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We continue the study initiated in [P. Betzios, U. Gürsoy, M. Järvinen, and G. Policastro, Phys. Rev. D
97, 081901 (2018).] of the fluctuations of a strongly coupled nonconformal plasma described holo-
graphically by Einstein gravity coupled to a dilaton with an exponential potential. The plasma approaches a
critical point of a continuous phase transition in a specific limit, where the metric becomes a linear-dilaton
background. This results to an analytic description of the quasinormal mode spectrum, that can be extended
perturbatively in the deviation away from the critical point. In the previous paper we showed that at
criticality the quasinormal frequencies coalesce into a branch cut on the real axis. In this paper we give a
more extended and complete discussion of these results. We compare in detail the numerical and analytical
approximations in order to confirm their validity; we study (numerically and in a Wentzel-Kramers-
Brillouin approximation) the momentum dependence of the modes, in order to determine the crossover
scale that limits the validity of the hydrodynamic approximation, and which becomes arbitrarily low at the
critical point; and we discuss in detail the procedure we use to complete the theory in the UV by gluing a
slice of AdS geometry, and the extent to which it should provide a good approximation to a smooth UV-
complete situation.
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I. INTRODUCTION

The prime example of a holographic theory is the
maximally supersymmetric N ¼ 4 SYM theory, for which
we have a host of results derived from the gravitational
description on its properties in the hydrodynamic regime.
Despite usefulness of this theory as a benchmark, it has
some drawbacks that limit its applicability to real-world
systems, for example systems closely related to the quark-
gluon plasma (for a recent review see [1]). Among these
drawbacks is the fact that it is exactly conformally
invariant, in contrast to most interesting and realistic
systems. It is, therefore, important to understand the effect
of breaking of conformality on the transport properties of
the system, in order for instance to improve the under-
standing of the behavior of the quark-gluon plasma close to
the deconfinement phase transition [2].
In this paper we continue the study of the behavior of the

plasma phase of a nonconformal field theory,

holographically dual to Einstein gravity coupled to a scalar
field with a potential of the form e−8Xϕ=3 where X is a
constant that measures deviation from the conformal limit
X ¼ 0. We refer to this nonconformal plasma as the
Chamblin-Reall plasma [3]. The choice of this class of
models results from a compromise between the desire for a
realistic setup for the description of a real-world QCD
quark-gluon plasma, and simplicity that is more amenable to
analytic analysis. In the models considered in the improved
holographic QCD program [4,5] the choice of the potential
is dictated by several requirements (asymptotic freedom,
linear confinement in the vacuum, spectra of glueballs,
matching the equation of state) and as a result one obtains a
more complicated potential that leads to gravitational
backgrounds which can only be solved numerically. By
contrast, the models we consider admit analytic black hole
solutions, which considerably simplifies their study and
allows us to obtain more precise results. On the other hand
these models capture one essential feature of the realistic
models, namely the lack of conformal invariance, that can
be tuned by changing the parameter X in the potential.
We should point out that the model we use, with the

exponential potential for the scalar, can be obtained from
dimensional reduction, starting from a higher dimensional
Einstein gravity and compactifying on a space of constant
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curvature, in which case one can consistently reduce to the
gravity-scalar sector, but this construction yields only a set
of specific values for X, see [6] (more generally a dimen-
sional reduction will produce a potential that is a sum of
exponential terms, but the IR asymptotics will be domi-
nated by the leading exponential). We want to be able to
tune X freely, which can be achieved formally as “gener-
alized dimensional reduction” [7,8] but not from a well-
defined top-down construction. Nevertheless, our model is
viable as a phenomenological model: the behavior in the IR
is similar to the class of potentials used for IHQCD, as
mentioned before, and it is not pathological for the range of
values of X that we use; in particular, we have regular black
hole geometries. In the UV the model exhibits a hyper-
scaling-violating behavior, and so in principle should not
be considered as a consistent theory but only as an effective
description of an IR fixed point. The lack of UV-
completeness will be an issue for our purposes, as we will
discuss shortly. However, the fact that the solutions we use
can be uplifted to a higher-dimensional AdS space shows
that the model does not suffer from any obvious sickness.
In [9] three of the present authors found a time-dependent

black hole solution, corresponding to a boost-invariant flow
of the Chamblin-Reall plasma, which allowed us character-
ize the rate of approach to equilibrium. We found that the
rate of cooling could be parametrically slower than in the
conformal case, with temperature decaying in time accord-
ing to a power law T ∼ τ−s=4, where the exponent s relates to
the parameter in the potential as s ¼ 4=3ð1 − 4X2Þ, with
s ¼ 4=3 corresponding to the conformal case. It was also
shown in [9] that these gravitational findings are consistent
with predictions from the hydrodynamics Ansatz, assuming
that the temperature would follow adiabatically the evolu-
tion of the energy density and the pressure determined by
the equation of state.
Contrary to the conformal plasma with a fixed critical

exponent s ¼ 4=3, in the more general case of the
Chamblin-Reall plasma s can be made arbitrarily small
by letting X approach a critical value Xc ¼ −1=2. This
particular critical value corresponds to a theory that exhibits
a continuous confinement/deconfinement transition at a
finite temperature [10,11]. In these papers, criticality in the
limit X → Xc ¼ −1=2 was established and it was noticed
that Hawking-Page transition between asymptotically AdS
black-brane and the thermal gas solutions in Einstein-
dilaton gravity becomes continuous (second or higher
order). Moreover, the string frame metric in the vicinity
of the transition becomes a linear dilaton background of
bosonic string theory, a fact that becomes instrumental in
studying two-point functions of Polyakov loops in the
vicinity of the transition [10].
These previous results and observations prompted us to

consider more closely the near-critical regime. A useful
probe of the system beyond the thermodynamical and
hydrodynamical regimes is given by the spectrum of

quasinormal modes, that reflect the nonhydrodynamic
fast-relaxing processes of the system.1 We have reported
on the main features of the spectrum of fluctuations in [12];
in that paper we considered the sector of spin-two modes at
zero momentum, derived an analytic expression for the
correlator valid near the critical point, and showed that in
the X → −1=2 limit the quasinormal poles condense into a
branch cut on the real axis; we also discussed a UV
completion of the model, obtained by gluing a slice of AdS
near the boundary, and showed that the QNM form two
distinct sets, that can be identified respectively with modes
associated to the CR geometry in the IR, and modes
associated with the UV part.
In the present paper we give a more extensive and

complete picture; in particular we compare in detail the
analytical and numerical approximations, we study the
momentum and frequency dependence of the QNMs, and
study in great detail the approach to criticality at Xc ¼
−1=2 and the behavior of fluctuations of the system in
this limit.
We find it convenient to parametrize the conformal

breaking by a parameter ξ ¼ 4ð1 − X2Þ=ð1 − 4X2Þ, related
to X such that ξ → ∞ as X → Xc. In this paper, we solve
the fluctuation equations analytically in a perturbative
expansion in ξ−1, that is in the vicinity of criticality, and
compare with numerical results that can be obtained for any
ξ. First, we observe that the fluctuations in the critical limit
are controlled by the linear dilaton geometry as one would
expect from [10,11]. We prove that this is the case by
comparing and precisely matching the well-known reflec-
tion amplitude on the linear dilaton blackhole [13–16] from
which we obtain the QNM spectrum analytically. We also
observe a very interesting connection between the
Chamblin-Reall black hole in the critical limit ξ → ∞
and the large D expansion of a D-dimensional AdS black
hole [17,18]. We further dwell on this connection in Sec. VI
at the end of the paper.
Contrary to the results of previous works [19–21] that

found a mild dependence of the QNM on the breaking of
conformal invariance in different models, we find that the
position of the QNM depends strongly on ξ. In fact the
imaginary part goes to zero as 1=ξ, all the modes approach
the real axis, and presumably merge in this limit to form a
branch cut on the real axis, similarly to what happens for the
Bañados-Teitelboim-Zanelli black holes at extremality [22].
What is remarkable is that here the branch cut appears in a
limit in which the temperature remains nonzero, indicating a
sort of dissipationless fluid. Moreover, we find that the
hydrodynamic modes do not scale with ξ, and thus decouple
from the low-energy description in the critical limit.

1It is worth mentioning that while the thermodynamic proper-
ties and some transport coefficients can be immediately read off
from the uplift to the higher-dimensional AdS, for the QNM
spectrum such information was not available, so that they had to
be computed anew.
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We have also analyzed the dependence of QNM spectra
on momentum. Generically the hydrodynamic mode is
expected to dominate the long-time dynamics, but there is a
scale of momentum for which the hydrodynamic and
quasinormal modes cross, so that above this momentum
the hydrodynamic mode ceases to be the longest-lived
excitation. In N ¼ 4 SYM, for instance, the crossover
scale is at k ≈ 1.3ð2πTÞ [23,24]. In our case, the crossover
scale is of the order 1=

ffiffiffi
ξ

p
and so it is pushed at arbi-

trarily low momentum as the critical limit is approached,
which signals a dramatic breakdown of the hydrodynamic
description.
It seems clear that the vicinity to a critical point should be

responsible for this behavior, but we should remark that
generically close to a second order phase transition there is
a divergent correlation length and correspondingly some
new gapless modes appear that have to be included in the
hydrodynamics, however they are just a small discrete set
of new poles that can approach the origin, so the situation in
our case is quite different. It would be interesting to
understand better the critical limit and the extent to which
one can have an effective description for this pressureless,
dissipationless fluid.
In particular the connection we find with the studies

of the linear dilaton BH at criticality, indicates that the
infinite number of gapless modes might be due to a hidden
infinite symmetry present in the model, that would indicate
the presence of integrability at criticality (while in most
second order phase transition points one generically just
expects the presence of conformal symmetry). In studies of
noncritical string theory on the linear dilaton background
this symmetry is related to W∞, and the hydrodynamic
description is in terms of an incompressible Fermi-fluid
possessing an infinite number of conserved quantities [25].
We could also determine analytically the large-q behav-

ior of the quasinormal modes, and found that Im ω ∼ q1−α,
α ¼ 2ξ

2þξ ¼ 4
3
1−X2

1−2X2. As emphasized in [26], this information
characterizes the shape of weakly damped, narrow spikes or
shock waves that propagate through the plasma and
contribute to the long-time dynamics. The study of the
momentum dependence of the modes also reveals an
interesting level-crossing phenomenon: the hydro mode,
which starts as the lowest mode at q ¼ 0, can be found to
have swapped place with one or more of the nonhydrody-
namic modes at large q, and for large enough ξ it appears to
stay below all the other QNM. Incidentally, this analysis
also shows that the dispersion relation approaches the form
ω ∼ q at large q, so there is no violation of causality
appearing from this sector.
We find that, even though one can safely take the critical

limit in the IR of the Chamblin-Reall geometry, it is
necessary to include effects of finite ξ in order to have a
well-posed boundary problem. Indeed the strict ξ ¼ ∞
limit is not meaningful for the purpose of defining
correlators in the dual field theory. We can make sense

of the holographic correlators in the theory by connecting
the IR geometry of the Chamblin-Reall solution to an
asymptotically AdS geometry in the UV [9] and study the
modification of the QNM spectrum due to the introduction
of this UV regulator. This can be done by modifying the
potential in the UVor by other means such as a hard wall. In
this article we concentrate on an approach where we cutoff
the CR geometry and attach to it a slice of AdS geometry,
and glue accordingly also the fluctuations around the
background, in which case the QNMs can still be solved
analytically. To be more precise, by “gluing” we mean that
we consider a solution of Einstein equations with a given
potential in a region, and a different potential in another
region, in such a way that the resulting metric is continuous,
though not smooth (as we will show in Sec. V, we will use a
discontinuous potential, but the superpotential is con-
tinuous). This has to be understood as an approximation
of a solution with a potential that interpolates smoothly
between the two different forms.2 We found that this gluing
procedure leads to two branches of QNMs: a first set at low
frequency that corresponds to the first few modes of the CR
geometry, and at higher frequencies a new set of modes
with almost constant imaginary part. As the temperature is
lowered from Tc to zero, the first set becomes longer and
approaches the real axis, so to reproduce in the zero-
temperature limit the modes of the CR black hole, whereas
the second set is pushed to higher and higher frequencies.
After the gluing, the limit ξ → ∞ is regular and we can
show explicitly and analytically, how the QNMs corre-
sponding to the CR geometry accumulate to form a branch
cut on the real axis of the complex frequency plane.
The paper is organized as follows. In the next section we

present the Chamblin-Reall blackhole solution for an
arbitrary value of ξ and discuss its thermodynamic proper-
ties. We also present the critical geometry that arise in the
limit ξ → ∞ and show that it coincides with the linear
dilaton blackhole. Sections III, IV and V contain our main
findings. In Sec. III, we derive and solve the fluctuation
equations numerically and obtain the QNM spectra of
Chamblin-Reall blackhole for arbitrary ξ. In particular we
investigate the dependence of the spectra on ξ and
momentum. In Sec. IV we focus in detail the critical limit
ξ → ∞ and obtain the QNM spectra analytically. In Sec. V,
we glue the IR geometry of the Chamblin-Reall black hole
to a UV regulator that is an asymptotically AdS geometry
and study both the QNM spectra modified by such gluing
procedure and obtain the holographic correlation functions
that now are well defined after this gluing procedure.
Section VI contains a discussion of our results and an
outlook.

2A similar taming of the holographic description for 2D
de-Sitter solutions was considered in [27] where the authors
also glued, in the same sense as described above, an IR dS2 black-
hole geometry to a UV AdS2.
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II. CR BACKGROUNDS

The model we consider is defined by the five-
dimensional Einstein-dilaton gravity

A ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
ð∂ϕÞ2 þ VðϕÞ

�
þ G:H:

ð2:1Þ

with the potential

VðϕÞ ¼ 12ð1 − X2Þ
ð4X2Þ2l2

e−
8X
3
ϕ ð2:2Þ

where3 −1 < X < 0, and l is a positive parameter of length
dimension. The last term G.H. is the Gibbons-Hawking
term, a boundary term that needs to be added in order to
have a well-defined variational problem [28].4

This system admits an exact black-brane solution [3],
which we will refer to as the CR geometry. The metric can
be written in the domain wall coordinates as [9]

ds2 ¼ e2AðuÞð−fðuÞdt2 þ dxidxiÞÞ þ
du2

fðuÞ ð2:3Þ

with

A ¼ A0 þ
1

4X2
log

�
u0 − u

l

�

f ¼ 1 −
�
u0 − u
u0 − uh

�
−1−X2

X2 ð2:4Þ

λ≡ eϕ ¼
�
u0 − u

l

� 3
4X

; ð2:5Þ

where A0, u0 and uh are integration constants. A0 is an
overall scale that could be reabsorbed in a rescaling of the
spacetime coordinates. The corresponding thermodynamic
variable in the dual field theory is the volume which never
enters dimensionless variables as the field theory we
consider is extensive. The other two constants are instead
important: uh gives the location of the horizon, and at u ¼
u0 there is a curvature singularity, so clearly we have to
require that uh < u0.
The boundary is located at u ¼ −∞.
In order to study fluctuations, it is convenient to switch

from u to the conformal coordinate r, defined by requiring

that the warp factors of dt2 and dr2 are the same. This
leads to

r ¼ 4X2e−A0l
1 − 4X2

�
u0 − u

l

�
−1−4X2

4X2 ≡ l0
�
u0 − u

l

�
−1−4X2

4X2 ; ð2:6Þ

for X ≠ −1=2 and

r
l
¼ −e−A0 log

�
u0 − u

l

�
; ð2:7Þ

for X ¼ −1=2. We fixed the integration constant in (2.6)
such that the boundary is at r ¼ 0 for −1=2 < X < 0 and
defined a new length scale l0 for later convenience. The
threshold value X ¼ −1=2 plays a central role in our work
and will be the focus of the next subsection.
We also find convenient to work with the ingoing

Eddington-Finkelstein coordinates by switching to the
new time coordinate dv ¼ dt − dr=fðrÞ, where the black-
ening factor is

fðrÞ ¼ 1 −
�
r
rh

�
ξ

; rh ¼ l0
�
u0 − uh

l

�
−1−4X2

4X2 ;

ξ≡ 4ð1 − X2Þ
1 − 4X2

: ð2:8Þ

Moreover we use the dimensionless radial coordinate
r̂ ¼ r=l0. Putting everything together, the solution is

ds2 ¼ e2A0 r̂−
2

1−4X2 ½−2l0dr̂dv − fðrÞdv2 þ δijdxidxj� ð2:9Þ

λ ¼ r̂−
3X

1−4X2 ¼ r̂−Xðξ−1Þ ð2:10Þ

The coordinate r̂ runs from 0 at the boundary to r̂h ¼ rh=l0
at the horizon.
The temperature of the brane solution is given by

T ¼ ξ

4πr̂hl0 ¼
1 − X2

4πX2l
eA0

�
u0 − uh

l

�1−4X2

4X2 : ð2:11Þ

The entropy density is,

S ¼ 1

4G5

e3A0 r̂
− 3

1−4X2

h ¼ 1

4G5

e3A0

�
u0 − uh

l

� 3

4X2 ∼ T
3

1−4X2 :

ð2:12Þ

These geometries belong to the neutral hyperscaling
violating geometries explored in [8], with a hyperscaling
exponent (defined by S ∼ Tðd−θÞ=z and in our case the
Lifshitz exponent z ¼ 1) given by θ ¼ 4 − ξ. It is clear
from the last expression that the regime of thermodynam-
ical stability is − 1

2
< X ≤ 0; the case X ¼ − 1

2
demands a

special treatment to which we turn in the next section.

