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In the background of a charged anti–de Sitter (AdS) dilaton black hole, we investigate the movement of a
self-graviting three-brane and relevant holographic effects as the brane moves close to the AdS boundary.
The induced metric on the brane corresponds to an exact Friedmann-Lemaitre-Robertson-Walker (FLRW)
geometry, while the evolution of brane is determined by the Israel junction condition and the effective
Einstein field equation on the brane together. When the brane approaches the AdS boundary, AdS=CFT
correspondence implies that a radiation dominated FLRW universe (P ¼ 1

3
ρ) should be given. According

to the holographic renormalization procedure, we involve an appropriate surface counterterm into the
gravitational action for achieving P ¼ 1

3
ρ on the brane. This surface counterterm also plays an important

role in calculating the mass of a charged AdS dilaton black hole. Finally, we obtain the thermodynamic
quantities and give an extended Cardy-Verlinde formula on the brane.
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I. INTRODUCTION

The study about physics beyond four-dimensional (4D)
spacetime has made great progress in recent decades; a lot
of interesting physics was obtained from either the phe-
nomenological aspects or theoretical implications, such as
M theory [1,2], anti de–Sitter space/conformal field theory
[3,4] (i.e., AdS=CFT) correspondence, and the brane world
scenario in which our universe is viewed as a 3þ 1
dimensional brane embedded in a higher-dimensional
spacetime [5–7]. Actually, the original concept of brane
could be traced back to the work of Rubakov and
Shaposhnikov [8,9]; it was also developed to show that
the fundamental gravitational scale could be close to Tev
scale by introducing large extra spatial dimension trans-
verse to the brane [10–12]. Compared to the previous ones,
an important variant of brane world scenario involves
warped compactification; this idea was first considered
by RS-I model [6] in order to solve the gauge hierarchy
problem, which introduced a five-dimensional anti–
de Sitter (AdS) compactified extra dimension between
two Minkowski branes with an exponential warp factor
in metric solution. For implementing localization of 4D

graviton and reproducing Newton’s law on the visible
brane, RS-II model was proposed, which has a noncom-
pactified extra dimension. From perspective of phenom-
enology, unlike the Arkani-Dimopoulos-Dvali model
[10–12], these warped models have less striking signature
at colliders or in astrophysical processes and concomitantly
being less constrained. In cosmological applications of
brane world, RS-II model has been the most successful
model since it provided the capability of modifying the
structure of Einstein’s field equations [13,14].
For applying brane world to cosmology, a time-

dependent solution needs to be constructed. There exist
two physical scenarios, one focuses on finding time-
dependent bulk geometry as cosmological solution [15–18],
and another one considers an alternative case in which the
bulk remains to be static but the brane acquires a velocity,
while the observers on the brane feel cosmological expan-
sion or contraction as the brane moves [19–21]. Actually,
some enriched physical phenomena will be uncovered when
considering the movement of brane in AdS spacetime. More
interesting, if one considers the AdS black hole as bulk
spacetime for a motional brane, the physics of black hole,
brane universe, and holography could be connected together
naturally in this way. Under the situation of a motional brane
in spacetime of AdS-Schwarzschild black hole, associating
with the AdS=CFT correspondence and black hole thermo-
dynamics, [22] generalize the Cardy formula [23] to the
arbitrary-dimensional spacetime. Inspired by this work, the
generalized Cardy formula (called by Cardy-Verlinde for-
mula) has been checked in various black holes bulk with
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AdS asymptotics [24–39]. Besides, [40] constructs a holo-
graphic reheating model by considering the movement of a
probe brane in AdS-Vaidya spacetime and the formation
process of AdS black hole dual to the thermalization process
of brane universe. Recently, by constructing a model of
moving the brane in AdS-Schwarzschild black hole, the
holographic complexity growth in an Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe is considered by [41].
As the low-energy effective theory of supergravity and

string [42], dilaton gravitation theories have attracted many
attentions in recent decades. Inspired by AdS=CFT, many
works devote to finding the asymptotically AdS black hole
solution in dilaton gravity with various self-interacting
potential of dilaton. Particularly, it is of great interest to
consider Liouville-type dilaton potential which originated
from the supersymmetry breaking of a higher-dimensional
supergravity model [43–45]. And [45,46] have proved
that in models of one and two Liouville-type potential,
there does not exist the asymptotically flat or asymptoti-
cally AdS black hole solution. By combining three dif-
ferent Liouville-type dilaton potentials, [47–49] obtain
the asymptotically AdS black hole solution in Einstein-
Maxwell-Dilaton theory. Based on this black hole solution,
many interesting physical phenomenologies have been
explored, like the black hole thermodynamics [50,51],
holographic thermalization [52], black hole phase tran-
sition in extend phase space [53], and domain wall
cosmology [54].
In this paper, our purpose is to consider the movement of

