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We introduce a description of a minimal surface in a space with boundary, as the world hypersurface that
the entangling surface traces. It does so by evolving from the boundary to the interior of the bulk under an
appropriate geometric flow, whose parameter is the holographic coordinate. We specify this geometric flow
for arbitrary bulk geometry. In the case of pure AdS spaces, we implement a perturbative approach for the
solution of the flow equation around the boundary. We systematically study both the form of the
perturbative solution as well as its dependence on the boundary conditions. This expansion is sufficient for
the determination of all the divergent terms of the holographic entanglement entropy, including the
logarithmic universal terms in odd spacetime bulk dimensions, for an arbitrary entangling surface, in terms
of the extrinsic geometry of the latter.
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I. INTRODUCTION

The holographic duality [1–3] is a broad framework that
interrelates gravitational theories in spacetimes with AdS
asymptotics to conformal field theories on the AdS boun-
dary. As a weak to strong duality it has opened up many new
directions for the study of strongly coupled conformal field
theories through their weakly coupled gravitational duals.
An important entry in the holographic dictionary was

introduced by Ryu and Takayanagi [4,5]. This establishes a
connection between the entanglement entropy in the boun-
dary theory and the area of minimal surfaces in the bulk.
More specifically, assuming that the boundary is divided into
two subsystems A and AC by the entangling surface ∂A, the
entanglement entropy corresponding to this separation of the
degrees of freedom is proportional to the area of the open
codimension two minimal surface in the bulk, which is
anchored at the entangling surface, namely

SEE ¼ 1

4GN
AreaðAextrÞ: ð1:1Þ

The entanglement entropy is a widely used measure of
quantum entanglement. It has been shown that it plays an
important role in various quantum phenomena (e.g., it is an
order parameter in quantum phase transitions [6]). In field
theory, the calculation of the entanglement entropy is a task
that presents many difficulties. Most calculations (see e.g.,
[7]) incorporate the so-called “replica trick” [8]. The Ryu-
Takayanagi formula has provided the tools for the study of
such phenomena through the machinery of the holographic
duality, thus in strongly coupled conformal field theories,
which are extremely difficult to be studied directly.
In general, the holographic entanglement entropy is diver-

gent. Considering the case of AdSdþ1 spacetime and intro-
ducing a UV radial cutoff Λ, it has an expansion of the
form [4,5,9]

SEE ¼
�
ad−2Λd−2 þ ad−4Λd−4 þ � � � þ a0 lnΛ=Rþ regular terms; d even;

ad−2Λd−2 þ ad−4Λd−4 þ � � � þ a0 þ regular terms; d odd:
ð1:2Þ
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The most divergent term is proportional to the area of the
entangling surface. This is in agreement with older studies
that indicate that the entanglement entropy in (not neces-
sarily conformal) field theory is dominated by an “area
law” term [10,11]. This is an intriguing similarity to the
black hole entropy, which has initiated a large discussion
in the literature about whether the black hole entropy can
be attributed, totally or partially, to entanglement entropy
[12] and about whether gravity itself can be described as
an entropic force due to quantum entanglement statistics
[13,14].
The study of the holographic entanglement entropy for

arbitrary entangling surfaces is motivated by the underlying
relation of the latter to the central charges of the dual
conformal field theory (CFT). The coefficient of the
logarithmic term for even d is universal (i.e., it does not
depend on the regularization scheme). This coefficient
depends on the values of the central charges of the dual
CFT. Since these are related to the holographic Weyl
anomaly [15], they can be calculated independently. The
consistency of all the relevant calculations is a highly
nontrivial check of the holographic duality.
In general the divergent terms of the holographic entan-

glement entropy, including the universal logarithmic terms,
depend on the geometric characteristics of the entangling
surface, such as its curvature. In [16], the logarithmic term in
the case d ¼ 4 was connected to the extrinsic geometry of
the entangling surface. It was shown to be proportional to the
integral of the square of the mean curvature over the whole
entangling surface.
A great difficulty that appears in the study of the

holographic entanglement entropy through the Ryu-
Takayanagi prescription is the lack of explicitly known,
nontrivial minimal surfaces. Most of the literature focuses
on simple cases, like the minimal surfaces that correspond
to spherical entangling surfaces. In this work, we use a
systematic perturbative approach for the study of minimal
surfaces for arbitrary boundary conditions [17]. We incor-
porate a description of the minimal surface as the world
hypersurface that the entangling surface traces, as it evolves
from the boundary to the interior of the bulk under an
appropriate geometric flow, whose parameter is the holo-
graphic coordinate. We cast this geometric flow in the form
of a simple equation and study in detail its perturbative
solution. This is a second order equation, thus its solution
depends on both Dirichlet and Neumann boundary con-
ditions. The divergent terms of the holographic entangle-
ment entropy (including the universal logarithmic terms for
even d) can be specified by this perturbative solution and
they depend solely on the Dirichlet boundary data.
The structure of this paper is as follows: In Sec. II we

derive the equations that describe the minimal surface in a
space with boundary as a flow of the entangling surface
towards the interior of the space. In Sec. III we solve
perturbatively the flow equation around the boundary in the

case of pure AdS. In Sec. IV, based on the perturbative
solution of the previous section, we calculate the divergent
terms of the area of the minimal surface. In Sec. V we
discuss our results and possible extensions. Finally, there
are some appendixes; in the Appendix A, we provide some
more technical details on the derivation of the flow
equation. In Appendix B, we show that an explicitly known
nontrivial minimal surface in pure AdS4, namely the
helicoid, satisfies the flow equation. And in Appendix C
we calculate all divergent terms of the minimal surface area
in the case of a spherical entangling surface in order to be
used as a verification check for the results of Sec. IV.

II. GEOMETRIC FLOW DESCRIPTION FOR
MINIMAL SURFACES

We desire to describe the minimal surface as a geometric
flow, whose parameter is the holographic coordinate. As we
move from the boundary towards the interior of the bulk,
the entangling surface must evolve under this flow in such a
way that it traces the minimal surface. For this purpose, we
need to parametrize the minimal surface appropriately; one
of the parameters should be identical to the value of the
holographic coordinate. Furthermore, we need to study the
intersections of the minimal surface with the planes where
the holographic coordinate is constant. Subsequently, we
will specify, how these intersections must evolve as the
holographic coordinate changes, so that their union is the
minimal surface.

A. Background geometry

We herein focus our attention on static spacetimes,
which are asymptotically AdSdþ1, although our analysis
applies to any static spacetime with a boundary. We further
demand that the entangling surface is time independent.
It follows that the co-dimension two minimal surface
that is involved in the Ryu-Takayanagi formula is also
time independent. Therefore, the problem of its specifica-
tion can be reduced to one of finding a codimension
one minimal surface in an asymptotically hyperboloid
Riemannian space, which is a time slice of the original
spacetime.
In the following, r denotes the holographic coordinate

and xi, i ¼ 1;…; d − 1, denote the rest of the coordinates.
Furthermore, we select a coordinate system so that the
metric of the asymptotically hyperboloid Riemannian space
assumes the form

ds2 ¼ fðrÞdr2 þ hijðr; xkÞdxidxj: ð2:1Þ
The metric can always be written in such a form via an
appropriate redefinition of the holographic coordinate r.
The space boundary in these coordinates is described by an
equation of the form r ¼ r0 (e.g., in the case of pure AdS,
in Poincaré coordinates r0 ¼ 0, whereas in global coor-
dinates r0 ¼ ∞).
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We also consider the constant-r slices of this space. On
the slice r ¼ ρ, the induced metric is given by

ds2 ¼ hijðρ; xkÞdxidxj: ð2:2Þ

Using the form of the metric (2.1), we can calculate the
Christoffel symbols

Γr
rr ¼

1

2

f0ðrÞ
fðrÞ ; Γr

ri ¼ 0; Γr
ij ¼ −

1

2

∂rhij
fðrÞ ;

Γi
rr ¼ 0; Γi

rj ¼
1

2
hik∂rhkj; Γi

jk ¼ γijk; ð2:3Þ

where γijk are the Christoffel symbols with respect to the
induced metric on the constant-r slices (2.2). In the
following, the capital letters refer to quantities defined in
the bulk and the corresponding lowercase ones refer to the
corresponding quantities defined in the constant-r slices.