3The parameter X matches the phase variable of [4,5], defined
in the domain wall coordinates as 3X ¼ dϕ

du =
dA
du, which is a

constant for the CR backgrounds.
4In the context of holography, it is also necessary to add other

boundary terms to cancel divergencies, but we will not need to
consider them explicitly.

BETZIOS, GÜRSOY, JÄRVINEN, and POLICASTRO PHYS. REV. D 101, 086026 (2020)

086026-4



The limit uh → u0 is the extremal limit in which f ¼ 1;
we see from (2.4) that the dilaton blows up logarith-
mically, ϕ ∼ 3

4X logðu0 − uÞ → þ∞, and the Ricci scalar
R ∼ ðu0 − uÞ−2. The invariants built out of the dilaton
remain finite. If we want the curvature at the horizon to
remain small in string units, so that higher-string correc-

tions are suppressed, l2
sRh ∼ ðTlÞ− 8X2

1−4X2 , we must have

Tl ≫ ðlsl Þ
16X2

1−4X2 , with the bound being parametrically small
in the ratio ls=l. In the critical limit, we can go to lower
and lower temperatures. In the string frame, where the
corrections to the effective action would be computed in a
top-down model, the invariants constructed from the
curvature and the dilaton remain regular. Notice also that
the singularity is a “good” one according to Gubser’s
criterion [29], as the scalar potential remains bounded from
below at the singularity.5 We remark that the extremal
solution is nothing else than the generalized dimensional
reduction of a higher-dimensional pure AdS space, so in the
higher-dimensional description there is no singularity
whatsoever. Finally, we will mainly be interested in the
case of X ¼ −1=2—see next section—for which there
exists a world-sheet description as a Liouville theory which
controls the higher string corrections. In this case, one
should instead worry about the string loop corrections.
These can also be kept small by adjusting the asymptotic
value of the dilaton [11].

A. CR solution for X = − 1=2
We noticed the special value of X ¼ −1=2 above where

Eq. (2.6) has a coordinate singularity. In fact this value was
singled out and studied in detail in [11] where an emergent
IR conformal behavior was observed. In the same paper it
was also pointed out that the corresponding vacuum
solution for this choice of X is the product of the linear
dilaton background of 2D noncritical string theory with R3.
Thus it should be governed by an exact CFT (Liouville
theory/Wess-Zumino-Witten (WZW) model). Here we
study in more detail the CR solution exactly at X ¼
−1=2 in the regular domain-wall coordinates that are valid
for −1 < X < 0. The potential is

V ¼ 9

l2
e
4
3
ϕ: ð2:13Þ

The metric of the black-hole solution is,

ds2 ¼ e2A0

�
u0 − u

l

�
2
�
dxidxi −

�
1 −

�
u0 − u
u0 − uh

�
−3
�
dt2

�

þ
�
1 −

�
u0 − u
u0 − uh

�
−3
�

−1
du2: ð2:14Þ

There is an event horizon located at uh. The dilaton reads

λ≡ eϕ ¼
�
u0 − u

l

�
−3
2

: ð2:15Þ

The corresponding vacuum solution is obtained by sending
uh → u0. One can easily check that these solutions are
indeed related to the 2d black hole and linear dilaton
background once passed to the string frame [11], as
follows. First we pass to the conformal coordinates
using (2.7):

ds2 ¼ e−
2r
l̂ ðdr2ð1 − e

3ðr−rhÞ
l̂ Þ−1 − dt2ð1 − e

3ðr−rhÞ
l̂ Þ þ dxidxiÞ;

ϕ ¼ 3r

2l̂
; ð2:16Þ

where l̂ ¼ l=eA0 . The vacuum solution is now obtained by
sending rh → ∞ which replaces the blackening factors
above with unity. The string frame metric is related to the
above by ds2st ¼ expð4ϕ=3Þds2 so that the conformal
prefactor becomes unity in the string frame. This solution
then precisely corresponds to the product of the linear
dilaton BH in 2-d [13,15,16] in the leading in α0 approxi-
mation, times R3. The temperature (2.11) is fixed by the
integration constant A0:

T ¼ 3eA0

4πl
: ð2:17Þ

We observe that the ratio l=lse−A0 controls the size of the
spacetime in string units, the temperature and the central
charge of the worldsheet CFT, if one identifies the Einstein-
Dilaton action as the low energy effective action of
noncritical string theory (Liouville theory). Therefore this
combination drops out of all dimensionless quantities thus
we can set A0 ¼ 0 with no loss of generality.
In the paper [30] it is shown how to embed the 2d cigar

part of the geometry (2.16) in 10d superstring theory using
a WZW model product coset construction. The associated
metric in string frame is in that case

ds2st ¼ kðdr2ð1 − e
3ðr−rhÞ

l Þ−1 − dt2ð1 − e
3ðr−rhÞ

l ÞÞ
þ kdΩ2

3 þ dxidxi; ð2:18Þ

together with the linear dilaton and an H3 flux piercing the
S3. Comparing such a solution to our background we have
truncated some extra coordinates such as the S3 that
corresponds to the extra SUð2Þk of the SLð2; RÞk=Uð1Þ ×
SUð2Þk WZW model. Some further discussion of similar
solutions from the point of view of little string theory can
be found in [31]. The LST background is somewhat
problematic as it suffers from some instabilities: with a
spherical horizon, [32,33] it is unstable at the quantum
level; of course this is beyond the scope of our analysis

5In our conventions where the potential has the opposite sign
compared to Gubser’s.
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since we work in the classical regime. The flat horizon
case is marginally stable, in accord with our discussion of
the thermodynamics in the previous section, but the
computation of retarded correlators of the stress-energy
tensor revealed the presence of poles in the upper-half
plane of complex frequency, signaling a potential channel
of instability [34,35]. This interpretation was disputed in
[36], where it was argued that with a proper interpreta-
tion, these unstable modes do not appear in the physical
spectrum. Our analysis of the QNM spectrum in Sec. IV
will confirm the latter interpretation, as we also do not
find any instability. To fully read the spectrum of the
worldsheet sigma model, one would need to resort to
CFT techniques, here we will be content with studying
field fluctuations on this background (so-called minis-
uperspace approximation). The fluctuation equations of
the mini-superspace modes can be found in [37] and have
as a solution the hypergeometric functions 2F1. In the
next section we will study the fluctuations on our
background and match them in a specific limit with
these minisuperspace eigenfunctions.

III. FLUCTUATIONS AROUND
THE CR SOLUTION

The fluctuation equations around the CR geometry
with a generic X within the range −1=2 < X < 0 can be
obtained by making the following Ansatz for fluctuations
of the metric and the dilaton as

δg ¼ e2A0 r̂−
2

1−4X2 ½−Hvvdv2 þ 2Hvidvdxi þHijdxidxj�
ð3:1Þ

δλ ¼ r̂−
3X

1−4X2ψ : ð3:2Þ

Here we have already used gauge transformations to set the
fluctuations Hrr, Hrv, and Hri to zero. We look for modes
with fixed frequency, momentum in x1 direction, and
arbitrary dependence on r:

Hμνðr̂; v; x1Þ ¼ H̃μνðr̂Þe−ivωþikx1 ;

ψðr̂; v; x1Þ ¼ ψ̃ðr̂Þe−ivωþikx1 : ð3:3Þ

There are six propagating degrees of freedom, arising from
a spin two mode and a scalar mode. Because the momen-
tum in the x1 direction partially breaks rotational symmetry,
the modes are classified as follows (see also [38]). The
simplest modes are the spin two modes transverse to the
momentum, given by H̃23 and Ĥas ≡ ðH̃22 − H̃33Þ=2.
There are also two shear modes, given by

Ĥ2 ¼ kH̃v2 þ ωH̃12; Ĥ3 ¼ kH̃v3 þ ωH̃13: ð3:4Þ
The remaining two degrees of freedom are more complicated
combinations of the dilaton and the metric fluctuations:

ζ1 ¼
1

2
ðH̃22 þ H̃33Þ −

2

3X
ψ̃

ζ2 ¼ −k2H̃vv þ 2kωH̃v1 þ ω2H̃11

−
k2ðð2X2 − 1Þð r̂r̂hÞξ − 1Þ þ ω2

2
ðH̃22 þ H̃33Þ: ð3:5Þ

These expressions are determined by gauge covariance
(having already killed some of the H̃ as mentioned above).
As it turns out, the transverse spin two modes and ζ1

satisfy a relatively simple equation

− ðl02k2r̂þ ðξ − 1Þl0iωÞΞðr̂Þ þ ð2il0r̂ωþ fðr̂Þ − ξÞΞ0ðr̂Þ
þ r̂fðr̂ÞΞ00ðr̂Þ ¼ 0 ð3:6Þ

with Ξ ¼ H̃23, Ĥas, ζ1. Notice that this is also the equation
of motion for a massless scalar field in the CR background.
The equation for the shear channel is

0 ¼
�
−l02k2r̂ − ðξ − 1Þl0iωþ il0ωk2ξr̂ξr̂−ξh

fðr̂Þk2 − ω2

�
Ĥiðr̂Þ

ð3:7Þ

þ
�
2il0ωr̂þ fðr̂Þ − ξþ k2fðr̂Þξr̂ξr̂−ξh

fðr̂Þk2 − ω2

�
Ĥ0

iðr̂Þ

þ r̂fðr̂ÞĤ00
i ðr̂Þ ð3:8Þ

with i ¼ 1, 2. Finally the remaining equation, which is
identified as the sound channel, couples ζ2 to ζ1:

0 ¼ k2ðξ − 4Þξ2r̂2ξ−1r̂−2ξh ðk2ξ − 2ðξ − 1Þω2Þ
ðξ − 1Þ½k2ðð2 − ξÞfðr̂Þ − ξÞ þ 2ðξ − 1Þω2� ζ1ðr̂Þ

þ
�
−l02k2r̂ − ðξ − 1Þl0iω −

k2ðξ − 2Þξr̂ξr̂−ξh ðξr̂ξ−1r̂−ξh þ 2il0ωÞ
k2ðð2 − ξÞfðr̂Þ − ξÞ þ 2ðξ − 1Þω2

�
ζ2ðr̂Þ

þ
�
2il0ωr̂þ fðr̂Þ − ξ −

2k2ðξ − 2Þξfðr̂Þr̂ξr̂−ξh
k2ðð2 − ξÞfðr̂Þ − ξÞ þ 2ðξ − 1Þω2

�
ζ02ðr̂Þ þ r̂fðr̂Þζ002ðr̂Þ: ð3:9Þ
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The coupling between ζ2 and ζ1 is trivial (in the sense that
ζ1 appears in the dynamic equation for ζ2, but not vice
versa) only for the exponential dilaton potential. For more
generic potentials, ζ1;2 satisfy a nontrivially coupled system
of two differential equations (see e.g., [38]). Notice that this
coupling vanishes as k → 0 and actually all fluctuation
equations become identical in this limit.
All coefficients of the three fluctuation equations (3.6)–

(3.9) become real for purely imaginary ω (and real k).
Consequently, correlators extracted from these will be real
on the vertical axis of the complex ω-plane, and transform
by complex conjugation underω ↦ −Reωþ iImω, which
is the expected behavior on general grounds.
Another general feature is that the location of the horizon

only affects the modes trivially: r̂h can be factored out of
the fluctuation equations by rescaling r̂ ↦ r̂hr̂, ω ↦ ω=r̂h,
and q ↦ q=r̂h. Equivalently, the location of the quasinor-
mal modes depends only on the rescaled frequency and
momentum

q ¼ k
2πT

¼ 2kl0r̂h
ξ

; ϖ ¼ ω

2πT
¼ 2ωl0r̂h

ξ
: ð3:10Þ

We will find useful to have the fluctuation equation also
in Schrödinger form; we restrict our study to the Eq. (3.6)
for the transverse spin-two (and one scalar field) fluctua-
tions, which does not involve any of the hydrodynamic
modes. Defining a new radial coordinate

w ¼
�
r̂
r̂h

�
ξ

; ð3:11Þ

which runs from 0 at the boundary to 1 at the horizon, and
redefining the fluctuation as ΞðwÞ ¼ egðwÞhðwÞ, where
gðwÞ satisfies

g0ðwÞ ¼ w − iϖw1=ξ

2wð1 − wÞ ; ð3:12Þ

the Eq. (3.6) becomes

− h00ðwÞ þ VðwÞhðwÞ ¼ 0

VðwÞ ¼ −
ðϖ2 − q2Þw2

ξ þ q2w
ξþ2
ξ þ w2

4ð1 − wÞ2w2
: ð3:13Þ

Notice that the potential is real for real (or purely
imaginary) ϖ. Near the horizon we find that

VðwÞ ¼ −
1þϖ2

4ð1 − wÞ2 þO
�

1

1 − w

�
ð3:14Þ

which (combined with the factor eg) gives the expec-
ted behavior Ξ ∼ const: for the ingoing mode and Ξ∼
ð1 − wÞiϖ for the outgoing mode.
For later use we also consider the limit of large ξ. In

particular, we notice that the limits w → 0 and ξ → ∞ do
not commute. When w1=ξ ≪ 1, i.e., r̂ ≪ r̂h, the potential

VðwÞ ¼ −
ðϖ2 − q2Þw2=ξ

4w2
½1þOðwÞ� ð3:15Þ

can be treated as a subleading correction to the fluctuation
equation, leading to the usual normalizable and nonnor-
malizable solutions Ξ ∼ C1 þ C2w. When e−ξ ≪ w ≪ 1
(so that r̂h − r̂ ≪ 1), same terms in the potential behave as

VðwÞ ≃ −
ϖ2 − q2

4w2
ð3:16Þ

with corrections suppressed by w and j logðwÞ=ξj. This
latter form leads to oscillating solutions forϖ2 − q2 > 1, so
that if one takes the limit ξ → ∞ first, it is not possible to
find normalizable modes.

A. Numerical analysis at generic X

We have solved the fluctuation equations numerically for
various values of X within the range −1=2 < X < 0.

FIG. 1. Dependence of the four lowest nonhydrodynamic quasinormal modes on X at q ¼ 0. Thick lines were obtained by directly
solving the fluctuation equations (for the transverse spin two modes) numerically for −0.46 < X < 0, and the thin lines are based on the
analytic approximation of Sec. IV. Left: the trajectories of the modes on the complexϖ-plane. Right: The imaginary parts of the modes
as a function of c2s ¼ ð1 − 4X2Þ=3.
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We substituted Ξðr̂Þ ¼ e−2iωr̂Kðr̂Þ in order to reduce the
exponential dependence on r̂ for Imω < 0, and solved the
resulting equations by estimating the r̂-derivatives by a
pseudospectral approximation with 50 grid points chosen
from a Gauss-Labotto grid. The correlators of the energy-
momentum tensor in the various channels were then
extracted from the coefficient of the terms ∝ r̂ξ at the
boundary. More precisely, we used the definitions of
Eqs. (B2) and (B4) in Appendix B for the source and
the vev terms. Notice that these expressions hold near the
boundary up to highly suppressed corrections for fluctua-
tions in each sector which makes it much easier to extract
the correlators for an arbitrary potential.
In Fig. 1 (the left-hand side appeared also in [12]) we

show the modes at zero momentum as functions of X; we
see that as X approaches the critical value, each pole appear
to move to the pointϖ ¼ 1; taken together, the poles form a
line that approach the real axis and in the critical limit
should form a branch cut (see also [39]). This is difficult to
check as the numerics become more difficult, hence the
need for a more analytic treatment to which we will turn in
the next sections. On the right hand side of the plot, we
show that the poles have an approximately linear depend-
ence on the deviation of the speed of sound from its
conformal value, as observed also by [19].

In Figs. 2 and 3 we show the dependence of the
quasinormal modes on the momentum. We used as a
reference value X ¼ −0.45, a value relatively close to
the critical value X ¼ −1=2. The imaginary parts of the
hydrodynamic modes obey6 Imϖ ≃ −0.5q2 at small q,
whereas the imaginary parts of the nonhydro modes behave
as Imϖ ∼ 1=ξ, as we will prove below. Therefore the
imaginary parts cross for q ∼ 1=

ffiffiffi
ξ

p
, and consequently

hydrodynamics breaks down for smaller and smaller q
as ξ increases. The real part of the sound mode satisfies
Reϖ ≃ csq where cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4X2Þ=3

p
.