brane in the charged AdS dilaton black hole solved by
[48,49] and the relevant holographic effects when the brane
approaches the AdS boundary. As showed in [50,53], a rich
phase structure of black hole thermodynamics could be
uncovered when adjusting the dilaton coupling constant.
Meanwhile, when considering the motion of the domain
wall in this charged AdS dilaton black hole, [54] also
observes enriched evolution modes of the domain wall
universe as varying the value of the dilaton coupling
constant. Hence, it seems that there exists a connection
between the thermodynamics of the AdS dilaton black hole
in the bulk spacetime and the evolution of FLRW universe
on the brane/wall. Based on the idea proposed in [22],
namely associating the black hole thermodynamics with
AdS=CFT correspondence, [25] obtains a modified Cardy-
Verlinde formula for a CFT living in the boundary of AdS-
RN black hole spacetime. In terms of the AdS dilaton black
hole [48,49], when we make the dilaton coupling constant
α ¼ 0, this solution will reduce to the AdS-RN one
accordingly. Thus, when the brane approaches the AdS
boundary, we naturally expect to give a similar Cardy-
Verlinde formula on the brane like the one obtained by [25]
but with some corrections of dilaton coupling constant α.
Note that the matter field confined on the brane is a gen-
eral quantum field theory without conformal symmetry
[55–57]. And we need to involve an appropriate surface

counterterm to restore the conformal symmetry when the
brane approaches the boundary of the AdS dilaton black
hole. Although the authors [54] have considered the
movement of the brane/wall in the AdS dilaton black
hole [48,49], they ignore the self-gravitating effects of the
brane/wall. Thus, in their case, the evolution of brane/wall
is controlled by the Israel junction condition [58] only.
However, in our scenario, we involve the gravity on the
brane by using the method provided in [13], and the
evolution of brane is determined by the effective
Einstein field equation on the brane and the Israel junction
condition together.
Our work is organized as follows. In Sec. II, we

briefly review the five-dimensional asymptotically AdS
black hole solution and relevant thermodynamics. Also,
we give a well-defined boundary stress-energy tensor
and calculate the black hole mass by adding an appro-
priate surface counterterms to the gravitational action.
The movement of self-gravitating brane in the back-
ground of the AdS dilaton black hole is considered in
Sec. III. In Sec. IV, the holographic effects on the brane
will be investigated as the brane approaches the AdS
boundary. Finally, Sec. V will summarize our results and
give a discussion.

II. ADS DILATON BLACK HOLES
AND RELEVANT THERMODYNAMICAL

QUANTITIES

A. Dilaton black holes solution in asymptotically
AdS spacetime

An asymptotically AdS dilatonic black hole with charge
will be considered as a background spacetime (i.e., bulk)
for the brane’s motion; thus, we will review this black hole
solution in the present section. We begin with the action of
five-dimensional Einstein-Maxwell-dilaton gravity (we use
the convention κ2 ¼ 8πG),

SEMD ¼ 1

2κ25

Z
M
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
gMN∂Mϕ∂Nϕ

− VðϕÞ − e−
4
3
αϕF2

�
; ð1Þ

where R and ϕ are the usual Ricci scalar and dilaton field,
respectively; the latter has self-interaction VðϕÞ and non-
minimally couples to the electromagnetic field of kinetic
energies F2. The physical constant α measures the strength
of this coupling. Equation of motions following from this
action have the form

RMN ¼ 1

3
½4∂Mϕ∂Nϕþ gMNVðϕÞ�

þ 2e−
4αϕ
3

�
FL
MFLN −

1

6
gMNF2

�
; ð2Þ
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∇2ϕ ¼ ∂Mð ffiffiffiffiffiffi−gp
gMN∂NϕÞffiffiffiffiffiffi−gp ¼ 3

8

∂V
∂ϕ −

α

2
e−

4αϕ
3 F2; ð3Þ

∇Nðe−
4αϕ
3 FNMÞ ¼ ∂Nð

ffiffiffiffiffiffi
−g

p
e−

4αϕ
3 FNMÞ ¼ 0: ð4Þ

We consider a static black hole solution with the metric
ansatz,

ds2 ¼ gABdxAdxB

¼ −AðrÞdt2 þ BðrÞdr2 þ RðrÞ2dΩ2
k;3; ð5Þ

where dΩ2
k;3 is the line element of three-dimensional

hypersurface of constant curvature 6k with k ¼ �1, 0
corresponding to spheric, hyperbolic, and plane topology,
respectively. In the case of only static electric fields that
occur in the system, the only nonzero components of FMN
could be obtained from the Maxwell equation (4),

Ftr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p qe4αϕ=3

R3ðrÞ : ð6Þ

Explicitly, by substituting (5), (4) into (2) and (3), we
obtain

A00

2B
þ 3A0R0

2BR
−
A0B0

4B2
−
ðA0Þ2
4AB

¼ 4e−4αϕ=3ðFtrÞ2
3B

−
1

3
AV; ð7Þ

A00

2A
þ 3R00

R
−
3B0R0

2BR
−
A0B0

4AB
−
ðA0Þ2
4A2

¼ −
1

3
BV −

4

3
ðϕ0Þ2

þ 4ðFtrÞ2e−4αϕ=3
3A

;

ð8Þ

RR00

B
þ 2ðR0Þ2

B
−
B0R0R
2B2

þ A0R0R
2AB

¼ −
1

3
R2V

−
2R2ðFtrÞ2e−4αϕ=3

3AB
;

ð9Þ

ϕ00

B
þ 3R0ϕ0

BR
−
B0ϕ0

2B2
þA0ϕ0

2AB
¼ 3

8
V 0 þαðFtrÞ2e−4αϕ=3

AB
; ð10Þ

where we have set k ¼ 1 with topology S3, namely
dΩ2

3 ¼ dθ21 þ sin2 θ1dθ22 þ sin2 θ1 sin2 θ2dφ2. For simplic-
ity, we will consider only the spherical case in this paper.
By adjusting the form of VðϕÞ appropriately, Refs. [48,49]
obtain asymptotically AdS black hole solutions of the
system analytically,