B. Two embedding problems

We consider two embedding problems. The first one is
the embedding of the minimal surface in the asymptotically
hyperboloid space, which is depicted in Fig. 1. The
minimal surface is parametrized by ρ and ua, where
a ¼ 1;…; d − 2, so that

r ¼ ρ;

xi ¼ Xiðρ; uaÞ; ð2:4Þ

i.e., one of the parameters is equal to the value of the
holographic coordinate r. In the following, the indices i, j
and so on, refer to the coordinates on a constant-r plane and
take values from 1 to d − 1, whereas the indices a, b and so
on, refer to the parameters ua and take values from 1
to d − 2.
Similarly, we consider the embedding of the intersection

of the minimal surface with a constant-r plane in this
constant-r plane, as shown in Fig. 2.
Assuming that the aforementioned plane is described by

the equation r ¼ ρ, we parametrize the intersection as

xi ¼ xiðρ; uaÞ; ð2:5Þ

where xiðρ; uaÞ ¼ Xiðρ; uaÞ. The functions Xiðρ; uaÞ
should be considered as functions of d − 1 coordinates,
whereas the functions xiðρ; uaÞ should be considered as
functions of the d − 2 coordinates ua and the parameter ρ,
which identifies the constant-r plane. Obviously, at the
limit ρ → r0 the intersection of the minimal surface with a
constant-r plane tends to the intersection of the minimal
surface with the boundary, i.e., the entangling surface.
Since the functions Xiðρ; uaÞ and xiðρ; uaÞ are identical, we
will avoid using both symbols in the following. Our goal is
to express the minimal surface as a flow of the entangling

FIG. 1. The embedding of the minimal surface in the asymp-
totically hyperbolic space.

FIG. 2. On the left, the intersection of the minimal surface with a constant-r plane. On the right, the embedding of the intersection in
the constant-r plane.
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surface towards the interior of the bulk. For this reason, we
choose to use the lowercase notation xiðρ;uaÞ and we will
drop its arguments in what follows. Similarly, we will drop
the arguments of the induced metric h, keeping in mind that
it depends on the parameter ρ both explicitly and implicitly,
as it takes values on the intersection with the minimal
surface. The explicit derivative will be denoted by ∂rhij,
whereas the total derivative with respect to parameter ρ will
be denoted by ∂ρhij, i.e., ∂ρhij ¼ ∂rhij þ ∂xk

∂ρ ∂khij.
We adopt the notation Aμ ¼ ðAr; AiÞ for vectors in the

bulk. We define the following d − 1 vectors, which are
tangent to the minimal surface

Tμ
ρ ¼

�
1;
∂xi
∂ρ

�
; Tμ

a ¼
�
0;

∂xi
∂ua

�
: ð2:6Þ

We also have d − 2 vectors in the r ¼ ρ plane, which are
tangent to the intersection of the minimal surface with the
plane. These are

tiaðρÞ ¼
∂xi
∂ua : ð2:7Þ

Both embedding problems are codimension one prob-
lems, thus, in both cases there is a single normal vector. Let
the normal vector of the bulk problem be N. Then, it obeys

NrfðρÞ þ Ni ∂xj
∂ρ hij ¼ 0; ð2:8Þ

Ni ∂xj
∂ua hij ¼ 0: ð2:9Þ

Furthermore, demanding that the normal vector is normal-
ized implies that

ðNrÞ2fðρÞ þ NiNjhij ¼ 1: ð2:10Þ

Similarly, the normal vector n in the constant-r plane
must obey

ni
∂xj
∂ua hij ¼ 0; ð2:11Þ

so that it is perpendicular to the tangent vectors ta and

ninjhij ¼ 1; ð2:12Þ

so that it is normalized.
The Eqs. (2.9) and (2.11) imply that at a given point of

the minimal surface, the normal vector n and the projection
of the normal vector N on the r ¼ ρ plane are parallel, i.e.,

Ni ¼ cðρ; uaÞni: ð2:13Þ

Furthermore, the Eq. (2.8) implies that

Nr ¼ −
1

fðρÞN
i ∂xj
∂ρ hij ¼ −

cðρ; uaÞ
fðρÞ ni

∂xj
∂ρ hij: ð2:14Þ

Finally, the normalization of N (2.10) restricts cðρ; uaÞ to
be equal to

cðρ; uaÞ ¼
�

1

fðρÞ
�
ni
∂xj
∂ρ hij

�
2

þ 1

�−1
2

: ð2:15Þ

In the following, we will adopt a specific parametrization
of the minimal surface, which simplifies the algebra
significantly. As the holographic coordinate r runs, the
trace of the minimal surface varies. At a given r ¼ ρ plane,
this variation is described by the vector ∂xi

∂ρ. However, any
component of this vector that is parallel to the intersection
of the minimal surface with the plane corresponds to a
reparametrization of the intersection and not to a physical
alteration of the latter. As a clarifying example, let us
consider the special case where the vector ∂xi

∂ρ is parallel to
the intersection everywhere; then, as ρ varies, the inter-
section is invariant. It follows that an appropriate choice
of the parameters ua at each r ¼ ρ plane (obviously this
is a redefinition of ua that involves ρ) can set ∂xi

∂ρ parallel

to ni, i.e.,

∂xi
∂ρ ¼ aðρ;uaÞni: ð2:16Þ

This is always possible through a suitable Penrose-Brown-
Henneaux transformation [18,19]. This selection partially
fixes the diffeomorphisms of the minimal surface para-
metrizations. There are remaining diffeomorphisms corre-
sponding to redefinitions of the parameters ua that do not
involve the parameter ρ. In the following, we will always
use such a parametrization for the minimal surface.
As follows from the Eq. (2.15), for this specific para-

metrization, the normalization factor cðρ; uaÞ assumes
the form

cðρ;uaÞ ¼
�
aðρ; uaÞ2
fðρÞ þ 1

�−1
2 ð2:17Þ

and the r component of the normal vector N is written as

Nr ¼ −
cðρ; uaÞaðρ;uaÞ

fðρÞ : ð2:18Þ

Finally, the elements of the induced metric for the
embedding of the minimal surface in the asymptotically
hyperboloid space are given by
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Γρρ ¼ fðρÞ þ aðρ; uaÞ2;
Γρa ¼ 0;

Γab ¼ γab; ð2:19Þ

where γab are the elements of the induced metric for the
embedding of the intersection of the minimal surface with
the r ¼ ρ plane, in the latter, namely

γab ¼
∂xi
∂ua

∂xj
∂ub hij: ð2:20Þ

In this parametrization, the elements of the inverse induced
metric assume the form

Γρρ ¼ 1

fðρÞ þ aðρ; uaÞ2 ¼
cðρ; uaÞ2
fðρÞ ;

Γaρ ¼ 0;

Γab ¼ γab: ð2:21Þ

Notice that the symbols γ and Γ denote the induced
metric elements when they have two indices, whereas they
denote the Christoffel symbols (2.3), whenever they have
three indices.
We proceed to calculate the corresponding second

fundamental forms for the two embeddings under consid-
eration. By definition, the second fundamental form for the
intersection of the minimal surface with the r ¼ ρ plane is

kab ¼ −∇kni
∂xk
∂ua

∂xj
∂ub hij

¼ −∂ani
∂xj
∂ub hij − γikln

l ∂xk
∂ua

∂xj
∂ub hij: ð2:22Þ

It is a matter of algebra, which is included in
Appendix A, to show that the elements of the second
fundamental form for the embedding of the minimal
surface in the bulk are given by

Kρρ ¼
ffiffiffi
f

p
c∂ρ

�
affiffiffi
f

p
�
þ a
2c

ninj∂rhij;

Kρa ¼ c∂aaþ 1

2c
ni

∂xj
∂ua ∂rhij;

