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We provide the first steps toward a flat space holographic correspondence in two bulk spacetime
dimensions. The gravity side is described by a conformally transformed version of the matterless Callan-
Giddings-Harvey-Strominger model. The field theory side follows from the complex Sachdev-Ye-Kitaev
model in the limit of large specific heat and vanishing compressibility. We derive the boundary action
analogous to the Schwarzian as the key link between gravity and field theory sides and show that it
coincides with a geometric action discovered recently by one of us [H. R. Afshar, Warped Schwarzian
theory, J. High Energy Phys. 02 (2020) 126].
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [1–3] reinvigo-
rated studies of Jackiw-Teitelboim (JT) gravity [4,5] since
in a certain limit it is the gravity dual of the former [6]. This
holographic relationship, dubbed nAdS2=nCFT1, inspired
numerous research activities in the past few years in gravity
and condensed-matter communities; see e.g., [7–46]. One
crucial piece of the puzzle is the Schwarzian action [1,6]
that arises in the large N and strong coupling limit on the
quantum mechanics side and, upon imposing suitable
boundary conditions, also on the gravity side.
Given the impressive evidence for AdS=CFT realizations

of holography, it is justified to ask how general the
holographic principle works, if it works beyond the
AdS=CFT correspondence and in particular if and how it
works in asymptotically flat spacetimes. See [47–70] and
references therein for selected earlier results in flat space
holography.
The main goal of our paper is to find a model analogous

to JT that leads to a holographic relationship involving flat

space instead of AdS2, with some suitable replacement of
the Schwarzian action.
The Calla-Giddings-Harvey-Strominger (CGHS) model

[71] is a prime candidate for the gravity side of flat space
holography since all solutions have asymptotically vanish-
ing Ricci scalar. This opens up the prospect to construct a
concrete holographic correspondence between flat space
dilaton gravity in 1þ 1 dimensions and some cleverly
designed quantum system of (complex) fermions in 0þ 1
dimensions.
The principal result of this paper is that the flat space

analog of the Schwarzian action is given by

Itw½h; g� ¼ κ

Z
β

0

dτ

�
T h02 − g0

�
iPh0 þ h00

h0

�
þ g00

�
; ð1Þ

where κ is a coupling constant, β is inverse temperature,
and prime denotes derivative with respect to τ, the time
direction along the boundary. The time-reparametrization
field hðτ þ βÞ ¼ hðτÞ þ β is quasiperiodic and the phase
field gðτÞ, in the absence of winding, is periodic. When the
functions T and P are constant, we refer to them as mass
and charge, respectively. While mass can be arbitrary, it
will turn out that regularity demands a linear relationship
between charge and temperature. The superscript tw stands
for “twisted warped” and stems from the symmetries (7)
that govern our action. On the gravity side κ is essentially
the inverse Newton constant, as evident from our starting
point (2). On the field theory side, κ is essentially the
geometric mean of specific heat at constant charge and zero
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temperature compressibility, as evident from our final
equation (32).
The remainder of our paper is organized as follows. We

start by gaining some intuition about our gravity model in
the metric formulation and then switch to a gauge theoretic
formulation. The latter is employed to derive our main
result (1). Finally, we recover the boundary action (1) from
a scaling limit of complex SYK.

II. METRIC FORMULATION OF CGHS

Following Cangemi and Jackiw [72], we manipulate the
CGHS action [71] in three ways: (i) for simplicity, we set all
matter fields to zero, (ii) we perform a Weyl rescaling
(depending on the dilaton X) of the metric gμν, and (iiii) we
“integrate in” an Abelian gauge field Aμ and an auxiliary
scalar field Y that is constant on shell. The action (εμν is the
ε-tensor)

I dCGHS ¼ κ

2

Z
d2x

ffiffiffiffiffiffi
−g

p ðXR − 2Y þ 2Yεμν∂μAνÞ ð2Þ

provides a reformulation of the CGHS model referred to asdCGHS. We solve now the dCGHS field equations,