VðϕÞ ¼ Λ
2ð2þ α2Þ2 ð4α

2ðα2 − 1Þ · e−8ϕ
3α

þ 4ð4 − α2Þ · e4αϕ
3 þ 24α2 · e−

2ð2−α2Þϕ
3α Þ; ð11Þ

AðrÞ ¼ −
c2

r2

�
1 −

b2

r2

�
1− 2α2

2þα2 −
Λr2

6

�
1 −

b2

r2

� α2

2þα2 ; ð12Þ

BðrÞ ¼
�
1 −

b2

r2

�
− α2

2þα2

�
AðrÞ; ð13Þ

RðrÞ ¼
�
1 −

b2

r2

� α2

2ð2þα2Þr; ð14Þ

ϕðrÞ ¼ 3α

2ð2þ α2Þ ln
�
1 −

b2

r2

�
: ð15Þ

Besides, the following relation is also implied by the
Einstein field equations:

q2 ¼ 6

ð2þ α2Þ b
2c2: ð16Þ

Here b and c are integration constants with dimension of
length, as we show later; they are also related with the
mass M. Reference [50] shows that for this black hole
solution, the Kretschmann scalar RμναβRμναβ and the Ricci
scalar R both diverge at r ¼ b; thus, r ¼ b is the location of
curvature singularity. Furthermore, as shown in Fig. 1, for
AdS black hole solution, there only exists one horizon
whatever the value of dilaton coupling constant α.

FIG. 1. Plot the horizon function AðrÞ of a charged AdS dilaton
black hole solution at a fixed black hole mass and charge with a
different dilaton coupling constant.
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B. The mass of black holes

When we consider the black hole thermodynamics
through Euclidean path integral approach, there exists an
unavoidable divergence on the boundary of spacetime. In
asymptotically AdS spacetime, a suitable surface counter-
term can be found with the feature of coordinate frame
independence; after the renormalization procedure, a finite
Euclidean action and a well-defined boundary stress-energy
tensor will be obtained. According to the methods of
Refs. [59–61], we choose the surface counterterm as the
following ansatz:

Sct ¼ − 1

κ25

Z
∂M

d4x
ffiffiffiffiffiffi−γp �

c0
leffðϕÞ

�
1þ cϕ

c0
ϕ2

�

þ c1leffRþ c2l3effðR2 þ cβRabRabÞ
	
;

where
1

leffðϕÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− VðϕÞ
3ð3þ 1Þ

s
; ð17Þ

the expression of VðϕÞ is shown in Eq. (11). Actually, R2

and RabRab are similar in magnitude, and we will make
cβ ¼ 0 for simplification in calculation. With inclusion
of this counterterm, the quasilocal stress-energy tensor at
the boundary r ¼ const with induced metric γab could be
derived as

Tab ¼
1

κ25

�
Kab − Kγab þ

c0
leff

ð1þ cϕϕ2Þγab

− 2c1leff

�
Rab −

1

2
Rγab

�
þ c2l3effðγabR2

− 4RRab þ 4∇a∇bR − 4γab∇m∇mRÞ
	
; ð18Þ

where γab is the induced metric on the boundary r ¼ const,
which is defined as

γabdxadxb ¼ lim
r→con

ds25 ¼ −AðrÞdt2 þ ðRðrÞÞ2dΩ2
3: ð19Þ

The Kab is the extrinsic curvature on the boundary. By
expanding (18) explicitly, we get

Ttt ¼ −3
AR0ffiffiffiffi
B

p
R
−

c0
leff

Að1þ cϕϕ2Þ

− 6
c1leff
R2

A − 36
c2l3eff
R4

A; ð20Þ

Tij ¼
hij
R2

�
R2A0

2A
ffiffiffiffi
B

p þ 2
RR0ffiffiffiffi
B

p þ c0

�
1þ cα

c0
ϕ2

�
R2

leff

þ 2c1leff − 12c2
l3eff
R2

�
: ð21Þ

The mass of a black hole is a conserved charge associated
with a timelike killing vector; from Ref. [59], it could be
defined as

M ¼
Z
r→∞

dx3ðRðrÞÞ3ðAðrÞÞ−1
2Ttt: ð22Þ

For getting a finite mass of the black hole, we need to find a
well-defined quasilocal stress-energy Ttt. Thus, we choose
the undetermined coefficients in (17) as c0 ¼ −3; cϕ ¼ 2

9
;

c1 ¼ − 1
4
; c2 ¼ 1

96
. After substituting these coefficients and

(11)–(15) into (22), we obtain

M ¼ 3Ω3

2κ25

�
c2 þ

�
2 − α2

2þ α2

�
b2
�
: ð23Þ

C. The thermodynamical quantities of black hole

In terms of the general metric ansatz (5), the Hawking
temperature could be expressed as

