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It is a well-known property of holographic theories that diffeomorphism invariance in the bulk space-
time implies Weyl invariance of the dual holographic field theory in the sense that the field theory couples
to a conformal class of background metrics. The usual Fefferman-Graham formalism, which provides us
with a holographic dictionary between the two theories, breaks explicitly this symmetry by choosing a
specific boundary metric and a corresponding specific metric ansatz in the bulk. In this paper, we show that
a simple extension of the Fefferman-Graham formalism allows us to sidestep this explicit breaking; one
finds that the geometry of the boundary includes an induced metric and an induced connection on the
tangent bundle of the boundary that is a Weyl connection (rather than the more familiar Levi-Civita
connection uniquely determined by the induced metric). Properly invoking this boundary geometry has far-
reaching consequences: the holographic dictionary extends and naturally encodes Weyl-covariant
geometrical data, and, most importantly, the Weyl anomaly gains a clearer geometrical interpretation,
cohomologically relating two Weyl-transformed volumes. The boundary theory is enhanced due to the
presence of the Weyl current, which participates with the stress tensor in the boundary Ward identity.
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I. INTRODUCTION

The basic principle of general relativity is invariance
under diffeomorphisms with, as it is usually formulated, a
metric playing the role of the dynamical degrees of free-
dom. Nonetheless, we usually make use of specific choices
of coordinates and parametrizations of the metric, since we
are often interested in particular subregions of the space-
time manifold. These parametrizations are not harmless
in that they break (or gauge fix) some subset of the
diffeomorphisms, and one has a restricted class of diffeo-
morphisms which explicitly preserves the form of a
given parametrization. It is most clarifying to choose a
parametrization such that the unbroken symmetries act
geometrically on the subregion of spacetime. This is
particularly important, for example, for hypersurfaces of
any type and codimension, but even more generally, for
subbundles (distributions) of the tangent bundle.
Fefferman and Graham in their seminal works [1,2]

found a bulk gauge (FG gauge) preserving the structure
of timelike hypersurfaces in AdSdþ1 spacetimes. This is
useful to discuss the timelike conformal boundary, which in

suitable coordinates is located at z ¼ 0, z being the holo-
graphic coordinate such that z ¼ const hypersurfaces are
timelike. The FG gauge induces on the boundary a metric
and its Levi-Civita connection. Although everything is
consistent, there exists some leftover freedom in choosing
the boundary metric. This comes about because the induced
metric on the z ¼ 0 hypersurface is defined, due to certain
bulk diffeomorphisms, up to a rescaling by a nontrivial
function of the boundary coordinates. We therefore often
refer to the boundary as possessing a conformal class of
metrics and say that the boundary enjoys Weyl symmetry.
The latter is however often ignored in physical applications,
for we usually fix the boundary metric and thus break this
symmetry.
In an attempt to bring electromagnetism and gravity into

a unified framework [3], Weyl introduced the concept of
Weyl transformation, which encapsulates the possibility of
rescaling the metric with an arbitrary scalar function. Weyl
symmetry is not considered in many physical systems, but
it is a key feature of holography. For instance, it is a very
powerful tool in the fluid/gravity correspondence [4–7],
where it is exploited in organizing the boundary theory.
The main observation that we focus on here is that the

Levi-Civita connection is not Weyl-covariant, the metricity
condition being the source of this noncovariance. This
problem can be sidestepped by introducing the notion of a
Weyl connection and more generally of Weyl geometry
[8,9]. These concepts have been mentioned in the literature
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from time to time with reference to a variety of proposed
physical applications, mostly in conformal gravitational
theory, but also in cosmology and in particle physics, see
e.g., [10–22].1 In the present paper, we will show that Weyl
connections play a role in the holographic correspondence,
on the field theory side of the duality. Indeed, our first result
will be to show that, by slightly generalizing the FG ansatz
to what we call the Weyl-Fefferman-Graham gauge (WFG),
the Weyl diffeomorphism responsible for the rescaling of
the boundary metric becomes a geometric symmetry. The
consequences of this modification are simple: this bulk
geometry induces on the boundary a metric and a Weyl
connection, instead of its Levi-Civita counterpart. In the
dual quantum field theory, these objects act as backgrounds
and sources for current operators. Thus, Weyl geometry
makes an appearance in holography, not through a modi-
fication of the bulk gravitational theory, but in the organi-
zation of the dual field theory.
To establish these results, it is important to employ the

notion of a (possibly nonintegrable) distribution (i.e., a
subbundle of the tangent bundle), replacing the less general
notion of hypersurfaces and foliations. Since this may be
unfamiliar to the casual reader, we take some time to review
the mathematics, which is informed by theorems of
Frobenius. In this way of thinking, the more relevant object
is a tangent space, rather than a space itself.
The FG gauge admits an expansion of the metric from

the boundary to the bulk in powers of the holographic
coordinate z. Solving Einstein equations allows the extrac-
tion of the different terms of the expansion, all being
determined by two terms in the expansion: the leading
order, which defines the boundary conformal class of
metrics and the term at order zd−2 which gives the vacuum
expectation value of the energy-momentum tensor operator
of the dual field theory, as originally discussed in [24–27].
It is a theorem that, given these two quantities, one can
reconstruct, at least order by order, a bulk AdS spacetime in
FG gauge—with some caveats due to the Weyl anomaly,
which we will discuss shortly. The resolution of Einstein
equations order by order for the WFG gauge on the other
hand leads to a modification of the subleading terms in this
expansion. In fact, we will demonstrate that the modifica-
tions are such that each term is Weyl-covariant; in the FG
gauge, the subleading terms transform under Weyl trans-
formations in a very complicated nonlinear fashion (which,
as we discuss, comes about because they are determined by
non-Weyl-covariant Levi-Civita boundary curvature ten-
sors). We will show how to solve Einstein equations in
the boundary-to-bulk expansion keeping the space-time
dimension dþ 1 arbitrary.
It is a familiar aspect of the FG formalism that the on-

shell bulk action diverges as one approaches the boundary.

Traditionally, this is dealt with by including local counter-
terms which are functionals of the induced geometry, in a
solution-independent way [26,28–30]. There remains one
physical subtlety, which is the appearance of a simple pole
in d − 2k, with k integer. This effect is more appropriately
thought of as an anomaly in the Weyl Ward identity, a basic
feature of renormalization theory [31]. This anomaly can be
traced back to the fact that holographic renormalization
breaks Weyl covariance by fixing a z ¼ ϵ hypersurface to
regulate the theory. No Weyl-covariant renormalization
procedures exist. Consequently, a Weyl anomaly is present,
and contributes in any even-dimensional boundary theory.
There is of course a huge literature on this subject, but an
interesting historical account on the Weyl anomaly is [32],
with a useful list of relevant references therein, as e.g.,
[33–35]. Notice also that a more field-theoretical approach
to the anomaly, inspired by string theory and based on the
noninvariance of the path integral measure under Weyl
transformations can be found in [36,37]. TheWeyl anomaly
is an integral over geometrical tensors, the form of which
depends on the dimension. In Ref. [38], the geometrical
tensors contributing to the anomaly were found in a scheme
dependent way. The classification of the Weyl anomaly
based on the cohomology of the Becchi-Rouet-Stora-
Tyutin (BRST) differential associated with the Weyl
symmetry has been performed in [39–41]. We will unravel
a different packaging of the Weyl anomaly, through the use
of the WFG gauge—the Weyl anomaly will in fact become
an integral over Weyl-covariant geometrical tensors. This
result reorganizes the theory in a much simpler fashion and
opens the door to a relevant direction of investigation,
which is the determination of the coefficients in any even
dimension. Indeed, in this relatively short paper, we show
how to explicitly construct the anomaly coefficient in three
and five bulk dimensions only, while formally deriving its
expression in every even boundary dimension, leaving
further elaboration to future investigations. We have in
fact derived the result in seven and nine dimensions as well,
although we do not report the details here, other than to use
those results to describe the general structure. Inspired by
[42], we will moreover present a simple cohomological
interpretation of the Weyl anomaly, based on the difference
of two Weyl-related bulk top forms.
The presence of the anomaly is usually encoded in the

fact that the boundary energy-momentum tensor acquires
an anomalous trace [43–46]. Indeed in the FG gauge, it is
found that it must be a priori traceless. This boundaryWard
identity is obtained by considering the boundary back-
ground as dictated by the induced metric only. It is thus
natural that there is only one sourced current. However,
one finds that one must typically improve the energy-
momentum tensor, as originally found in [47]. We advocate
in this paper a different interpretation, corroborated by the
WFG extension. Specifically, we interpret the boundary
theory as defined on a background metric (again given by

1For a review on applications of Weyl geometry in physics, see
[23] and references therein.
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the induced-from-the-bulk metric) and a background Weyl
connection, given by the leading order of a bulk dual one-
form that occurs in the WFG metric parameterization. In
this respect, two different currents can and indeed do both
participate in the boundary Ward identity. From this
perspective we are gauging the Weyl symmetry in the
boundary [48–51], although more properly, we should view
it as a local background symmetry. Actually, it is the WFG
gauge in the bulk that is promoting this Weyl connection to
a background configuration in the boundary. We will in
particular show that the holographic dictionary furnishes
directly this boundaryWard identity relating the trace of the
energy-momentum with the divergence of the Weyl current.
This will be elegantly verified directly from the boundary
action, without invoking holography. Consequently, our
setup is useful also to analyze the profound relationship
between Weyl invariance and conformal invariance, a
subject which has been discussed extensively, for example
in [52,53] and references therein. While the holographic
dictionary will be explored in full detail, the enhancement
of the boundary theory will only be briefly described here,
with further elaboration left to future works.
The paper is organized as follows. Section II introduces

the Weyl connection, its metricity and torsion properties
and its curvature tensors and associated identities.
Emphasis is given to its relationship with the ordinary
Levi-Civita connection. We then analyze in Sec. III the FG
gauge and define the Weyl-Fefferman-Graham gauge. We
show that the WFG gauge is form-invariant under the Weyl
diffeomorphism. We then discuss the important result that
we are indeed inducing a Weyl connection on the boundary.
The latter makes the (tangent bundle of the) boundary a
(generally nonintegrable) distribution. Section IV describes
the improved holographic dictionary: the boundary Ward
identity is derived and it is shown that every term in the
bulk-to-boundary expansion is by constructionWeyl-covar-
iant. These results are supported by Appendix, to which we
delegate useful details for the computation of Einstein
equations order by order. The next part of this section is
devoted to a thorough analysis of the Weyl anomaly, and its
cohomological derivation. In this paper, we will confine
detailed results to the d ¼ 2 and d ¼ 4 cases. Results for
d ¼ 6 and d ¼ 8 will be reported elsewhere, but some of
their key structural aspects will be referred to here. In
Sec. V, we present some relevant field theoretical results:
we rederive the Ward identity intrinsically and present
examples of simple Weyl-invariant actions. We then con-
clude and offer some final remarks in Sec. VI.