There is an interesting level crossing structure in the
sound channel around X ¼ −0.3 (see Fig. 4). For − 0.29≲
X < 0, the imaginary part of ϖ for the sound mode (that is
the mode for which ϖ → 0 a q → 0) is smaller than Imϖ
for the other modes, whereas for −1=2 < X ≲ −0.3, Imϖ
of the sound mode crosses all other modes and becomes
subdominant. Consequently, near X ¼ −0.3, there is a
sequence of level crossings between the sound mode and
all the nonhydromodes. The first crossing takes place

FIG. 2. Dependence of the quasinormal modes on q on the complexϖ plane for X ¼ −0.45. The quasinormal modes from Eqs. (3.6),
(3.7), and (3.9) are shown as solid blue, dashed red, and dotted magenta curves, respectively. The momentum q varies from q ¼ 0 to
q ¼ 3 along the curves. The hydromodes lie at the origin for q ¼ 0. The dots are at q ¼ 0, 1, 2, and 3. Left: overall plot showing both the
hydrodynamic and nonhydrodynamic modes. Right: a zoom in the region with the lowest nonhydrodynamic modes.

FIG. 3. Dependence of the quasinormal modes on q for X ¼ −0.45. Left: dependence of Reϖ on q. Right: dependence of Imϖ on q.
Notation as in Fig. 2.

6For the sound mode, the precise coefficient predicted
by hydrodynamics is 1=3þ 2X2=3 which tends to 1=2 as
X → −1=2.
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between X ¼ −0.29 and X ¼ −0.295, see the top right and
bottom left plots in Fig. 4. This level crossing is somewhat
similar to the behavior observed for the quasinormal modes
of the scalar field, as a function of the temperature, in a flow
between two different conformal points [40], although the
details are different.
We have also determined residues of the hydrodynamic

modes numerically. Results are shown in Fig. 5 for various
values of X and as a function of q. The value of r̂h only
affects the overall normalization of the residues, and here
we set r̂h ¼ 1. We see that the residues vanish as q → 0,
indicating the expected decoupling of the hydrodynamic
modes in this limit. The residues of the shear modes (left
plot) oscillate as a function of q, which has also been
observed in the case of the AdS geometry (X ¼ 0) [23,24].
We notice however that for X ≠ 0, the oscillations do not
seem to be linked to the crossing of the imaginary parts of
the quasinormal modes (to the contrary to what was found

for X ¼ 0). This is clear because as we have pointed out,
the values of q at the crossings behave as ∼1=

ffiffiffi
ξ

p
so that

they decrease with increasing jXj, but the values of q at the
nodes in Fig. 5 increase with increasing jXj instead.
In general we notice that the values of the residues

decrease more rapidly with q for q ≳ 1 as jXj grows. In
particular, for small jXj, the residues of the sound mode
increase with q while for larger jXj they decrease with q.
Notice that this reflects the different behavior of the mode
at high q due to the crossing depicted in Fig. 4.
One can determine the large momentum behavior of the

modes analytically using a Wentzel-Kramers-Brillouin
(WKB) analysis [26]. This is done in Appendix A and
we find:

ϖ

q
− 1 ∝ q−

2ξ
ξþ2e−

2πi
ξþ2; ðq → ∞Þ; ð3:17Þ

FIG. 4. Dependence of the sound channel quasinormal modes on q for X ¼ −0.25 (top left), X ¼ −0.29 (top right), X ¼ −0.295
(bottom left) and X ¼ −0.35 (bottom right).

FIG. 5. The (absolute values of the) residues of the hydrodynamic modes as a function of q. Left: shear mode. Right: sound mode. The
values of X for the solid blue, dashed red, dotted magenta, dash-dotted green, and long-dashed brown curves are X ¼ 0, X ¼ −0.25,
X ¼ −0.35, X ¼ −0.4, and X ¼ −0.45, respectively.
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where the proportionality constant is positive. The agree-
ment between the WKB approximation and the numerical
results for the locations of the QNMs is demonstrated
in Fig. 6.

IV. ANALYTIC RESULTS IN THE
LIMIT X → − 1=2

As it turns out, the fluctuation equations in the transverse
spin-two channel (3.6) can be solved analytically in the
limit X → −1=2, equivalently ξ → ∞. In order to make
sense of this limit, we need to also decide which quantities
to hold fixed in the limit. First we notice how the energy
scales behave in this limit. We have fixed the units of the
radial coordinate (by rescaling it with l0) such that the
dilaton λ ∼ 1 at r̂ ∼ 1. The temperature from (2.11) behaves
as T ∼ ξ=l0r̂h. The temperature is the scale that determines
the location of the QNMs. Notice that there is the factor
1 − 4X2 in the definition of l0 in (2.6) which behaves as
1=ξ in the limit X → −1=2. In units of l, i.e., the scale
factor in the domain wall metric the temperature is there-
fore regular in this limit, T ∼ 1=lr̂h as long as r̂h is kept
constant. From (2.8) we indeed see that r̂h → 1. In
conclusion, we keep l and r̂h fixed when taking ξ → ∞,
so that T remains fixed but l0 → ∞.
We will now sketch how the quasinormal modes at large

but finite ξ arise. The precise derivation is carried out below
in Sec. IVA. The modes will be found for approximately
real ϖ. Existence of a mode requires matching of the
normalizable UV solution (for w1=ξ ≪ 1) to the oscillating
solution in the IR. Such matching is made possible by
tuning the length of the intermediate interval where the
solutions with the Schrodinger potential (3.16) are oscil-
latory (i.e., ϖ2 − q2 > 1). In this interval the solution
behaves as

h ∝ sin

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2 − 1

q
logw

�
: ð4:1Þ

We expect that the nth quasinormal mode oscillates (roughly)
n times. The oscillations take place for 1 ≪ j logwj ≪ ξ, so
we obtain

n ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2

n − q2 − 1

q
ξ: ð4:2Þ

A sequence of quasinormal modes is therefore expected for
ϖ2 − q2 > 1 and for large n we expect ϖn ∼ n=ξ. These
results will be verified below.

A. Precise analysis of the limit X → − 1=2
We solve the fluctuation equations in two domains, as

suggested by the analysis of the Schrodinger potential
in Sec. III, in order to compute the two-point correlator of
the spin-two components of the energy momentum tensor
analytically at large (but finite) ξ. First we analyze the
fluctuations at large ξ with fixed arbitrary w. Then we
analyze them close to the boundary, i.e., for small w with
fixed arbitrary ξ. At large ξ these results maybe combined to
complete solutions for the fluctuations from the boundary
to the horizon, and therefore to compute the correlator
analytically, up to corrections suppressed by 1=ξ.
It might look tempting to carry out the fluctuation

analysis in the domain wall coordinates instead of the
conformal coordinate r, because the background is regular
at X ¼ −1=2 in the former coordinates. This would not,
however, lead to essential changes in the analysis below,
and the fluctuation equations take a simpler form in the
conformal coordinates. Also, while the background is
regular in the domain wall coordinates, X ¼ −1=2 is still
a special point for the fluctuations (as we shall see below).

1. Fluctuations at X = − 1=2

Let us start by taking the limit X → −1=2 keeping the
rescaled frequency and momentum in (3.10) as well as
the coordinate w of (3.11) fixed. For the latter one zooms
in the region where r̂ is close to r̂h by defining r̂ ¼
r̂h − r̂hð1 − wÞ=ξ and taking ξ → ∞ which sends r̂h → 1

FIG. 6. The dependence of the three lowest transverse spin-two quasinormal modes on q for X ¼ −0.4 (dots) at large values of q and
the comparison to the WKB approximation of Appendix A (solid curves). Left: real parts (with the linear termϖ ≈ q subtracted). Right:
imaginary parts.
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[from Eq. (2.8)] and keeps w finite.7 In this limit the
Eq. (3.6) becomes

1

4w
ð−q2 − 2iϖÞΞðwÞ þ ð−wþ iϖÞΞ0ðwÞ
þ wð1 − wÞΞ00ðwÞ ¼ 0; ð4:3Þ

where we dropped terms ∼1=ξ. The solution is given by

ΞðwÞ ¼ C−w
1
2
ð−S−iϖþ1Þ

2F1

×

�
1

2
ð−S − iϖ þ 1Þ; 1

2
ð−S − iϖ þ 1Þ; 1 − S;w

�

þ Cþw
1
2
ðS−iϖþ1Þ

2F1

×

�
1

2
ðS − iϖ þ 1Þ; 1

2
ðS − iϖ þ 1Þ; 1þ S;w

�

ð4:4Þ

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −ϖ2 þ 1

q
: ð4:5Þ

As we pointed out in Sec. II A, the same solution has been
found in the minisuperspace studies of the 2D black hole
of the linear dilaton model [14,37], for the reason that
the background becomes linear dilaton in this limit as
explained in Sec. II A. We choose the branches of the
square root factors such that the solution for negative
q2 −ϖ2 þ 1 is given by replacing S ↦ −iS̃ where

S̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2 − 1

q
; ð4:6Þ

which corresponds to analytic continuation through the
upper half of the complexϖ-plane. Moreover for simplicity
we restrict to frequencies with Reϖ ≥ 0 below. The
expressions for Reϖ < 0 can be obtained by applying
reflection symmetry with respect to the imaginary ϖ-axis.
The expansion of (4.4) at small w gives

ΞðwÞ ¼ C−w
1
2
ð−S−iϖþ1Þ½1þOðwÞ�

þ Cþw
1
2
ðS−iϖþ1Þ½1þOðwÞ�: ð4:7Þ

This UV expansion obviously differs from the standard
expansion ∼C1 þ C2w. This is not surprising because
taking ξ → ∞ takes us to the case of (3.16) of the
Schrödinger potential near the boundary, indicating a

nonstandard boundary behavior. Notice also that the black-
ening factor fðr̂Þ ¼ 1 − ðr̂=r̂hÞξ equals one up to tiny
corrections except for very close to the horizon r̂h − r̂ ∼
1=ξ when ξ is large and we took the limit of ξ → ∞ such
that w ¼ ðr̂=r̂hÞξ is fixed. Therefore we were keeping the
blackening factor nontrivial but losing the connection to the
UV boundary. In other words, (4.4) is correct up to terms
∝ j logðwÞ=ξj, the solution is valid for e−ξ ≪ w for large but
finite ξ, and the solution for w ≪ e−ξ would have a different
UV behavior.
We then use the regularity condition at the horizon.

Expanding (4.4) at w ¼ 1 we see the outgoing wave is
absent if

C−Γð1 − SÞ
Γð1

2
ð1 − iϖ − SÞÞ2 þ

CþΓð1þ SÞ
Γð1

2
ð1 − iϖ þ SÞÞ2 ¼ 0: ð4:8Þ

Notice that for large ϖ the UV expansion of the solution
becomes

1ffiffiffiffi
w

p ΞðwÞ ¼ C−½1þOðwÞ� þ Cþw−iϖ½1þOðwÞ�: ð4:9Þ

Therefore the first (second) term can be interpreted as an
incoming (outgoing) wave at the boundary. The ratio of the
coefficients defines the reflection amplitude

Rðϖ; qÞ ¼ Cþðϖ; qÞ
C−ðϖ; qÞ ¼ −

Γð1þ iS̃ÞΓð1
2
ð1 − iϖ − iS̃ÞÞ2

Γð1 − iS̃ÞΓð1
2
ð1 − iϖ þ iS̃ÞÞ2 :

ð4:10Þ

We expressed the amplitude in terms of S̃ rather than S
because this is more natural for large ϖ where the inter-
pretation as a scattering matrix element is clear. From this
reflection amplitude one can derive the density of states as a
derivative of the scattering phase

Rðϖ; qÞ ¼ eiΦðϖ;qÞ; ρðϖ; qÞ ¼ dΦðϖ; qÞ
dϖ

; ð4:11Þ

nevertheless this is a limiting form for the density of states
that holds in the exact ξ → ∞ limit and for large fre-
quencies ϖ. The exact result for finite ξ shows a more
intricate behavior that will be analyzed in the next sub-
section. A first indication comes from the regime of low ϖ,
i.e., when ϖ2 − q2 − 1 is negative, since then there is no
wave propagation near the boundary hence Rðϖ; qÞ
appears to be a retarded correlator rather than a reflection
amplitude.8 These observations agree with the solutions in
the Schrödinger form above.

7It is important to note that this limit does not imply any limit
in the domain wall coordinates. The limit r̂ → r̂h follows from
ξ → ∞ not from u → uh in (2.6) and (2.8). In particular the
function w can be expressed in terms of the domain-wall
coordinates in the limit ξ → ∞ as w ¼ 1–3 logð u0−uu0−uh

Þ where u
hence w is arbitrary.

8This possibility is also related to the fact that we have the
extra transverse directions and hence one can consider excitations
with large transverse momentum q.
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The boundary behavior of the fluctuations and the match-
ing with the solutions in the linear dilaton geometry for
arbitrary ξ are discussed in Appendix B. We notice a non-
trivial point in the otherwise standard procedure: the naive
separation of the general solution into a source and a vacuum
expectation value (VEV) term leads to a correlator that has
singularitieswhen ξ is an evenpositive integer.However these
singularities have a simple form and are unrelated to the
quasinormal poles; we find it more convenient to split the

correlator into a part Gs which contains the singularities in ξ
but is regular as a function ofϖ, and aGreg which is regular in
ξ and contains the information about the QNMs.

2. Analytic correlator and its properties

The matching of the boundary and horizon expansion,
performed in Appendix B gives us the regular part of the
transverse spin-two correlator

Greg ¼
2πξξr̂−ξh

Γðξ
2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2

��
1þ S
1 − S

�ξ
2

e−ξSR − iθð−ImϖÞ
�

¼ −
2πξξr̂−ξh e−ξS

Γðξ
2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2

�
1þ S
1 − S

�ξ
2 Γð1 − SÞ
Γð1þ SÞ

Γð1
2
ð1 − iϖ þ SÞÞ2

Γð1
2
ð1 − iϖ − SÞÞ2

− θð−ImϖÞ 2πiξξr̂−ξh
Γðξ

2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2 ð4:12Þ

for 0 ≤ Reϖ ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
, and

Greg ¼
2πξξr̂−ξh

Γðξ
2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2

�
iþ

�
1þ iS̃

1 − iS̃

�ξ
2 e−iξS̃

R

�−1

¼ 2πξξr̂−ξh
Γðξ

2
ÞΓð1þ ξ

2
Þ

�ðϖ2 − q2Þ
16

�ξ
2

�
i −

�
1þ iS̃

1 − iS̃

�ξ
2

e−iξS̃
Γð1 − iS̃Þ
Γð1þ iS̃Þ

Γð1
2
ð1 − iϖ þ iS̃ÞÞ2

Γð1
2
ð1 − iϖ − iS̃ÞÞ2

�−1
ð4:13Þ

for Reϖ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
. The precise regime of validity of the

two expressions is determined by the saddle point approx-
imations discussed in Appendix C. As in Sec. IVA 1 we
defined the reflection amplitudeR such that it is analytic in
the upper half ϖ-plane (so that S is mapped to −iS̃ on the
real line as one passes the branch point).9 We remind the
reader that when q ¼ 0 these analytic expressions are valid
in all channels because in this case all fluctuations of the
model are identical.
The result for the correlator is shown at X ¼ −0.45 and

q ¼ 0 in Fig. 7 where we also compare it to the result
obtained through a direct numerical solution to the fluc-
tuation equation (3.6) (see Appendix D for more details).
Top row plots show the absolute value and bottom row plots
the phase of the correlation. Several zeroes and poles are
seen in the plots for the absolute values, where orange
(blue) hues indicate the smallest (largest) values for the
correlator. Only those singularities in the lower half plane
for Reϖ > 1 are poles, and the other singularities are
zeroes. The phase of the correlator jumps by 2π at the black

curves in the bottom row plots, so they are not physical
branch cuts.
The analytic correlator and the numerical result agree

well for most values of ϖ, but there are also some
differences which appear to be larger than the expected
Oð1=ξÞ corrections. First, the disagreement for Imϖ ≳ 0.5
is due to the numerical computation failing in this region,
which happens because the correlator is small and its
extraction from the numerical solution to the fluctuation
equation is challenging.
Second, there are also differences close to the imaginary

axis, in particular near ϖ ¼ 0. These differences signal
the failure of our analytic approximation near some special
points: The difference between the powers in the terms of
the expansion (4.7) equals S, and when it takes integer
values, subleading terms in the source term are singular.
This leads to the failure in matching of the IR fluctuations
to the boundary behavior. The problematic points are
given by

ω ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1 − q2

q
ð4:14Þ

with n ¼ 1; 2;…. For n ¼ 1 and q ¼ 0, the matching fails
at ϖ ¼ 0 therefore explaining the differences between the

9Notice that the θ term that is nonvanishing on the lower-half
plane includes a nontrivial phase factor on the imaginary axis.
This term however cancels with a similar factor in Gs so the full
correlator is real.
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plots of Fig. 7 near the origin. For other values of n, the
failure of matching produces spurious poles in the analytic
approximation (not visible in the plots) which are absent in
the full numerical result. These poles already appear in the
reflection amplitude (4.10) and have been discussed in the
literature: see, e.g., [35,41].
In addition, there is minor disagreement near ϖ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
which is special point of the saddle point

approximation of Appendix C. It is possible to derive
analytic approximations which cover this point as well as
the points (4.14), but this is not necessary for the purposes
of this article.