R ¼ 0; ð3Þ

εμν∂μAν ¼ 1; ð4Þ

∇μ∇νX − gμν∇2X ¼ gμνY Y ¼ Λ ¼ const; ð5Þ

with suitable boundary and gauge fixing conditions.
In Eddington-Finkelstein gauge, the most general

solution to the Ricci-flatness condition (3) is given by
Rindler-type black hole metrics of the form

ds2 ¼ −2dudrþ 2ðPðuÞrþ T ðuÞÞdu2: ð6Þ

The loosest set of boundary conditions compatible
with the gauge fixing (6) allows fluctuations of both free
functions, δP ≠ 0 ≠ δT . These boundary- and gauge-
fixing conditions are preserved by asymptotic Killing
vectors ξðε; ηÞ ¼ εðuÞ∂u − ðε0ðuÞrþ ηðuÞÞ∂r since
Lξgμν ¼ OðδgμνÞ, namely, Lξgrr ¼ 0 ¼ Lξgur and
Lξguu ¼ δξPrþ δξT , with δξP ¼ εP0 þ ε0P þ ε00 and
δξT ¼ εT 0 þ 2ε0T þ η0 − ηP. Prime is the derivative
along retarded time u and Lξ the Lie-derivative along ξ.
The Lie-bracket algebra of the asymptotic Killing

vectors ½ξðε1; η1Þ; ξðε2; η2Þ�Lie ¼ ξðε1ε02 − ε2ε
0
1; ðε1η2 −

ε2η1Þ0Þ in terms of Laurent modes, Ln ¼ ξðε ¼ −unþ1; η ¼
0Þ and Mn ¼ ξðε ¼ 0; η ¼ un−1Þ, yields ½Ln; Lm�Lie ¼
ðn −mÞLnþm, ½Ln;Mm�Lie ¼ −ðnþmÞMnþm, and
½Mn;Mm�Lie ¼ 0. This algebra consists of a Witt subalgebra
generated by Ln and spin-0 supertranslations generated by
Mn. We refer to it as BMS2 [73].

In axial gauge for the Uð1Þ connection, the field
equation (4) is solved by the two-dimensional Coulomb
connection A ¼ rd u. Its preservation under combined
diffeomorphisms and gauge transformations, δξ;σAν ¼
ξμ∂μAν þ Aμ∂νξ

μ þ ∂νσ, relates the functions η and σ,
η ¼ σ0, which can be interpreted in two different ways.
Either one concludes that σ has to contain a ln u term, since
M0 is allowed to be nonzero, or one concludes that M0 is
forbidden, since σ is assumed to have a Laurent series
around u ¼ 0. The first option leads to the BMS2 sym-
metries discussed above. The second option leads to a
slight modification of the transformation properties,

δξP ¼ εP0 þ ε0P þ ε00; ð7aÞ
δξT ¼ εT 0 þ 2ε0T þ σ00 − σ0P: ð7bÞ

In the present paper, we focus on the second option, since it
guarantees that the Wilson loop in the complex u plane
encircling the origin u ¼ 0 is gauge invariant, δσ

H
A ¼ 0;

in other words, there are no winding modes.
Defining instead of Mn new Fourier modes Jn ≔

ξð0; σ ¼ unÞ yield the asymptotic symmetry algebra in
terms of asymptotic Killing vector modes ½Ln; Lm�Lie ¼
ðn −mÞLnþm, ½Ln; Jm�Lie ¼ −mJnþm, and ½Jn; Jm�Lie ¼ 0,
which is known as “warped Witt algebra,” the centerless
version of either the warped conformal algebra [76] or the
twisted warped conformal algebra [77].
Finally, the rr component of the field equation (5) is

solved by dilaton fields linear in the radial coordinate

X ¼ x1ðuÞrþ x0ðuÞ: ð8Þ

The remaining components of the field equation (5), which
involve the functions xiðuÞ, will be determined in the gauge
theoretic formulation of dCGHS.
III. GAUGE THEORY FORMULATION OF CGHS

For the gauge theoretic formulation as non-Abelian BF
theory [72,78], we use conventions analogous to [79]. The
first order form of the dCGHS bulk action (2) is given by

IBF½B;A� ¼ κ

Z
hB;Fi; ð9Þ

where κ is the coupling constant, B is a scalar, and
F ¼ dAþA ∧ A the non-Abelian field strength. The
connection