Kab ¼ ckab þ
ca
2f

∂xk
∂ua

∂xj
∂ub ∂rhkj: ð2:23Þ

Finally, the mean curvature equals

K ¼ ckþ c3ffiffiffi
f

p ∂ρ

�
affiffiffi
f

p
�
þ ca
2f

hij∂rhij: ð2:24Þ

C. The minimal surface as a flow of the entangling
surface towards the interior of the bulk

Having studied the two embedding problems in Sec. II B,
it is simple to find an equation that describes the minimal
surface as a surface being traced by the entangling surface,
which evolves under an appropriate geometric flow, whose
parameter is the holographic coordinate. By definition, the
minimal surface satisfies the equation

K ¼ 0: ð2:25Þ

This combined with Eq. (2.24) implies

1ffiffiffi
f

p ∂ρ

�
affiffiffi
f

p
�
þ k
c2

þ a
2c2f

hij∂rhij ¼ 0: ð2:26Þ

Finally, using Eq. (2.17) to eliminate c, we arrive at

1

2a
∂ρ

�
a2

f
þ 1

�
þ
�
a2

f
þ 1

��
kþ a

2f
hij∂rhij

�
¼ 0:

ð2:27Þ

Let us now focus our attention on pure AdSdþ1 or
actually on a time slice of it, the hyperboloid Hd. In
Poincaré coordinates fðrÞ ¼ 1=r2 and hijðr; xiÞ ¼ δij=r2.
These imply that hij∂rhij ¼ −2ðd − 1Þ=r. Thus, the
Eq. (2.27) assumes a much simpler form,

ρ∂ρðρaÞ þ ðρ2a2 þ 1Þðk − ðd − 1ÞρaÞ ¼ 0 ð2:28Þ

or

ρ∂ρ arctan ðρaÞ þ k − ðd − 1Þρa ¼ 0: ð2:29Þ

It can be easily verified that all known minimal surfaces
in Hd, such as the minimal surfaces that correspond to a
spherical or strip region in the boundary, as well as the
catenoid and helicoid minimal surfaces in H3, satisfy
Eq. (2.28). The proof for the nontrivial case of the helicoid
is included in Appendix B.
In an isotropic background, such as a time slice of the

pure AdS spacetime, the bulk coordinates in a local patch
can be selected so that hij ¼ gðrÞδij. For such backgrounds
and for this selection of the bulk coordinates, all Christoffel
symbols γijk vanish and thus the second fundamental form
for the embedding of the intersection in the constant-r
plane assumes the form

kab ¼ −
1

a
∂2xi

∂ua∂ρ
∂xj
∂ub hij: ð2:30Þ

This further implies that the mean curvature is
equal to
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−2ak ¼ γab∂ργab −
∂ρg

g
γabγab

¼ 1

2

∂ρ det γ

det γ
− ðd − 2Þ ∂ρg

g
: ð2:31Þ

This allows the reexpression of Eq. (2.27) as

∂ρðc
ffiffiffiffiffiffiffiffiffiffiffiffi
g det γ

p
Þ − ðd − 1Þ ffiffiffiffiffiffiffiffiffi

det γ
p
c

∂ρ
ffiffiffi
g

p ¼ 0: ð2:32Þ

In the case of the Hd space, gðrÞ ¼ 1=r2, and thus
Eq. (2.32) assumes the form

ρ∂ρ

�
c

ffiffiffiffiffiffiffiffiffi
det γ

p
ρ

�
þ ðd − 1Þ ffiffiffiffiffiffiffiffiffi

det γ
p

cρ
¼ 0; ð2:33Þ

which will become handy in the next section.

D. A comment on the boundary conditions

The flow equation (2.27) contains second derivatives of
the embedding functions with respect to the holographic
coordinate. Therefore, the specification of a connected
entangling surface (i.e., a Dirichlet boundary condition),
does not uniquely determine the solution of the minimal
surface. This is due to the fact that such an entangling surface
may be part of a more complex disconnected entangling
surface (see Fig. 3). The additional Neumann-type boundary
condition, which is required for the specification of a unique
solution, is equivalent to the specification of the other
components of the disconnected entangling surface. Would
we desire to find a minimal surface that corresponds to
a connected entangling surface, we should specify the
additional initial condition in an appropriate fashion. Two
clarifying examples that correspond to disconnected entan-
gling surfaces are the minimal surface corresponding to a
strip region in Hd and the catenoid surface in H3.

E. A comment on the parametrization
of the minimal surface

When the minimal surface has a single local maximum
of the holographic coordinate, the parametrization (2.16)
can be applied for the whole minimal surface. In such a
case, this parametrization will have a single singular point,
the maximum itself, where the embedding functions will
map the whole range of the parameters ua to the same point.
However, if the minimal surface contains more than one
local maxima, there will be a constant-r plane for a value of
the holographic coordinate rsaddle, smaller than the value of
the holographic coordinate at the maxima, which contains a
saddle point, as shown in Fig. 4. At this constant-r slice, the
intersection of the minimal surface is not smooth. At the
nonsmooth point, the normal vector ceases being well
defined and the definition of the parametrization (2.16)

FIG. 3. Three example minimal surfaces. The minimal surface
A1 corresponds to the connected entangling surface C1. The
minimal surfaces A2 and A3 correspond to the disconnected
entangling surfaces C1 ∪ C2 and C1 ∪ C3, respectively.

FIG. 4. The intersection of the minimal surface with the constant-r planes around a saddle point.
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becomes problematic. When a saddle point is met, the
problem must be split into two new problems whose
boundary conditions are defined at r ¼ rsaddle in an
appropriate fashion, so that the surface is smooth.
The inverse situation occurs in the case of solenoidlike

minimal surfaces that correspond to disconnected entan-
gling surfaces in the boundary. In such cases there appear
saddle points where two distinct problems merge. At such a
saddle point, the demand for the smoothness of the minimal
surface will result in constraints to the Neumann conditions
that were applied in each of the two separate problems,
which in effect will transform each of the two problems,
from boundary value problems with one Dirichlet and
one Neumann condition to a problem with two Dirichlet
conditions.

III. THE PERTURBATIVE SOLUTION TO THE
FLOW EQUATION IN PURE AdSd + 1

In this section wewill present a perturbative approach for
the solution of Eq. (2.33), which describes the minimal
surface as a geometric flow of the entangling surface into
the interior of pure AdS space. This approach incorporates
elements of earlier work of Graham and Witten [20], which
calculate conformal anomalies of measurables defined on
submanifolds of spaces with boundary, using the typical
Fefferman-Graham expansion of the bulk metric in such
spaces [21]. More recently this technique has been used for
the calculation of the holographic entanglement entropy in
particular [17]. It has to be noted that a similar approach can
be developed for other asymptotically AdS static and
isotropic backgrounds on the basis of Eq. (2.32), or more
general static backgrounds on the basis of (2.27).

A. Setup of the perturbative calculation

We assume an expansion for the embedding functions of
the minimal surface around ρ ¼ 0 of the form

xiðρ; uaÞ ¼
X∞
m¼0

xiðmÞðuaÞρm: ð3:1Þ

Obviously, the first term in this expansion is determined by
the Dirichlet boundary condition, i.e., the entangling sur-
face, which is parametrized by

xi ¼ X iðuaÞ ¼ xið0ÞðuaÞ: ð3:2Þ

In the following, we will refer to the induced metric and
the extrinsic curvature emerging from the embedding
functions (3.2) and with respect to the metric δij, as the
induced metric G and the extrinsic curvature K of the
entangling surface,

Gab ¼ ∂aX i∂bX i; ð3:3Þ

Kab ¼ −∂aN i∂bX i; ð3:4Þ

where N i is the normal vector of the entangling surface,
normalized with respect to the metric δij, i.e., N i ¼
limρ→0

ni
ρ . Here and in the following, the presence of a

repeated upper index implies summation over all its values.
It follows that the induced metric γ has a similar

expansion of the form

γab ¼
1

ρ2
X∞
m¼0

γðmÞ
ab ρm; ð3:5Þ

where

γðmÞ
ab ¼

Xm
n¼0

∂axiðnÞ∂bxiðm−nÞ: ð3:6Þ

Obviously γð0Þab ¼ Gab. We also assume an expansion for the
determinant of the induced metric of the form

ffiffiffiffiffiffiffiffiffi
det γ

p
¼

ffiffiffiffiffiffiffiffiffiffi
detG

p

ρd−2
X∞
m¼0

γðmÞρm: ð3:7Þ

Equation (2.33) implies that c is a regular function of ρ
at ρ ¼ 0. Therefore, we also assume an expansion for c of
the form

c ¼
X∞
m¼0

cðmÞρm: ð3:8Þ

We recall that we have selected a particular parametri-
zation of the minimal surface, so that the vector ∂ρxi is
perpendicular to the vectors ∂axi, i.e., ∂ρxi∂axi ¼ 0.
Substituting the expansion (3.1) into this relation yields