II. WEYL CONNECTIONS AND WEYL
MANIFOLDS

Recall that given a manifold M with metric g and
connection ∇ (on the tangent bundle TM), we define the
metricity ∇g and torsion T via

∇XgðY; ZÞ ¼ ∇XðgðY; ZÞÞ − gð∇XY; ZÞ − gðY;∇XZÞ; ð1Þ

TðX; YÞ ¼ ∇XY −∇YX − ½X; Y�; ð2Þ

where X;… are arbitrary vector fields and ½X; Y� denotes
the Lie bracket. Suppose we have a basis feag of vector
fields, and define the connection coefficients via

∇ea
eb ¼ Γc

abec: ð3Þ

It is a familiar theorem that requiring both the metricity and
torsion of the connection to vanish leads to a uniquely
determined set of connection coefficients, those of the Levi-
Civita (LC) connection. Indeed, further defining the rota-
tion coefficients

½ea; eb� ¼ Cab
cec; ð4Þ

we find the general result

Γ
∘ d
ac ¼

1

2
gdbðeaðgbcÞ þ ecðgabÞ − ebðgcaÞÞ

−
1

2
gdbðCab

fgfc þ Cca
fgfb − Cbc

fgfaÞ; ð5Þ

where gab ≡ gðea; ebÞ and we use the circle notation to refer
to the LC quantities. This reduces with the choice of
coordinate basis ea ¼ ∂a to the familiar Christoffel symbols.
The vanishing of metricity and torsion are certainly

invariant under diffeomorphisms. Therefore, all the geo-
metrical objects built using the LC connection transform
nicely under diffeomorphisms. We note though that met-
ricity is not invariant under Weyl transformations2

g ↦ g=B2, instead transforming as

∇g ↦ ð∇g − 2d lnB ⊗ gÞ=B2: ð8Þ

Consequently, if we wish to consider geometric theories in
which Weyl transformations play a role, it is inconvenient
to choose the usual LC connection. Instead, one attains a
connection that is covariant with respect to both Weyl
transformations and diffeomorphisms by introducing a
Weyl connection A, [8,9], which transforms nonlinearly
under a Weyl transformation

2The Weyl transformation should not be confused with a
conformal transformation, which is a diffeomorphism. They do
look similar in their actions on the components of the metric,

Weyl∶ gabðxÞ ↦ gabðxÞ=BðxÞ2; ð6Þ
conformal∶ gabðxÞ ↦ g0abðx0Þ ¼ gabðxÞ=ωðxÞ2: ð7Þ

Here though, BðxÞ is an arbitrary function, while ωðxÞ is a
specific function, associated with a special diffeomorphism that is
a conformal isometry.
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g ↦ g=B2; A ↦ A − d lnB: ð9Þ

By design then, the Weyl metricity is covariant3

ð∇g − 2A ⊗ gÞ ↦ ð∇g − 2A ⊗ gÞ=B2; ð10Þ

and it makes sense to set it to zero if one wishes.
Fortunately, there is a theorem which states that there is
a unique connection (also generally referred to as a Weyl
connection) that has zero torsion and Weyl metricity, see
[9]. In this case, the connection coefficients are given by the
formula

Γd
ac ¼

1

2
gdbðeaðgbcÞ þ ecðgabÞ − ebðgcaÞÞ

−
1

2
gdbðCab

fgfc þ Cca
fgfb − Cbc

fgfaÞ
− ðAaδ

d
c þ Acδ

d
a − gdbAbgcaÞ: ð11Þ

We note that these connection coefficients are in fact
invariant under Weyl transformations. Consequently, the
curvature of the Weyl connection has components4

Ra
bcd ¼ ecðΓa

dbÞ − edðΓa
cbÞ þ Γf

dbΓa
cf − Γf

cbΓa
df − Ccd

fΓa
fb

ð13Þ

that are themselves Weyl invariant. This Weyl-Riemann
tensor possesses less symmetries than its Levi-Civita
counterpart, and indeed the degrees of freedom contained
within are in one-to-one correspondence with the Levi-
Civita Riemann tensor, plus a 2-form F, which is the
field strength F ¼ dA. To see this, we can write the
Weyl curvature components in terms of the LC curvature
components,

Ra
bcd ¼ R

∘ a
bcd þ∇∘ dAbδ

a
c −∇∘ cAbδ

a
d

þ ð∇∘ dAc −∇∘ cAdÞδab þ∇∘ cAagbd

−∇∘ dAagbc ð14Þ

þ AbðAdδ
a
c − Acδ

a
dÞ þ AaðgbdAc − gbcAdÞ

þ A2ðgbcδad − gbdδacÞ: ð15Þ

The corresponding Weyl-Ricci tensor, which we define as
Ricab ¼ Rc

acb, is given by

Ricab ¼ R
∘
icab −

d
2
Fab þ ðd − 2Þð∇∘ ðaAbÞ þ AaAbÞ

þ ð∇∘ · A − ðd − 2ÞA2Þgab ð16Þ

in space-time dimension d. We then read off that the Weyl-
Ricci tensor has an antisymmetric part

Ric½ab� ¼ −
d
2
Fab; ð17Þ

while the symmetric part differs from the LC Ricci tensor,

RicðabÞ ¼ R
∘
icab þ ðd − 2Þð∇∘ ðaAbÞ þ AaAbÞ

þ ð∇∘ · A − ðd − 2ÞA2Þgab: ð18Þ

The corresponding Weyl-Ricci scalar is the trace,

R ¼ R
∘ þ 2ðd − 1Þ∇∘ · A − ðd − 1Þðd − 2ÞA2: ð19Þ

Under a Weyl transformation, R → RB2, so we see that the
LC Ricci scalar must transform very nontrivially under
Weyl,

R
∘
↦ B2ðR∘ þ 2ðd − 1Þ∇∘ 2

lnB − ðd − 1Þðd − 2Þð∂ lnBÞ2Þ
ð20Þ

in order to cancel the transformation of the non-Weyl-
invariant expression involving the Weyl connection A.
Similarly, Ricab ↦ Ricab implies

R
∘
icab ↦ R

∘
icab þ gab∇

∘
· ∂ lnB þ ðd − 2Þð∇∘ ða∂bÞ lnB

þ ∂a lnB∂b lnB − gabð∂ lnBÞ2Þ ð21Þ

We thus see the important role played by the Weyl
connection. Organizing the theory with respect to the latter
is a more natural prescription, whenever this theory
includes Weyl transformations.
Given a Weyl connection, we can organize tensors in

such a way that they have a specific Weyl weight and we
use the notation

∇̂Xt ¼ ∇Xtþ wtAðXÞt: ð22Þ

whereby

3To be more specific, what we mean by this notation is

ð∇g − 2A ⊗ gÞðX; Y; ZÞ ¼ ∇XgðY; ZÞ − 2AðXÞgðY; ZÞ:

The notation AðXÞ used here and throughout the paper refers to
the contraction of a 1-form with a vector, AðXÞ≡ iXA≡ AaXa.

4Here we are using the convention

Ra
bcdea ≡ Rðeb; ec; edÞ≡∇ec

∇ed
eb −∇ed

∇ec
eb −∇½ec;ed�eb

ð12Þ
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t ↦ Bwt t; ∇̂t ↦ Bwt∇̂t: ð23Þ

For the specific case of a scalar field ϕ, we would then write
∇̂aϕ ¼ eaðϕÞ þ wϕAaϕ. The condition that Weyl metricity

vanishes is translated in this notation as ∇̂g ¼ 0.
Finally we remark that the Bianchi identity for the Weyl-

Riemann tensor is

∇aRe
bcd þ∇cRe

bda þ∇dRe
bac ¼ 0 ð24Þ

Contracting the e, c indices, we get the once-contracted
Bianchi identity

∇aRicbd −∇dRicba þ∇cRc
bda ¼ 0: ð25Þ

which given that theWeyl-Riemann andWeyl-Ricci tensors
are Weyl invariant (that is, they have weight zero), can also
be written as

∇̂aRicbd − ∇̂dRicba þ ∇̂cRc
bda ¼ 0: ð26Þ

If we multiply by gab, we find

gab∇̂aRicbd − ∇̂dRþ ∇̂cðgabRc
bdaÞ ¼ 0: ð27Þ

This can be simplified further by noting that

gabRc
bda ¼ gcbðRicbd þ 2FbdÞ ð28Þ

and hence the twice contracted Bianchi identity can be
simplified to

gab∇̂aðGbc þ FbcÞ ¼ 0 ð29Þ

where Gab ¼ Ricab − 1
2
Rgab is the Weyl-Einstein tensor.

Since G and F have Weyl weight zero, this can also be
written as

gab∇aðGbc þ FbcÞ ¼ 0: ð30Þ

This is the analogue of the familiar result in Riemannian

geometry, ∇∘ a
G
∘
ac ¼ 0.