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0ðB−1Þ0

p
4π






r¼rþ

: ð24Þ

Substituting (12) and (13) into (24), we obtain

TH ¼ ðð2þ α2Þr2 − 3b2Þ
ðα2 þ 2ÞπL2rþ

�
1 −

b2

r2þ

� α2−4
2ð2þα2Þ

þ 1

2πrþ

�
1 −

b2

r2þ

� 4−α2

2ð2þα2Þ; ð25Þ

in which we have used AðrþÞ ¼ 0 to eliminate the
parameter c, namely

c ¼
�
1þ

�
1 −

b2

r2þ

�2α2−2
2þα2 r2þ

L2

�
1=2

rþ: ð26Þ

According to area laws, the entropy of system is

S ¼ 2πr3þΩ3

κ25

�
1 −

b2

r2þ

� 3α2

2ð2þα2Þ: ð27Þ

From the Gauss law, the electric charge is

Q ¼ brþΩ3

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6

2þ α2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2þ

L2

�
1 −

b2

r2þ

�2α2−2
2þα2

s
; ð28Þ

in which we also use equality AðrþÞ ¼ 0 to eliminate
parameter c. Finally, the chemical potentials can be
calculated as
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U ¼ Atjr→∞ − Atjr→rþ ¼ −
4πq
κ25r

2þ
; ð29Þ

where the definition of At is

At ¼ −
Z

dr
8π

κ2
Ftr ¼ −

Z
dr

8πq
κ2r3

¼ 8π

2κ2
q
r2
: ð30Þ

Replacing the parameter c in (23) with the equality (26),
we get

M¼ 3Ω3r2þ
2κ25

�
1þ

�
1−

b2

r2þ

�2α2−2
2þα2 r2þ

L2
þ
�
2−α2

2þα2

�
b2

r2þ

�
: ð31Þ

With thermodynamic quantities given above, we can ensure
the rightnessofblackholemass (23)bychecking that the first
law of black hole thermodynamics is holden. According to
the link rule of differentiation [50,53], we obtain

�∂M
∂S

�
Q
¼

�∂M
∂rþ

∂rþ
∂b þ ∂M

∂b
�

Q

�� ∂S
∂rþ

∂rþ
∂b þ ∂S

∂b
�

Q
;

ð32Þ
�∂rþ
∂b

�
Q
¼ −

�∂Q
∂b

���∂Q
∂rþ

�
; ð33Þ

�∂M
∂Q

�
S
¼

�∂M
∂rþ

∂rþ
∂b þ ∂M

∂b
�

S

��∂Q
∂rþ

∂rþ
∂b þ ∂Q

∂b
�

S
;

ð34Þ
�∂rþ
∂b

�
S
¼ −

�∂S
∂b

��� ∂S
∂rþ

�
: ð35Þ

Note that the extra minus sign in (33) and (35) originated
from the derivative of implicit functions Qðb; rþÞ ¼
Q0; Sðb; rþÞ ¼ S0. After some tedious but straightforward
calculations, it is easy to check that�∂M

∂S
�

Q
¼ T;

�∂M
∂Q

�
S
¼ U; ð36Þ

thus the above thermodynamics quantities indeed satisfy
the first law of black hole thermodynamics,

dM ¼ TdSþ UdQ: ð37Þ

III. BRANE’S MOTION IN SPACETIME
OF BLACK HOLE

A. Motion of brane in a static bulk
with one extra dimension

We assumeM is a five-dimensional manifold containing
a brane Σ with two sides (denoted by Σ�, respectively),

which splits M into two parts, i.e., M�, with a Z2

symmetry. For describing the bulk-brane system clearly,
we need to introduce some physical quantities before
giving formula expression. We use XA to denote bulk
coordinates and xμ to denote internal coordinates of the
brane world sheet. If we consider the motion of brane in
bulk with one extra dimension, one can then embed brane
into bulk with trajectory XAðxμÞ (see Table I for more
details) while constructing the vielbein as eAμ ¼ ∂XA

∂xμ .
According to the static gauge, tb could be chosen as proper
time τ of bulk coordinates. We will set tb ¼ τ in the
following contents.
We consider a static bulk spacetime with the ansatz (5).

The velocity of the brane could be written as uM ¼
ð _TðτÞ; _rðτÞ;0;0;0Þ; normalization uMuM ¼−1 gives _TðτÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þB_r2Þ=A

p
. Let nM be the unit normal point into M�;

according to orthogonal condition uMnM ¼ 0; nMnM ¼ 1,
we obtain nM ¼ ð ffiffiffiffiffiffiffi

AB
p

_r;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð1þ B_r2Þ

p
; 0; 0; 0Þ. The

induced metric on Σ� is defined by hμν ¼ eMμ eNμ gAB;
explicitly,

ds2 ¼ −dτ2 þ RðrðτÞÞ2dΩ2
3: ð38Þ

The physics of the bulk-brane system could be described
by the action

S ¼ SEMD þ Sbrane ð39Þ

Sbrane ¼
Z

dx4
ffiffiffiffiffiffi
−h

p �
K
κ25

þ λðϕÞ þ Lmatter

	
; ð40Þ

where λ is an undetermined function of ϕ, which represents
the effective brane tension. And K is the trace of the
extrinsic curvature tensor [62]. Varying (39) with respect to
metric tensor, besides getting a standard Einstein equation
in bulk spacetime, we also obtain an Israel junction
condition on the brane [19,58],

fKμν −KhμνgjΣþ − fKμν −KhμνgjΣ−
¼ κ25Sμν; ð41Þ

where Sμν is the energy-momentum tensor of matters which
are confined to the brane, and Kμν is defined as

Kμν ¼
1

2
eMμ eNν ð∇MnN þ∇NnMÞ: ð42Þ

TABLE I. This table shows how to embed brane into bulk in
each component of coordinates.

