some θ0 from a θ1 performs
poorly, then the two samples are close. As in Eq. (1), the
bold notation represents sets of examples from two sim-
ulations, in this case distinguished by their value of θ.
While using classification to quantify differences between
event samples has been used for anomaly detection
[41–43], we are unaware of an example where it is used
for parameter fitting. The idea of using the classifier loss as
a metric is similar to the minimax strategy in generative
adversarial networks [44], only in this context the gen-
erative part is a reweighter and is trained independently.
A more elegant way of implementing this approach is to
fit unknown parameters to the values that minimize the
nominal classifier loss. In particular, suppose that a
reweighter neural network f is trained as described above.
Such a function will satisfy

fðx; θÞ ¼ argmax
f0∶Ω→R

X

i∈θ0

log f0ðxi; θÞ þ
X

i∈θ
logð1 − f0ðxi; θÞÞ

ð2Þ

1In most physical applications, this is always the case. If there
are regions where p0ðxÞ=p1ðxÞ is far from unity, one can add a
regularization parameter to the training to mitigate large weights,
which may significantly reduce the statistical power of the
reweighted dataset. We found that this works well, but was
unnecessary for the examples presented in this paper.
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for all θ. Note that the f0 in the first sum takes the parameter
θ and not θ0, otherwise the discrimination task would be
trivial. Now, suppose there is a new sample θ1 where θ1 is
unknown (for instance, θ1 are collider data). The claim is
that if θ� is chosen as

θ� ¼ argmax
θ0

X

i∈θ0

logfðxi;θ0Þþ
X

i∈θ1

logð1−fðxi;θ0ÞÞ ð3Þ

then θ� ¼ θ1. As f minimizes the cross-entropy loss for any
θ [Eq. (2)],

X

i∈θ0

log fðxi; θ1Þ þ
X

i∈θ1

logð1 − fðxi; θ1ÞÞ

≥
X

i∈θ0

log fðxi; θ�Þ þ
X

i∈θ1

logð1 − fðxi; θ�ÞÞ ð4Þ

must hold. However, the converse must also be true since θ�
minimizes the cross-entropy loss as well and therefore,
θ� ¼ θ1. Since f is differentiable, Eq. (3) can be solved
using standard gradient-based methods. While Eq. (3)
performs the fit on the same particle-level phase space
as the reweighting, it can be readily extended to do the
fitting (via the classification loss) at detector level while the
reweighting can be performed at particle level using one
fully detector-simulated event sample.
The last ingredient of DCTR is a suitable neural network

architecture that can effectively capture all the salient
features of Ω. A natural tool for this task is the particle
flow network (PFN) [37] built on the deep sets framework
[45]. While many deep learning architectures incorporate
the symmetries and structure of high-energy physics events
[8,35,46–56], PFNs are particularly effective because they
can operate on variable-length sets of particles and respect
the quantum-mechanically induced permutation invariance
of particle labels. These networks can also readily incor-
porate nonkinematic information such as particle flavor.
A particle flow network is a composition of two neural
networks F and Φ: fðfpigÞ ¼ FðPn

i¼1ΦðpiÞÞ, where pi
is the set of features that belongs to particle i (momentum
and flavor) as well as θ. The function Φ embeds the input
particles into an l-dimensional latent space and F is a
simpleRl ↦ R neural network. References [37,45] proved
that this structure is sufficiently flexible to approximate any
function and in practice, l ∼Oð10Þ.

III. RESULTS

To illustrate the potential of DCTR, full phase-space
reweighting and parameter tuning is performed on a sample
of generated events from the PYTHIA 8.230 [57,58] event
generator. Particle-level eþe− → Z → dijet events with
about 100 particles in each event are clustered into jets
using the anti-kt clustering algorithm [59] (R ¼ 0.8) with
FASTJET 3.0.3 [60,61]. The jets are presented to the neural
network for training, with each jet constituent represented

by ðpT; η;ϕ; particle type; θÞ, where θ is the parameter in
Eq. (2). One million events were generated for each set of
PYTHIA parameters. In addition to a default parameter set
using the Monash tune [62], three separate samples
were generated with uniformly sampled (per event)
TimeShower:alphaSvalue, StringZ:aLund, and
StringFlav:probStoUD in the ranges [0.10, 0.18],
[0.50, 0.90], and [0.10, 0.30], respectively. We also
generated one sample where all three parameters were
simultaneously uniformly sampled. These parameters were
chosen because they represent both perturbative and non-
perturbative physical effects and the ranges are similar to
those studied in Ref. [30]. The Monash values of the three
parameters are 0.1365, 0.68, and 0.217, respectively.
The reweighting and fitting was found to work well

without any hyperparameter modifications from Ref. [37].
In particular, Φ has two hidden layers with l ¼ 128 and F
is composed of three hidden layers and two output nodes
for binary classification, and all the hidden layers have 100
nodes. The activation function used for all layers is ReLu
with the exception of the classification output which uses
softmax. All models were implemented in KERAS [63] with
the TensorFlow backend [64] and trained using the cross-
entropy loss with the Adam [65] optimizer for 50 epochs,
using early stopping with patience 10, with batch size 1000.
Each training set contained 8 × 105 training and 105 vali-
dation jets of each class. Training time was 10–15 min for
each model (20 sec per epoch) on an NVIDIA GeForce
GTX 1080. The code and data for this paper are available at
Ref. [66] and [67], respectively.
As a first test of DCTR, a single parameter