III. WEYL INVARIANCE AND HOLOGRAPHY

The Fefferman-Graham theorem [1,2] says that the
metric of a locally asymptotically AdSdþ1 (LaAdS) geom-
etry can always be put in the form

ds2 ¼ L2
dz2

z2
þ hμνðz; xÞdxμdxν: ð31Þ

The conformal boundary is a constant-z hypersurface at
z ¼ 0 in these coordinates. To obtain this form, one has
used up all of the diffeomorphism invariance, apart from

residual transformations of the xμ ↦ x0μðxÞ, which of
course would change the components of hμν in general.
Near z ¼ 0, hμνðz; xÞ may be expanded

hμνðz; xÞ ¼
L2

z2

�
γð0Þμν ðxÞ þ z2

L2
γð2Þμν ðxÞ þ z4

L4
γð4Þμν ðxÞ þ � � �

�

þ zd−2

Ld−2

�
πð0Þμν ðxÞ þ z2

L2
πð2Þμν ðxÞ þ � � �

�
þ � � � :

ð32Þ

Here, we are regarding the boundary dimension d as
variable5 (in fact, we will regard d ∈ C formally as needed.
This is discussed further later in the paper.) Given this

expansion, γð0Þμν ðxÞ has an interpretation as an induced
boundary metric:

z2

L2
ds2 →

z→0
γð0Þμν ðxÞdxμdxν ¼ ds2bdy: ð33Þ

It is this object that sources the stress energy tensor in the

dual field theory, with πð0Þμν ðxÞ its vev. All of the other terms

in the expansion are determined in terms of γð0Þμν ðxÞ; πð0Þμν ðxÞ
by the bulk classical equations of motion.
Equation (33) defines the induced boundary metric up to

a Weyl transformation. We see indeed that there is an
ambiguity in the construction of this metric which amounts
in defining the latter up to a scalar function of the boundary
coordinates. Although it is often stated, this ambiguity is
usually disregarded and a specific choice is made.
The following bulk diffeomorphism (which we refer to

as the Weyl diffeomorphism)

z ↦ z0 ¼ z=BðxÞ; xμ ↦ x0μ ¼ xμ ð34Þ

plays an important role. It has the effect of inducing a Weyl
transformation of the boundary metric components: using
(33) with holographic coordinate now z0 we obtain

ds2bdy ¼
γð0Þμν ðxÞ
BðxÞ2 dxμdxν: ð35Þ

However, this diffeomorphism does not leave the bulk
metric in the Fefferman-Graham gauge, but rather trans-
forms it to

ds2 ¼ L2

�
dz0

z0
þ ∂μ lnBðxÞdxμ

�
2

þ hμνðz0BðxÞ; xÞdxμdxν

ð36Þ

5This holographic dimensional regularization avoids the nec-
essary introduction of logarithms (as in e.g., [30]) that occur
when d is an even integer.
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where

hμνðz0BðxÞ; xÞ

¼ L2

z02

�
γð0Þμν ðxÞ
BðxÞ2 þ z02

L2
γð2Þμν ðxÞ þ z04

L4
BðxÞ2γð4Þμν ðxÞ þ � � �

�
ð37Þ

þ z0d−2

Ld−2

�
BðxÞd−2πð0Þμν ðxÞ þ z02

L2
BðxÞdπð2Þμν ðxÞ þ � � �

�
þ � � � :

ð38Þ

Thus, this diffeomorphism takes us out of FG gauge (as it is
one of the diffs that was fixed in going to that gauge), and

acts on the boundary tensors γðkÞμν ðxÞ and πðkÞμν ðxÞ by a local
Weyl rescaling with specific k-dependent weights.
The standard way to deal with the fact that we have been

taken out of FG gauge is to employ an additional diffeo-
morphism acting on the xμ ↦ xμ þ ξμðz; xÞwhich becomes

trivial at the conformal boundary in such a way that γð0Þμν ðxÞ
is left unchanged, but the cross term in (36) is canceled (see
e.g., [42]). However, this diffeomorphism unfortunately has
a complicated effect on all of the subleading terms in the
metric—they no longer transform linearly as in (37), but
instead transform nonlinearly under the combined trans-
formations and, we claim, this obscures the geometric
significance of the subleading terms. There is nothing
inconsistent here: in FG gauge, the subleading terms are
given on-shell by expressions involving the Levi-Civita
curvature of the induced metric, which themselves trans-
form nonlinearly under Weyl transformations.
The fact that the Weyl diffeomorphism has taken us out

of the Fefferman-Graham gauge, and in particular acts on a
piece of the bulk metric other than hμν as in Eq. (36),
motivates replacing the Fefferman-Graham gauge by

ds2 ¼ L2

�
dz
z
− aμðz; xÞdxμ

�
2

þ hμνðz; xÞdxμdxν: ð39Þ

which we refer to as Weyl-Fefferman-Graham (WFG)
gauge. In this form, the bulk metric is given in terms of
two tensor fields, hμν and aμ, and the Weyl diffeomorphism
acts as

ds2 ¼ L2

�
dz0

z0
− aμðz0BðxÞ; xÞdxμ þ ∂μ lnBðxÞdxμ

�
2

þ hμνðz0BðxÞ; xÞdxμdxν: ð40Þ

Thus, the Weyl diffeomorphism can be interpreted as acting
on the fields hμν and aμ, preserving the form of the WFG
gauge without the need for a compensating diffeomor-
phism; the action on hμν is as before while aμ shifts
nonlinearly and so ultimately will be interpreted as a
connection or gauge field. We will be precise about the
details of these transformations below.

In WFG gauge, the constant-z hypersurface Σ at
z ¼ 0 remains the conformal boundary with induced metric
γð0Þ, as

z2

L2
ds2 →

z→0
γð0Þμν ðxÞdxμdxν: ð41Þ

Thus the presence of aμ in the ansatz does not modify the
induced metric at z ¼ 0. However, as we will see, this
does not mean that aμ does not appear at the conformal
boundary. This is surprising since aμ is pure gauge in
the bulk, but we will see that aμ has a clear geometric
interpretation in the boundary theory. To understand this
claim, we first note that the metric is no longer diagonal in
the z; xμ coordinates, and so we must take greater care in
interpreting how we approach the conformal boundary. We
now describe that process carefully.
It is natural, given the metric ansatz (39), to introduce the

1-form

e≡ Ωðz; xÞ−1
�
dz
z
− aμðz; xÞdxμ

�
ð42Þ

This form defines a distribution Ce ⊂ TM defined as

Ce ¼ kerðeÞ ¼ spanfX ∈ ΓðTMÞjiXe ¼ 0g: ð43Þ

Note that there is an ambiguity in multiplying e (or
equivalently the X’s) by a function on M, and we have
represented this ambiguity by introducing the function Ω
in (42).
We remark that if aμ were zero, then Ce would be the

span of the vectors ∂μ, which form a basis for the tangent
spaces to constant-z hypersurfaces. In the present context
though, this more general notion of a distribution is the
appropriate geometrical structure. In the general case, it is
convenient to introduce a basis for Ce as the set of vectors

Dμ ≡ ∂μ þ aμðz; xÞz∂z: ð44Þ
This implies that we can regard aμ as providing a lift

6 from
TΣ (with basis f∂μg) to Ce, that is, it can be thought of as
an Ehresmann connection. By the Frobenius theorem, Ce is
an integrable distribution if

½Dμ; Dν� ∈ Ce: ð45Þ
To understand this condition, it is convenient to introduce a
vector dual to e,

e≡Ωðz; xÞz∂z ð46Þ

6Here, we are regarding Σ as an isolated hypersurface inM. We
can thus regard M as a fiber bundle π∶M → Σ. An Ehresmann
connection provides a splitting of the tangent bundle
TM ¼ H ⊕ V, and the Dμ vectors form a basis of H, identified
with Ce, at the point ðz; xμÞ.
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which has been normalized to iee ¼ eðeÞ ¼ 1, and we
regard fe;Dμg as a basis for Tðz;xÞM. We then compute

½Dμ; Dν� ¼ Ωðz; xÞ−1fμνðz; xÞe;
fμνðz; xÞ≡Dμaνðz; xÞ −Dνaμðz; xÞ: ð47Þ

So we find that integrability is the condition fμν ¼ 0, and
thus by Frobenius, the distribution Ce would define under
that circumstance a foliation of M by codimension one
hypersurfaces. We will not find it necessary to assume that
the distribution is in fact integrable, and thus we will not
assume aμ to be flat.
By taking e in the form (46), we have fixed some of the

diffeomorphism invariance7; the residual diffeomorphisms
that preserve the form of e in (46) are given by z0 ¼
z0ðz; xÞ; x0μ ¼ x0μðxÞ. This set of diffeomorphisms includes
but is larger than the Weyl diffeomorphisms. Given the
interpretation of holography in terms of renormalization,
we expect that these diffeomorphisms correspond to
generic local (in x) coarse grainings. This is ultimately
the reason for our construction, which retains a clear
covariant geometric interpretation for this more general
notion of renormalization.8 These residual diffeomor-
phisms act on the form e as

e ↦ e0 ¼ Ω0ðz0ðz; xÞ; x0ðxÞÞ−1

×

�
dz0ðz; xÞ
z0ðz; xÞ − a0μðz0ðz; xÞ; x0ðxÞÞdx0μ

�
ð49Þ

and thus leave it invariant if

∂x0νðxÞ
∂xμ a0νðz0; x0Þ ¼

∂ ln z0ðz; xÞ
∂ ln z aμðz; xÞ þ

∂ ln z0ðz; xÞ
∂xμ ;

Ω0ðz0; x0Þ ¼ ∂ ln z0ðz; xÞ
∂ ln z Ωðz; xÞ: ð50Þ

The first equation is consistent with the interpretation of a
as an Ehresmann connection. The second equation implies
that the inherent ambiguity in the definition of the dis-
tribution Ce represented by Ωðz; xÞ can be thought of as
the (local) reparametrization invariance of z. We can for
example use this reparametrization invariance to set
Ωðz; xÞ → L−1 if we wish. The diffeomorphisms that pre-
serve this choice [or, more generally preserve any specific
Ωðz; xÞ] are a subset of the aforementioned residual diffeo-
morphisms and are of the form z0 ¼ z=BðxÞ; x0μ ¼ x0μðxÞ,
which are precisely the Weyl diffeomorphisms [together
with an arbitrary reparametrization x0 ¼ x0ðxÞ] that pre-
serve the form of the metric (39). In this case, the first
equation in (50) reduces to

∂x0νðxÞ
∂xμ a0νðz0; x0Þ ¼ aμðz; xÞ − ∂μ lnBðxÞ; ð51Þ

and so we are to interpret the aμðz; xÞ as a connection for
the Weyl diffeomorphisms (34). This transformation differs
from what appears in Eq. (40) only because here we are
allowing for an arbitrary transverse diffeomorphism x0 ¼
x0ðxÞ as well. Given this result, it may not come as a
surprise that aμðz; xÞ will induce a Weyl connection on
the conformal boundary, and we will establish precisely
that below.
To recap, we have been led to the following (non-

coordinate) basis for the tangent space

fe;Dμg ¼ fL−1z∂z; ∂μ þ aμz∂zg ð52Þ

which have the following Lie brackets

½Dμ; Dν� ¼ Lfμνe; ½Dμ; e� ¼ −LeðaμÞe: ð53Þ

To proceed further, we Fourier analyze aμðz; xÞ and
hμνðz; xÞ in the sense that we will expand them in
eigenfunctions of e. Such eigenfunctions are of course
just the monomials in z ∈ Rþ. For hμνðz; xÞ we obtain then
the same expansion as before, Eq. (32), and for aμðz; xÞ
we write

aμðz; xÞ ¼
�
að0Þμ ðxÞ þ z2

L2
að2Þμ ðxÞ þ � � �

�

þ zd−2

Ld−2

�
pð0Þ
μ ðxÞ þ z2

L2
pð2Þ
μ ðxÞ þ � � �

�
þ � � � ;

ð54Þ

which is of the same form as the expansion of a massless
gauge field in Fefferman-Graham gauge [25]. One may
have expected that since aμ is a pure gauge part of the bulk
metric, it should not source a (vector) operator in the

boundary theory. However, what we will show is that að0Þμ is
not part of the boundary metric but will appear instead as

7Indeed, the vector field e could more generally be of the form

e → e0 ¼ eþ θμðz; xÞDμ ð48Þ

which satisfies eðeÞ ¼ 1 for any θμ. (In the language of footnote 6
the e of (46) is special in that e ∈ V.) In the general case, we have
½Dμ; Dν� ¼ fμνe0 − fμνθλDλ and thus integrability remains the
condition fμν ¼ 0. The second diffeomorphism, discussed earlier,
that returns the metric to the FG ansatz after a boundary Weyl
transformation corresponds on the contrary to setting aμ → 0 at
the expense of keeping θμ ≠ 0.