X∞
m¼0

Xm
n¼0

ðnþ 1Þxiðnþ1Þ∂axiðm−nÞρ
m ¼ 0; ð3:9Þ

implying that

Xm
n¼0

ðnþ 1Þxiðnþ1Þ∂axiðm−nÞ ¼ 0; ð3:10Þ

for any m. In what follows, we will refer to the constraints
(3.10) as “orthogonality conditions.”
Finally, Eq. (2.17) allows the connection between the

expansion of c and the expansion of the embedding
functions. This equation assumes the form

1

c2
¼ 1þ

X∞
m¼0

Xm
n¼0

ðm − nþ 1Þðnþ 1Þxiðnþ1Þx
i
ðm−nþ1Þρ

m:

ð3:11Þ
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We may proceed to solve Eq. (2.33) perturbatively. The
expansions for c and γ are provided by Eqs. (3.6) and
(3.11). The parametrization freedom that could prohibit a
unique solution to the equation is removed via the specific
parametrization selection (2.16), which is perturbatively
expressed as (3.10). Thus, it is a matter of algebra to solve
the problem order by order.

B. The perturbative solution

1. Order Oðρ0Þ
At leading order, the induced metric reads

γab ¼
γð0Þab

ρ2
þO

�
1

ρ

�
¼ Gab

ρ2
þO

�
1

ρ

�
; ð3:12Þ

which means that

ffiffiffiffiffiffiffiffiffi
det γ

p
¼

ffiffiffiffiffiffiffiffiffiffi
detG

p

ρd−2
þO

�
1

ρd−3

�
: ð3:13Þ

Substituting this to the flow equation (2.33) yields

ρ∂ρ

�
cð0Þ
ρd−1

�
¼ −

d − 1

cð0Þρd−1
þO

�
1

ρd−2

�
; ð3:14Þ

which obviously implies that cð0Þ ¼ 1. Equation (3.11) at
leading order yields

cð0Þ ¼ 1þ xið1Þx
i
ð1Þ; ð3:15Þ

which implies that

xið1Þ ¼ 0: ð3:16Þ

2. Order Oðρ1Þ
The next order is rather trivial due to the fact that

xið1Þ ¼ 0. The orthogonality condition (3.10) at leading

order yields

xið1Þ∂axið0Þ ¼ 0; ð3:17Þ

which is trivially satisfied.
Equation (3.6) at this order reads

γð1Þab ¼ ∂axið0Þ∂bxið1Þ þ ∂axið1Þ∂bxið0Þ ¼ 0: ð3:18Þ

Similarly, Eq. (3.11) implies that

cð1Þ ¼ −2xið2Þx
i
ð1Þ ¼ 0; ð3:19Þ

and, thus, the flow equation (2.33) is trivially satisfied to
this order.

3. Order Oðρ2Þ
At next order, we receive new information from the

orthogonality condition (3.10), which reads

xið2Þ∂axið0Þ ¼ 0; ð3:20Þ

stating that the vector xð2Þ is perpendicular to the entangling
surface, and thus, parallel to the normal vector N .
At order Oðρ2Þ, the induced metric (3.6) reads

γð2Þab ¼ ∂axið0Þ∂bxið2Þ þ ∂axið2Þ∂bxið0Þ; ð3:21Þ

due to the fact that xið1Þ ¼ 0. This implies that the

determinant of the induced metric is given by

ffiffiffiffiffiffiffiffiffi
det γ

p
¼

ffiffiffiffiffiffiffiffiffiffi
detG

p

ρd−2
ð1þ γð2Þρ2 þOðρ3ÞÞ; ð3:22Þ

where

γð2Þ ¼
1

2
Gabγð2Þab : ð3:23Þ

Using the expansion of the induced metric (3.21), together
with (3.20) yields

γð2Þ ¼ −Gabxið2Þ∂a∂bxið0Þ: ð3:24Þ

The expansion (3.11) at this order yields

cð2Þ ¼ −2xið2Þx
i
ð2Þ: ð3:25Þ

Substituting the expressions (3.23) and (3.25) into the flow
equation (2.33) yields the relation

γð2Þ ¼ ðd − 2Þcð2Þ; ð3:26Þ

and, thus,

2ðd − 2Þxið2Þxið2Þ ¼ Gabxið2Þ∂a∂bxið0Þ: ð3:27Þ

When d ¼ 2, this equation is satisfied for any xð2Þ. In
this case, the right-hand side of the above equation
vanishes, due to the fact that the entangling surface is zero
dimensional.
As we have already stated, the vector xð2Þ is parallel to

the normal vector N , i.e., xið2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xið2Þx

i
ð2Þ

q
N . Substituting

this to (3.4) and using the orthogonality relation (3.20)
yields

Kab ¼
xið2Þ∂a∂bxið0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xjð2Þx
j
ð2Þ

q : ð3:28Þ
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The mean curvature K equals

K≡ GabKab ¼
Gabxið2Þ∂a∂bxið0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xjð2Þx
j
ð2Þ

q
¼ 2ðd − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xið2Þx

i
ð2Þ

q
; ð3:29Þ

due to the flow equation (3.27). It follows directly from the
Eqs. (3.25) and (3.26) that whenever d > 2,

xið2Þ ¼ −
K

2ðd − 2ÞN
i ð3:30Þ

and

cð2Þ ¼ −
K2

2ðd − 2Þ2 ; γð2Þ ¼ −
K2

2ðd − 2Þ : ð3:31Þ

4. Order Oðρ3Þ
The orthogonality condition at this order yields

xið3Þ∂axið0Þ ¼ 0: ð3:32Þ

At order Oðρ3Þ, the induced metric (3.6) reads

γð3Þab ¼ ∂axið0Þ∂bxið3Þ þ ∂axið3Þ∂bxið0Þ; ð3:33Þ

due to the fact that xið1Þ ¼ 0. The determinant of the induced

metric is given by

ffiffiffiffiffiffiffiffiffi
det γ

p
¼

ffiffiffiffiffiffiffiffiffiffi
detG

p

ρd−2
ð1þ γð2Þρ2 þ γð3Þρ3 þOðρ4ÞÞ; ð3:34Þ

where

γð3Þ ¼
1

2
Gabγð3Þab : ð3:35Þ

The relation (3.32), implies that the vector xð3Þ is
perpendicular to the entangling surface. We recall that
the same holds for xð2Þ due to (3.20). Therefore both xð2Þ
and xð3Þ are parallel to the normal vector N , and, thus, to

each other, i.e., xið3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xjð3Þx

j
ð3Þ

q
xið2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkð2Þx

k
ð2Þ

q
. This equa-

tion combined with (3.32), (3.33) and (3.27) implies that

γð3Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xjð3Þx

j
ð3Þ

xkð2Þx
k
ð2Þ

vuut Gabxið2Þ∂a∂bxð0Þ

¼ −2ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xið2Þx

i
ð2Þx

j
ð3Þx

j
ð3Þ

q
: ð3:36Þ

Furthermore, the Eq. (3.25) implies that

cð3Þ ¼ −6xið2Þx
i
ð3Þ ¼ −6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xið2Þx

i
ð2Þx

j
ð3Þx

j
ð3Þ

q
: ð3:37Þ

To this order the flow equation (2.33) yields

ð2d − 5Þcð3Þ ¼ 3γð3Þ or ðd − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xið3Þx

i
ð3Þ

q
¼ 0: ð3:38Þ

This means that the flow equation is satisfied automatically
to this order if d ¼ 3 for any xð3Þ parallel to N . On the
contrary for any d ≥ 4 the above equation implies that

xið3Þ ¼ 0; ð3:39Þ

which further implies that cð3Þ ¼ 0 and γð3Þ ¼ 0.