Apart from the poles of Eq. (4.14) there is another set of
special points which have been analyzed in the literature in
the context of the linear dilaton background: the poles of
Γðð1 − iϖ − SÞ=2Þ (see, e.g., [36]). In our result, however,
this expression appears in the denominator of the reflection
amplitude, and consequently the points are zeroes of the
amplitude rather than poles. That is, our UV completion
automatically picks the “physical sheet” for the correlators
identified in [36] where the poles are absent. We note that
the other sheet would be obtained by taking the opposite
sign in the square root factor S, i.e., by replacing S ↦ −S in
the reflection amplitude. After this the points indeed

FIG. 7. The analytic correlator and comparison to direct numerical result, X ¼ −0.45 and q ¼ 0. Left column: numerically extracted
correlator on the complex ϖ plane. Right column: the same plots for the analytic approximation at large ξ. Top row: logarithm of the
absolute value of the correlator. Bottom row: phase of the correlator.
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become poles, but such a change of sign is not permitted by
the UV boundary conditions in our setup.
The location of the quasinormal modes in the limit

X → −1=2 is given by the poles of the expressions (4.12)
and (4.13). The only poles of the former expression
are, however, the spurious poles at the points ω ¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1 − q2

p
where our matching procedure fails.

The physical poles are those of the latter expression, and
they are determined by the equation

�
1þ iS̃

1− iS̃
e−2iS̃

�ξ
2 ¼ i

Γð1þ iS̃Þ
Γð1− iS̃Þ

Γð1
2
ð1− iϖ − iS̃ÞÞ2

Γð1
2
ð1− iϖþ iS̃ÞÞ2 ¼ −iR:

ð4:15Þ

It is controlled, among other things, by the function

gðS̃Þ ¼ 1þ iS̃

1 − iS̃
e−2iS̃: ð4:16Þ

It is straightforward to check that the (absolute value of the)
reflection amplitude R is analytic and does not contain
poles or zeroes in the region of the validity of the equation,
i.e., Reϖ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p

. Therefore when taking ξ → ∞ with
other parameters fixed, solutions to (4.15) can only be
found when jgðS̃Þj deviates from one by at most corrections
suppressed by 1=ξ. Together with the regime of validity of
(4.13) this implies that S̃ is real and positive, up to 1=ξ
corrections.
In order to see in more detail where the quasinormal

modes lie for large but fixed ξ, we can expand gðS̃Þ at a
point S̃ ¼ S̃0 on the real axis:

gðS̃0 þ δS̃Þ ¼ gðS̃0Þ exp
�
−

2iS̃20
1þ S̃20

δS̃þOððδS̃Þ2Þ
�
:

ð4:17Þ

Since gðS̃0Þ is a pure phase we may write10

gðS̃0Þξ=2 ¼ eiϕ0 ð4:18Þ

where −π < ϕ0 < π. It is natural keep q fixed, denote
S̃0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2

0 − q2 − 1
p

, and assume that δS̃ is due to a
(possibly complex) variation of ϖ which we denote by
δϖ. When δS̃ ∼ 1=ξ, (4.15) boils down to

S̃20
1þ S̃20

ξδS̃ ¼ S̃0ϖ̃0

1þ S̃20
ξδϖ

¼ ϕ0 −
π

2
− 2 argΓð1þ iS̃0Þ

þ 2i log
Γð1

2
ð1 − iϖ0 − iS̃0ÞÞ

Γð1
2
ð1 − iϖ0 þ iS̃0ÞÞ

þ 2πn

ð4:19Þ

where n takes integer values. We carry out a numerical
analysis and check of this formula in Appendix D.
From the result (4.19) we see that the spacing between

the nodes on the complex ϖ plane is given by

2πð1þ S̃20Þ
S̃0ϖ0ξ

¼ 2πðϖ2
0 − q2Þ

S̃0ϖ0ξ
: ð4:20Þ

The density of states11 is given as its inverse:

ρðϖ0Þ ¼
dn
dϖ

				
ϖ¼ϖ0

¼ S̃0ϖ0ξ

2πðϖ2
0 − q2Þ : ð4:21Þ

The imaginary parts of the nodes obey

Im δϖ ¼ Imϖ ¼ 2ð1þ S̃20Þ
S̃0ϖ0ξ

log

				 Γð
1
2
ð1 − iϖ0 − iS̃0ÞÞ

Γð1
2
ð1 − iϖ0 þ iS̃0ÞÞ

				:
ð4:22Þ

This expression is negative. For large ϖ0 we obtain
Imϖ ≃ −πS̃0=ξ. Thus we have an analytic confirma-
tion of the numerical results of Sec. III: the QNM approach
the real axis and become dense in the limit ξ → ∞.
Finally let us compute the residues of the correlator at

the nodes, i.e., at the roots ϖ ¼ ϖn of (4.19). Inserting
the roots back in the correlator (4.13) we find the leading
order result

Resϖn
¼ −

2πξξr̂−ξh
Γðξ

2
ÞΓð1þ ξ

2
Þ

�ðϖ2
0 − q2Þ
16

�ξ
2 ϖ2

0 − q2

S̃0ϖ0ξ
: ð4:23Þ

Notice that the rapidly oscillating phases are absent in this
result. Therefore (and also because we assumed that the
nodes are within an Oð1=ξÞ distance of ϖ ¼ ϖ0) there is
no dependence on the mode number n. Notice also that
when weighted with the density of states (4.21), the last
factor in (4.23) would cancel, leaving only the term coming
from the multiplicative factor in (4.13).

10One should be careful here because there are several branch
choices for the expression on the left-hand side. Looking at,
e.g., (4.13), the relevant branch choice is seen to be gðS̃0Þξ=2 ¼
exp½ξ logðð1þ iS̃0Þ=ð1 − iS̃0ÞÞ=2 − iS̃0ξ� where the standard
branch is used for the logarithm.

11Notice that the density of states at finite ξ arises from the
phase factor gðS̃Þξ=2 and therefore differs drastically from the
expression defined in (4.11) in terms of the reflection amplitude
which holds when ξ ¼ ∞.
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V. COMPLETING THE CR GEOMETRY
IN THE UV

We have derived the behavior of the QNMs of the
energy-momentum tensor in the transverse sector in the
critical limit ξ → ∞. We may wonder if these results
have any physical significance, given that the CR geometry
does not describe a UV-complete theory and can only be
a good description of the IR physics. In order to answer
this question we carry out a detailed analysis of the UV
completion of the CR geometry in this section, i.e., geo-
metries which approach asymptotically AdS5 in the UVand
the CR form in the IR. We show that the results of the
previous section also apply to this more general class of
geometries at low temperatures and for the lowest modes of
the spectrum; the corrections coming from the UV part
of the geometry are suppressed. Moreover, we obtain a
fully analytic approximation for the transverse correlator
of the energy-momentum tensor by gluing a slice of the
AdS5 geometry in the UV directly to the CR geometry. This
improved analytic approximation works for the whole
spectrum for temperatures below a certain critical temper-
ature, and is expected to be a good model for the spectrum
of more general geometries (i.e., geometries with a smooth
flow from AdS5 to CR instead of a joint).
The fact that the UV corrections are suppressed at small

temperatures, so that the lowest quasinormal modes are
determined by the CR geometry in the IR, can be under-
stood by considering how the dilaton potential behaves at
large ξ. At the horizon the dilaton and the potential take
the value

ϕh ¼ r̂
− 3X
1−4X2

h ; VðϕhÞ ¼
9

l2ð1 − 1=ξÞ r̂
2ðξ−4Þ

3

h : ð5:1Þ

We see that VðϕhÞ diverges or goes to zero depending on
whether the location of the horizon is larger or smaller
than one (in terms of the dimensionless conformal
coordinate). Therefore we expect that when r̂h > 1 the
physics determined by the near-horizon geometry will be
insensitive to finite deformations of the potential in the
UV. A caveat that should be kept in mind is that the
modification to the UV potential we introduce are exactly
vanishing when we are sufficiently away from the
boundary, so we still keep the potential in the IR to
have the exact exponential form; a generic correction
may introduce some subleading term in the IR potential,
for instance terms of the form e−8Xϕ=3ϕp, that would
modify the nature of the geometry at the critical point:
we are not considering this situation.
We will show this in detail for geometries which are

asymptotically AdS5 in the UV and smoothly deform to
the CR form in the IR. This is important because for
most realistic models of the YM theory [4,5], the
potentials are expected to be this type, with IR asymp-
totics corresponding to the critical value X ¼ −1=2. Since

the flow from AdS5 to CR is not known analytically, as
we already mentioned above, we will also discuss a
scenario where an exact AdS5 UV geometry is glued
directly to the CR solution, and argue that this is a good
approximation to smooth geometries with the same UV
and IR asymptotics. Remarkably, in the glued geometry
the limit X → −1=2 is well-defined, and we can give
analytic results for the QNM at X ¼ 1=2 and not just
close to it.12

A. Background geometry for a generic
dilaton potential

We will start with a generic discussion, first at zero tem-
perature. It is useful to introduce the superpotential for-
malism and consider the domain wall coordinates (2.3),
which are regular in the critical limit X → −1=2. With
the normalization conventions of (2.1), we choose WðϕÞ
such that

VðϕÞ ¼ 64

27
WðϕÞ2 − 4

3
W0ðϕÞ2: ð5:2Þ

In order to obtain a flow from the CR solution in the IR to
an AdS5 at the boundary, we require that13

WðϕÞ ¼ 9

16X2l
e−

4X
3
ϕ

�
1þO

�
1

ϕ

��
;

WðϕÞ ¼ 9

4lAdS
þ Δ
2lAdS

ϕ2 þOðϕ3Þ: ð5:3Þ

The exact form of the corrections in the UVand in the IR is
not important, we assume power law corrections for
simplicity.14 Notice also that we chose the minimum of
the potential to lie at ϕ ¼ 0. We will also choose a potential
such that lAdS=l,Δ ∼Oð1Þ and that the asymptotic regions
are smoothly connected through a simple, monotonic
function.
In terms of the superpotential, the background equations

of motion read

ϕ0ðuÞ ¼ W0ðϕðuÞÞ; A0ðuÞ ¼ −
4

9
WðϕðuÞÞ: ð5:4Þ

12Actually most of the discussion on the gluing does not rely
on X being close to the critical value. However, it is only in this
limit that we have analytic control over the IR geometry and the
fluctuations. Therefore we will assume the limit X → −1=2 in the
following.

13We can assume that 0 ≤ Δ ≤ 2 in the UVexpansion ofWðϕÞ.
Our calculations are also valid for Δ > 2, but generic dilaton
potentials VðϕÞ do not lead to IR regular superpotentials with Δ
in this range; instead VðϕÞ needs to be fine tuned.

14When X ¼ −1=2 the corrections are however important in
that they determine the order of the continuous deconfinement
transition in the dual plasma [10]. Power law corresponds to BKT
like transitions generically.
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Notice that we have readily fixed one integration constant
of the full solution to the action (2.1) by fixing the
superpotential (which corresponds to restricting to the IR
regular geometries). The two remaining constants of
integration are “trivial”: they appear through the invariance
of the equations of motion under shifts of u and A.
The UV (u → −∞) asymptotics of the solutions are

ϕðuÞ ¼ ϕ0euΔ=lAdS þOðe2uΔ=lAdSÞ;

AðuÞ ¼ Ã0 −
u

lAdS
−
1

9
ϕ2
0e

2uΔ=lAdS þOðe3uΔ=lAdSÞ; ð5:5Þ

while the IR asymptotics read

ϕðuÞ ¼ 3

4X
log

�
−
u
l

�
þO

�
1

log ð− u
lÞ
�

ð5:6Þ

AðuÞ ¼ A0 þ
1

4X2
log

�
−
u
l

�
þO

�
1

log ð− u
lÞ
�

ð5:7Þ

where we fixed one of the constants of integration (C1 in
(2.4)) such that u → 0 in the IR. The full solution would
give two relations between Ã0, A0, and ϕ0. Actually we can
use the freedom of shifting A to set Ã0 ¼ 0. Then A0 and ϕ0

are Oð1Þ for dilaton potentials V which meet the require-
ments specified above.
We then consider the transformation to conformal coor-

dinates, which lead to singular behavior for X ¼ −1=2.
Therefore we will assume that 0 > X > −1=2 and that
X þ 1=2 ≪ 1 or equivalently that ξ ≫ 1. We choose that
the UV boundary is at r ¼ 0 so that

r ¼
Z

u

−∞
dũe−AðũÞ: ð5:8Þ

Near the boundary we therefore have

r ¼ lAdSe−Ã0þu=lAdS ½1þOðe2uΔ=lAdSÞ�; ð5:9Þ

but in the IR the expansion is more interesting, namely

r ¼ l0
��

−
u
l

�
−1−4X2

4X2
�
1þO

�
1

log ð− u
lÞ
��

− 1

�
þOðξ0Þ;

ð5:10Þ

where l0 ¼ 4X2e−A0l=ð1 − 4X2Þ. Comparing to the CR
solution in Sec. II we see that there is a shift of the r
coordinate by l0, given by the last term in the square
brackets, which isOðξÞ. Such a shift is a global property of
the definition of the conformal coordinate in (5.8), and
would not appear in a naive direct IR expansion of the
relation.
The shift ensures that r becomesOðlξ0Þ for −u ∼ l, i.e.,

when the asymptotic IR expansion starts to fail, and

matches smoothly with the UV expansion. We see that
the UV region (−u ≫ l) maps to r ≪ l, and the IR
region (−u ≪ l) maps to r ≫ l. The shift also ensures
that the limit X → −1=2 is smooth, as can be seen from
the analysis in Sec. II: for the critical limit of (2.6) to
match with (2.7) an analogous shift of r is needed in
either of the definitions.
The result of the shift is that in terms of the conformal

coordinates, a large section of the length ∼l0 of the CR
geometry is cut away from the UV, and then replaced by a
short (length ∼l) section of the AdS geometry. Dropping
the subleading terms, the warp factor in the CR part of the
geometry becomes

eAðrÞ ≃ eA0

�
1þ r

l0

�
− 1

1−4X2 ; ðr ≫ lÞ: ð5:11Þ

This ensures that taking ξ → ∞ at fixed r and l such that
l0 → ∞, the warp factor smoothly approaches the solution
at X ¼ −1=2, i.e., an exponential function of r (i.e., the
linear dilaton geometry). Collecting these observations, the
structure of the geometry is that of Fig. 8. The AdS and CR
geometries are glued together at r ∼ l, but in addition for
large ξ there is a regime with l ≪ r ≪ l0 where the
geometry is close to the linear dilaton geometry.
For finite temperature configurations at small enough

temperatures, the above discussion is only modified by
adding a nontrivial blackening factor in the CR geometry
in the IR. We check now what is the condition for this to
work. In the conformal coordinates the blackening factor
reads

fðrÞ ¼ 1 −
�

πTl
eA0ð1 − X2Þ

�
1þ r

l0

��
ξ

;

rh
l0 ¼

eA0ð1 − X2Þ
πTl

− 1: ð5:12Þ

At large ξ, the horizon moves toward the asymptotic IR
region as ξ and consequently l0 grow if the last factor in
(5.12) is positive, i.e., T < 3eA0=4πl≡ Tc (where we
inserted X → −1=2). In order to write down a slightly
more precise condition we should check when the

FIG. 8. The structure of the (zero temperature) geometry for
potentials asymptoting to CR behavior in the IR with large ξ. For
0 < r ≪ l, the geometry is asymptotically AdS5, and for r ≫ l it
is asymptotically CR (regimes marked with red color). Further,
when l ≪ r ≪ l0 (where l0 ∼ lξ) the geometry is to a good
approximation the linear dilaton geometry (the interval marked
with blue color), whereas for r ≫ l0 this approximation fails and
only the (full) CR geometry can be used to describe the solution.
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r-dependence of the blackening factor becomes negligible
at the regime where the geometry is nontrivial (r ∼ l).
From (5.12) we see that this is the case when rh=l ≫ 1.
Therefore the horizon may lie in any location of the CR-
part of the geometry in Fig. 8, including the regime
where the geometry resembles that of the linear dilaton
background. The temperature deviates significantly from
Tc when rh ∼ ξ, but the approximation holds under the
weaker condition ξðTc − TÞ=Tc ≫ 1.
In summary, for temperatures lower than

Tc ¼
3eA0

4πl
; ð5:13Þ

the blackening factor only modifies the CR part of the
geometry, and we expect that the analytic results of Sec. IV
describe accurately the correlators, up to some critical
frequency. This critical frequency is analyzed in more detail
in Appendix E and found to be Oð1=lÞ. Notice that this
temperature agrees with the temperature of the black hole
(2.17) when X ¼ −1=2 exactly.
Fluctuations for the case of a dilaton potential which

interpolates smoothly between the CR asymptotics in the
IR and AdS behavior in the UV are discussed in detail in
Appendix E. Here we shall proceed directly to the case of
directly gluing the AdS and CR geometries together, in
which case there is much better analytic control. We expect,
even though this cannot be proven, that the analytic results
for the correlators and quasinormal modes obtained though
the gluing procedure are qualitatively similar to those for
simple geometries interpolating smoothly between AdS
and CR.