8In most field theory contexts, such local rescalings are not
considered. However, it is clear that they are of general interest.
For example, it is widely appreciated that ultraviolet divergences
that occur in calculations of entanglement observables arise
through the pile-up of modes near the entanglement cut, and
renormalization toward the cut is the natural procedure. We
should also mention that similar structure is known to arise in
holographic fluids.
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part of the induced boundary connection. It thus represents
a choice that we should have of selecting a connection
which is not the Levi-Civita connection determined entirely
by a choice of the induced boundary metric.
More precisely, what we will show is that for the WFG

ansatz, the induced connection is not the Levi-Civita
connection of the induced metric, but instead a Weyl
connection. Given the expansions (32,54), we see that
the Weyl diffeomorphism (34) acts as

γðkÞμν ðxÞ ↦ γðkÞμν ðxÞBðxÞk−2; πðkÞμν ðxÞ ↦ πðkÞμν ðxÞBðxÞd−2þk

ð55Þ

aðkÞμ ðxÞ ↦ aðkÞμ ðxÞBðxÞk − δk;0∂μ lnBðxÞ;
pðkÞ
μ ðxÞ ↦ pðkÞ

μ ðxÞBðxÞd−2þk ð56Þ

and so in particular

γð0Þμν ðxÞ ↦ γð0Þμν ðxÞ=BðxÞ2; að0Þμ ðxÞ ↦ að0Þμ ðxÞ − ∂μ lnBðxÞ
ð57Þ

and thus we may anticipate that að0Þμ will play the role of a
boundary Weyl connection. All of the other subleading
functions in the expansions (32), (54) are interpreted to
have, à la (55)–(56), definite Weyl weights, that is they are
Weyl tensors. It is then natural to expect that they will be
determined in terms of the Weyl curvature, which we
discussed in the last section.
We introduced the concept of the distribution Ce

precisely in order to properly discuss the notion of an
induced connection, as Ce is a subbundle of TM. That is,
given a bulk connection∇ on TM (which we will take to be
the LC connection), we can apply it to vectors in Ce, which
will be of the general form

∇Dμ
Dν ¼ Γλ

μνDλ þ Γe
μνe: ð58Þ

The coefficients of the induced connection on Ce are by
definition the Γλ

μν appearing in (58). Notice that these
connection coefficients should not be confused with the
usual Christoffel symbols, which are associated with
coordinate bases. By direct computation, we find

Γλ
μν ¼ γλμν ≡ 1

2
hλρðDμhρν þDνhμρ −DρhνμÞ ð59Þ

and furthermore if we evaluate this expression at z ¼ 0, we
find

γð0Þλμν ¼
1

2
γλρð0Þðð∂μ − 2að0Þμ Þγð0Þνρ þ ð∂ν − 2að0Þν Þγð0Þμρ

− ð∂ρ − 2að0Þρ Þγð0Þμν Þ: ð60Þ

This result can be compared to (11), from which we
conclude that the induced connection on the boundary is
in fact a Weyl connection, with the role of the geometric

data gab and Aa in (11) being played here by γ
ð0Þ
μν and að0Þμ . In

comparing, we make use of the fact that here the intrinsic
rotation coefficients are Cμν

λ ¼ 0, as in (47). We will use
the notation ∇ð0Þ for the corresponding Weyl connection
[whose Weyl-Christoffel symbols are given by (60)],
and the curvature as Rð0Þλ

μρν. A tensor with components
tμ1…μnðxÞ that hasWeylweightwt transforms as tμ1…μnðxÞ ↦
BðxÞwt tμ1…μnðxÞ, while ∇̂ð0Þ

ν tμ1…μnðxÞ≡∇ð0Þ
ν tμ1…μnðxÞ þ

wta
ð0Þ
ν tμ1…μnðxÞ transforms covariantly with the same

weight. As noted above, all of the component fields aside

from að0Þμ transform covariantly with respect to arbitrary
Weyl transformations, and the Weyl weights of the various
component fields are given above in (55). In the next section,
we will briefly study some aspects of the holographic
dictionary, and we will find that every equation is covariant
with respect to arbitrary Weyl transformations—it is a bona
fide (background) symmetry of the dual field theory. In

particular, we will find that the appearance of að0Þμ ðxÞ, since
it transforms nonlinearly under Weyl transformations, is
through Weyl-covariant derivatives of other fields, or
through expressions involving the Weyl-invariant field

strength fð0Þμν . Before moving on, we would like to stress
again the main result of this section: the usual bulk LC
connection built using the bulk metric in the enhancedWFG
gauge induces on the boundary a Weyl connection and
therefore a boundary Weyl-covariant geometry.

IV. THE HOLOGRAPHIC DICTIONARY
AND THE WEYL ANOMALY

In this section, we will explore some details of the
holographic dictionary corresponding to the WFG ansatz.
The LC connection in the bulk has the form

∇Dμ
Dν ¼ γλμνDλ − hνλψλ

μe ð61Þ

∇Dμ
e ¼ ψλ

μDλ ð62Þ

∇eDμ ¼ ψλ
μDλ þ Lφμe ð63Þ

∇ee ¼ −LhλρφρDλ ð64Þ

where

ψμ
ν ¼ ρμν þ

L
2
hμλfλν; ρμν ¼

1

2
hμλeðhλνÞ;

φμ ¼ eðaμÞ; fμν ¼ Dμaν −Dνaμ ð65Þ

and we note that φμ is proportional to the rotation coeffi-
cient Ceμ

e, i.e., ½e;Dμ� ¼ Lφμe. In addition, we will use the
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notation9 θ ¼ trρ ¼ eðln ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p Þ and ζμν ¼ ρμν − 1
d θδ

μ
ν.

In Appendix, we record some additional details, including
the Weyl-Riemann curvature components.
As is the case in the FG gauge, γð0Þμν ðxÞ defines a

background boundary metric and acts as a source for the

stress energy tensor of the dual field theory, with πð0Þμν ðxÞ its
vev. We have seen that in WFG gauge, að0Þμ ðxÞ has the
interpretation of a Weyl connection in the dual field theory;

in addition, we will show below that pð0Þ
μ ðxÞ appears in the

Weyl Ward identity as if it were the vev for the Weyl
current. We will discuss these operators further in Sec. V.
As usual [30], one finds that the bulk equations of

motion determine the subleading component fields in terms

of γð0Þμν ðxÞ; að0Þμ ðxÞ; πð0Þμν ðxÞ and pð0Þ
μ ðxÞ. In this paper, we

will confine our attention to vacuum solutions of Einstein
gravity that are asymptotically locally anti–de Sitter.
For example, the ee-component of the vacuum Einstein
equations is

0 ¼ Gee þ Λgee

¼ −
1

2
trðρρÞ − 3L2

8
trðffÞ − 1

2
R̄þ 1

2
θ2 þ Λ ð66Þ

where Λ ¼ − dðd−1Þ
2L2 is the cosmological constant of AdSdþ1

and we define for the sake of brevity

R̄λ
μρν ¼ Dργ

λ
νμ −Dνγ

λ
ρμ þ γδνμγ

λ
ρδ − γδρμγ

λ
νδ ð67Þ

with R̄ ¼ hμνR̄ρ
μρν the corresponding Ricci scalar.

Expanding (66) we find

0 ¼
�
Λþ dðd − 1Þ

2L2

�
−
1

2

z2

L2
½2ðd − 1ÞL−2Xð1Þ þ Rð0Þ�

þ � � � − ðd − 1Þ z
d

Ld

�
d
2
L−2Yð1Þ þ ∇̂ð0Þ · pð0Þ

�
þ � � �

ð68Þ

where Rð0Þ is the boundary Weyl-Ricci scalar and

Xð1Þ ¼ γμνð0Þγ
ð2Þ
μν ; Yð1Þ ¼ γμνð0Þπ

ð0Þ
μν : ð69Þ

In (68), the order one equation is trivially satisfied while the
z2 contribution gives Xð1Þ entirely in terms of the Weyl-
Ricci scalar curvature:

Xð1Þ ¼ −
L2

2ðd − 1ÞR
ð0Þ: ð70Þ

This result looks exactly the same as is obtained in the usual
FG calculation, but we stress that the right hand side
involves now the Weyl covariant Weyl-Ricci scalar.
For later use, we also note the subleading term in the

expansion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hðz; xÞ

p
¼

�
L
z

�
d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det γð0ÞðxÞ
q �

1þ 1

2

z2

L2
Xð1Þ

þ 1

2

z4

L4
Xð2Þ þ � � � þ 1

2

zd

Ld Y
ð1Þ þ � � �

�
;