Bulk t r X⃗3

Brane tb ✗ x⃗3
Embedded brane tðtbÞ rðtbÞ x⃗3 ¼ X⃗3
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We will involve a Z2 symmetry on two sides of the brane,
namely fKμνgjΣ−

¼ −fKμνgjΣþ. In this way, the junction
condition (41) could be further simplified as

Kμν −Khμν ¼
κ25
2
Sμν ð43Þ

for clearness in the expression; we omit the subscript Σþ.
Alternatively, (43) could also be written as

Kμν ¼ −
κ25
2

�
Sμν −

1

3
Shμν

�
: ð44Þ

For general ansatz of a five-dimensional static black hole
(5), the nonvanishing components of Kμν are given by

Kij ¼ −
R0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B_r2

p
ffiffiffiffi
B

p hij; ð45Þ

Kττ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ B_r2Þ

p
2A

ffiffiffiffi
B

p ðA0 þ ðAB0 − A0BÞ_r2Þ; ð46Þ

in which _r ¼ drðτÞ=dτ, and we will also use the dot to
denote the derivative with respect to τ in the following
contents. Varying (39) with respect to the dilaton field.
Besides giving the equation of motions (10) in bulk, we
also obtain a boundary condition of dilaton field on the
brane,

4

3κ25
nM∂Mϕ ¼ ∂λ

∂ϕ : ð47Þ

Expanding (47) yields

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ B_r2Þ

p
ffiffiffiffi
B

p ∂rϕ ¼ 3κ25
4

∂λ
∂ϕ : ð48Þ

Besides, if we set the energy-momentum tensor of matters
on the brane as simple ideal fluid types, namely

Sμ
ν ¼ Diagf−ρ; P; P; Pg; ð49Þ

then by combining (49) with (40), we will obtain two
independent components of the Israel junction condition as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ B_r2Þ

p
2A

ffiffiffiffi
B

p ðA0 þ ðAB0 − A0BÞ_r2Þ þ 2R0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B_r2

p

R
ffiffiffiffi
B

p

¼ κ25
2
ðλþ PÞ; ð50Þ

R0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B_r2

p
ffiffiffiffi
B

p ¼ κ25
6
ðλ − ρÞ: ð51Þ

B. Effective Einstein field equations on the brane

As shown in [13], the effective Einstein field equation on
the brane is

3

2

�
Rμν −

1

6
hμνR

�
þ 3

2
Eμν −

3

2
KKμν þ

3

2
KμρK

ρ
ν þ 1

4
hμνK2

−
1

4
hμνKαβKαβ ¼ κ25

�
T MNhMμ hNν −

1

4
hμνT

�
; ð52Þ

in which Rμν and R are the Ricci tensor and Ricci scalar of
the induced metric hμν, while Eμν is defined as

Eμν ¼ CMNABnMnAeNμ eBν ; ð53Þ

where C is the Weyl curvature tensor,

CMNAB ¼ RMNAB −
2

3
ðgMARBN − gNARBMÞ þ

1

6
gMAgBNR:

Substituting (38), (43) into (52) and expanding it explicitly,
we obtain two equations as follows:

3A0

2AB
R0

R
þ 3A0

2A
R0

R
_r2 þ 3B0

2B
R0

R
_r2 −

3

2B
ðR0Þ2
R2

−
3

2

ðR0Þ2
R2

þ 3
R0

R
̈r ¼ κ45λ

4
Pþ κ45λ

2

24
−
κ45
4
Pρþ κ45λ

6
ρ −

5κ45
24

ρ2;

ð54Þ

3

2B
ðR0Þ2
R2

ð1þ B_r2Þ ¼ κ45λ
2

24
−
κ45λ

12
ρþ κ45

24
ρ2: ð55Þ

Note that R represents the solution (14), which is the
function of r in metric (5) rather than the Ricci scalar. It is
easy to see that (55) is same with (51). Thus, the bulk-brane
system is described by four independent equations (48),
(50), (51), and (54). When combining with the Einstein
field equation in bulk (7)–(9) and the Israel junction con-
dition (50) and (51), (54) could be further simplified as

̈rþ A0

2A
_r2 þ A0B

2A
_r4 −

1

2
B0 _r4 ¼ 0; ð56Þ

after substituting (12), (13) into (56) and solving this
differential equation numerically at fixed parameters M
and Q with different α. We display the variation of brane’s
position rðτÞ and the corresponding velocity _rðτÞ in the top-
left and the top-right panels of Fig. 2. Note that for the
observer confined on the brane universe, the scale factor is
RðrðτÞÞ according to the induced metric (38); thus, we also
show the variation trend of RðrðτÞÞ and the corresponding

Hubble constant H ¼ _R
R ¼ R0ðrðτÞÞ

R _r in Fig. 2.
From (48), we obtain the mathematical expression of the

brane tension λ as the integrate function of τ,
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λ ¼ λ0 −
4

3κ25

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ B_r2Þ

p
ffiffiffiffi
B

p ðϕ0Þ2 _rdτ: ð57Þ

Based on (57), we give the variation trend of λ with respect
to τ in Fig. 3. Combining Eqs. (50) and (51) with the
numerical solutions rðτÞ and λðτÞ, we can also plot the
evolution of energy density ρ and pressure P of the matters
confined on the brane as follows.