5. Order Oðρ4Þ
The orthogonality relation (3.10) at this order reads

2xið4Þ∂axið0Þ þ xið2Þ∂axið2Þ ¼ 0: ð3:40Þ

The induced metric (3.6) reads

γð4Þab ¼ ∂axið0Þ∂bxið4Þ þ ∂axið2Þ∂bxið2Þ þ ∂axið4Þ∂bxið0Þ; ð3:41Þ

due to the fact that xið1Þ ¼ 0. The determinant of the induced
metric is given by

ffiffiffiffiffiffiffiffiffi
det γ

p
¼

ffiffiffiffiffiffiffiffiffiffi
detG

p

ρd−2
ð1þ γð2Þρ2 þ γð3Þρ3 þ γð4Þρ4 þOðρ5ÞÞ;

ð3:42Þ
where

2γð4Þ ¼ γ2ð2Þ − 2GabGcd∂axið0Þ∂cxið2Þ∂bx
j
ð0Þ∂dx

j
ð2Þ

þ Gabð∂axkð2Þ∂bxkð2Þ þ 2∂axlð0Þ∂bxlð4ÞÞ: ð3:43Þ
Using Eqs. (3.28) and (3.29), the second term in (3.43)
assumes the form

GabGcd∂axið0Þ∂cxið2Þ∂bx
j
ð0Þ∂dx

j
ð2Þ ¼

K2KabKab

4ðd − 2Þ2 : ð3:44Þ

Using Eqs. (3.40) and (3.29), the third term in (3.43)
assumes the form

Gabð∂axkð2Þ∂bxkð2Þ þ 2∂axlð0Þ∂bxlð4ÞÞ
¼ −Gabðxkð2Þ∂a∂bxkð2Þ þ 2xlð4Þ∂a∂bxlð0ÞÞ

¼ −Gab

�
1

2
∂a∂bðxið2Þxið2ÞÞ − ∂axkð2Þ∂bxkð2Þ þ 2xlð4Þ∂a∂bxlð0Þ

�

¼ −Gab

� ∂a∂bK2

8ðd − 2Þ2 − ∂axkð2Þ∂bxkð2Þ þ 2xlð4Þ∂a∂bxlð0Þ

�
:

ð3:45Þ
The vector xð2Þ is parallel to the normal vector. Thus, the

vectors fxð2Þ; ∂axð0Þg form a basis. We decompose the
vectors xð4Þ and ∂axð2Þ into this basis,
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∂axið2Þ ¼ Aaxið2Þ þ Ac
a∂cxið0Þ; ð3:46Þ

xið4Þ ¼ fxið2Þ þ fc∂cxið0Þ: ð3:47Þ

Taking the inner product of (3.46) with xð2Þ and utilizing

(3.20), together with (3.29) leads to Aa ¼ ∂aK
K . Similarly

multiplying (3.46) with ∂bxið0Þ and utilizing (3.20), (3.28)

and (3.29) yields Ac
a ¼ − GceKKae

2ðd−2Þ , and, thus,

∂axið2Þ ¼
∂aK
K

xið2Þ −
GceKKae

2ðd − 2Þ ∂cxið0Þ: ð3:48Þ

In the same spirit, we plug the decomposition (3.47) into
the orthogonality relation (3.40) and after some algebra we

arrive at fc ¼ − GcbK∂bK
8ðd−2Þ2 , and, thus,

xið4Þ ¼ fxið2Þ −
GcbK∂bK
8ðd − 2Þ2 ∂cxið0Þ: ð3:49Þ

Now we can compute the quantities that appear in (3.45).
Equation (3.49) implies that

Gabxið4Þ∂a∂bxið0Þ ¼
K2f

2ðd− 2Þ−
GabGceK∂eK
8ðd− 2Þ2 ∂cxið0Þ∂a∂bxið0Þ:

ð3:50Þ

It can be easily shown that ∂cxið0Þ∂a∂bxið0Þ ¼ GcdΓd
ab, where

Γd
ab ¼ 1

2
Gdeð∂aGbe þ ∂bGae − ∂eGabÞ are the Christoffel

symbols with respect to the induced metric G on the
entangling surface. Thus,

Gabxið4Þ∂a∂bxið0Þ ¼
fK2

2ðd − 2Þ −
KGabΓd

ab∂dK
8ðd − 2Þ2 : ð3:51Þ

Similarly, Eq. (3.48) implies

∂axið2Þ∂bxið2Þ ¼
∂aK∂bK
4ðd − 2Þ2 þ

K2GcdKadKbc

4ðd − 2Þ2 : ð3:52Þ

Putting everything together, the third term in (3.43) is
written as

Gabð∂axkð2Þ∂bxkð2Þ þ 2∂axlð0Þ∂bxlð4ÞÞ

¼ −
fK2

d − 2
þK2KabKab

4ðd − 2Þ2 −
K□K

4ðd − 2Þ2 ; ð3:53Þ

where □ ¼ Gab∇a∇b, while the covariant derivatives are
taken with respect to the induced metric of the entangling
surface. Summing up, the Eq. (3.43) assumes the form

γð4Þ ¼
K4

8ðd − 2Þ2 −
fK2

2ðd − 2Þ −
K2KabKab

8ðd − 2Þ2 −
K□K

8ðd − 2Þ2 :

ð3:54Þ

Equation (3.11) implies that

cð4Þ ¼ 6ðxið2Þxið2ÞÞ2 − 8xið4Þx
i
ð2Þ −

9xið3Þx
i
ð3Þ

2
: ð3:55Þ

Using (3.11), together with (3.49) leads to

cð4Þ ¼
3K4

8ðd − 2Þ4 −
2fK2

ðd − 2Þ2 −
9xið3Þx

i
ð3Þ

2
: ð3:56Þ

Expanding the flow equation (2.33) to this order yields

ðd − 5Þðcð4Þ þ cð2Þγð2Þ þ γð4ÞÞ
¼ ðd − 1Þðγð4Þ − cð2Þγð2Þ þ ðcð2ÞÞ2 − cð4ÞÞ; ð3:57Þ

or

K4

2ðd − 2Þ4 þ
ðd − 4ÞfK2

ðd − 2Þ2 −
K2KabKab

4ðd − 2Þ2 −
K□K

4ðd − 2Þ2

þ
9ðd − 3Þxið3Þxið3Þ

2
¼ 0: ð3:58Þ

We recall that xið3Þ ¼ 0 for any d ≠ 3. It follows that the last
term is always vanishing, allowing the reexpression of the
last equation as

4ðd − 4Þf ¼ −
2K2

ðd − 2Þ2 þKabKab þ□K
K

; ð3:59Þ

This implies that in any number of dimensions except for
the case d ¼ 4, the quantity f, and, thus xð4Þ is completely
determined by the local characteristics of the part of the
entangling surface that we are expanding around. When
d ≠ 4, the above equation directly determines f and it
implies that

xið4Þ ¼
K

8ðd − 2Þðd − 4Þ
�
−

2K2

ðd − 2Þ2 þKabKab þ□K
K

�
N i

−
GcbK∂bK
8ðd − 2Þ2 ∂cX i; ð3:60Þ

γð4Þ ¼
ðd − 3ÞK2

4ðd − 2Þ2ðd − 4Þ

×

� ðd − 3Þ2 þ 1

2ðd − 2Þðd − 3ÞK
2 −KabKab −

□K
K

�
: ð3:61Þ

and
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cð4Þ ¼
8<
:

K2

2ðd−2Þ2ðd−4Þ
�

3d−4
4ðd−2Þ2 K

2 −KabKab − □K
K

	
; d ≥ 5;

− K4

8
þ K□K

2
−

9xið3Þx
i
ð3Þ

2
; d ¼ 3:

ð3:62Þ

When d ¼ 4, we have shown that the component of xð4Þ
that is perpendicular to the entangling surface is undeter-
mined. In this case, the flow equation (3.59) reduces to

−
K2

2
þKabKab þ□K

K
¼ 0; ð3:63Þ

which is a constraint for the entangling surface. When the
entangling surface does not satisfy this constraint, there are
implications for the form of the expansion of the embed-
ding functions. We will return to this issue in Sec. III C.