ð71Þ

with Xð2Þ given in (A19). Using (A51) one obtains

Xð2Þ ¼ −
L4

4ðd − 2Þ2
�
Ricð0Þμν Ricð0Þμν −

d
4ðd − 1ÞR

ð0Þ2

− ðd − 1Þtrðfð0Þ2Þ
�
−
L2

2
∇̂ð0Þ

ν að2Þν: ð72Þ

As in the FG story, we must be careful with the OðzdÞ
terms here because of divergences in the evaluation of the
on-shell action—those divergences are responsible for the
Weyl anomaly in the dual field theory [31], the structure of
which we will discuss in detail below. Nevertheless, we
may read off the ‘left-hand-side’ of the Weyl Ward identity
from Eq. (68),

∇̂ð0Þ · pð0Þ þ
d
2L2

γμνð0Þπ
ð0Þ
μν : ð73Þ

We will see later that this is the expected form given the

interpretation of πð0Þμν and pð0Þ
μ in terms of currents in

the dual field theory. We will also study the form of the
anomalous right-hand side later, in particular in d ¼ 2
and d ¼ 4.
Similarly, one finds that the leading Oðz2Þ term in Geμ is

proportional to

γλνð0Þ∇ð0Þ
ν ðGð0Þ

λμ þ fð0Þλμ Þ ¼ 0; ð74Þ

the vanishing of which is the twice-contracted Bianchi
identity of the Weyl connection, as was discussed above
[see Eq. (30)].
The leading nontrivial terms in the μν-components of the

Einstein equations determine

γð2Þμν ¼ −
L2

d − 2

�
Ricð0ÞðμνÞ −

1

2ðd − 1ÞR
ð0Þγð0Þμν

�

¼ −
L2

d − 2
Lð0Þ
ðμνÞ; ð75Þ

where Lð0Þ is the Weyl-Schouten tensor. Its trace (69)
correctly reproduces (70). We take each of these results as

9The notation used here can be interpreted in terms of
expansion (θ), shear (ζ), vorticity (f) and acceleration (φ) of
the radial congruence e.
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representative of the fact that the subleading terms in the
expansion of the metric are determined by the Weyl
curvature, analogous to what happens in the usual FG
gauge in which they are determined by the LC curvature of
the induced metric. As we mentioned previously, the
difference is that now all of the subleading terms in the
bulk fields are Weyl-covariant.
The holographic dictionary for WFG will be taken to

be the obvious generalization of the usual relationship
[24], i.e.,

Zbulk½g; γð0Þ; að0Þ� ¼ expð−So:s:½h; a; γð0Þ; að0Þ�Þ
¼ ZFT ½γð0Þ; að0Þ� ð76Þ

where on the left we have the on-shell action of the bulk
classical theory whose metric is given by h, a with
asymptotic configurations γð0Þ; að0Þ, while the right-hand
side is the generating functional of correlation functions of
operators sourced by γð0Þ; að0Þ. Although this is expressed in
terms of the “bare” sources, it is implicit that a regulari-
zation scheme for the left-hand side is employed and that
the boundary counterterms are introduced to absorb power
divergences that arise in the evaluation of the on-shell
action, [30]. Here, we will organize the discussion by
taking the space-time dimension d to be formally complex;
the on-shell action is convergent for sufficiently small d,
and as we move d up along the real axis, we encounter
additional divergences as d approaches an even integer. It is
well known in the context of Fefferman-Graham that as a
byproduct this divergence induces the Weyl anomaly of the
dual field theory, and is associated with the appearance of
logarithms in the field expansions when d is precisely an
even integer, as discussed in [31,42]. Here we will review
this bit of physics, as the existence of the Weyl connection,
as we will see, organizes the Weyl anomaly in a much more
symmetric fashion than it is usually described.
It is taken for granted that Zbulk is diffeomorphism

invariant. Under the holographic map this implies, among
other things, that the dual field theory can be regulated in a
diffeomorphism-invariant fashion [30]. However, the bulk
calculation is classical, and thus, in principle, is a functional
of the bulk metric g as well as the boundary values. We
therefore suppose that

Zbulk½g0; γ0ð0Þ; a0ð0Þ;…jz0; x0�
Zbulk½g; γð0Þ; að0Þ;…jz; x� ¼ 1; ð77Þ

where the notation refers to the fact that we are computing
the partition function in different coordinate systems. Here
of course we are particularly interested in the Weyl dif-
feomorphism ðz0; x0Þ ¼ ðz=BðxÞ; xÞ which relates the boun-
dary values γ0ð0Þ ¼ γð0Þ=B2, a0ð0Þ ¼ að0Þ − d lnB. Zbulk is
given in the classical limit by evaluating the (renormalized)

on-shell action, Zbulk ¼ e−So:s:½g;γð0Þ;að0Þ;…jz;x�. We then ask, is
it also true that this cleanly induces a Weyl transformation
on the boundary? That is, is it true that

Zbdy½x; γ0ð0Þ; a0ð0Þ;…�
Zbdy½x; γð0Þ; að0Þ;…� ¼

?
1; ð78Þ

where Zbdy is the generating functional in the given
background. As is well established (see e.g., [42]), what
happens is that there is an anomaly

Zbulk½g0; γ0ð0Þ; a0ð0Þ;…jz0; x�
Zbulk½g; γð0Þ; að0Þ;…jz; x� ¼ eAk

Zbdy½x; γ0ð0Þ; a0ð0Þ;…�
Zbdy½x; γð0Þ; að0Þ;…�

ð79Þ

in dimension d ¼ 2k. Recall that we are employing the
specific Weyl diffeomorphism, which is inducing a Weyl
transformation on the boundary, but no boundary diffeo-
morphism. If we take the log of these expressions, the result
is that

0 ¼ Sbulk½g0; γ0ð0Þ;…jz0; x� − Sbulk½g; γð0Þ;…jz; x�
¼ Sbdy½x; γ0ð0Þ; a0ð0Þ;…� − Sbdy½x; γð0Þ; að0Þ;…� þAk:

ð80Þ

That is, when we compare the evaluation of the bulk on-
shell action in different coordinate systems, the result
appears as the difference of boundary actions in Weyl-
equivalent backgrounds, up to an anomalous term, which is
not the difference of two such actions. The only source for
such a term is a pole at d ¼ 2k in the evaluation of the bulk
action, which arises because the on-shell action is not a
boundary term, but contains pieces that must be integrated
over z. The bulk action for Einstein gravity is generally
given by (volS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
ddx)

Sbulk½g; γð0Þ;…jz; x� ¼ 1

16πG

Z
M
e ∧ volSðR − 2ΛÞ: ð81Þ

On shell, it evaluates to

Sbulk½g; γð0Þ;…jz; x� ¼ −
d

8πGL2

Z
M
e ∧ volS

¼ −
d

8πGL

Z
M

dz
z
∧ ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
;

ð82Þ

where we recall that d is the boundary dimension. We then
expand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
in powers of z, as given in (71) to obtain
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Sbulk½g; γð0Þ;…jz; x� ¼ −
d

8πGL2

Z
M
dz ∧ ddx

�
L
z

�
dþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q �
1þ 1

2

z2

L2
Xð1Þ þ 1

2

z4

L4
Xð2Þ þ…

�
: ð83Þ

Consider now the difference of Weyl-transformed bulk actions as in (80) and define volΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p
ddx. The idea is to

start with Sbulk½g0; γ0ð0Þ;…jz0; x�, use the explicit Weyl transformation of the different quantities in the expansion [see (55)]
and then change the name of the integration variable from z0 to z.10 We will demonstrate this for the first two poles, which
occur at d ¼ 2 and d ¼ 4. Using (82), we obtain from the left-hand side of (80)

0 ¼ d
8πGL

Z
M
d

�
B−d

d

�
L
z

�
d
�

∧ volΣ −
d

8πGL

Z
M
d

�
1

d

�
L
z

�
d
�

∧ volΣ

þ d
16πGL

Z
M
d

�
B−ðd−2Þ

d − 2

�
L
z

�
d−2

�
∧ Gð1Þ

Σ −
d

16πGL

Z
M
d

�
1

d − 2

�
L
z

�
d−2

�
∧ Gð1Þ

Σ

þ d
16πGL

Z
M
d

�
B−ðd−4Þ

d − 4

�
L
z

�
d−4

�
∧ Gð2Þ

Σ −
d

16πGL

Z
M
d

�
1

d − 4

�
L
z

�
d−4

�
∧ Gð2Þ

Σ þ…; ð84Þ

with Gð1Þ
Σ ¼ Xð1ÞvolΣ [Weyl weight −ðd − 2Þ] and Gð2Þ

Σ ¼ Xð2ÞvolΣ [Weyl weight −ðd − 4Þ].
We now focus our attention to the case d ¼ 2. We observe that the offending term in d → 2− is

d
16πGL

Z
M
d

�
B−ðd−2Þ

d − 2

�
L
z

�
d−2

�
∧ Gð1Þ

Σ −
d

16πGL

Z
M
d

�
1

d − 2

�
L
z

�
d−2

�
∧ Gð1Þ

Σ ¼ 1

8πGL

Z
Σ
lnBGð1Þ

Σ : ð85Þ

The equality in this equation is obtained expanding B around 1 and eventually imposing d ¼ 2. For concreteness we rewrite
this final result using the holographic value of Xð1Þ, (70). Then, we read from (80):

A1 ¼
1

8πGL

Z
Σ
lnBGð1Þ

Σ ¼ −
L

16πG

Z
Σ
lnBRð0ÞvolΣ: ð86Þ

This numerical coefficient is the correct one, leading to the central charge c ¼ 3L
2G [31,54]. We will shortly comment on the

implications, but notice already that Rð0Þ is not the Levi-Civita curvature, as usually found, but rather the Weyl curvature,
which depends on both γð0Þ and að0Þ. As such, it is a Weyl-covariant scalar.
We move to d ¼ 4 (the on-shell action itself must be supplemented by boundary counterterms to move past d ¼ 2, but

these do not contribute to the current computation). Here the pole for d → 4− gives

d
16πGL

Z
M
d

�
B−ðd−4Þ

d − 4

�
L
z

�
d−4

�
∧ Gð2Þ

Σ −
d

16πGL

Z
M
d

�
1

d − 4

�
L
z

�
d−4

�
∧ Gð2Þ

Σ ¼ 1

4πGL

Z
Σ
lnBGð2Þ

Σ : ð87Þ

Using the result (72) for Xð2Þ, we explicitly compute

A2 ¼ −
L

8πG

Z
Σ
lnB

�
L2

�
1

8
Ricð0Þμν Ricð0Þμν −

1

24
Rð0Þ2 −

3

8
trðfð0Þ2Þ

�
þ ∇̂ð0Þ

ν að2Þν
�
volΣ: ð88Þ

This result has the same form as familiar expressions given
in the literature [31] if aμ is set to zero, at which point the
last two terms would drop and the first two would then

involve the LC curvature of the induced metric (giving the
well-known “a ¼ c” result for Einstein gravity).11 There
are several differences; first, the curvature tensors appear-
ing in the anomaly as before are Weyl covariant. In
addition, we see the appearance of a term of the form

10To evaluate these expressions, a regulator is required. The
last step of renaming the integration variable has a corresponding
effect on the cutoff and thus is not innocuous in the renormaliza-
tion procedure. Such a regulator is not Weyl-covariant, which is
consistent with the fact that an anomaly arises. Most of the details
of the renormalization occur in expressions that are the difference
of two Weyl-equivalent actions, whereas the anomaly is not and
has been cleanly extracted.