B. Gluing together the UV and IR geometries

Here we develop a fully analytic approximation for the
correlator of the transverse spin two modes (which also
applies to other fluctuations of the metric at zero momen-
tum) by considering a background where the UV AdS
geometry is glued directly to the IR CR geometry. In order
to do this it is convenient to start from the superpotential,
which we take to be continuous15:

WðϕÞ ¼ 9

4lAdS
θðϕc − ϕÞ þ 9

4lAdS
e−

4X
3
ðϕ−ϕcÞθðϕ − ϕcÞ:

ð5:14Þ

Notice that the potential VðϕÞ in (5.2) will be discontinu-
ous at ϕ ¼ ϕc. For this superpotential the background
solution is

AðrÞ ¼ − log rþ loglAdS; ϕðrÞ ¼ ϕc; ðr ≤ rcÞ;
ð5:15Þ

AðrÞ ¼ −
1

1 − 4X2
log

�
ð1 − 4X2Þ

�
r
rc

− 1

�
þ 1

�

− log
rc

lAdS
;

ϕðrÞ ¼ −
3X

1 − 4X2
log

�
ð1 − 4X2Þ

�
r
rc

− 1

�
þ 1

�
þ ϕc;

ðr ≥ rcÞ: ð5:16Þ

The general solution has two integration constants: one
related to shifts of r which we have already fixed by
requiring that the boundary is located at r ¼ 0, and rc
which can be changed by rescaling the r coordinate and
therefore plays the role of A0 in Sec. II. The precise
connection to the solution there is

A0 ¼ − log
rc

lAdS
−

1

3X
ϕc;

l0 ¼ l
eA0ð1 − 4X2Þ ¼

rce
1−4X2
3X ϕc

1 − 4X2
: ð5:17Þ

In addition there is, in agreement with the analysis in
Sec. VA, a shift of the coordinate r in the CR part of the
metric (r ≥ rc) given by

Δr ¼ rc

�
1

1 − 4X2
− 1

�
¼ 4X2rc

1 − 4X2
: ð5:18Þ

Notice that as X → −1=2 we find Δr → l0 as argued
above. One can verify that A, A0, and ϕ are continuous at
r ¼ rc, whereas ϕ0 is discontinuous. Since the scalar
curvature contains the second derivative of A, it is
discontinuous but without a delta function singularity;
equivalently, there is no jump of the extrinsic curvature at
the surface r ¼ rc, therefore it is not necessary to
consider the Israel junction condition; there is no “brane”
at the location of the gluing. The discontinuity of ϕ0 is
consistent with the dilaton e.o.m. □ϕ ∝ V 0ðϕÞ with a
discontinuous potential. Even though the conjugate
momentum of the dilaton is discontinuous, this does
not mean that we need to include a source, because the
variational problem is still well defined. In fact, taking
the variation of the action on-shell, we find

δS ¼ −
1

6πG5

Z
r¼rc

d4x
ffiffiffi
h

p
δϕðrcÞnrð∂rϕðrc þ ϵÞ

− ∂rϕðrc − ϵÞÞ; ð5:19Þ

15The solution which we write down does not probe the
superpotential for ϕ < ϕc. It is anyhow natural to take the
superpotential to be constant in this region in which case
the background in (5.15) is the single consistent solution.
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where nμ is the normal vector of the r ¼ rc hypersurface;
since the gluing point is by the definition the point where
ϕ ¼ ϕc, we have δϕðrcÞ ¼ 0.16

The temperature, the scaled frequency, and the scaled
momentum become

T ¼ ξ

4πðΔrþ rhÞ
; ϖ ¼ 2ωðΔrþ rhÞ

ξ
; and

q ¼ 2kðΔrþ rhÞ
ξ

; ð5:20Þ

respectively.
The fluctuations (around a generic dilaton potential) are

considered in Appendix E. It is convenient to use ordinary
time instead of the Eddington-Finkelstein coordinate v
which causes some changes in the fluctuation equations
with respect to Sec. III. For the current setup the solutions
for the fluctuation equations are given in (E6) (setting
Δ ¼ 0) and (E7) for r < rc and r > rc, respectively:

ΞðrÞ ¼ Cð1Þ
UV

iπm2

4
r2Hð1Þ

2 ðmrÞ þ Cð2Þ
UV

4

m2
r2J2ðmrÞ;

ðr < rcÞ ð5:21Þ

ΞðrÞ ¼ Cð1Þ
IR

iπr̃ξ=2Hð1Þ
ξ=2ðmr̃Þ

2ξ=2m−ξ=2Γðξ
2
Þ

þ Cð2Þ
IR

2ξ=2Γðξ
2
þ 1Þr̃ξ=2Jξ=2ðmr̃Þ
mξ=2Δrξ

; ðr > rcÞ
ð5:22Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
and r̃ ¼ rþ Δr. The UV and IR

coefficients are related through a transition matrix

CUV ¼ MCIR ð5:23Þ

where CUV=IR ¼ ðCð1Þ
UV=IR; C

ð2Þ
UV=IRÞ (see also Appendix E).

By requiring the continuity of the solutions and their
derivatives at r ¼ rc, we can compute the transition matrix
M. It is tempting to use the limit X → −1=2 to simplify the
results but as it turns out it is better to use the exact
expressions to avoid precision issues due to cancellations of
large factors. The result reads

M11¼
2iπðμ

2
Þξ=2

m̃Γðξ
2
Þ ½J1ðm̃ÞHð1Þ

ξ=2ðμÞ−J2ðm̃ÞHð1Þ
ξ=2−1ðμÞ�

M12¼
2Γðξ

2
þ1Þ

ðμ
2
Þξ=2m̃

�
ξ−1

ξ−4

�
ξ

½J1ðm̃ÞJξ=2ðμÞ−J2ðm̃ÞJξ=2−1ðμÞ�

M21¼
π2ðμ

2
Þξ=2m̃3

16r4cΓðξ2Þ
½Hð1Þ

1 ðm̃ÞHð1Þ
ξ=2ðμÞ−Hð1Þ

2 ðm̃ÞHð1Þ
ξ=2−1ðμÞ�

M22¼
iπm̃3Γðξ

2
þ1Þ

16r4cðμ2Þξ=2
�
ξ−1

ξ−4

�
ξ

½Hð1Þ
2 ðm̃ÞJξ=2−1ðμÞ

−Hð1Þ
1 ðm̃ÞJξ=2ðμÞ� ð5:24Þ

where m̃ ¼ mrc and μ ¼ mrcðξ − 1Þ=3.
There are small subtleties when comparing to the

analysis of Sec. IV and of Appendix E. First, because
of shifting the coordinate r, the factor r̂−ξh in the regulated
correlator in (4.12) and (4.13) needs to be modified.
Second, we included a factor Δrξ in the definition the
normalizable IR wave function in (5.22), which is most
convenient for the gluing procedure. A normalization
factor l0ξ was used in (E7) instead, and as a result the
m → 0 limit of M22 differs from (E13) by a factor of
ðl0=ΔrÞξ, which is finite and in general different from
one in the limit ξ → ∞. With the current definitions,
i.e., for the normalization of (5.22) and when using the
matrix in (5.24), the proper normalization of Greg is

given by replacing r̂−ξh in the results of Sec. IVA
by ð1þ rh=ΔrÞ−ξ.
The analytic result for the transverse spin-two correlator

is given in terms of the transition matrix by

G̃reg ¼
M21 þM22Greg

M11 þM12Greg
; ð5:25Þ

which is regulated in the same way as Greg in Sec. IV, see
Appendix E for details.

C. Temperature dependence of the QNMs

Let us then study the dependence of the location of the
quasinormal modes on temperature by using the exact
solutions for the fluctuations. Their location is given by
the equation M11 þM12Greg ¼ 0 with Mij given in (5.24)
and the correlator in (4.13). We take q ¼ 0 so the results
apply for all fluctuations of the metric (not just the
transverse spin-two modes), and choose X ¼ −0.47 close
to the critical value so that ξ ≃ 26.77 is relatively high
and corrections in 1=ξ are suppressed. We show how the
trajectories of the QNMs on the complex ϖ-plane in
Fig. 9 (left). At the lowest temperature T ¼ 0.2Tc, the
locations of the QNMs are indistinguishable from their
zero temperature limit, which is governed by the
CR geometry with the explicit expressions given in

16One might worry that in the string frame the metric mixes
with the dilaton and there is a jump in the extrinsic curvature.
However in the string frame the conjugate momentum of the
induced metric is not given simply by the extrinsic curvature but
it also mixes with the dilaton momentum [42], so that the
discussion in the text applies in any frame.
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Sec. IVA. As the temperature grows, the higher QNMs
start to move first. As T approaches Tc, all QNMs move
toward larger negative values of Imϖ. The slope of the
locations of QNMs and their separation on the complex
ϖ-plane also grow. There is additional structure related to
the third mode, the movement of which changes direction
at T=Tc ≃ 0.8 and becomes much slower. This reflects
the existence of an additional set of modes with weaker
temperature dependence, which we will study in more
detail in Sec. V D.
Recall that the essence of our gluing procedure in

Secs. VA and V B was that a long section (length ∼ξ in
r-coordinates) of the CR geometry was replaced by a
short section (length ∼ξ0) of an AdS geometry in the UV.
This can be viewed as a smoothed out cutoff of the CR
geometry at r ¼ rc. Therefore we compare the QNMs to
those obtained in a simple setup where a hard wall
is placed at r ¼ rc instead of a glued geometry in
Fig. 9 (right). The blue curves are the trajectories in
the glued setup, whereas the red dashed and magenta
dotted curves are the trajectories for the hard wall with
Dirichlet and Neumann boundary conditions for the
fluctuations at the wall, respectively. We see that the
direction of the movement is roughly the same in all
cases, but the QNMs deviate from their zero temperature
limit clearly faster in the hard wall setup. Therefore
including a short slice of AdS5 in the UV has a clear
effect on the trajectories, which suggests that its inclusion
is necessary in order to reliably mimic the quasinormal
modes of backgrounds with smooth flows from AdS5 in
the UV to the CR geometry in the IR.

D. The critical case X = − 1=2
Interestingly, many of the expressions derived above in

this section remain well-defined in the limit X → −1=2
(or ξ → ∞). That is, making the geometry asymptotically

AdS in the UV regulates the ξ → ∞ limit of the results
for the CR geometry in Sec. IV which could not be
directly generalized to ξ ¼ ∞. In order to highlight the
behavior at ξ ¼ ∞, we discuss here the results in the case
of gluing, i.e., the results of Secs. V B and V C in the
limit ξ → ∞.
For X ¼ −1=2 and ξ ¼ ∞ the background solution of

(5.15) becomes

AðrÞ ¼ − log rþ loglAdS; ϕðrÞ ¼ ϕc; ðr ≤ rcÞ;
ð5:26Þ

AðrÞ ¼ 1 −
r
rc

− log
rc

lAdS
;

ϕðrÞ ¼ −
3

2
þ 3r
2rc

þ ϕc; ðr ≥ rcÞ: ð5:27Þ

Adding a horizon far from the gluing point with a
blackening factor fðrÞ ¼ 1 − exp ð3ðr − rhÞ=rcÞ and
rh ≫ rc, we notice that the temperature T ¼ 3=ð4πrcÞ
is independent of rh as expected for this geometry [9,43].
We remark that rh should be understood as a proxy for
the temperature in spite of this: the temperature is only
independent of rh up to highly suppressed corrections
∼ expð−3rh=rcÞ which we will ignore below, and the
dependence would also be present for more generic
dilaton potentials interpolating between the AdS and
linear dilaton behaviors.
The UV solution to the (zero temperature) fluctua-

tion equations is unchanged, while the IR solution
simplifies to

ΞðrÞ ¼ Cð1Þ
IR e

3r
2rc

ð1−
ffiffiffiffiffiffiffiffi
1−μ̂2

p
Þ þ Cð2Þ

IR e
3r
2rc

ð1þ
ffiffiffiffiffiffiffiffi
1−μ̂2

p
Þ ð5:28Þ

FIG. 9. The dependence of the location of quasinormal modes on temperature at X ¼ −0.47 (ξ ≃ 26.77) and at q ¼ 0 in the setup
where AdS and CR geometries were glued together. Left: The trajectories of the ten lowest QNMs on the complex ϖ-plane as T grows
from T ¼ 0.2Tc to T ¼ 0.91Tc. The dashed curves are at constant T=Tc with values of the ratio indicated by the labels. The markers are
at T=Tc ¼ 0.2, 0.3,… 0.9 for all curves. Right: Comparison of the result to simple boundary conditions at r ¼ rc. Blue, dashed red, and
dotted magenta curves give the imaginary part of ϖ as a function of the temperature for the QNMs with glued, Dirichlet, and Neumann
boundary conditions, respectively.
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where μ̂ ¼ 2mrc=3 which becomes μ̂ ¼ m=2πT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

p
after adding a horizon deep in the IR. Notice that there is a

branch cut for μ̂ > 1. The transition matrix takes the relatively simple form

M11 ¼
4e

3
2
ð1−

ffiffiffiffiffiffiffiffi
1−μ̂2

p
Þ½μ̂J1ð3μ̂2 Þ − ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂2

p
ÞJ2ð3μ̂2 Þ�

3μ̂2

M12 ¼
4e

3
2
ð1þ

ffiffiffiffiffiffiffiffi
1−μ̂2

p
Þ½μ̂J1ð3μ̂2 Þ − ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂2

p
ÞJ2ð3μ̂2 Þ�

3μ̂2

M21 ¼ −
27iπe

3
2
ð1−

ffiffiffiffiffiffiffiffi
1−μ̂2

p
Þμ̂2½μ̂Hð1Þ

1 ð3μ̂
2
Þ − ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂2

p
ÞHð1Þ

2 ð3μ̂
2
Þ�

128r4c

M22 ¼ −
27iπe

3
2
ð1þ

ffiffiffiffiffiffiffiffi
1−μ̂2

p
Þμ̂2½μ̂Hð1Þ

1 ð3μ̂
2
Þ − ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂2

p
ÞHð1Þ

2 ð3μ̂
2
Þ�

128r4c
ð5:29Þ

The correlator is then given as in (5.25), but asGreg of Sec. IVA does not have smooth ξ → ∞ limit, we need to study the
finite temperature solutions to the fluctuation equations for the IR geometry in order find the correct expression for Greg

when X ¼ −1=2. The solutions are readily given in (4.4) in terms of the coordinate w. From the blackening factor
fðrÞ ¼ 1 − exp ð3ðr − rhÞ=rcÞ we read that w ¼ exp ð3ðr − rhÞ=rcÞ, and factors of exp ½iω R

r
0 f

−1ðr̃Þdr̃� should be added
due to change from the Eddington-Finkelstein time coordinate to ordinary time so that

ΞðrÞ ¼ C−e
3ðr−rhÞ
2rc

ð1−SÞfðrÞ−iϖ=2
2F1

�
1

2
ð−S − iϖ þ 1Þ; 1

2
ð−S − iϖ þ 1Þ; 1 − S; e

3ðr−rhÞ
rc

�

þ Cþe
3ðr−rhÞ
2rc

ð1þSÞfðrÞ−iϖ=2
2F1

�
1

2
ðS − iϖ þ 1Þ; 1

2
ðS − iϖ þ 1Þ; 1þ S; e

3ðr−rhÞ
rc

�
ð5:30Þ

where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϖ2 þ q2

p
. Taking the UV limit we pin down the connection to (5.28)

Cð1Þ
IR ¼ C−e

−3rh
2rc

ð1−SÞ; Cð2Þ
IR ¼ Cþe

−3rh
2rc

ð1þSÞ; ð5:31Þ

so that

Greg ¼ e−
3rhS
rc R ¼ −e−

3rhS
rc
Γð1 − SÞΓð1

2
ð1 − iϖ þ SÞÞ2

Γð1þ SÞΓð1
2
ð1 − iϖ − SÞÞ2 ð5:32Þ

where we inserted the reflection amplitude from (4.10). The regular part of the full correlator simplifies to

G̃reg ¼ −
81iπμ̂4

512r4c

μ̂½1þ e3Sð1−
rh
rc
ÞR�Hð1Þ

1 ð3μ̂
2
Þ þ ½ðS − 1Þ − e3Sð1−

rh
rc
ÞðSþ 1ÞR�Hð1Þ

2 ð3μ̂
2
Þ

μ̂½1þ e3Sð1−
rh
rc
ÞR�J1ð3μ̂2 Þ þ ½ðS − 1Þ − e3Sð1−

rh
rc
ÞðSþ 1ÞR�J2ð3μ̂2 Þ

: ð5:33Þ

Notice that the branch cut17 arising from the square root in
the definition of S cancels in this expression: it is invariant
under S ↦ −S (which implies R ↦ R−1).
We plot the correlator for q ¼ 0 in Fig. 10 (top row)

for rh=rc ¼ 2 (top left plot) and for rh=rc ¼ 20 (top right
plot). The plotted quantity is the logarithm of the absolute
value so both poles and zeros of the correlator appear as

singularities in the left hand plot (those singularities which
have more whitish or bluish colors than the surroundings
are poles). There are two kind of modes:
(1) Modes appearing at small Reϖ ≲ 4, which have

similar structure as the modes of the CR geometry.
We will call them “CR modes.”