C. The Neumann boundary condition in the
perturbative expansion

At all orders higher than the first one, we found that at
order d the equations cannot completely determine the
solution. This is due to the fact that at this order the
Neumann boundary condition enters into the solution. Let
us first analyze this behavior at the orders that have already
been studied in Sec. III B, using some clarifying examples,
before we proceed to make some more general comments.

1. The case d = 2

When d ¼ 2, i.e., in the case of AdS3, we found that the
flow equation (3.27) is satisfied for any xð2Þ parallel toN . It
is easy to show that this behavior is due to the fact that the
Neumann boundary condition for the differential equa-
tion (2.33), which is determined by the existence of other
disconnected boundaries, enters into the solution at the
second order. In pure AdS3, all static minimal curves are
either semicircles of the form ðx − x0Þ2 ¼ R2 − ρ2, or semi-
infinite straight lines x ¼ x0, if there is no other boundary.
Expanding the semicircle solution around one of the two
boundary points, e.g., x ¼ x0 þ R≡ x1, yields

x ¼ x1 −
1

2R
ρ2 þOðρ3Þ: ð3:64Þ

Thus, indeed, the second order term depends on the
parameter R, i.e., on the existence of a part of the entangling
surface (in this case entangling points), which is discon-
nected from the part of the entangling surface around which
we expand our solution (in this case x ¼ x1). Notice also
that this term vanishes at the limit R → ∞, i.e in the case
that there is no other disconnected segment of the entan-
gling surface.

2. The case d = 3

When d ¼ 3, we found that the flow equation (3.38) is
satisfied for any vector xð3Þ parallel to N . This property is
similar to what occurred at the previous order for d ¼ 2.
Again, at this order, the Neumann boundary condition
enters into the solution. A nice clarifying example for this
behavior is the case of catenoid minimal surfaces in H3,
since they correspond to a disconnected entangling surface,
which is comprised of two concentric circles. These
surfaces are parametrized by [22]

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3e2
℘ðuÞ þ 2e2

s
e−φ1ðu;a1Þ;

jx⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
℘ðuÞ − e2
℘ðuÞ þ 2e2

s
e−φ1ðu;a1Þ; ð3:65Þ

where

φ1ðu; aÞ ¼
1

2
ln

�
−
σðuþ a1Þ
σðu − a1Þ

�
− ζða1Þu: ð3:66Þ

The functions ℘, ζ and σ are the Weierstrass elliptic
function and the related quasiperiodic functions, respec-
tively, with moduli g2 ¼ E2

3
þ 1 and g3 ¼ − E

3
ðE2

9
þ 1

2
Þ. The

quantity e2 is the intermediate root of the related cubic
polynomial, namely e2 ¼ E

6
. The parameter a1 assumes a

specific value so that ℘ða1Þ ¼ −2e2 and finally the
parameter E may assume any positive value. The catenoid
is covered for a full real period 2ω1 of the Weierstrass
elliptic function. Considering the segment u ∈ ½0; 2ω1� or
u ∈ ½−2ω1; 0�, the catenoid is anchored at the boundary at
two concentric circles, one with radius R and another one,
whose radius equals R exp½∓ Reðζðω1Þα1 − ζða1Þω1Þ�,
hence it depends on the value of the parameter E.
Figure 5 shows two catenoid minimal surfaces whose
entangling curves do not coincide. However they are
comprised of two concentric circles, one of whom is
common.
Expanding the catenoid solution around the part of the

entangling surface, which is the circle of radius R, is
equivalent to expanding the embedding functions around
u ¼ 0. This yields

ρ ¼ �R

ffiffiffiffi
E
2

r �
u −

E
6
u3 þOðu4Þ

�
;

jx⃗j ¼ R

�
1 −

E
4
u2 þ 1

6

ffiffiffiffi
E
2

r
u3 þOðu4Þ

�
; ð3:67Þ

implying

jx⃗j ¼ R −
1

2R
ρ2 � 1

3ER2
ρ3 þOðρ4Þ: ð3:68Þ
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It is evident that the coefficient of the ρ2 term depends
solely on the geometry of the part of the entangling curve
around which we are expanding, i.e., on the radius R.
Actually it has exactly the right value as described by the
formula (3.29), namely jxð2Þj ¼ 1

2R ¼ K
2ðd−2Þ. On the other

hand, the coefficient of the ρ3 depends on the parameter E,
i.e., on the position of the other circle that constitutes the
entangling surface. Notice again that at the limit where the
other circle disappears, i.e., E → ∞, this term vanishes.
Although they look quite different, the two catenoids
plotted in Fig. 5 have the same expansion up to order ρ2.
The catenoids do not exhaust the freedom of the

selection of the Neumann boundary condition. They are
just the solutions that preserve the rotational symmetry,
which at this expansion is equivalent to the selection of a
xð3Þ with constant magnitude. Keeping the same Dirichlet
boundary conditions and selecting a more general
Neumann boundary condition would lead to a minimal
surface corresponding to a disconnected entangling curve
comprised of a circle and another curve, which would not
be a circle.

3. The case d = 4

When d ¼ 4, we have shown that the component of xð4Þ
that is perpendicular to the entangling surface is undeter-
mined. This is the expected freedom due to the potential
existence of other disconnected parts of the entangling
surface. However, in this case, the flow equation reduces to
(3.63), which is a constraint for the entangling surface. This
constraint may hold (e.g., in the case of a spherical
entangling surface where the two principal curvatures are
κ1 ¼ κ2 ¼ 1=R) in which case, the expansion we have
performed is valid. On the contrary, the expansion (3.1) is
inconsistent when this constraint does not hold (e.g., in the
case of a cylindrical entangling surface where the two
principal curvatures are κ1 ¼ 1=R, κ2 ¼ 0). In the follow-
ing wewill show that in such a case this problem is resolved

via the introduction of a ρ4 ln ρ term in the expansion of the
embedding functions, which does not alter the perturbation
theory at lower orders. As expected, the component of xð4Þ
that is perpendicular to the entangling surface remains
undetermined by the flow equation, and, thus, it is
determined by the Neumann boundary condition.

4. Arbitrary number of dimensions

Let us investigate the general structure of the flow
equation (2.33) in the perturbation theory that we devel-
oped, in order to understand how the equation determines
the embedding functions of the minimal surface order by
order. Using the notation (3.7) and (3.8) and introducing a
similar notation for 1=c, the flow equation at order n reads

ðn − dþ 1Þ
Xn
k¼0

cðkÞγðn−kÞ þ ðd − 1Þ
Xn
k¼0

�
1

c

�
ðkÞ
γðn−kÞ ¼ 0:

ð3:69Þ

First, we need to understand what is the highest order
term of the embedding functions that appears in cðnÞ and
γðnÞ. Trivially, Eq. (3.6) implies that in γðnÞ, this is xiðnÞ. The
Eq. (3.11) naively suggests that the highest order term that
appears in cðnÞ is xiðnþ1Þ; however this is multiplied with

xið1Þ, which vanishes. Therefore, the highest order term that

appears in cðnÞ is also xiðnÞ. It follows that naturally, the nth
order of the perturbation theory determines the xiðnÞ term of

the embedding functions.
Equation (3.11) implies that

�
1

c2

�
ðnÞ

¼
Xn
k¼0

ðn − kþ 1Þðkþ 1Þxiðkþ1Þx
i
ðn−kþ1Þ

¼ 4nxið2Þx
i
ðnÞ þ F ðxiðm<nÞÞ; ð3:70Þ

FIG. 5. Two catenoids whose corresponding entangling curves do not coincide but they share a common part, which is plotted as the
black curve.
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where F ðxiðm<nÞÞ denotes a function of the terms, which are
of order lower than n. We use this notation without
implying that F is some specific function, but in the same
fashion that we use the symbolOðρnÞ to denote the terms of
order ρn and higher in an expansion. The above equation
implies that