11In fact, as we will show elsewhere, the anomaly can be
written in terms of the Euler character (of the Lorentz connection)
and the Weyl tensor squared, so the appearance of fð0Þ2μν does not
represent a new central charge. We thankWeizhen Jia for pointing
this out to us.
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trðfð0Þ2Þ, where fð0Þμν is the field strength of the Weyl
connection að0Þ. We note that in a formalism where að0Þ has
been set to zero, fð0Þ is by that assumption flat, but here we
are not requiring this. It would be interesting to understand
a physical boundary field theory situation where fð0Þ makes
an appearance (note that in holographic fluid states, fð0Þ is
related to vorticity of the fluid state). Finally, notice also
that the subleading term að2Þ makes an appearance in the
anomaly, but only through a total derivative.
In a general dimension, all of the subleading modes aðjÞμ

will make an appearance. It is important to note though that

all of the higher modes aðj>0Þμ are not in fact determined by
the equations of motion. This is in keeping with the fact that
they represent pure gauge degrees of freedom in the bulk,
and here in the d ¼ 4 Weyl anomaly að2Þ makes an
appearance as a total derivative ambiguity; as far as the
Ward identity is concerned, it can be absorbed into the vev of
the Weyl current. One finds that in d ¼ 2k dimensions, the
mode aðkÞ appears entirely in just the same way, as a
contribution to the anomaly of the form ∇̂ð0Þ · aðkÞ. Such
total derivatives are often simply dropped in discussions of
the anomalies, and here we see that they are in fact
ambiguities. In higher dimensions, one finds that the modes

að0<j<kÞμ do not appear in the anomaly—to the extent that
they appear at all, one finds that they multiply constraints
such as Bianchi identities satisfied by the background fields.
As we mentioned previously, the other terms in (88) have

the property that if we were to set að0Þ to zero the anomaly
would reduce to the usual expression involving the Levi-
Civita Ricci tensor. One finds that same property persists in
higher dimensions as well (indeed we have computed the
d ¼ 6 and d ¼ 8 anomalies, the details of which will be
presented elsewhere). Of course, if one wants to think
entirely from the boundary field theory point of view in
which diffeomorphisms and Weyl transformations are
background symmetries, then choosing að0Þ ¼ 0 assumes
it is flat, with fð0Þ ¼ 0.
Let us expand on this a little further, by focussing on a

simple case in which the boundary metric is conformally
flat, γð0Þ ¼ e2ση. Given that, one then finds that the Levi-
Civita Ricci tensor is

R
∘
icðμνÞ ¼ ðd − 2Þð−∂ðμ∂νÞσ þ ∂μσ∂νσÞ

− ð∂2σ − ðd − 2Þð∂σÞ2Þημν ð89Þ

while the Weyl-Ricci curvature is

Ricð0ÞðμνÞ ¼ ðd − 2Þð∂ðμÃνÞ þ ÃðμÃνÞÞ
þ ð∂ · Ã − ðd − 2ÞÃ2Þημν: ð90Þ

where Ã ¼ að0Þ − dσ. So we see that indeed, the Levi-
Civita curvature is recovered from theWeyl-Ricci curvature

by setting að0Þ to zero, while the Weyl-Ricci curvature is
Weyl invariant because it depends on the Stückelberg-like
field Ã. In the usual formalism, conformally flat metrics
generally give a nonzero Ricci curvature that depends on
the conformal factor, while in the Weyl connection for-
malism, the curvature vanishes for all conformally flat
metrics if we simultaneously choose að0Þ ¼ dσ instead of
zero, that is, Ã ¼ 0. The Weyl-Ricci curvature is Weyl-
invariant since Ã is Weyl invariant. That is, for all data
ðγð0Þ ¼ e2ση; að0Þ ¼ ∂σÞ in theWeyl orbit of ðη; 0Þ, all Weyl
curvatures are zero, while the Levi-Civita curvature is of
course zero only for ðη; 0Þ. Referring to the d ¼ 4 anomaly
given in (88), we see that all terms are Weyl invariant. Of
course, it is the anomaly coefficients that are of most
interest rather than the values that a given curvature
polynomial takes in some particular geometry.
As we mentioned, there are terms in the anomaly (trfð0Þ2

in d ¼ 4) that have no analogue in the usual formalism
(as they are assumed to vanish). It is not clear to us what
interpretation there might be for a nonzero fð0Þ background
in a given field theory. We hope to return to this question in
a separate publication. It is possible though that Weyl gauge
field configurations may play an important role in field
theories on space-times of nontrivial topology or with
boundaries.
To recap, the Weyl anomaly in d ¼ 2k is associated with

the difference of two bulk volumes

ðe ∧ GðkÞ
Σ Þ0 − ðe ∧ GðkÞ

Σ Þ ∝ dðlnBXðkÞvolΣÞ; ð91Þ

Each term on the left is a closed form (since they are
top forms in the bulk), with the difference being an
exact form, the exterior derivative of the local Weyl
anomaly form.
The anomalies in the Levi-Civita framework are classi-

fiable and are known explicitly at least through d ¼ 8 in the
usual formalism, and their topological origin apparently
understood through BRST methods (see e.g., [39]). We
expect that the inclusion of the Weyl connection in the latter
story would reorganize it in a useful way, and we expect to
return to this in a future publication.

V. FIELD THEORY ASPECTS

In this section, we will make some preliminary remarks
about the dual field theory, with more detail left for future
work. The holographic analysis implies that we should
now consider a field theory coupled to a background metric
and Weyl connection, with action S½γð0Þ; að0Þ;Φ� where Φ
denotes some collection of dynamical fields to which we
will assign definite Weyl weights. As we will explain, this
is perfectly natural from the field theory perspective as
well, but constitutes a new organization of such field
theories (which in the usual formulation are coupled
only to a background metric, as thoroughly reviewed for
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instance in [55]). The quantum theory possesses a partition
function Z½γð0Þ; að0Þ�, obtained by doing the functional
integral over the dynamical fields, that depends on the
background, both through explicit dependence in the action
and in the definition of the functional integral measure.
A background Ward identity is generated by changing
integration variables ΦðxÞ ↦ BðxÞwΦΦðxÞ giving12

Z½γð0Þ; að0Þ� ¼ eA½B�Z½BðxÞ−2γð0Þ; að0Þ − d lnBðxÞ� ð92Þ

with A a possible anomalous contribution. Thus the Weyl
Ward identity is a relationship between different theories,
that is, field theories in different backgrounds and so, more
properly, we refer to the above equation as a background
Ward identity. It is of interest then to consider classical
actions that are background Weyl invariant, satisfying
S½γð0Þ; að0Þ;BðxÞwΦΦ� ¼ S½BðxÞ−2γð0Þ; að0Þ − d lnBðxÞ;Φ�.
An example is a free scalar theory, whereby wΦ ¼ 1

2
ðd − 2Þ

is the engineering dimension, and the action is

S½γð0Þ; að0Þ;Φ� ¼ −
1

2

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
γμνð0Þ∇̂ð0Þ

μ Φ∇̂ð0Þ
ν Φ

ð93Þ

where ∇̂ð0Þ
μ Φ ¼ ∂μΦþ wΦa

ð0Þ
μ Φ is background Weyl-

covariant by itself in the above sense. In the usual
formalism without the Weyl connection, the correspon-
ding action is not Weyl invariant, but its Weyl trans-
formation can be canceled, up to a total derivative, by
the addition of a specific additional term proportional toR
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p
R
∘
Φ2. Here, (93) is itself backgroundWeyl

invariant, and we may add the independently Weyl invari-

ant term
R
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p
Rð0ÞΦ2, where Rð0Þ is the Weyl-

Ricci scalar, with any coefficient. With the presence of the
Weyl connection, it is a trivial matter to write a variety of
actions with background Weyl invariance.
The background fields, as usual, are interpreted as

sources for current operators. For example, the stress tensor
of the free theory has the form

Tμν
γð0Þ;að0Þ

ðxÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δS½γð0Þ; að0Þ;Φ�
δγð0Þμν ðxÞ

¼ ∇̂μ
ð0ÞΦðxÞ∇̂ν

ð0ÞΦðxÞ

−
1

2
γð0ÞμνðxÞγð0ÞαβðxÞ∇̂ð0Þ

α ΦðxÞ∇̂ð0Þ
β ΦðxÞ:

ð94Þ
Here we have used pedantic notation to emphasize that the
definition of the operator depends on the background fields.
This operator is Weyl-covariant, by which we mean

Tμν
BðxÞ−2γð0Þ;að0Þ−d lnBðxÞðxÞ ¼ BðxÞdTμν

γð0Þ;að0Þ ðxÞ: ð95Þ

That is, if we compare correlation functions of the stress
tensor in two Weyl-related backgrounds, there will be a
relative factor of BðxÞd for each instance of the stress
tensor; for brevity, we refer to this as the stress tensor (with
two upper indices) having Weyl weight wT ¼ d. Similarly,
we have the Weyl current

Jμ
γð0Þ;að0Þ

ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δS½γð0Þ; að0Þ;Φ�
δað0Þμ ðxÞ

¼ wΦΦðxÞ∇̂μ
ð0ÞΦðxÞ: ð96Þ

This operator is also Weyl-covariant in the same sense as
the stress tensor and is of weight d. Thus Tμν and Jμ have

the properties of operators that couple to γð0Þμν and að0Þμ and
appear in the Weyl anomaly in the holographic WFG
theory. In a holographic theory, we would not have the free
field discussion given here, but we can still discuss
sourcing these operators (in a given background).
Earlier, we saw that the classical Weyl Ward identity

involved a linear combination of the trace of the stress
tensor and the divergence of theWeyl current. This is in fact
easily established in general terms. Here we will use
classical language, but the argument easily extends to
the quantum case by making use of (92). As mentioned
above, what we mean by Weyl being a background
symmetry is that, classically,