(2) Modes for Reϖ ≳ 4, which have larger residues,
and form a line with almost negligible slope. We will
call them “AdS modes.”

In the right hand plot the black line is actually a dense set of
poles (which are all due to CR modes) and zeroes which
accumulate near the real axis as rh increases. This suggests

17There is also another branch cut ∼μ̂4 log μ̂ due to the
nonanalyticity of the Hankel functions, but this cancels against
a similar branch cut in G̃0 of (E14) (where one should take the
limit Δ → 0).
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that there is a branch cut in the limit rh → ∞. We will
elaborate on these observations below.
The limit of large black hole rh → ∞ is indeed interest-

ing. In this limit we find

G̃reg → −
81iπμ̂4

512r4c

μ̂Hð1Þ
1 ð3μ̂

2
Þ þ ðS − 1ÞHð1Þ

2 ð3μ̂
2
Þ

μ̂J1ð3μ̂2 Þ þ ðS − 1ÞJ2ð3μ̂2 Þ
: ð5:34Þ

In the limiting expression, the branch cut has become
physical, as expected: it results from the accumulation

of the poles from the QNMs of finite size black holes. It is
placed on the real ϖ-axis. The discontinuity is given by

DiscG̃reg ¼
27iμ̂3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂2 − 1

p
64ðμ̂J1ð3μ̂2 Þ2 − 2J2ð3μ̂2 ÞJ1ð3μ̂2 Þ þ μ̂J2ð3μ̂2 Þ2Þ

:

ð5:35Þ

We plot the discontinuity (divided by the dominant factor
μ̂4) as a function of μ̂ in Fig. 11. Interestingly, it is well
approximated by DiscG̃reg ¼ iμ̂4 for all μ̂ > 1.

FIG. 10. The (logarithm of the) absolute value of the correlators of the energy-momentum tensor on the complex ϖ-plane in various
analytic approximations. The plots are for X ¼ −1=2 (ξ ¼ ∞) and q ¼ 0. The contours are at constant values of jG̃regj, with orange/
yellow colors (mostly top parts of the plots) indicating small values and blue/white colors (mostly bottom parts of the plots) indicating
large values. Top left: the “glued” correlator of (5.33) at rh=rc ¼ 2. Top right: the correlator of (5.33) at rh=rc ¼ 20. Bottom left: the
largeϖ approximation of the correlator (5.38) with rh=rc ¼ 2. Bottom right: the limit of large black hole (5.34) of the glued correlator.
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The behavior of the correlator (5.33) changes depending

on whether the combination e3Sð1−
rh
rc
ÞR is smaller or larger

than one. It is instructive to study this in the limit of large
ϖ. Choosing the branch such that S ≃ iϖ, we see that
R ∼ expðπϖÞ, and consequently

e3Sð1−
rh
rc
ÞR ∼ exp

�
−3iϖ

�
rh
rc

− 1

�
þ πϖ

�
: ð5:36Þ

This is either exponentially enhanced or suppressed at large
jϖj depending on the phase of ϖ. The critical line is given
by the equation

Imϖ

Reϖ
¼ −

π

3ðrhrc − 1Þ≡ tanϕϖ ð5:37Þ

with −π=2 < ϕϖ < 0. Up to exponentially suppressed
corrections, the large-ϖ approximation for the correlator
therefore amounts to setting the reflection amplitude either
0 or ∞ depending on the phase of ϖ. We find that (5.33)
approaches Eq. (5.34) but with a modified branch choice
for S, so that the change in the branch is determined by
(5.37). Using the standard branch for the square root, the
result may be written as

G̃reg ≃ −
81iπμ̂4

512r4c

×
μ̂Hð1Þ

1 ð3μ̂
2
Þ þ ½eiϕϖ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2iϕϖðμ̂2 − 1Þ

p
− 1�Hð1Þ

2 ð3μ̂
2
Þ

μ̂J1ð3μ̂2 Þ þ ½eiϕϖ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2iϕϖðμ̂2 − 1Þ

p
− 1�J2ð3μ̂2 Þ

ð5:38Þ

as jϖj → ∞. Notice that as rh → ∞ it follows that ϕϖ → 0
and the large-ϖ result approaches (5.34).
We compare the limiting expressions in the limits of

large ϖ and large rh numerically to the full glued

correlator (5.33) in Fig. 10. The left and right plots
on the bottom row are given by (5.38) and (5.34),
respectively. For the left hand plots (which both have
rh ¼ 2rc) we see that the line of the CR modes in the top
left plot has been replaced by a branch cut in the bottom
left plot. The AdS modes are precisely reproduced by the
limiting expression. The accumulation of the modes to
the branch cut in the limit of large rh is clear from the
right hand plots (top right plot has rh ¼ 20rc, and bottom
right plots rh ¼ ∞).
Interpreting the branch cut in (5.38) as the line of the CR

modes, and noting that the AdS modes appear at roughly
constant Imϖ ∼ 1, we can estimate where the lines of the
two sets of modes meet. Using (5.37) we find that this
happens roughly at Reϖ ∼ rh=rc.
Finally we study the dependence of the locations of the

QNMs on the size of the horizon rh. The trajectories of
the modes as rh is varied are shown in Fig. 12. The
results should be compared to those at finite ξ ≃ 26.77 in
Fig. 9 (left) where the variation of rh also changed the
temperature. Notice that Fig. 9 shows a smaller region of
the complex ϖ-plane. The trajectories at small rh (higher
temperatures) are strikingly similar. The main difference
between the two plots is seen at high rh: at finite ξ the
evolution of the QNMs stops at fixed location (given by
the QNMs of the CR geometry) whereas at infinite ξ
each mode approaches ϖ ¼ 1 in the limit rh → ∞. The
evolution also has similarities with that observed in the
case of global AdS [44] where the QNMs approach the
real line as T → 0 but the spectrum remains discrete.
An interesting feature in Fig. 12 is that some of the

modes stop at finite Imϖ as rh decreases while other
evolve smoothly toward smaller values of Imϖ. By
comparing to Fig. 10 we see that (after they have stopped)
these former modes can be identified as the AdS modes,
whereas the evolving modes are the CR modes.

FIG. 11. The discontinuity of the correlator, normalized by the
factor μ̂−4, as a function of μ̂. The result (solid blue curve) is
compared to the function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ̂−2

p
(thin dashed red curve).

FIG. 12. The trajectories of the QNMs on the complexϖ-plane
as rh is varied from rh ¼ 1.2rc (lower end points of the curves) to
rh ¼ 20rc (upper endpoints). The dots are the locations of the
QNMs for rh=rc ¼

ffiffiffi
2

p
; 2; 2

ffiffiffi
2

p
;…16. The dashed lines were

added to guide the eye, they connect the locations at the same rh
as indicated by the labels.
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VI. DISCUSSION

We studied the quasinormal modes of a strongly inter-
acting nonconformal plasma, based on prototype holo-
graphic theories given by Chamblin-Reall blackhole
solutions. The solutions are parametrized by a nonconfor-
mality parameter ξ that ranges from ξ ¼ 4 (conformal
plasma) to ξ ¼ ∞ (critical plasma).
One of our main goals was to determine the approach to

criticality by studying fluctuations in a 1=ξ expansion. We
showed that the fluctuations in this limit are controlled by a
linear dilaton blackhole. Furthermore they can be obtained
analytically directly by solving the fluctuation equations in
the limit ξ → ∞. In particular we showed that the ratio of
the incoming and outgoing waves at the horizon in this
critical limit matches precisely the reflection amplitude on
the linear dilaton blackhole which can be obtained by
Liouville CFT-WZW model techniques. This provides a
nontrivial check on our calculations.
More importantly this connection suggests that the

plasma in the critical limit is governed by such an exact
CFT. This can be taken further by conjecturing that the
entire critical phenomena around the strongly interacting
continuous transition is governed by the Liouville CFT-
WZW model, suggesting for example that the associated
critical exponents in the plasma can be fixed by exact CFT
techniques. We plan to investigate this connection, and its
implications for critical phenomena in strongly interacting
condensed matter theories, e.g., spin models [10] in
future work.
Here, we observe an interesting connection of the

critical limit to the large D limit recently considered by
Emparan and collaborators [17,18]. In fact the exponential
potential for the dilaton can be obtained as a generalized
dimensional reduction from a theory of Einstein gravity
with cosmological constant compactified on a torus [7].
The parameter appearing in the dilaton potential is related
to the number of extra dimensions, which is allowed to be
continuous. In this description, the limit of large ξ
corresponds to the number of extra dimensions going
to infinity. That this limit is analytically tractable appears
to be related to the large-D limit studied in [17,18]. A
fundamental insight in the work of [17,18] is that the
physics of QNM is related to the emergence of different
scales: the horizon radius rh and rh=D, that become
parametrically separated in the large D limit. In particular
[18] noticed that in the large D limit there is a set of
quasinormal modes that are localized in a near-horizon
region of size rh=D. They called them the decoupled
sector, and computed the frequencies up to fourth order in
1=D. Furthermore, in [45] they showed that the quasi-
normal modes localized near the horizon correspond to
the same fluctuations in the linear dilaton blackhole,
because as shown in [46,47], the space-time action of a
D dimensional blackhole geometry dimensionally reduced
on a D-2 dimensional sphere becomes the 2D string

action with the linear dilaton blackhole as the correspond-
ing solution.
In Sec. IV we observed very similar phenomena. The

limit ξ → ∞ focuses in a strip of the geometry of size 1=ξ
near the horizon where one can think of the modes near the
horizon as analogs of the decoupled modes of [18]. We also
showed that the physics of these decoupled modes near the
horizon is determined by the linear dilaton blackhole which
whose properties are in turn determined by the exact CFT
data. These decoupled modes indeed exist in the shear and
sound channels, but not in the tensor channel that we
consider in our paper. Indeed we saw explicitly that our
QNM are not decoupled but depend on the full geometry,
and in fact many of the important features result from the
matching between the near-horizon and the asymptotic
region. Therefore our results are complementary to those in
[18]. One difference between the large D and large ξ limits
is that, whereas in the uplifted description there is no sense
in going beyond D ¼ ∞, in the aforementioned dimen-
sional reduction the corresponding critical value ξ ¼ ∞ is
not a limiting value. One can easily see this is by noting that
the critical limit in parameter X corresponds to the value
X ¼ −1=2þ and one is free to consider black hole solutions
with X < −1=2. Whereas the range 0 > X > −1=2 corre-
sponds to 4 < ξ < ∞, the range −1 < X < −1=2 corre-
sponds to 0 > ξ > −∞. The corresponding black hole
solutions with X < −1=2 do not have good UVasymptotics
however, hence the UV completion becomes indispensable
in this case. We also leave treatment of this case to
future work.
We have observed coalescence of infinitely many non-

hydromodes on the real axis in the critical limit ξ → ∞
dominating over the hydromode whose imaginary part
always stays finite at fixed momentum. This strongly
invalidates the applicability of hydrodynamics below the
momentum range q≲ 1=

ffiffiffi
ξ

p
. This is indeed what one

would expect from a system near a strongly interacting
fixed point. As the correlation length diverges near a
continuous phase transition, all modes except fluctuations
of the order parameter become irrelevant whereby dynam-
ics reorganize itself in a nontrivial fashion. However, we
know in the end that systems at criticality should be
amenable to a hydrodynamic description precisely given
by the gapless effective theory comprised of the fluctua-
tions of the order parameter. It is tempting to conjecture
that breakdown of hydro in our system is due to omission
of these fluctuations. Indeed, as discussed in detail in [10]
the order parameter in these type of holographic theories is
the Polyakov loop which acquires a nontrivial expecta-
tion value above Tc. Polyakov loop is dual to a string that
winds around the Euclidean time circle and its excitations
are related to string excitations some of which, e.g., the
winding tachyon, become massless at criticality [48]. These
string degrees of freedom should presumably be included
to reestablish a hydrodynamic description. Let us also
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mention in passing, that, manifestation of this continuous
phase transition in Lorentzian time is again appearance of
massless poles in the two-point function of Wilson loops,
holographically dual to the fluctuations of a string stretch-
ing between two spacelike separated end points on the
boundary with its tip close to horizon [10].
It might also be of interest to try to connect the findings

of the present paper, with the known hydrodynamic
description of the linear dilaton fluctuations in terms of
density perturbations of an incompressible Fermi sea
composed out of the elementary fermions that describe
the physics of 2d string theory.18

This also motivates a more thorough study of the role
of symmetries near criticality, since the present model
might offer a concrete universal example for strongly
coupled systems developing an infinite number of con-
served currents.
Finally we should also mention that the regulating

procedure we adopt gluing an AdS spacetime, will provide
an explicit breaking of such symmetries that now hold only
in the extreme IR. Ours and similar [27] centaurlike
geometries might then have holographic duals with similar
properties to those of the recently studied SYK model [50],
where extra symmetries arise in the IR limit and are broken
both explicitly and spontaneously by UV effects.
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APPENDIX A: WKB ANALYSIS OF THE
TRANSVERSE FLUCTUATIONS

We study the fluctuation of the transverse spin-2 modes
in the WKB approximation, following the analysis of [26].
We start from the equation in the Schrödinger form (3.13).
The fluctuation has been redefined and one can check that
the boundary conditions are the following:

hðw ∼ 0Þ ∼ C1ð1þOðw1=ξÞÞ þ C2wð1þOðw1=ξÞÞ;
hðw ∼ 1Þ ∼ ð1 − wÞ12−iϖ2 : ðA1Þ

We introduce s ¼ ϖ=q, and we anticipate that in the large q
limit the leading behavior is s ¼ 1þ sαq−α, for some value
of α. We can write the potential as

V ¼ q2Q0 þ q2−αQα þQ2 þ…

Q0 ¼ −
w

2
ξ−1

4ð1 − wÞ2 ;

Qα ¼ −
sα
2

w
2
ξ−2

ð1 − wÞ2 ;

Q2 ¼ −
1

4ð1 − wÞ2 ; ðA2Þ

and we assume for the moment that 0 < α < 2. We see that
the term Qα is subleading in q but it dominates close to the
boundary. We distinguish then a boundary region and an
intermediate region:

boundary∶ w ≪ q−α; h ¼ w
1
2J�ξ=2

�
ξ

ffiffiffiffiffi
sα
2

r
q1−

α
2w

1
ξ

�
;

ðA3Þ

intermediate∶ q−α ≪ w≪ 1; h¼ w
1
2J� ξ

ξþ2

�
ξ

ξþ 2
qw

ξþ2
2ξ

�
:

ðA4Þ

The WKB approximation starts with an Ansatz of the form

h ¼ AeðqT0þq1−αTαþ…Þ; ðA5Þ

Plugging in the equation and expanding in q we find that
A ¼ Q−1=4

0 , and T0, Tα can be found explicitly in terms of
hypergeometric functions:

T0 ¼ i
ξ

ξþ 2
w

ξþ2
2ξ

2F1

�
1;
2þ ξ

2ξ
;
2þ 3ξ

2ξ
; w

�
; ðA6Þ

Tα ¼ −isα
ξ

ξ − 2
w−1

2
þ1

ξ
2F1

�
1;
ξ − 2

2ξ
;
ξþ 2

2ξ
; w

�
: ðA7Þ

For small w, the WKB expansion reduces to

h ∼ w
ξ−2
4ξ exp

�
iξ

ξþ 2
qw

ξþ2
2ξ þ is

ξ − 2
q1−αw

2−ξ
2ξ

�
: ðA8Þ

The change of variable y ¼ wq
2ξ
ξþ2 applied to the near-

boundary equation and the WKB solution shows that the
solution is consistent if

18This description holds for two dimensions, but one can
imagine that it is still valid in the case of no momentum
dependence in the extra transverse directions, or that one can
extend it appropriately in a BMN-like limit akin to what happens
in the 1=2 BPS geometries of [49].
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α ¼ 2ξ

ξþ 2
: ðA9Þ

We recover α ¼ 4=3 in the conformal case, and α < 2 as we
assumed in the beginning. As in the conformal plasma, we
see that the large-q modes are long lived, and even more so
than in the conformal case. Rotating y in the complex
plane, we can also find that the phase of sα is

sα ¼ jsαje−i
2π
ξþ2 ðA10Þ

These results have also been confirmed by numerical
calculations, as shown in Fig. 6. In this plot, the values
of jsαj were determined through the normalizable modes to
the near-boundary Schrodinger equation, which after the
above change of variables reads

h00ðyÞ ¼ 1

4
y2=ξ−2ðy − 2jsαjÞhðyÞ: ðA11Þ

APPENDIX B: NEAR-BOUNDARY BEHAVIOR
AND MATCHING WITH THE LINEAR DILATON

We analyze here the boundary behavior of the fluctua-
tions for generic ξ. If terms including the factor r̂ξ are
dropped, all fluctuation equations take the (zero temper-
ature) form

− ðl02k2r̂þ ðξ − 1Þl0iωÞΞðr̂Þ
þ ð2il0r̂ωþ 1 − ξÞΞ0ðr̂Þ þ r̂Ξ00ðr̂Þ ≃ 0; ðB1Þ

which is related to the Bessel equation. Therefore the
fluctuations have the following behavior near the boundary:

Ξðr̂Þ ¼ C1Γ
�
1 −

ξ

2

��
l02ðω2 − k2Þ

4

�ξ
4

× e−il
0ωr̂r̂ξ=2J−ξ=2ðl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
r̂Þ½1þOðr̂ξþ1Þ�

þ C2Γ
�
1þ ξ

2

��
l02ðω2 − k2Þ

4

�−ξ
4

× e−il
0ωr̂r̂ξ=2Jξ=2ðl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
r̂Þ½1þOðr̂ξÞ�

≡ C1Ξð1Þðr̂Þ þ C2Ξð2Þðr̂Þ ðB2Þ

Omitted terms are Oððr̂=r̂hÞξÞ or equivalently OðwÞ. We
choose the branch of noninteger powers such that they are
real for ω > jkj. The normalization was chosen such that
the boundary expansion has the standard form:

Ξðr̂Þ ¼ C1½1þOðr̂Þ� þ C2r̂ξ½1þOðr̂Þ�: ðB3Þ

The expansion of Ξð1Þ does not contain a term proportional
to r̂ξ for generic ξ. Dimensional reduction [51] suggests

that the VEV should therefore be identified with the
coefficient C2, as was demonstrated in [9].
There is, however, an apparent problem with the defi-

nitions (B2). Namely, whenever ξ is an even integer, the
Bessel functions J�ξ=2ðzÞ are proportional, and do not form
a proper basis for the solutions near the boundary. Both
functions vanish as J�ξ=2ðzÞ ∼ zξ=2 as z → 0. Forcing the
source function Ξð1Þ in (B2) to approach a constant in the
UV results therefore in its normalization factor being
divergent. In the Taylor series around r ¼ 0, the leading
divergent term of Ξð1Þ is ∝ r̂ξ.
Notably the singularities cancel in a well chosen linear

combination of the two functions:

Ξregðr̂Þ≡ Ξð1Þðr̂Þ − e−iπξ=2
Γð1 − ξ

2
Þ

Γð1þ ξ
2
Þ

×

�
l02ðω2 − k2Þ

4

�ξ
2

Ξð2Þðr̂Þ ðB4Þ

where we could have also chosen the opposite sign in the
phase factor e−iπξ=2 (or a suitable linear combination of the
phase factors with opposite signs). Therefore Ξð2Þ and Ξreg

form a proper basis of the solutions for any value of ξ.
In order to understand what this cancellation means, it is

useful to compare these functions to the vacuum solutions
of a massless scalar in AdSξþ1. First, we denote the
Euclidean (rescaled) momentum as p2 ¼ l02ðq2 −ϖ2Þ.
Then the basis functions take a simple form in terms of
the modified Bessel functions I and K:

Ξð2Þðr̂Þ ¼
�
2r̂
p

�
ξ=2

Γ
�
1þ ξ

2

�
e−il

0ωr̂Iξ=2ðpr̂Þ ðB5Þ

Ξregðr̂Þ ¼
2ðpr̂

2
Þξ=2

Γðξ
2
Þ e−il

0ωr̂Kξ=2ðpr̂Þ ðB6Þ

up to corrections suppressed by r̂ξ. These functions are
recognized as the standard expressions for vacuum fluctu-
ations of a massless scalar in AdSξþ1 up to the factor e−il

0ωr̂

which arises due to working in the Eddington-Finkelstein
coordinates. In particular we notice that the Bessel function
K, with all phase factors canceling in (B6), is only obtained
with the current choice of the sign in the phase factor of
(B4). As correlators are expected to be analytic in the upper
complex ω-plane, this choice is natural as (with real p
mapping to positive imaginary ω) it leads to the basis
function Ξreg admitting natural analytic extension to the
whole upper ω-plane.
Notice that the coefficient multiplying Ξð2Þ in (B4) is the

coefficient of the rξ term for generic ξ in the regulated
function Ξreg, and therefore gives the vacuum correlator for
a massless scalar in AdSξþ1. This is also seen from (B5) and
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(B6) as K is the IR-regular solution. To be precise, this is
only true when ξ=2 is noninteger. If ξ=2 ¼ m with m an
integer, the terms ∝ r̂ξ and ∝ r̂2m in the expansion of K
both contribute and partially cancel, so that the divergences
of the Gamma function Γð1 − ξ

2
Þ are regulated.

An IR-regular solution is in general written as

Ξðr̂Þ ¼ C1Ξð1Þðr̂Þ þ C2Ξð2Þðr̂Þ
¼ C1Ξregðr̂Þ þ ðC2 − GsC1ÞΞð2Þðr̂Þ
≡ C1Ξregðr̂Þ þ CregΞð2Þðr̂Þ ðB7Þ

where

Gsðω; kÞ ¼ −
Γð1 − ξ

2
Þ

Γð1þ ξ
2
Þ

�
l02ðk2 − ω2Þ

4

�ξ
2 ðB8Þ

is the vacuum scalar correlator for generic ξ. The full
correlator is then

Gðω; kÞ ¼ C2ðω; kÞ
C1ðω; kÞ

¼ Cregðω; kÞ
C1ðω; kÞ

þ Gsðω; kÞ

≡Gregðω; kÞ þGsðω; kÞ: ðB9Þ

Notice that hereGreg is defined in terms of the well-behaved
basis functions and is therefore regular for any value of ξ.
That is, we have isolated the divergences of the correlator in
the trivial piece Gs, whereas all nontrivial temperature
dependent effects (in particular the poles due to the quasi-
normal modes) remain in Greg. When ξ=2 is an integer only
the latter decomposition in (B7) is well defined: in this case
the full correlator is automatically regulated in exactly the
same way as the vacuum scalar correlator, i.e., thanks to the

cancellation of two terms in the boundary expansion
of Ξreg.
As a final remark, we notice that the origin of the

divergences in Gs can be seen to be the Fourier transform
(see, e.g., [52]):

Z
dωdξ−1k
ð2πÞξ Gsðω; kÞe−iωx0þik⃗·x⃗ ¼ 1

π
ξ
2ðx⃗2 − x20Þξ

ΓðξÞ
Γðξ

2
Þ :

ðB10Þ

In the coordinate space correlator the singularities are
absent for all positive ξ.
The near-boundary solutions (B2) then need to be

matched with the large-ξ solutions in the bulk (4.4) in
order to obtain the complete solution in the limit of large ξ.
We notice that terms Oð1=ξÞ we omitted and we

approximated w1=ξ ≃ 1 in Sec. IVA 1. That is, the expres-
sion (4.4) is valid for ξ ≫ 1 and e−ξ ≪ w. In the above
boundary analysis we dropped terms OðwÞ, so the expres-
sions in (B2) are valid for w ≪ 1 for any value of ξ.
Therefore both (B2) and (4.4) are valid when ξ ≫ 1 and
e−ξ ≪ w ≪ 1 (at fixed q and ϖ). Consequently, we can
match the two solutions in this intermediate region, and as
their combination obtain a solution which holds for any
(potentially extremely small) value of w, and has correc-
tions suppressed at large ξ.
The solutions (4.4) for ξ ≫ 1 and e−ξ ≪ w ≪ 1 have

already been computed in (4.7). What remains to be done is
the analysis of the expressions (B2) and (B4) in this limit,
i.e., compute their behavior at large ξ with fixed w, ϖ, and
q. This is done by applying saddle point approximation to
an integral representation for the Bessel functions in
Appendix C. Inserting these in (B2) and (B4) we find

ΞregðwÞ ≃
2

ffiffiffi
π

p
ffiffiffiffiffi
ξS

p
Γðξ

2
Þ

�
ξ2ðϖ2 − q2Þ

16

�ξ
4

�
e
1
2
ξð−S−iϖÞ

�
1þ S
1 − S

�ξ
4

w
1
2
ð1−iϖ−SÞ þ iθð−ImϖÞe1

2
ξðS−iϖÞ

�
1 − S
1þ S

�ξ
4

w
1
2
ð1−iϖþSÞ

�
ðB11Þ

Ξð2ÞðwÞ ≃ Γð1þ ξ
2
Þr̂ξhffiffiffiffiffiffiffiffi

πξS
p

�
ξ2ðϖ2 − q2Þ

16

�−ξ
4

e
1
2
ξðS−iϖÞ

�
1 − S
1þ S

�ξ
4

w
1
2
ð1−iϖþSÞ ðB12Þ

for Reϖ ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
up to Oð1=ξÞ corrections. For Reϖ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p

we find similarly

ΞregðwÞ ≃
2e

iπ
4

ffiffiffi
π

p
ffiffiffiffiffi
ξS̃

p
Γðξ

2
Þ

�
ξ2ðϖ2 − q2Þ

16

�ξ
4

e
1
2
ξðiS̃−iϖÞ

�
1 − iS̃

1þ iS̃

�ξ
4

w
1
2
ð1−iϖþiS̃Þ

Ξð2ÞðwÞ ≃ Γð1þ ξ
2
Þr̂ξhffiffiffiffiffiffiffiffi

πξS̃
p

�
ξ2ðϖ2 − q2Þ

16

�−ξ
4

�
e−

iπ
4e

1
2
ξðiS̃−iϖÞ

�
1 − iS̃

1þ iS̃

�ξ
4

w
1
2
ð1−iϖþiS̃Þ þ e

iπ
4e

1
2
ξð−iS̃−iϖÞ

�
1þ iS̃

1 − iS̃

�ξ
4

w
1
2
ð1−iϖ−iS̃Þ

�
: ðB13Þ

Matching the above expressions with (4.7) and using the definitions of the coefficients from (B7) leads to

C− ¼ 2
ffiffiffi
π

p
ffiffiffiffiffi
ξS

p
Γðξ

2
Þ

�
ξ2ðϖ2 − q2Þ

16

�ξ
4

e
1
2
ξð−S−iϖÞ

�
1þ S
1 − S

�ξ
4

C1 ðB14Þ
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Cþ ¼ Γð1þ ξ
2
Þr̂ξhffiffiffiffiffiffiffiffi

πξS
p

�
ξ2ðϖ2 − q2Þ

16

�−ξ
4

e
1
2
ξðS−iϖÞ

�
1 − S
1þ S

�ξ
4

Creg þ
2iθð−ImϖÞ ffiffiffi

π
p

ffiffiffiffiffi
ξS

p
Γðξ

2
Þ

�
ξ2ðϖ2 − q2Þ

16

�ξ
4

e
1
2
ξðS−iϖÞ

�
1 − S
1þ S

�ξ
4

C1

ðB15Þ

at small Reϖ.

At large Reϖ (with S ↦ −iS̃ in (4.7)) we obtain

C− ¼ 1ffiffiffiffiffiffiffiffi
πξS̃

p e
1
2
ξðiS̃−iϖÞ

�
1 − iS̃

1þ iS̃

�ξ
4

�
2πe

iπ
4

Γðξ
2
Þ

�
ξ2ðϖ2 − q2Þ

16

�ξ
4

C1 þ e−
iπ
4Γ
�
1þ ξ

2

�
r̂ξh

�
ξ2ðϖ2 − q2Þ

16

�−ξ
4

Creg

�
ðB16Þ

Cþ ¼ Γð1þ ξ
2
Þr̂ξhffiffiffiffiffiffiffiffi

πξS̃
p

�
ξ2ðϖ2 − q2Þ

16

�−ξ
4

e
iπ
4e

1
2
ξð−iS̃−iϖÞ

�
1þ iS̃

1 − iS̃

�ξ
4

Creg: ðB17Þ

The regulated correlator defined in (B9) is then obtained by
combining these relations with (4.10), and the results are
given in Sec. IVA 2.

APPENDIX C: SADDLE POINT
APPROXIMATION OF THE

BESSEL FUNCTIONS

The Bessel functions for generic arguments can be
defined by the integral

JνðzÞ ¼
1

2πi

�
z
2

�
ν
Z
L
dtet−

z2
4t t−ν−1 ðC1Þ

where the integration contour L starts from t ¼ −∞, circles
the origin in counterclockwise direction, and returns to
t ¼ −∞. We wish to evaluate this for

ν ¼ ξ=2; z ¼ ξ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

q
w1=ξ ðC2Þ

taking ξ → ∞ with ϖ, q, and w fixed. In this limit the
integral representation will be dominated near its saddle
points. The result can be found in integral tables, but since
the analysis is relatively simple, we derive the result here.
To identify the saddle points, we study the argument of

the exponential

fðtÞ ¼ t −
z2

4t
− ðνþ 1Þ log t: ðC3Þ

The saddle points are defined by f0ðtÞ ¼ 0. This gives

t ¼ νþ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνþ 1Þ2 − z2

q
≡ t�: ðC4Þ

Second derivatives are given by

f00ðt�Þ ¼
2

t2�

�
t� −

νþ 1

2

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνþ 1Þ2 − z2

p
t2�

: ðC5Þ

Since t� ∼ ξ and fðt�Þ ∼ 1=ξ, the contributions to the
integrals near the saddle points are limited to t − t� ∼

ffiffiffi
ξ

p
,

so that the saddle point approximation works (corrections
from higher order terms in the expansion are suppressed by
1=ξ). The integral can therefore be computed as

JνðzÞ ¼
X
s:p:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πf00ðt�Þ

p
�
z
2

�
ν

efðt�Þ½1þOðξ−1Þ� ðC6Þ

where the sum is only over those saddle points which lie
on the suitably deformed (steepest descent) integration
contour.
At large ξ the saddle points are found at

t� ¼ ξ

4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ϖ2 þ q2

q
Þ þOðξ0Þ: ðC7Þ

When 0 ≤ ϖ <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p
, the points are on the real axis,

and the integration contour only goes through the point
t ¼ tþ. In this case we find that

e−
iϖξw1=ξ

2 Jξ=2

�
ξ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

q
w1=ξ

�

¼ e
1
2
ξðS−iϖÞð1−S

1þSÞ
ξ
4w

1
2
ð−iϖþSÞffiffiffiffiffiffiffiffi

πξS
p

�
1þO

�
1

ξ

��
; ðC8Þ

where we also included the phase factor which appears in
each solution in the text, and S was defined in (4.5). When
ϖ >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p
, we have tþ ¼ ðt−Þ� and the contour passes

both saddle points. In this case
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e−
iϖξw1=ξ

2 Jξ=2

�
ξ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

q
w1=ξ

�

¼ 1ffiffiffiffiffiffiffiffi
πξS̃

p
�
e−

iπ
4e

1
2
ξðiS̃−iϖÞ

�
1 − iS̃

1þ iS̃

�ξ
4

w
1
2
ðiS̃−iϖÞ

þ e
iπ
4e

1
2
ξð−iS̃−iϖÞ

�
1þ iS̃

1 − iS̃

�ξ
4

w
1
2
ð−iS̃−iϖÞ

��
1þO

�
1

ξ

��
:

ðC9Þ

where we used the quantity S̃ of (4.6) the principal branch
of which is analytic for ϖ >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p
.