�
1

c

�
ðnÞ

¼ 2nxið2Þx
i
ðnÞ þ F ðxiðm<nÞÞ; ð3:71Þ

cðnÞ ¼ −2nxið2Þx
i
ðnÞ þ F ðxiðm<nÞÞ: ð3:72Þ

In a similar manner

γðnÞab ¼ ∂axiðnÞ∂bxið0Þ þ ∂axið0Þ∂bxiðnÞ þ F abðxiðm<nÞÞ;
ð3:73Þ

which implies that

γðnÞ ¼
1

2
GabγðnÞab þ F ðxiðm<nÞÞ

¼ Gab∂axiðnÞ∂bxið0Þ þ F ðxiðm<nÞÞ: ð3:74Þ

The orthogonality condition (3.10) implies that

xiðnÞ∂axið0Þ ¼ F aðxiðm<nÞÞ; ð3:75Þ

which allows the reexpression of (3.74) as

γðnÞ ¼ −GabxiðnÞ∂a∂bxið0Þ þ F ðxiðm<nÞÞ: ð3:76Þ

We use the fact that the vector xð2Þ is perpendicular to the
entangling surface, and thus, the vectors fxð2Þ; ∂axð0Þg form
a base. We decompose xðnÞ in this base as

xiðnÞ ¼ XðnÞxið2Þ þ Xa
ðnÞ∂axið0Þ: ð3:77Þ

Notice that actually, only the perpendicular component XðnÞ
is a new degree of freedom that appears at this order. All
other components are completely determined by the sol-
ution at lower orders through the orthogonality condition
(3.75). Indeed, plugging Eq. (3.77) into Eq. (3.75) yields
Xa
ðnÞ∂axið0Þ∂bxið0Þ ¼ Xa

ðnÞGab ¼ F bðxiðm<nÞÞ, which directly

implies that Xa
ðnÞ ¼ GabF bðxiðm<nÞÞ ¼ F aðxiðm<nÞÞ.

Substituting (3.77) in (3.71), (3.72) and (3.74) and taking
advantage of Eq. (3.27) yields

γðnÞ ¼ −2ðd − 2ÞXðnÞxið2Þx
i
ð2Þ

− Xc
ðnÞG

ab∂a∂bxið0Þ∂cxið0Þ þ F ðxiðm<nÞÞ; ð3:78Þ

�
1

c

�
ðnÞ

¼ 2nXðnÞxið2Þx
i
ð2Þ þ F ðxiðm<nÞÞ; ð3:79Þ

cðnÞ ¼ −2nXðnÞxið2Þx
i
ð2Þ þ F ðxiðm<nÞÞ: ð3:80Þ

We isolate the terms k ¼ 0 and k ¼ n of Eq. (3.69),
which are the only ones that contain xiðnÞ, bearing in mind

that cð0Þ ¼ 1 and γð0Þ ¼ 1. Then, this equation assumes
the form

ðn − dþ 1ÞcðnÞ þ ðd − 1Þ
�
1

c

�
ðnÞ

þ nγðnÞ

¼ −ðn − dþ 1Þ
Xn−1
k¼1

cðkÞγðn−kÞ

− ðd − 1Þ
Xn−1
k¼1

�
1

c

�
ðkÞ
γðn−kÞ ¼ F ðxiðm<nÞÞ: ð3:81Þ

Finally, substituting (3.78), (3.79) and (3.80) in the above
equation yields

2ðd−nÞXðnÞxið2Þx
i
ð2Þ−Xc

ðnÞG
ab∂a∂bxið0Þ∂cxið0Þ ¼F ðxiðm<nÞÞ:

ð3:82Þ
This clearly implies that at order d, the flow equation does
not determine the component of xiðnÞ that is perpendicular to
the entangling surface. This component is determined by
the Neumann boundary condition. As we already com-
mented above, the components of xðnÞ that are parallel to
the entangling surface, i.e., the coefficients Xc

ðnÞ, are

completely determined by the lower order terms of the
solution through the orthogonality condition. Therefore, at
n ¼ d, the solution reduces to a constraint for the solution
at lower orders than d. We have already seen this as
Eq. (3.63) in the case d ¼ 4.
An indicative example of this behavior is the minimal

surface that corresponds to a strip region. It is well known
that this minimal surface satisfies the equation

dxðρÞ
dρ

¼ ρd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðd−1Þ − ρ2ðd−1Þ

p ; ð3:83Þ

where R is the maximum value of the holographic
coordinate on the minimal surface, which is related to
the width of the strip region. It follows that the expansion of
this minimal surface reads

x ¼ x1 þ
ρd

dRd−1 þOðρdþ1Þ: ð3:84Þ

This means that all strip minimal surfaces that share one
edge of the strip region, such as those plotted in Fig. 6, have
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an identical expansion up to order Oðρd−1Þ. Of course
in this special case, all these terms vanish, as a consequence
of the fact that the curvature of the entangling surface
vanishes.
The above imply that all terms of the solution of odd

order smaller than d vanish. Actually, this holds for all odd
orders, whenever d is even. We can show this iteratively.
Assuming that n is odd and all odd orders up to n are
vanishing, then, all the functions F ðxiðm<nÞÞ that appeared
in the above derivation are actually vanishing, since they
constitute of a sum of products of odd and even lower
ordered terms. Since we have already showed that the first
order vanishes, all terms of odd order vanish when d is
even, whereas when d is odd, all terms of odd order smaller
than d are vanishing. Furthermore, the consistency con-
dition that emerges at order d, where d is odd is trivially
satisfied, as both the left-hand side and the right-hand side
are vanishing.

5. Logarithmic terms in the embedding
functions expansion

We have seen that at order d, the flow equation cannot
determine the component of xd that is perpendicular to the
entangling surface, which is determined by the Neumann
boundary condition, but it rather reduces to a constraint for
the terms of the solution of order smaller than d. These
terms have already been determined by the perturbation
theory at lower orders and can be expressed in terms of the
extrinsic geometry of the entangling surface. Thus, at order

d the flow equation reduces to a constraint for the geometry
of the entangling surface. When d is odd, this constraint is
trivially satisfied, as a consequence of the fact that all lower
order odd terms vanish. In this case or when d is even and
the entangling surface satisfies the constraint, no consis-
tency problem occurs in our expansion. The question that
remains to be answered is what happens when d is even and
the constraint is not satisfied. In such a case, the regular
Taylor expansion of the embedding functions that we used
is incomplete and one has to include logarithmic terms at
orders d and higher.
Let us introduce a logarithmic term at order d. Then, the

expansion of the embedding functions of the minimal
surface will read

xiðρ; uaÞ ¼
Xd
m¼0

xiðmÞðuaÞρm þ x̃iðdÞðuaÞρd ln ρþOðρdþ1Þ:

ð3:85Þ

The orthogonality condition (3.10) up to this order reads

Xd−1
m¼0

Xm
n¼0

ðnþ 1Þxiðnþ1Þ∂axiðm−nÞρ
m þ dx̃iðdÞ∂axið0Þρ

d−1

þ x̃iðdÞ∂axið0Þρ
d−1 ln ρþOðρdÞ ¼ 0: ð3:86Þ

This clearly implies that

x̃iðdÞ∂axið0Þ ¼ 0; ð3:87Þ

meaning that the vector x̃ðdÞ is perpendicular to the
entangling surface, i.e.,

x̃iðdÞ ¼ X̃ðdÞxið2Þ: ð3:88Þ

The Eq. (3.87) implies that the second term of Eq. (3.86)
vanishes. Thus, the rest of the orthogonality conditions
remain unaltered by the introduction of the logarith-
mic term.
Using the expansion (3.85) to find the expansion of the

determinant of the induced metric yields

ffiffiffiffiffiffiffiffiffi
det γ

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
detG

p

ρd−2

�Xd
m¼0

γðmÞρm þ γ̃ðdÞρd ln ρþOðρdþ1Þ
�
;

ð3:89Þ

where

γ̃ðdÞ ¼ Gab∂axið0Þ∂bx̃iðdÞ ð3:90Þ

and γðdÞ are given by the same expressions as in the
expansion without the logarithmic term.