(TimeShower:alphaSvalue) is reweighted using the
full phase space of the generated jets. Results for discrete and
continuous reweighting from a varied parameter to the
nominal sample are presented in Fig. 1. The entire phase
space is reweighted, but is too high dimensional to visualize.
Instead, three histograms of physically relevant one-dimen-
sional observables are presented: the number of particles
inside the jet (multiplicity), an n-subjettiness ratio τ32
[68,69], and a four-point energy correlation function [70]
ECFðN ¼ 4; β ¼ 4Þ. By definition, τ32 ¼ τ3=τ2 where τn ¼P

i∈jet pT;iminj¼1.::nfΔRði; jÞg for axis j; likewise,
ECFðN; βÞ is the sum over all quadruples inside the jet
weighted by the product of the momenta and the product of
all opening angles raised to the power β. The large values of
n, N, and β are used to expose complex features with a
nontrivial dependence on all particles inside the jet. Many
more observables were studied, but these are representative.
The reweighted distributions are in excellent agreement

with the target nominal distribution. Samples used to make
the histograms shown for TimeShower:alphaSvalue
values 0.1365 and 0.1600 were not used during training or
validation. The fidelity of a continuous reweighting is
quantified in the lower right plot of Fig. 1, which presents
the χ2=ndf as a function of the initial αs parameter value.
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Variations in TimeShower:alphaSvalue modify
many aspects of jet fragmentation and therefore it may
be an easy parameter for the reweighting network to
learn. In contrast, the hadronization parameters
StringZ:aLund and StringFlav:probStoUD
may be more difficult because the size of their effects
on the phase space is small and/or localized. Figure 2 shows
that despite these potential challenges, the reweighting
procedure is able to effectively capture subtle and isolated
modifications to the phase space. Variations in the
StringZ:aLund parameter result in mostly percent-
level differences in the presented distributions, which are
corrected in the reweighted model. Modifying the
StringFlav:probStoUD parameter only changes
strange particles such as kaons, which highlights the
importance of including flavor in the full phase-space
network. Importantly, this model learns to only change
the distributions related to strange particles, leaving other
observables untouched. Simultaneously reweighting all
three parameters also works well, but is more difficult to
visualize. We also verified that DCTR works for pp MC
simulations by reweighting from PYTHIA to HERWIG for both
the quark and gluon samples taken from [37,71–73].
The well-trained DCTR model can now be used to

demonstrate the potential for parameter tuning following
Eq. (3). As a first step, Table I presents the result of a fit
where the “data” are the same as the nominal, but with each
parameter changed one at a time (each row is a separate fit).
To illustrate the sensitivity to the randomness in the model
initialization, each fit is performed ten times. This variation
could be reduced with a more sophisticated neural network
and/or more training data. For each of these one-
dimensional fits, the fitted value is consistent with the
target value within these statistical fluctuations from
initialization, which are 1%–3%. As TimeShower:
alphaSvalue has a bigger impact on the phase space,
it is less sensitive to the initialization statistical fluctuations.
For a fit with data, the statistical and systematic uncertainty
could be determined with toys and even profiled, as is
standard for parameter fitting. A separate test where a three-
dimensional model is used to do these one-dimensional fits
yielded the same accuracy and similar precision.
As a next step, the top part of Table II shows the result of

a simultaneous fit to the three parameters. As with the one-
dimensional fit, the fitted values are all statistically

FIG. 2. Ratio of histograms from nominal distribution to
sample generated with StringZ∶aLund ¼ 0.8 on the left
and StringFlav∶probStoUD ¼ 0.275 on the right. Both
unweighted and weighted histograms ratios are shown. The gray
band indicates the statistical uncertainty from both the nominal
and variation sample. After reweighting, the ratio only differs
from 1 within the statistical uncertainty.

FIG. 1. The three histograms show the result
before and after reweighting between two values of
TimeShower∶alphaSvalue ¼ αs on different 1D observ-
ables. To quantify the quality of the reweighing, and to illustrate
one trained model can continuously reweight for any parameter,
we show the χ2=ndf for multiplicity as a function of αs in the lower
right plot for reweighting to αs ¼ 0.1600. For each value, we
compare the χ2 relative to αs ¼ 0.1600 before and after reweight-
ing. Each χ2 value is averaged over ten runs and the gray band
marks the standard deviation, which is consistent with χ2=ndf ≈ 1.