A ¼ ωJ þ eaPa þ AZ ð10Þ

contains dualized spin-connection ω, zweibein ea, and
Uð1Þ connection A. The generators obey the Maxwell
algebra [80] whose nonzero commutators read ½Pa; Pb� ¼
ϵabZ and ½Pa; J� ¼ ϵa

bPb. The scalar field
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B ¼ XZ þ Xaϵa
bPb þ YJ ð11Þ

comprises the dilaton X, Lagrange multipliers Xa for
torsion constraints, and the auxiliary field Y. Finally, h; i
denotes the bilinear form with nonvanishing entries,

hJ; Zi ¼ −1 hPa; Pbi ¼ ηab: ð12Þ

We use light cone gauge for the Minkowski metric,
ηþ− ¼ 1, in terms of which the Levi-Civitá symbol is
ϵ�� ¼ �1, and the gauge algebra reads ½Pþ; P−� ¼ Z and
½P�; J� ¼ �P�. Integrating out the Lagrange multipliers
Xa and solving the torsion constraints, the action (9) with
(10)–(12) can be shown to be equivalent to (2).
Boundary conditions compatible with the ones in the

metric formulation are given by

A ¼ b−1ðdþ aÞb B ¼ b−1xb; ð13Þ

with b ¼ exp ð−rPþÞ and

a ¼ ðT ðuÞPþ þ P− þ PðuÞJÞdu; ð14Þ

x ¼ xþðuÞPþ þ x1ðuÞP− þ YJ þ x0ðuÞZ; ð15Þ

where both functions in the connection are allowed to
vary, δT ≠ 0 ≠ δP.
The equations of motion reduce to

daþ a ∧ a ¼ 0 ¼ dxþ ½a; x�: ð16Þ

The first one is obeyed automatically by our ansatz (14).
The second one, which states that x is the stabilizer
of a, holds provided Y ¼ Λ ¼ const., and the following
differential equations are fulfilled: ðxþÞ0 ¼ Pxþ − T Y,
x01 ¼ −Px1 þ Y, and x00 ¼ xþ − T x1. Using them, x is
conveniently parametrized by two functions x1 and x0,

x ¼ ðx00 þ T x1ÞPþ þ x1P− þ ðx01 þ Px1ÞJ þ x0Z: ð17Þ

IV. ASYMPTOTIC SYMMETRIES

The boundary condition preserving gauge transforma-
tions δλB ¼ ½B; λ� and

δλA ¼ dλþ ½A; λ� ¼! OðδAÞ ¼ ðOðrÞPþ þOð1ÞJÞdu
ð18Þ

are generated by gauge parameters λ ¼ b−1ϵb with

ϵ ¼ ϵþðuÞPþ þ εðuÞP− þ ϵJðuÞJ þ σðuÞZ: ð19Þ

The absence of the P− and Z components on the right-hand
side of (18) yields consistency relations between the
functions in the gauge parameter (19).

ϵJ ¼ ε0 þ Pε ϵþ ¼ σ0 þ T ε: ð20Þ

The boundary condition preserving gauge transforma-
tions (18)–(20) imply precisely the transformation laws (7),
which is the twisted warped conformal transformation
behavior introduced in [77]. Therefore, the analog of the
conformal symmetries that govern the Schwarzian action
are twisted warped conformal symmetries, which govern
our boundary action (1).

V. BOUNDARY ACTIONS

Our derivation of the boundary action for dCGHS follows
closely the derivation of the Schwarzian action in Sec. 3
of [79].
From now on, we work in Euclidean signature with

periodic boundary time, t ∼ tþ β, where β is inverse
temperature. Mapping Lorentzian to Euclidean results
requires the following replacements: u → iu ¼ t, ηab →
δab, P� ¼ PE

1 � iPE
0 , Z ¼ iZE, J ¼ iJE, and x0;1 ¼ −ixE0;1

(with real xE0;1). The fields are given by (10) and (11),
with all quantities replaced by their Euclidean counter-
parts. We use the definition

H
dt ¼ R β

0 dt and dot
means d

dt.
The variation of the BF action (9) apart from the bulk

equations of motion yields a boundary term [79],

δItw ¼ −κ
I

dthx; δati: ð21Þ

Our aim is to cancel this boundary term by variation of a
boundary action. To this end, we use a convenient repre-
sentation of the connection, at ¼ ftxþ G−1∂tG. A consis-
tent choice isG ¼ exp ðxE0 ðiPE

1 − PE
0 ÞÞ exp ð−i lnð−ixE1 ÞJEÞ

expð− R
t xE0=x

E
1Z

EÞ and ft ¼ 1=xE1 . We impose as integra-
bility condition that the function ft has a fixed zero mode
(which we set to unity with no loss of generality). As shown
below, this guarantees that the first variation of the full
action vanishes for all variations preserving our boundary
conditions.
The variation of the boundary action (21) expands as

δItw ¼ −κ
I

dt½δðftCÞ þ Cδft

− hð∂txþ ½G−1∂tG; x�Þ; G−1δGi þ ∂thx; G−1δGi�;
ð22Þ

with the bilinear Casimir [83]