IV. HOLOGRAPHIC EFFECTS ON BRANE

A. A renormalization procedure inspired by AdS=CFT

As indicated in [4], the energy, entropy, and temperature
of the CFT on boundary spacetime at high temperatures
could be identified with the mass, Bekenstein-Hawking

entropy, and Hawking temperature of the AdS black hole.
Thus, the matters on the brane will have the CFT’s feature
when the brane approaches the AdS boundary. In bulk
spacetime, the total energy is just the black hole mass (23),
namely E ¼ M. In case of large rðτÞ, the matter’s energy on
the brane is given by

E ¼ M_t ≈
3Ω3

2κ25

�
c2 þ 2 − α2

2þ α2
b2
�
L
r
: ð58Þ

Note that E ¼ M is obtained by using the bulk’s time
coordinate t. Nevertheless, an observer on the brane
measures the total energy by using the time coordinate
τ; thus, we need to scale E by _t. And the energy density is
given by

ρ ¼ E
V
¼ 3

2κ25

�
c2 þ 2 − α2

2þ α2
b2
�
L
r4
; ð59Þ

where V ¼ ðRðrðτÞÞÞ3Ω3 is just the spatial volume of the
brane; from (15), we know that RðrðτÞÞ ¼ rðτÞ in the large
rðτÞ limit. Meanwhile, we use r to denote rðτÞ in (58) and
(59) for convenience, and this convention will still be
used in this and the next section. Namely, without pointing
out explicitly, r will always represent rðτÞ in Sec. IV.
According to the first law of thermodynamics,

TdSþUdQ ¼ dEþ PdV; ð60Þ

the pressure is obtained as

P ¼ −
∂E
∂V ¼ L

2κ25r
4

�
c2 þ 2 − α2

2þ α2
b2
�
: ð61Þ

It is easy to check that P ¼ 1
3
ρ. However, from Fig. 4, we

observe that P ¼ −ρ in region of large r.
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FIG. 2. The upper part displays the location rðτÞ and the

velocity drðτÞ
dτ of the brane in bulk coordinates as the increase of

proper time. The bottom part plots the evolution of effective scale
factor RðrðτÞÞ and the Hubble constant H ¼ dR=dτ

R for the
observer confined on the brane universe. The red, green, blue,
and black curves correspond to α ¼ 3; α ¼ 1; α ¼ ffiffiffi

3
p

=3; α ¼ 0,
respectively. Meanwhile, all of these curves correspond to the
same black hole mass and charge. Both the AdS radius and κ are
set to be 1.

3

M=5,Q=0.125

1

FIG. 3. According to Eq. (57), we plot the evolution of effective
brane tension λ as the function of proper time τ. The initial
brane’s tension is set as λ0 ¼ 6.5. Both the AdS radius and κ are
set to be 1.
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FIG. 4. The evolution of energy density ρ and pressure P for the
matters confined on the brane, at fixed black hole mass M and
chargeQwith different dilaton coupling constant α and the initial
brane tension λ0. Both the AdS radius and κ are set to be 1.
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Actually, from the scenario of brane-bulk geometry,
there exists a motional brane which has cut off the bulk
spacetime. Translate the scenario of geometry into the word
of quantum field theory, it means that the matter field
confined on the brane is a symmetry broken effective field
theory of CFT on the AdS boundary at lower energies.
Namely, in the case of rðτÞ ≪ ∞, the Israel junction could
be reexpressed as

Kμν −Khμν ¼
κ25
2
ðhSCFTμν i þ hSIRμνi þ λhμνÞ: ð62Þ

When the brane approaches the AdS boundary, namely
rðτÞ → ∞, we need to add the counterterms to subtract
the infrared (IR) divergences and restore the conformal
symmetry; finally, the modified Israel junction condition
becomes

Kμν −Khμν −
κ25
2
Sctμν ¼

κ25
2
ðhSCFTμν i þ λhμνÞ: ð63Þ

As considered in [63–65], the action of counterterms could
be involved as the Ricci scalar R and higher order curvature
terms with respect to the brane’s induced metric hμν. To be
consistent with (17), we choose the counterterm as the
following ansatz:

Sct ¼ −
1

κ25

Z
Σ
d4x

ffiffiffiffiffiffi
−h

p
fb1leffRþ b2l3effR

2g; ð64Þ

where leffðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 3ð3þ1Þ

VðϕÞ
q

. Similarly, we have ignored the

RμνRμν term for simplification in calculation, without loss
of generality. From (64), the corresponding Sctμν could be
calculated as

Sctμν ¼ −
2c1leff
κ25

�
Rμν −

1

2
Rhμν

�
þ c2
κ25

l3efffhμνR2

− 4RRμν þ 4∇ν∇μR − 4hνμ∇α∇αRg: ð65Þ

Meanwhile, we assume λðϕÞ has the following mathemati-
cal form in case of large rðτÞ:

λðϕÞ ¼ 1

κ25

b0
leffðϕÞ

�
1þ bα

b0
ϕ2

�
; ð66Þ

the coefficients b0; bα; b1; b2 will be decided later.
Substituting (66) and (65) into the modified Israel

junction condition (63), and expanding ρ, P in the case
of large rðτÞ, we obtain

κ25ρ ¼ ðb0 − 6Þ
L

−
3Lð1 − 2b1Þ

r2

þ 3

4Lð2þ α2Þ2r4 fα
2b4ð3bα − 8Þ

þ ð2þ α2Þ2L2ð4c2 þ ð1þ 48b2ÞL2Þ

þ 8ð2þ α2Þð1þ ðb1 − 1Þα2Þb2L2g þO
�
1

r6

�
;