TABLE I. Independent fit for simulation where one parameter
was changed at a time. The reported numbers are the mean
and standard deviation over ten runs with different model
initializations.

Parameter Target value Fit value

TimeShower:alphaSvalue 0.1600 0.1601� 0.0018
StringZ:aLund 0.8000 0.7980� 0.0257
StringFlav:probStoUD 0.2750 0.2754� 0.0065
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consistent with the target values. Interestingly, the sensi-
tivity to the initialization statistical fluctuations is about the
same for the three-dimensional fit as for the one-dimen-
sional fits, providing confidence in the scaling to more
parameters. In practice, the fitting procedure would be
validated on a variety of simulations with known param-
eters, as just described. An illustration of the fit itself is
shown in Fig. 3, where a two-dimensional slice through the
likelihood landscape is presented and the fit execution
demonstrated with markers and dashed lines. The broad-
ness of the loss in the StringZ:aLund direction relative
to the TimeShower:alphaSvalue one is a reflection
of the significantly smaller impact of fragmentation func-
tion variations on the observable phase space compared
with modifications to the final state shower strong cou-
pling. After the validation, the model can be deployed on
data, where the parameters are unknown. The lower part of
Table II replicates this scenario, where the PYTHIA param-
eters were blinded during the fit. This closure test indicates
that the method is robust to user bias.
One key challenge with any weighting method is

statistical dilution. The MC statistical precision of the
expectation value of an observable scales with

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

i w
2
i

p
, for event weight wi. When the wi are far from

unity, the uncertainty can be much larger than the
unweighted uncertainty 1=

ffiffiffi
n

p
. For this reason, weighting

methods are most useful when the initial and target samples
have a similar phase space. This is usually the case for the
systematic uncertainty variation as well as MC tuning
examples presented in this paper.

IV. CONCLUSIONS

The empirical results demonstrate that DCTR is ready to be
deployed for full phase-space tasks. The discrete reweighting
could be used to generate new full-detector-simulated
samples with a different particle-level simulation when at
least one fully simulated sample exists. This could be
particularly useful for systematic uncertainties computed
using pairs of simulations (e.g., comparing PYTHIA and
HERWIG) and for legacy data analysis in which the original
detector simulation is no longer available [74]. Continuous
reweighting will enable systematic parameter variations for
uncertainty estimation that were not possible before (most
parameters). Such variations can even be profiled during any
statistical test that fits phase-space regions sensitive to the
varied nuisance parameters. Finally, the full power of DCTR

can be used for parameter tuning. Unlike traditional tuning
which uses unfolded data that are usually one dimensional
and without observable-observable correlations, a new para-
digm is now possible were high-dimensional detector-level
data can be used directly. The full power of the data can be
utilized and all of the correlations are correctly accounted
for in the fit. For the first time, this may allow for proper
observable-observable covariance matrices (and thus corre-
lated uncertainties) to be determined for simulation param-
eter values. While the numerical results in this paper have
used collider-based particle physics examples, the tech-
niques are directly applicable to any physics domain where
tunable simulations are used for inference. Examples include
cosmic ray physics (e.g., CORSIKA [75]), neutrino physics
(e.g., GENIE [76]), dark matter direct detection (e.g., NEST
[77]), astrophysics (e.g., LENSPOP [78]), cosmology (e.g.,
GADGET [79]), and nuclear physics (e.g., HIJING [80]). All of
these opportunities illustrate the broad applicability of full
phase-space reweighting and parameter tuning and the power

FIG. 3. Two-dimensional slice through the loss surface for the
fit described in Table II. Markers indicate the starting point at
nominal values, the gradient descent path, and the target values.
From the starting point, gradient descent using Adam overshoots
the minimum in its first two epochs before it converges to the
target value.

TABLE II. Simultaneous fit for three parameters. The top row shows the results for the validation fit where we
knew the target parameters, and the bottom row is the blinded fit. The reported numbers are the mean and standard
deviation over 20 runs with different model initializations.

Parameter Target value Fit value

Validation TimeShower:alphaSvalue 0.1200 0.1195� 0.0022
StringZ:aLund 0.6000 0.6276� 0.0373

StringFlav:probStoUD 0.1200 0.1203� 0.0071

Blinded TimeShower:alphaSvalue 0.1700 0.1707� 0.0022
StringZ:aLund 0.7500 0.7425� 0.0453

StringFlav:probStoUD 0.1400 0.1422� 0.0065
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of DCTR to extend the scope, precision, and accuracy of
collider-based particle physics analyses and beyond.
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