C ¼ 1

2
hB;Bi ¼ 1

2
hx; xi: ð23Þ

The second term in (22) vanishes on shell since C is
constant and ft has a fixed zero mode, while the terms in
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the second line vanish on shell or because they integrate to
zero; thus, only the first term remains, which is integrable
in field space, leading to the boundary action

Itw ¼ −κ
I

dt ftC: ð24Þ

For future purposes, we define ft ¼ _f, where f ¼ tþ � � �
is a quasiperiodic function that has arbitrary Fourier modes
but a fixed linear term. The full action

ΓBF½B;A� ¼ IBF½B;A� − κ

I
dt _fC ð25Þ

has a well-defined variational principle, i.e., its first
variation vanishes for all variations that preserve our
boundary and on shell conditions (13)–(16).
Plugging the Euclidean version of the expression (17) for

x into the bilinear Casimir (23) yields

C ¼ −
1

ð _fÞ2 ðT − _fxE0P þ i _f _xE0 þif̈xE0 Þ; ð26Þ

where we used the relation 1=xE1 ¼ _f. Defining additionally
_g ≔ ixE0 _f, the boundary action (24) with the expression for
the Casimir (26) is nearly our final result.

Itw ¼ κ

I
dt
_f
ðT þ i_gP þ g̈Þ: ð27Þ

The boundary action (27) depends functionally on f and g,
both of which are boundary scalars, as evident from their
transformation behavior under asymptotic symmetries,
δλf ¼ ε _f and δλg ¼ σ þ ε_g. The latter also shows that g
is a phase under Uð1Þ gauge transformations.
As in the JT case [79], we reparametrize the time

coordinate along the boundary by a diffeomorphism
τ ≔ fðtÞ, where τ is our new (Euclidean) time coor-
dinate with period β, and introduce the inverse of f as a
new field hðτÞ ≔ −f−1ðτÞ. The other field, g, now also
depends on τ and prime from now on means derivative
with respect to τ. Implementing this diffeomorphism in
the boundary action (27) establishes the boundary action
(1) announced in the introduction, where prime
means d

dτ.
The action (1) is our main result and constitutes the

analog of the Schwarzian. Since it has a geometric
interpretation as group action for twisted warped coadjoint
orbits, governed by the symmetries (7), we refer to it as
“twisted warped action.’. This is analogous to the inter-
pretation of the Schwarzian action as group action for
Virasoro coadjoint orbits [86,87]. We refer to [88] and
references therein for more on these mathematical aspects.

VI. SOLUTIONS TO TWISTED
WARPED THEORY

We study now classical solutions of the action (1)
for constant representatives, T ¼ T 0 and P ¼ P0. The
Hamiltonian formulation involves three canonical pairs
(i ¼ 1, 2, 3),

Itw½qi; pi� ¼ −κ
Z

β

0

dτðpiq0i − p1p2 − eq1p3Þ: ð28Þ

The relation to the original variables is q3 ¼ expðiP0hÞ,
q2 ¼ gþ ihT 0=P0 while all other canonical variables are
of auxiliary nature to get rid of higher derivatives. The
interaction term with the exponential in q1 also appears in
the Schwarzian theory; see Eq. (2.1) in [39]. The key
difference is the kinetic term, p2

1 for the Schwarzian and
p1p2 for the twisted warped Hamiltonian.
Solving the Hamiltonian equations of motion yields

q3 ¼ h0 þ h1eiτ=τ0 and q2 ¼ g0 − ig1τ þ g2eiτ=τ0 . These
solutions depend on six integration constants, g0, g1, g2,
h0, h1, τ0, the latter playing the role of the periodicity,
τ0 ¼ β

2π. The integration constants h0 and g0 are constant
shifts, while h1 and g2 are amplitudes in front of oscillating
terms. The remaining constant, g1, captures the nonper-
iodicity of q2 and is responsible for the on shell action
being nonzero, Itw½qi; pi�jEOM ¼ −2πκg1.