ð67Þ

κ25P ¼ ðb0 − 6Þ
L

þ ð1 − 2b1ÞL
r2

þ 1

4L2ð2þ α2Þ2r4 f3α
2b4Lð8 − 3bαÞ

þ ð2þ α2Þ2L3ð4c2 þ ð1þ 48b2ÞL2Þ

− 8ð2þ α2Þðb1α2 − 1Þb2L3g þO

�
1

r6

�
: ð68Þ

Note that Eq. (56) is invariant, although the Israel junction
condition is changed from (41) to (63). So, the evolution of
rðτÞ is still controlled by Eq. (56). It is easy to observe from
Fig. 2 that _r and higher order derivatives will approach 0
when rðτÞ → ∞; thus, we have ignored all Oð 1r2Þ; Oð 1r4Þ
terms which include the derivatives of rðτÞ. Finally, by
comparing (67) and (68) with the expected results (59)
and (61), we can give these undetermined coefficients
as b0 ¼ 6; b1 ¼ 1

2
; bα ¼ 8

3
; b2 ¼ − 1

48
.

Substituting b0 ¼ 6; bα ¼ 8
3
into the (66), we obtain an

analytical expression for the effective brane tension as a
function of dilaton field,

λðϕÞ ¼ 1

κ25

6

leffðϕÞ
�
1þ 4

9
ϕ2

�
: ð69Þ

Next, we check that (69) is indeed valid in large rðτÞ case.
By combining (69) with Eq. (10) and the numerical
solution of rðτÞ, we can plot the evolution of λ with
respect to the τ as shown by the dotted curves in Fig. 5.
Meanwhile, (57) is also displayed in Fig. 5 by solid curves.
It is obviously shown that by adjusting the parameter λ0
appropriately, (57) is consistent with (69) at late time.
Besides the validity of (10) in large rðτÞ case, Fig. 5 also
reveals a physical fact that a fixed λ0 is implied by the
AdS=CFT correspondence.

B. Cardy-Verlinde formula

The entropy of (1þ 1)-dimensional CFT system could
be given by a very famous formula, namely the Cardy
formula [23]. By using the combination of AdS=CFT cor-
respondence and thermodynamics of AdS-Schwarzschild
black holes, [22,66] have generalized the Cardy formula
to the CFT system which lives in arbitrary-dimensional
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spacetime; this generalized Cardy formula is called the
Cardy-Verlinde formula. After that, the Cardy-Verlinde
formula has been checked in various black holes with
AdS asymptotics [24–32,39]. In our case, as we have
argued in the last section, the matters confined to the brane
will behave as CFT system when the brane approaches the
AdS boundary. Thus, we naturally expect that the Cardy-
Verlinde formula will hold in case of large rðτÞ.
In the limit of rðτÞ → ∞, the temperature and the

chemical potential of the corresponding CFT on the brane
could be given as

T ¼ TH_t ≈
L

2πrrþ

�
1 −

b2

r2þ

� 4−α2

2ð2þα2Þ

þ ðð2þ α2Þr2þ − 3b2Þ
ðα2 þ 2ÞπLrrþ

�
1 −

b2

r2þ

� α2−4
2ð2þα2Þ; ð70Þ

U ¼ U_t ≈ −
4

ffiffiffi
6

p
πbLffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ α2
p

κ25rrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2þ

L2

�
1 −

b2

r2þ

�2α2−2
2þα2

s
:

ð71Þ

The entropy and electric charge are given directly by (27)
and (28). And we obtain the entropic and electric density as

s ¼ S
V
¼ 2πr3þ

κ25r
3

�
1 −

b2

r2þ

� 3α2

2ð2þα2Þ; ð72Þ

ρe ¼
Q
V

¼
ffiffiffi
6

p
brþ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ α2

p
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2þ

L2

�
1 −

b2

r2þ

�2α2−2
2þα2

s
: ð73Þ

Using the symbol in [22], the γ quantity, which is relevant
with the Casimir energy Ec of CFT system on the brane
through the relation Ec ¼ ð γr2Þ · r3Ω3, could be defined as

γ

r2
¼ 3ðρCFT þ PCFT − jρeUj − TsÞ − γproper

r2

¼ 3
r2þ
κ25r

4
L

�
1 −

b2

r2þ

�
; ð74Þ

where

γproper
r2

¼ r2þ
κ25r

4

�
6

2þ α2
b2

r2þ
L

�
; ð75Þ

the ðγproperr2 Þ · r3Ω3 has the physical meaning of proper
internal energy which is viewed as the zero temperature
energy of CFT [25]. Note also that the proper internal
energy has no physical effects on the entropy; thus, it needs
to be subtracted from the total energy when considering the
Cardy-Verlinde formula. By combining the physical quan-
tity γ; γproper with the energy density ρ in (59), it is easy to
find that the entropy density of the brane universe in case of
rðτÞ → ∞ could be expressed as�

3

2π
s

�
2

¼ γ

�
2

�
ρCFT −

γproper
r2

�
−

γ

r2

�
: ð76Þ

By comparing with the original version of the Cardy-
Verlinde formula [22], our result (76) has an extra physical
quantity γproper=r2. As explained in [25], the γproper=r2 is
relevant with the proper internal energy which makes the
contribution to the free energy of the CFT system, but not to
the entropy. Thus, the contribution of the proper internal
energy must be subtracted when we consider the relation-
ship between the entropy and the energy of the CFT system
on the brane. Besides, when α ¼ 0, (76) will return the
Cardy-Verlinde formula (3.16) in [25], which corresponds
to the CFT system living on the boundary of the dS-RN
black hole spacetime.