S½γð0Þ; að0Þ;BwΦΦ� ¼ S½γð0Þ=B2; að0Þ − d lnB;Φ�: ð97Þ
By expanding both sides for small lnB and going on-shell,
we find

0 ¼
Z

ddx
δS

δað0Þμ ðxÞ
∂μ lnBðxÞ

þ
Z

ddx
δS

δγð0Þμν ðxÞ
ð−2 lnBðxÞγð0Þμν ðxÞÞ: ð98Þ

We recognize that this may be written as

0 ¼
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
JμðxÞ∂μ lnBðxÞ

þ
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
TμνðxÞð− lnBðxÞγð0Þμν ðxÞÞ ð99Þ

and, by integrating by parts, we have

0 ¼ −
Z

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
ð∇̂ð0Þ

μ JμðxÞ

þ TμνðxÞγð0Þμν ðxÞÞ lnBðxÞ: ð100Þ

This result serves to identify the relative normalization of

πð0Þμν and pð0Þ
μ [see (73)] and their relation with the currents

12The formalism can be extended to include sources for any
operators, but we restrict our focus here.
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defined here. Incidentally, the Weyl-covariant derivative
appears in (100) precisely because the current Jμ (with
raised index) has Weyl weight d.
We remark that typical discussions of related topics are

rife with “improvements” to operators such as the stress
tensor, including mixing with a so-called “virial current”
[46,47]. The operators that we have defined here have the
advantage of transforming linearly, and in particular do not
mix with each other, under Weyl transformations. Indeed
we note the familiar result that, given (94), we have

γð0Þμν T
μν
γð0Þ;að0Þ

ðxÞ ¼ 2 − d
2

γð0Þμν ∇̂μ
ð0ÞΦðxÞ∇̂ν

ð0ÞΦðxÞ ð101Þ

and thus given (96),

∇̂ð0Þ
μ JμðxÞ þ TμνðxÞγð0Þμν ðxÞ

¼ wΦΦ∇̂2
ð0ÞΦþ

�
wΦ þ 2 − d

2

�
γð0Þμν ∇̂μ

ð0ÞΦðxÞ∇̂ν
ð0ÞΦðxÞ

¼ 0: ð102Þ
So including the Weyl current automatically yields the
correct (here classical) Weyl Ward identity on-shell. One
can interpret the usual improvement of the stress tensor (to
be traceless) as the absorption of the Weyl current into a
redefinition of the stress tensor.
The added value of our construction is the freedom to

source the Weyl current and stress tensor independently,
because we interpret the background Weyl connection að0Þ

as independent from the background metric γð0Þ. In a CFT
setting, general diffeomorphisms and Weyl transformations
are not symmetries, but instead a conformal diffeomor-
phism of the boundary metric components can be reab-
sorbed by a specific Weyl transformation, resulting in a
symmetry; that is, the combined transformations give a
relationship between backgrounds of the same field theory.
Here, we allow arbitrary Weyl transformations and diffeo-
morphisms, which relate theories in different backgrounds.
Given that in holography we should consider conformal
classes of boundary metrics, Weyl transformations should
in general be independent from boundary diffeomorphisms.
One might then expect that this boundary Weyl current is
physical, with associated nontrivial charges. Here we have
only touched on a few rudimentary aspects of field theories
coupled to Weyl geometry, and will return to further
elaboration elsewhere.

VI. CONCLUSIONS

In this work, we have discussed the consequences of
bringing a Weyl connection into the formulation of holog-
raphy. In order to address this, we first intrinsically
analyzed such connections and their associated geometrical
tensors. The need for a Weyl connection arises in theories
that, in addition to diffeomorphisms, admit a local rescaling
of the metric by an arbitrary local function. The vanishing

of the metricity required for the familiar Levi-Civita
connection is indeed not maintained under such rescalings,
and the Weyl connection is defined as the unique torsion-
less connection with vanishing Weyl metricity, a Weyl-
covariant statement [8,9]. Although richer than its Levi-
Civita counterparts, the geometrical tensors built out of this
connection turn out to be quite tractable.
It has long been understood that holographic field

theories possess a Weyl invariance, in the sense that they
couple not to a metric, but to a conformal class of metrics
[1,2]. The introduction of a (background) Weyl connection
in holographic field theories is a suitable reformulation in
which local Weyl transformations relate such theories in
different backgrounds. In our account, the bulk gravita-
tional theory is unmodified, but the gauge-fixing is relaxed
(to what we called Weyl-Fefferman-Graham gauge) in such
a way that the Weyl diffeomorphisms act geometrically on
tensors parametrizing the bulk metric. The Weyl diffeo-
morphisms correspond to rescaling the holographic coor-
dinate by functions of the transverse coordinates while
leaving the latter unchanged. While the FG expansion
induces the LC connection associated to the induced
boundary metric [1], we have proven that the WFG
expansion induces on the boundary a Weyl connection.
This result indicates that the WFG gauge is the proper
bulk parametrization that leaves the bulk diffeomorphisms
corresponding to the boundary Weyl transformations
unfixed. This leads to the interpretation of the Weyl
connection in the boundary as a background field together
with the boundary metric; essentially, the pair ðγð0Þ; að0ÞÞ
replaces ½γð0Þ�. An interesting consequence of the WFG
gauge is that the boundary hypersurface is generally not
part of a foliation, the distribution that is involved being
generally nonintegrable. We expect that the details of
holographic renormalization require a slightly more sophis-
ticated regulator than is usually employed, but the results of
this paper do not rely on such details.
The WFG gauge involves an expansion in powers of

the holographic coordinate in which every coefficient is
Weyl-covariant by construction. This result is a powerful
reorganization of the holographic dictionary. The Weyl
connection sources a Weyl current which explicitly appears
in the subleading expansion of the bulk geometry.
Subleading orders of the bulk Einstein equations unravel
the boundary Weyl geometrical tensors and relationships
between boundary expectation values of the sourced
operators. In particular we find the boundary Ward identity
relating the trace of the energy-momentum tensor with the
divergence of the Weyl current, and in the last section have
shown that this is the expected result.
We then scrutinized the implications of our setup for the

Weyl anomaly. Not surprisingly, we found the latter to be
given now in terms of Weyl-covariant geometrical objects,
instead of the corresponding Levi-Civita objects. We expect
that this outcome will have implications for the study and
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characterization of the anomaly in higher even boundary
dimensions. The presence of Weyl geometrical tensors
allowed for a cohomological description of the anomaly as
a difference of Weyl-related bulk volumes, which offers a
clear geometrical interpretation of the anomaly. As men-
tioned several times in the body of the paper, there are a
number of clear followups, particularly on the field theory
side, which present themselves, and we look forward to
exploring such implications in the future.
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APPENDIX DETAILS OF BULK EXPANSIONS

We recapitulate here our geometrical setup both in the
bulk and in the boundary, and compute the leading orders
of the expansion toward z ¼ 0 of the main quantities
involved. These are useful to evaluate Einstein equations
order by order, and hence solve for the various geometrical
objects. Concretely, we work in the noncoordinate basis

ds2 ¼ e ⊗ eþ hμνdxμ ⊗ dxν; e ¼ L

�
dz
z
− aμdxμ

�
:

ðA1Þ

The dual vectors are

e ¼ L−1z∂z; Dμ ¼ ∂μ þ zaμ∂z; ðA2Þ

and they form an orthonormal basis

eðeÞ ¼ 1; eðDμÞ ¼ 0; dxμðDνÞ ¼ δμν ; dxμðeÞ ¼ 0:

ðA3Þ

The vector commutators give

½e;Dμ� ¼ LeðaμÞe ¼ Lφμe;

½Dμ; Dν� ¼ LðDμaν −DνaμÞe ¼ Lfμνe; ðA4Þ

from which we read

Ceμ
e ¼ Lφμ; Cμν

e ¼ Lfμν; Cμν
α ¼ 0: ðA5Þ

Throughout this Appendix, we refer for brevity to gener-
alized bulk indices as M ¼ ðe; μÞ and thus vectors eM ¼
ðe;DμÞ and metric components gMN ¼ gðeM; eNÞ, the most
general noncoordinatized Levi-Civita connection is then

ΓP
MN ¼ 1

2
gPQðeMðgNQÞ þ eNðgQMÞ − eQðgMNÞÞ

−
1

2
gPQðCMQ

RgRN þ CNM
RgRQ − CQN

RgRMÞ:
ðA6Þ

The metric and its inverse are given in components by

gμν ¼ hμν; geμ ¼ 0; gee ¼ 1; gμν ¼ hμν;

gμe ¼ 0; gee ¼ 1: ðA7Þ
Then, calling θ ¼ trρ with ρμν ¼ 1

2
hμαeðhανÞ, the

Christoffel symbols evaluate to

Γe
ee ¼ 0 ðA8Þ

Γe
eμ ¼ Ceμ

e ¼ Lφμ ðA9Þ

Γe
μe ¼ 0 ðA10Þ

Γe
μν ¼ −

1

2
eðhμνÞ þ

L
2
fμν ðA11Þ

Γμ
ee ¼ hμνCνe

e ¼ −Lhμνφν ðA12Þ

Γμ
eν ¼ ρμν þ

L
2
fμν ðA13Þ

Γμ
νe ¼ ρμν þ

L
2
fμν ðA14Þ

Γμ
μe ¼ θ ðA15Þ

Γμ
αβ ¼

1

2
hμνðDαhβν þDβhαν −DνhαβÞ≡ γμαβ: ðA16Þ

These connections are explicitly reported in (61), (62), (63),
and (64). We additionally define

mðkÞμν ≡ ðγ−1ð0ÞγðkÞÞμν; nðkÞμν ≡ ðγ−1ð0ÞπðkÞÞμν; ðA17Þ

and the scalars

Xð1Þ ¼ trðmð2ÞÞ; ðA18Þ

Xð2Þ ¼ trðmð4ÞÞ −
1

2
trðm2

ð2ÞÞ þ
1

4
ðtrðmð2ÞÞÞ2; ðA19Þ

Yð1Þ ¼ trðnð0ÞÞ: ðA20Þ
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Starting from the metric (32) and the Weyl connection (54) expansions, we compute the inverse metric, the determinant and
the various connection components appearing in (65). We expand the two series enough to be able to capture the two
leading orders. The result is