VII. THERMODYNAMICS

Assuming g1 is independent from temperature allows to
deduce the entropy S ¼ −Itw½qi; pi�jEOM ¼ 2πκg1 from the
on shell action. Inserting all our definitions we recover the
well-known fact that entropy is given by the dilaton at the
horizon [89],

S ¼ 2πκXjhorizon: ð29Þ

The result for entropy (29) can be derived along the lines
of [7,43]. One aspect of this derivation is worth high-
lighting: the holonomy of a along the thermal cycle must
belong to the center of our gauge group for regularity (in
order to have contractible thermal cycles). Assuming a
single cover, we find that this regularity condition relates to
temperature T ¼ β−1 and charge

P0 ¼ 2πT ð30Þ

while mass T 0 remains arbitrary. The label “charge” is
justified for P0 since the equations of motion imply P0 ¼
Y and Y is theUð1Þ charge. The label “mass” is justified for
T 0 as it is the subleading term in the metric (6) and since
the associated function T transforms like a stress tensor
(7b) in a twisted warped field theory [77].
A peculiar aspect of dCGHS black hole thermodynamics

is that the inverse specific heat (at fixed charge) vanishes,
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C−1 ¼ 1
T
dT
dS jδP0¼0 ¼ 0, since the Hawking-Unruh temper-

ature T trivially does not vary if the charge P0 is kept fixed
due to the relation (30). This property is well known [90],
but will be crucial for the scaling limit from complex SYK.

VIII. SCALING LIMIT FROM COMPLEX SYK

We turn now to the field theory side, starting with the
complex SYK model [6,27,91–93]. The effective action
governing the dynamics of the collective low temperature
modes of complex SYK is given by (see [27] and Eq. (1.12)
in [93])

IcSYK ¼ NK
2

Z
β

0

dτ

�
g0 þ 2πiE

β
h0
�

2

−
Nγ

4π2

Z
β

0

dτ

�
tan

�
π

β
h

�
; τ

�
; ð31Þ

where ff; τg ≔ f000=f0 − 3
2
ðf00=f0Þ2 is the Schwarzian

derivative, N is the (large) number of complex fermions,
NK is the zero temperature compressibility, Nγ is the
specific heat at fixed charge, and E is a spectral asymmetry
parameter. The time-reparametrization field hðτ þ βÞ ¼
hðτÞ þ β is quasiperiodic and the phase field gðτÞ, in the
absence of winding, is periodic.
According to the thermodynamical discussion above, we

are interested in the limit Nγ → ∞ in order to obtain our
action (1) as limit from the complex SYK effective action
(31). This is indeed possible by combining the actions (1)
and (31) to the geometric action associated with the twisted
warped Virasoro group, known as “warped Schwarzian”
[88], IwSch ¼ IcSYK þ Itw.
Starting from the effective action (31) and shifting g by

[88] g → g − κ
NK ðlog h0 þ 2πi

β hÞ yields the action IwSch with
nonvanishing κ and shifted specific heat parameter
γ̂ ¼ γ þ 36π2κ2

N2K . Thus, our boundary action (1) emerges by
sending both γ̂ and K to zero, while keeping fixed κ. At
large N, this is achieved by the family of scaling limits,

γ ¼ γ0Na K ¼ −K0N−b κ ¼ N1þa−b
2

6π

ffiffiffiffiffiffiffiffiffiffi
γ0K0

p
: ð32Þ

The constants γ0 and K0 are independent from N and their
product must be positive. The exponents a > −1, b > 1
lead to infinite specific heat and vanishing zero temperature

compressibility, respectively, in the large N limit. Two
simple choices are a ¼ b ¼ 2, leading to κ ¼ N

6π

ffiffiffiffiffiffiffiffiffiffi
γ0K0

p
,

and a ¼ 0, b ¼ 2, leading to κ ¼ 1
6π

ffiffiffiffiffiffiffiffiffiffi
γ0K0

p
.

IX. CONCLUSIONS

We derived on the gravity side the boundary action (1) as
a first step toward a two-dimensional model for flat space
holography. We showed that the field theory side of our
proposal for flat space holography emerges as a triple
scaling limit of complex SYK: large N, large coupling (or
small temperature) and large specific heat, while keeping
fixed (with an adjustable scaling in N) the geometric mean
of specific heat and zero temperature compressibility. As
evident from (32), this geometric mean (up to a factor
N1þa−b

2 =ð6πÞ) is the coupling constant κ in (1).
Starting from our flat space holographic description,

numerous further research avenues can now be pursued,
inspired by corresponding SYK-related results or by
generic aspects of two-dimensional dilaton gravity (see
[94] for a review and [95] for a list of models). Not
intending to do justice to the vast literature on these
subjects we highlight just one intriguing aspect, namely,
the role of chaos in flat space holography. By analogy to the
AdS2 case [11,96], we expect saturation of the chaos
bound, i.e., a Lyapunov exponent given by λL ¼ 2πT. It
should be rewarding to verify this through explicit
calculations.
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