V. CONCLUSION AND DISCUSSION

In the background of a charged AdS dilaton black hole
solved by [47–49], we study the movement of a self-
graviting brane and holographic effects as the brane gets
close to the AdS boundary. Although the movement of
the brane/wall in this AdS dilaton black hole has been
investigated by the authors [54], they ignore the self-
gravitating effects of the brane/wall. Specifically, they
assume that there only exists matter field on the brane,
and the evolution of brane is controlled by the Israel
junction condition only. But a more realistic case is that
the effective gravitational field should also be localized on
the brane; thus, the evolution of brane is determined by the
effective Einstein field equation and the Israel junction

6.0001

6.0002

6.0003

6.0004

FIG. 5. The dotted curves correspond to the approximate
solution of effective brane tension λ given by (66) which is
valid in large rðτÞ case (as shown in Fig. 2, rðτÞ is the
monotonically increasing function of τ, and hence the large
rðτÞ value also means the large τ value). The solid curves
correspond to the numerically exact solution of λ given in
(57). All these curves have the same parameter value
M ¼ 5; Q ¼ 0.125; L ¼ 1; κ ¼ 1. The value of λ0 set for the
solid red, solid green, and solid blue curves are 6.0737, 6.02757,
and 6.01093, respectively.
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condition together. In our scenario, we derive the effective
Einstein field equation on the brane by using the method
provided by [13], in which they localize the gravitational
field by projecting the bulk’s Riemann curvature and its
contractions (namely, the Ricci tensor and scalar curvature)
on the brane spacetime. In results of [54], they obtained
different evolution modes of the brane/wall in various
physical parameters, especially for ω ¼ P

ρ and dilaton
coupling constant α. However, when taking the inclusion
of self-gravitating effects of the brane, we find that the
evolution mode of the brane is not so sensitive to the value
of parameters α and ω. Specifically, as shown in Fig. 2, we
observe the evolution of the brane only in the mode of
decelerated expansion whatever the value of α, while the
velocity _r of brane will tend to be zero as the brane gets
close to the AdS boundary. On the other hand, from Fig. 4,
it is obviously shown that ω ¼ P

ρ will approach a fixed
value −1 as time increases.
Inspired by AdS=CFT correspondence, we expect to

observe a connection between the brane universe and the
physical quantities of the AdS dilaton black hole when the
brane gets close to the AdS boundary. Nevertheless, in our
scenario of brane-bulk geometry, the AdS spacetime is cut
off by a motional brane. And, the matter confined to the
brane is described by a general quantum field theory
without conformal symmetry. Thus, as the brane moves
close to the boundary of the AdS dilaton black hole, a
renormalization procedure should be considered to cancel
the IR divergences and restore the conformal symmetry.
Note that the IR divergences on the gravitational side
correspond to the UV divergence on the CFT side.
Furthermore, as indicated in [22], when the brane
approaches the AdS boundary, AdS=CFT correspondence
implies that a radiation dominated FLRW universe
(P ¼ 1

3
ρ) should be given. We add an appropriate surface

counterterm to the gravitational action by using the method
given in [63–65]; after the inclusion of this counterterm, the
correct energy density and pressure (namely P ¼ 1

3
ρ) could

be reproduced on the brane in the limit of rðτÞ → ∞. It is
remarkable that this surface counterterm also plays an
important role in calculating the black hole mass. What is
more, based on this holographic renormalization procedure,
the evolution of brane’s tension as the function of dilaton
field could be given analytically in case of large rðτÞ.

By using a holographic method provided in [66], the
temperature, entropy, charge, and chemical potential on the
brane could be given from the corresponding thermody-
namic quantities of the AdS dilaton black hole. With these
thermodynamic quantities on the brane, an extended Cardy-
Verlinde formula is obtained in the large rðτÞ limit.
Meanwhile, our result has a similar mathematical form
with the one obtained in the background of the AdS-RN
black hole [25]. This similarity is reasonable in physics,
when making the dilaton coupling constant α ¼ 0; the
charged AdS dilaton black hole solution will return the
AdS-RN one. Thus, when the brane approaches the AdS
boundary, we naturally obtain a similar Cardy-Verlinde
formula on the brane like the one in [25] but with some
corrections of the dilaton field.
As a discussion, in light of this work, we point out that

the following extensions are still worthwhile to explore.
The first one is to investigate the holographic complexity
growth in the FLRW brane and the black hole system
constructed in this paper. Besides, as indicated in [40], in
the frame of AdS=CFT correspondence, the reheating
process in the brane universe could be dual to the collapse
of a spherical shell and the formation of a black hole in AdS
bulk. Thus, a valuable work is to study the holographic
reheating in the current brane-bulk system. What is more, it
is an interesting topic to consider the movement of brane in
the background of asymptotically (A)dS black hole with
scalar and electromagnetic hair [67–69] and check how the
Cardy-Verlinde formula is affected by the scalar charge.
Finally, it is also worthwhile to explore the movement of
brane in the inner spacetime of some nonsingularity black
hole solutions [70–73].
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