hμλðz; xÞ ¼ z2

L2

�
γ−1ð0Þ −

z2

L2
mð2Þγ−1ð0Þ −

z4

L4
ðmð4Þ −m2

ð2ÞÞγ−1ð0Þ þ � � �
�
μλ

−
zdþ2

Ldþ2
½nð0Þγ−1ð0Þ þ � � ��μλ ðA21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hðz; xÞ

p
¼

�
L
z

�
d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det γð0ÞðxÞ
q �

1þ 1

2

z2

L2
Xð1Þ þ 1

2

z4

L4
Xð2Þ þ � � � þ 1

2

zd

Ld Y
ð1Þ þ � � �

�
ðA22Þ

ρμνðz; xÞ ¼ L−1
�
−δμν þ

z2

L2
mð2Þμν þ

z4

L4
ð2mð4Þ −m2

ð2ÞÞμν þ � � � þ d
2

zd

Ld nð0Þ
μ
ν
þ � � �

�
ðA23Þ

θðz; xÞ ¼ L−1
�
−dþ z2

L2
Xð1Þ þ z4

L4
2ðXð2Þ −

1

4
ðXð1ÞÞ2Þ þ � � � þ d

2

zd

Ld Y
ð1Þ þ � � �

�
ðA24Þ

φμðz; xÞ ¼ L−1
�
z2

L2
2að2Þμ þ � � � þ zd−2

Ld−2 ðd − 2Þpð0Þ
μ þ � � �

�
ðA25Þ

fμνðz; xÞ ¼ fð0Þμν ðxÞ þ z2

L2
ð∇̂ð0Þ

μ að2Þν − ∇̂ð0Þ
ν að2Þμ Þ þ � � � þ zd−2

Ld−2 ð∇̂ð0Þ
μ pð0Þ

ν − ∇̂ð0Þ
ν pð0Þ

μ Þ þ � � � ðA26Þ

with fð0Þμν ¼ ∂μa
ð0Þ
ν − ∂νa

ð0Þ
μ . In the expression for fμν we used the boundary derivative introduced in (22), which is the Weyl

derivative shifted with the Weyl weight of the object it acts upon. For instance, looking at (56), að2Þμ and pð0Þ
μ are Weyl-

covariant with weights 2 and d − 2 respectively and therefore:

∇̂ð0Þ
μ að2Þν ¼ ∇ð0Þ

μ að2Þν þ 2að0Þμ að2Þν ; ðA27Þ

∇̂ð0Þ
μ pð0Þ

ν ¼ ∇ð0Þ
μ pð0Þ

ν þ ðd − 2Það0Þμ pð0Þ
ν ; ðA28Þ

with ∇ð0Þ the boundary Weyl connection [its connection coefficients are explicitly given in (60)].
The expansion of the geometrical objects constructed from (67) is also reported

γλμν ¼ γð0Þλμν þ z2

L2

�
1

2
γλξð0Þð∇̂ð0Þ

ν γð2Þμξ þ ∇̂ð0Þ
μ γð2Þξν − ∇̂ð0Þ

ξ γð2Þμν Þ − ðað2Þμ δλν þ að2Þν δλμ − að2Þξ γλξð0Þγ
ð0Þ
μν Þ

�
þ � � �

−
zd−2

Ld−2 ½p
ð0Þ
μ δλν þ pð0Þ

ν δλμ − pð0Þ
ρ γλρð0Þγ

ð0Þ
μν � þ � � � ðA29Þ

Ricμν ¼ Ricð0Þμν þ z2

L2

�
1

2
∇̂ð0Þ

λ ðγλξð0Þð∇̂ð0Þ
ν γð2Þμξ þ ∇̂ð0Þ

μ γð2Þξν − ∇̂ð0Þ
ξ γð2Þμν ÞÞ

þ ðd − 1Þ∇̂ð0Þ
ν að2Þμ − ∇̂ð0Þ

μ að2Þν þ γð0Þμν ∇̂ð0Þ · að2Þ −
1

2
∇̂ð0Þ

ν ∇̂ð0Þ
μ Xð1Þ

�

þ � � � þ zd−2

Ld−2 ½ðd − 1Þ∇̂ð0Þ
ν pð0Þ

μ − ∇̂ð0Þ
μ pð0Þ

ν þ γð0Þμν ∇̂ð0Þ · pð0Þ� þ � � � ðA30Þ

R̄ ¼ z2

L2
Rð0Þ þ z4

L4
½γλνð0Þ∇̂ð0Þ

λ ∇̂ð0Þ
μ ðmð2Þμν − trðmð2ÞÞδμνÞ þ 2ðd − 1Þ∇̂ð0Þ · að2Þ − trðmð2Þγ−1ð0ÞRic

ð0ÞÞ�

þ � � � þ 2ðd − 1Þ z
d

Ld ∇̂ð0Þ · pð0Þ þ � � � ðA31Þ
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Ḡμν ¼ Gð0Þ
μν þ z2

L2

�
1

2
∇̂ð0Þ

λ ðγλξð0Þð∇̂ð0Þ
ν γð2Þξμ þ ∇̂ð0Þ

μ γð2Þξν − ∇̂ð0Þ
ξ γð2Þμν ÞÞ þ ðd − 1Þ∇̂ð0Þ

ν að2Þμ − ∇̂ð0Þ
μ að2Þν

− ðd − 2Þγð0Þμν ∇̂ð0Þ · að2Þ −
1

2
∇̂ð0Þ

ν ∇̂ð0Þ
μ Xð1Þ −

1

2
γð2Þμν Rð0Þ −

1

2
γð0Þμν ∇̂ð0Þ

λ ∇̂ð0Þ
ϕ ððγ−1ð0Þγð2Þγ−1ð0ÞÞϕλ − Xð1Þγϕλð0ÞÞ

þ 1

2
γð0Þμν trðmð2Þγ−1ð0ÞRic

ð0ÞÞ
�
þ � � �

þ zd−2

Ld−2 ½ðd − 1Þ∇̂ð0Þ
ν pð0Þ

μ − ∇̂ð0Þ
μ pð0Þ

ν − ðd − 2Þ∇̂ð0Þ · pð0Þγð0Þμν � þ � � � ðA32Þ

These quantities appear explicitly in the Einstein tensor. We then compute the bulk Ricci tensor:

RicMN ¼ RP
MPN ¼ ePðΓP

NMÞ − eNðΓP
PMÞ þ ΓQ

NMΓP
PQ − ΓQ

PMΓP
NQ − CPN

QΓP
QM; ðA33Þ

and so

Ricee ¼ −L∇μφ
μ − L2φ2 − eðθÞ − trðρρÞ − L2

4
trðffÞ ðA34Þ

Riceμ ¼ ∇α

�
ραμ þ

L
2
fαμ

�
−Dμθ þ L2φαfαμ ðA35Þ

Ricμe ¼ ∇α

�
ραμ þ

L
2
fαμ

�
−Dμθ þ L2φαfαμ ðA36Þ

Ricμν ¼ Ricμν − L∇νφμ − ðeþ θÞ
�
ρμν þ

L
2
fμν

�
− L2φμφν þ 2ραμραν þ

L2

2
fναfαμ: ðA37Þ

Notice that Riceμ ¼ Ricμe. The trace of the Ricci tensor gives the scalar curvature

R ¼ gMNðePðΓP
NMÞ − eNðΓP

PMÞ þ ΓQ
NMΓP

PQ − ΓQ
PMΓP

NQ − CPN
QΓP

QMÞ: ðA38Þ

It evaluates to

R ¼ −2eðθÞ þ L2

4
trðffÞ − trðρρÞ − 2Lhμν∇μφν þ R̄ − θ2 − 2L2φμφνhμν: ðA39Þ

Therefore the various components of the Einstein tensor read

Gee ¼ −
1

2
trðρρÞ − 3L2

8
trðffÞ − 1

2
R̄þ 1

2
θ2 ðA40Þ

Geμ ¼ ∇α

�
ραμ þ

L
2
fαμ

�
−Dμθ þ L2φαfαμ ðA41Þ

Gμe ¼ ∇α

�
ραμ þ

L
2
fαμ

�
−Dμθ þ L2φαfαμ ðA42Þ

Gμν ¼ Ḡμν − L∇νφμ − ðeþ θÞ
�
ρμν þ

L
2
fμν

�
− L2φμφν þ 2ραμραν þ

L2

2
fναfαμ ðA43Þ

þhμν

�
eðθÞ − L2

8
trðffÞ þ 1

2
trðρρÞ þ L∇αφ

α þ 1

2
θ2 þ L2φ2

�
: ðA44Þ

Finally, vacuum Einstein equations are given by
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GMN þ ΛgMN ¼ 0: ðA45Þ

They become

0 ¼ −
1

2
trðρρÞ − 3L2

8
trðffÞ − 1

2
R̄þ 1

2
θ2 þ Λ ðA46Þ

0 ¼ ∇α

�
ραμ þ

L
2
fαμ

�
−Dμθ þ L2φαfαμ ðA47Þ

0 ¼ ∇α

�
ραμ þ

L
2
fαμ

�
−Dμθ þ L2φαfαμ ðA48Þ

0 ¼ Ḡμν − L∇νφμ − ðeþ θÞ
�
ρμν þ

L
2
fμν

�
− L2φμφν þ 2ραμραν þ

L2

2
fναfαμ ðA49Þ

þhμν

�
eðθÞ − L2

8
trðffÞ þ 1

2
trðρρÞ þ L∇αφ

α þ 1

2
θ2 þ L2φ2 þ Λ

�
: ðA50Þ

We can obtain relationships among all the various terms in the expansion of hμν and aμ by solving these equations order by
order in z. For instance, (A46) is expanded in (68) whereas the expansion of (A47) gives (74). Eventually, expanding (A49)

we obtain at first nontrivial order γð2Þμν as written in (75). There exists a particular combination of the previous equations
which is simply solved as it does not involve curvature terms:

0 ¼ gMNðGMN þ ΛgMNÞ
d − 1

− ðGee þ ΛgeeÞ ¼ eðθÞ þ L∇νφ
ν þ L2φ2 þ trψ2 −

d
L
: ðA51Þ

This was used for example in (72) in the process of obtaining Xð2Þ.
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