When ϖ is not real, it is nontrivial to figure out which of
the saddle points should be included. The ambiguous
contribution is, however, from the saddle point which is
exponentially subleading, and therefore it is not important to

compute exactly when it should or should not be included in
the sum. Because of reflection symmetry over the imaginary
axis we may restrict to Reϖ ≥ 0. Numerically we can verify
that the former (latter) result is a good approximation when
0 ≤ Reϖ ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p

(Reϖ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
). Actually, while

the above conditions are enough for our purposes the region
of validity is larger for each expression: Eq. (C8) holds
everywhere (for Reϖ ≥ 0) except for the immediate vicinity
of the line ½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
;∞½, where as Eq. (C9) holds every-

where except in the vicinity of ½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
�. Both expres-

sions fail in within 1=ξ distance from the point ϖ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
where the two saddle points merge. This issue

could be fixed by considering a different analytic approxi-
mation, but this is not necessary for the scope of this article.
For the source term, we find similarly

e−
iϖξw1=ξ

2 J−ξ=2

�
ξ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

q
w1=ξ

�
¼ 1ffiffiffiffiffiffiffiffi

πξS
p

�
2 sin

�
πξ

2

�
e
1
2
ξð−S−iϖÞ

�
1þ S
1 − S

�ξ
4

× w
1
2
ð−S−iϖÞ þ e−

iπξ
2 e

1
2
ξðS−iϖÞ

�
1 − S
1þ S

�ξ
4

w
1
2
ðS−iϖÞ

��
1þO

�
1

ξ

��
ðC10Þ

when 0 ≤ Reϖ ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
and

e−
iϖξw1=ξ

2 J−ξ=2

�
ξ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ2 − q2

q
w1=ξ

�
¼ 1ffiffiffiffiffiffiffiffi

πξS̃
p

�
e
iπξ
2
−iπ

4e
1
2
ξðiS̃−iϖÞ

�
1 − iS̃

1þ iS̃

�ξ
4

× w
1
2
ðiS̃−iϖÞ þ e−

iπξ
2
þiπ

4e
1
2
ξð−iS̃−iϖÞ

�
1þ iS̃

1 − iS̃

�ξ
4

w
1
2
ð−iS̃−iϖÞ

��
1þO

�
1

ξ

��

for Reϖ ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
. In the second term of (C10), the

phase factor e−
iπξ
2 is correct for Imϖ > 0. For Imϖ < 0,

this factor should be19 e
iπξ
2 .

APPENDIX D: NUMERICAL CHECK OF
THE TRANSVERSE CORRELATOR

OF THE CR PLASMA

In this Appendix we check numerically the analytic
results in Sec. IV. In order to compare the analytic appro-
ximation to the full correlator, we evaluated it numerically

(see Sec. III A). The results for the comparison were
already presented in Fig. 7 in the main text. As we argued
in Sec. III, the result only depends on r̂h trivially, and for
this plot we have set r̂h ¼ 1. In the rest of this Appendix we
do several additional numerical checks.
We have carried out a further rough check in the region

of large negative Imϖ, by comparing the residues of the
hydrodynamic modes in the shear and sound channels to
the analytic approximation of the transverse tensor corre-
lator. This makes sense because, as it turns out, the residues
of the hydrodynamic modes are numerically easier to
compute than full numerical result for the correlator, and
therefore can be used to probe the regime of large negative
Imϖ. A natural expectation is that at large q the residues
are of the same order as the average values of the correlators
near the modes. If the correlators in the shear and sound
channels are further comparable to the transverse tensor
correlator, the analytic approximation for the latter, evalu-
ated at the location of the hydro mode, should be close to
the residue for X close to −1=2. We have tested this
numerically and show the results in Fig. 13. For the shear

19Following precisely the contours of steepest descent leads to
a more complicated structure on when the various saddle point
contributions should be included, which is not analytically
tractable. All results presented here agrees with the exact result
(the Bessel functions) up small corrections for the values of ϖ
specified in the text. The fact that we do not follow the precise
contours of steepest descent in principle leads to ambiguities in
the results, but within the specified regimes these involve only
saddle point contributions which are strongly suppressed with
respect to the leading result.
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mode (left plot) the comparison works remarkably well
even at X ¼ 0 (blue curves). In particular, the zeroes of the
residues appear very close to the zeroes of the analytic
result, and the agreement improves as X → −1=2: for X ¼
−0.45 (magenta curves). For the sound mode (right plot) a
good agreement is only seen for X ¼ −0.45.
We have also carried out the comparison of the formulas

(4.19) and (4.22) to the nodes of the analytic approximation
for the correlator and to the modes extracted numerically
directly from the fluctuation equation.
We plot the locations of some modes (relatively low in

the spectrum) on the complex ϖ-plane for X ¼ −0.45
(ξ ¼ 16.7895) and for q ¼ 0 in Fig. 14 (top row). The blue
disks are the numerical results from solving the full

equation (3.6) in both plots. Similarly, the red boxes are
the nodes of the analytic approximation (4.13) (which have
been extracted numerically). The blue curve in the left-hand
plot is given by (4.22), or more precisely by varying the
point of expansion as ϖ0 ¼ Reϖ in this formula. The red
dashed curve is the approximation at large ϖ: Imϖ ¼
−πReϖ. In the left-hand plot, we show the locations of the
nodes obtained from (4.19) as triangles. The triangles with
different shades of gray correspond to different expansion
points S̃ ¼ S̃0. The black triangles are for “optimal” choices
of the expansion point, defined such that Re δϖ ¼ 0 for
n ¼ 0 in (4.19). That is, the expansion point lies directly
above the predicted location of the node. The dark gray
triangles are then the nodes for n ¼ �1 and light gray

FIG. 13. The (absolute values of the) residues of the hydrodynamic modes compared to the analytic approximation for the (transverse
tensor) correlator at the location of the mode as a function of q. Left: shear mode. Right: sound mode. The thick curves are the values of
the residues and the thin curves show the correlator at the location of the mode. The values of X are (roughly from top to bottom) for the
solid blue, dashed red, and dotted magenta curves are X ¼ 0, X ¼ −0.35, and X ¼ −0.45, respectively.

FIG. 14. Comparison of the numerical results for the location of quasinormal modes to analytic approximations. Top row: X ¼ −0.45.
Bottom row: X ¼ −0.495. See text for details.
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triangles for n ¼ �2. The agreement is good, given that the
approximation (4.19) is based on linear expansion around
points on the real ϖ-axis.
We show similar results for X ¼ −0.495 in Fig. 14

(bottom row) (so that ξ ≃ 151.75). This value lies so close
to the critical point X ¼ −0.5 that the direct numerical
solution of the fluctuation equations was not possible.
Therefore we show only the predictions from the various
analytic approximations. As ξ grows, the analytic approxi-
mation becomes better as expected. In particular the
locations of the QNMs in the bottom right plot now shows
convergence.

APPENDIX E: FLUCTUATIONS ANALYSIS FOR
A GENERIC DILATON POTENTIAL

In this Appendix we discuss the fluctuations for the case
of a smooth, generic dilaton potential VðϕÞ which produces
asymptotically AdS (CR) geometry in the UV (IR). We use
the conformal coordinates in terms of which the fluctuation
equation takes a simple form. In order to describe the UV
behavior, we need the fluctuation equations for a generic
potential VðϕÞ. As we constrain ourselves to the case of
small temperatures, so that the horizon lies in the IR
asymptotic region of the metric and the blackening factor
equals one up to r ∼ l, it is enough to study the fluctuations
for generic VðϕÞ at zero temperature.
At zero temperature, all fluctuations of the metric satisfy

the same equation, given by20

Ξ00ðrÞ þ 3A0ðrÞΞ0ðrÞ þm2ΞðrÞ ¼ 0; ðE1Þ

where m2 ¼ ω2 − k2. The dilaton fluctuation mixes with
the metric, and its equation can be written as

ζ00ðrÞ þ
�
3A0ðrÞ þ 2

z0ðrÞ
zðrÞ

�
ζ0ðrÞ þm2ζðrÞ ¼ 0 ðE2Þ

where zðrÞ ¼ ϕ0ðrÞ=A0ðrÞ. Here ζ is related to the defi-
nitions of Sec. III by

eiωrζðrÞ ¼ 1

2
ðH̃22ðrÞ þ H̃33ðrÞÞ −

2

zðrÞ ψ̃ðrÞ ðE3Þ

where the exponential factor arises due to the change of the
time coordinate from t to v.
Near the boundary the fluctuation equations take the

AdS5 form:

Ξ00ðrÞ − 3

r
Ξ0ðrÞ þm2ΞðrÞ ¼ 0; ðE4Þ

ζ00 þ 2Δ − 3

r
ζ0ðrÞ þm2ζðrÞ ¼ 0; ðE5Þ

where we dropped Oððr=lAdSÞΔÞ corrections.
Because the metric behaves smoothly around the tran-

sition region (r ∼ l), the fluctuation wave function will be
smooth as well. This implies that we can require approxi-
mate continuity between the wave functions in the asymp-
totic AdS (r ≪ l) and CR (r ≫ l) regimes, up to factors
Oð1Þ which arise from the nontrivial evolution of the
functions over the transition region. This can be used to
estimate the locations of the QNMs for any value of m so
long as T < Tc. We will make the matching procedure
more precise in the main text.
When, in addition, m is small we can make a generic

precise statement about the QNMs. Namely, in Sec. IV we
demonstrated that the locations of the QNMs are deter-
mined by the geometry in the vicinity of the horizon.
Therefore we expect that at small temperatures and for
small enough m the QNMs of the UV modified geometry
match with those of the CR geometry. In particular, when ξ
is large, the analytic results of Sec. IV for their locations
apply. We can read from the above equations when this is
the case as follows.
In the UV, the wave function of the quasinormal mode is

normalizable. However, it is not necessary to compute the
wave function down to r ¼ 0 exactly in order to determine
the QNMs at finite precision. Depending on r, ω, and k,
the basis of solutions to the fluctuation equations can
be chosen to be either a pair where one of the functions
rapidly increases and the other decreases with r, or a pair
corresponding to an ingoing and an outcoming wave. Close
to the UV boundary we expect the former, and near the
horizon the latter. We need the change in the behavior of
the fluctuations to happen far in the IR with respect to the
transition region r ∼ l for the QNMs to be determined by
the IR part of the geometry only. Since, as we have
demonstrated above, the transition of the geometry is
smooth, it is enough to look at the AdS equation (E5).
We see that the wavy behavior is absent for m ≪ 1=l. In
conclusion, the results for the QNMs in Sec. IVare reliable
if T < Tc and m ≪ 1=l.
The lowest quasinormal modes have m ∼ T as we have

seen in Sec. IV. Therefore for the conditions T < Tc and
m ≪ 1=l to hold simultaneously we actually need that
T ≪ Tc (since Tc ∼ 1=l). The condition for the CR results
to hold for a certain mode can be written as T ≪
1=ððm=TÞlÞ where the ratio m=T is independent of T to
a good approximation.
We will now formulate the statement on continuity more

precisely. We discuss the wave function ζ; the definitions
for the transverse spin two modes are obtained by set-
ting Δ ¼ 0.
A generic solution to the fluctuation equations (at zero

temperature) can be expressed either in UV or IR bases,

20In Sec. III we wrote the fluctuation equations in the
Eddington-Finkelstein coordinates. However, here it is conven-
ient to use the true time coordinate t instead of the tortoise
coordinate v in order to restore Lorentz covariance explicitly.
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which are defined as follows. In the UV (r → 0), the
equation (E5) is solved by

ζðrÞ ¼ Cð1Þ
UV

iπ
22−ΔΓð2 − ΔÞmΔ−2 r

2−ΔHð1Þ
2−ΔðmrÞ

þ Cð2Þ
UV

Γð3 − ΔÞ
2Δ−2m2−Δ r2−ΔJ2−ΔðmrÞ

≡ Cð1Þ
UVζ

ð1Þ
UVðrÞ þ Cð2Þ

UVζ
ð2Þ
UVðrÞ ðE6Þ

up to corrections Oððr=lAdSÞΔÞ. Here Hð1Þ is the Hankel
function of the first kind. In the IR we find that

ζðrÞ ¼ Cð1Þ
IR

iπðrþ l0Þξ=2Hð1Þ
ξ=2ðmðrþ l0ÞÞ

2ξ=2m−ξ=2Γðξ
2
Þ

þ Cð2Þ
IR

2ξ=2Γðξ
2
þ 1Þðrþ l0Þξ=2Jξ=2ðmðrþ l0ÞÞ

mξ=2l0ξ

≡ Cð1Þ
IR ζ

ð1Þ
IR ðrÞ þ Cð2Þ

IR ζ
ð2Þ
IR ðrÞ ðE7Þ

up to logarithmically suppressed corrections. Notice that
we included the shift by l0 which also appears in the
background above, and the normalization of the vev term is
the same is in (B5) and (B6) (where p2 ¼ −m2)—the factor
of l0ξ was absorbed into a rescaling of r in Secs. II and IV.
The presence of this factor ensures that the UV and IR
fluctuations can be matched in the transition regime r ∼ l
with Oð1Þ coefficients at large ξ.
The UV and IR coefficients are related through a

transition

CUV ¼ MCIR ðE8Þ

where CUV=IR ¼ ðCð1Þ
UV=IR; C

ð2Þ
UV=IRÞ and, thanks to linearity,

the 2 × 2 transition matrixM is the same for all solutions ζ.
The form of the matrix M will of course depend on the
details of the evolution of the fluctuations over the
transition region r ∼ l. This can in principle be computed
numerically but the computation turns out to be challenging
due to precision issues. However we can find an approxi-
mate form simply using the asymptotic solutions for the
fluctuations and requiring continuity (and continuity of the
derivatives) to hold between the IR and UV expansions
near r ∼ l.
We develop the continuity argument for an explicit

analytic approximation in the case of the fluctuations of
the metric in Sec. V B. In the rest of this Appendix we point
out some general properties of M in the limit of small m.
Namely, for zero m, the fluctuation equations admit an
exact solution:

ζðrÞ ¼ C1 þ C2

Z
r

0

e−3Aðr̃Þ

zðr̃Þ2 dr̃: ðE9Þ

This implies the following relations at m ¼ 0

Cð1Þ
UV ¼ Cð1Þ

IR þOð1ÞCð2Þ
IR ðE10Þ

e2ΔÃ0ϕ2
0Δ2ð4 − 2ΔÞl3−2Δ

AdS Cð2Þ
UV ¼ 4ð1 − X2ÞX2e4A0l−1Cð2Þ

IR

ðE11Þ

That is, three of the components of the matrix M could be
solved. At finite m this implies that

M11 ¼ 1þOðm2Þ; M21 ¼ Oðm2Þ;

M22 ¼
4ð1 − X2ÞX2e4A0

e2ΔÃ0ϕ2
0Δ2ð4 − 2ΔÞl3−2Δ

AdS l
þOðm2Þ: ðE12Þ

For the case of the transverse spin-two correlator (Δ ¼ 0)
the expression for the element M22 is singular. In this case
the exact solution is the same as in (E9) but without the
z-dependent factor. Repeating the calculation for this
solution yields

M22 ¼
e4A0ð1 − X2Þ

ll3
AdS

þOðm2Þ: ðE13Þ

Finally we express the correlators in terms of the
transition matrix and the analytic expressions derived in
Sec. IV. The correlator is given as the ratio of the coefficient
of the terms ∝ r0 and ∝ r4−2Δ in the UV expression (E6).
Taking into account the subleading terms of the Hankel
function in (E6) this gives

G̃ ¼ G̃0 þ G̃reg ≡ −
22Δ−4eiπΔm4−2ΔΓðΔ − 1Þ

Γð3 − ΔÞ þ Cð2Þ
UV

Cð1Þ
UV

ðE14Þ
where the regular term was separated as in Appendix B.
There is a singularity at Δ ¼ 0 in the first term which is
regulated (due to cancellation of two terms in the UV
expansions when Δ ¼ 0 exactly) as in Sec. B. In terms of
the IR quantities we find

G̃ ¼ G̃0 þ
M21 þM22

Cð2Þ
IR

Cð1Þ
IR

M11 þM12
Cð2Þ
IR

Cð1Þ
IR

¼ G̃0 þ
M21 þM22Greg

M11 þM12Greg
:

ðE15Þ
Here Greg is the analytic expression derived in Sec. IV. One
should recall, however, that the origin of the coordinate r is
shifted in the IR regime with respect to the definitions of
Sec. IV, and that the r̂ coordinate of Sec. IV is moreover
related to r by rescaling r̂ ¼ r=l0 (i.e., by a factor which
diverges as ξ → ∞). This implies that the factor r̂−ξh in Greg

of Sec. IVA should be replaced by ð1þ rh=l0Þ−ξ.
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