FIG. 6. Two minimal surfaces corresponding to strip regions.
The entangling curves do not coincide but they share a
common part.
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Substituting the expansion (3.85) into (3.11), we find
that 1=c2 has an expansion of the form

1

c2
¼

Xd
m¼0

�
1

c2

�
ðmÞ

ρm þ
�
1

c2

�0

ðdÞ
ρd ln ρþOðρdþ1Þ;

ð3:91Þ

where

�
1

c2

�
ðdÞ

¼ 4xið2ÞðdxiðdÞ þ x̃iðdÞÞ þ F ðxiðm<dÞÞ; ð3:92Þ

�
1

c2

�0

ðdÞ
¼ 4dxið2Þx̃

i
ðdÞ ð3:93Þ

and all other coefficients ð 1c2ÞðmÞ, while m < d remain

unaltered by the introduction of the logarithmic term.
Adopting a similar notation for the expansions of c and
1=c, the above implies that�

1

c

�
ðdÞ

¼ 2xið2ÞðdxiðdÞ þ x̃iðdÞÞ þ F ðxiðm<dÞÞ; ð3:94Þ

�
1

c

�0

ðdÞ
¼ 2dxið2Þx̃

i
ðdÞ; ð3:95Þ

cðdÞ ¼ −2xið2ÞðdxiðdÞ þ x̃iðdÞÞ þ F ðxiðm<dÞÞ; ð3:96Þ

c0ðdÞ ¼ −2dxið2Þx̃
i
ðdÞ: ð3:97Þ

We may now plug the expansions of the determinant of
the induced metric and c into the flow equation (2.33). All
equations at orders smaller than d remain unaltered. At
order d we will get two equations: one from the coefficient
of ρd and one from the coefficient of ρd ln ρ. The latter reads

γ̃ðdÞ þ c0ðdÞ þ ðd − 1Þ
�
γ̃ðdÞ þ

�
1

c

�0

ðdÞ

�
¼ 0: ð3:98Þ

Using Eqs. (3.90), (3.95) and (3.97), the above equation
assumes the form

Gab∂axið0Þ∂bx̃iðdÞ ¼ −2ðd − 2Þxið2Þx̃iðdÞ: ð3:99Þ

This equation is always true as a result of (3.87) and (3.27).
The equation obtained from the coefficient of ρd is

cðdÞ þ ðd − 1Þ
�
1

c

�
ðdÞ

þ dγðdÞ ¼ F ðxiðm<dÞÞ: ð3:100Þ

Implementing (3.78), (3.94) and (3.96), the above equation
assumes the form

2ðd − 2ÞX̃ðdÞxið2Þx
i
ð2Þ ¼ F ðxiðm<dÞÞ: ð3:101Þ

As before introducing the logarithmic term, the component
XðdÞ does not appear and remains undetermined by the flow
equation. This component is determined by the Neumann
boundary condition. However, this equation ceases being a
constraint for the lower order terms, but it determines the
component X̃ðdÞ. For example at d ¼ 4, we get

X̃ð4Þ ¼
K2

8
−
KabKab

4
−
□K
4K

: ð3:102Þ

The introduction of the logarithmic term solved the
consistency problem. Without that term, we had one free
parameter and one equation that did not contain this free
parameter and could be inconsistent. After the introduction
of the logarithmic term, we have two free parameters and
two equations. One of the parameters still does not appear
in the equations, but one of the latter is always satisfied, no
matter what the value of the other parameter is.
In a straightforward manner, at orders higher than d, one

has to include logarithmic terms. As the order increases
higher powers of logarithms may be necessary. The
equations though are going to be always as many as the
free parameters, allowing the perturbative determination of
the embedding functions at arbitrary order.
The appearance of the logarithmic terms at even d, as

well as the appearance of odd terms at odd d, in the
expansion of the embedding functions at orders d and
higher, is not unexpected at all. Such terms are known to
exist [20], nevertheless we obtained the conditions under
witch they appear and calculated the related coefficients in
terms of the exterior geometry of the entangling surface.

IV. THE DIVERGENT TERMS OF
ENTANGLEMENT ENTROPY

IN PURE ADS SPACE

When Einstein gravity is considered in the bulk, the
entanglement entropy is given by the original Ryu-
Takayanagi formula, i.e.,

SEE ¼ A
8πG

; ð4:1Þ

where A is the area of the minimal surface in the bulk,
which is anchored at the entangling surface.
We cut off the minimal surface at ρ ¼ 1=Λ. Then, in the

specific parametrization (2.16) that we have used, the area
of the minimal surface is given by the expression

AðΛÞ ¼
Z

ρmax

1=Λ
dρ

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffi
detΓ

p

¼
Z

ρmax

1=Λ
dρ

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðρÞ det γp

c
; ð4:2Þ
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where ρmax is the maximum value of the holographic
coordinate on the minimal surface. When we consider
minimal surfaces that correspond to connected entangling
surfaces, this ρmax indeed assumes a given value,1 e.g., in
the case of a spherical entangling surface of radius R,
ρmax ¼ R. When we consider minimal surfaces that corre-
spond to nonconnected entangling surfaces, the situation is
more complicated, since one has to run the flow from each
disconnected part and arrange a smooth matching of the
initially disconnected parts of the minimal surface. In any
case, the details of ρmax affect only the term which is
constant in the cutoff expansion. Although this constant
term is of great physical significance, here we focus on the
divergent terms. It is evident that the expansion we
developed in the previous section can be used to system-
atically derive these terms.
In pure AdSdþ1 in Poincaré coordinates, fðρÞ ¼ 1=ρ2,

thus the Eq. (4.2) assumes the form

AðΛÞ ¼
Z

ρmax

1=Λ
dρ

Z
dd−2u

ffiffiffiffiffiffiffiffiffi
det γ

p
ρc

: ð4:3Þ

Using the flow equation (2.33), we obtain

AðΛÞ ¼ −
1

d − 1

�Z
dd−2uðc

ffiffiffiffiffiffiffiffiffi
det γ

p
Þ




ρ¼ρmax

ρ¼1=Λ

−
Z

ρmax

1=Λ
dρ

Z
dd−2u

c
ffiffiffiffiffiffiffiffiffi
det γ

p
ρ

�
: ð4:4Þ

Finally, incorporating the expansions (3.7) and (3.8) the
above equation assumes the form

AðΛÞ ¼ −
1

d − 1

X∞
n¼0

��Xn
m¼0

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
cðmÞγðn−mÞ

�

×
�

1

ρd−n−2





ρ¼ρmax

ρ¼1=Λ
−
Z

ρmax

1=Λ

dρ
ρd−n−1

��
: ð4:5Þ

This clarifies that the divergent terms are determined by the
expansion of the minimal surface up to order d − 2. The
Neumann boundary condition, i.e., the nonlocal properties
of the entangling surface, affect the terms of order d and
higher. It follows that all divergent terms depend solely
on the local characteristics of the entangling surface.

Furthermore, we have shown that all terms of odd order
lower than d vanish. Therefore, when d is odd,

AðΛÞ ¼ 1

d − 1

Xðd−3Þ=2
n¼0

�
d − 2n − 1

d − 2n − 2
Λd−2n−2

×
Xðd−3Þ=2
m¼0

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
cð2mÞγð2n−2mÞ

�

þ nondivergent terms; ð4:6Þ

whereas, when d is even

AðΛÞ ¼ 1

d − 1

Xðd−4Þ=2
n¼0

�
d − 2n − 1

d − 2n − 2
Λd−2n−2

×
Xðd−4Þ=2
m¼0

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
cð2mÞγð2n−2mÞ

�

þ lnΛ
d − 1

Xðd−2Þ=2
m¼0

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
cð2mÞγðd−2m−2Þ

þ nondivergent terms: ð4:7Þ

We adopt the notation

AðΛÞ ¼ a0 lnΛþ
Xd−2
n¼1

anΛn þ nondivergent terms: ð4:8Þ

The leading divergence is the usual “area law” term. For
any d ≥ 3, the relevant coefficient is

ad−2 ¼
1

d − 2

Z
dd−2u

ffiffiffiffiffiffiffiffiffiffi
detG

p
¼ 1

d − 2
A; ð4:9Þ

where A is the area of the entangling surface.
For any d ≥ 4, there is at least one more divergent term.

Using (3.31), we find that the coefficient of this term equals

ad−4 ¼
8<
:

− d−3
2ðd−2Þ2ðd−4Þ

R
dd−2u

ffiffiffiffiffiffiffiffiffiffi
detG

p
K2; d ≥ 4;

− 1
8

R
d2u

ffiffiffiffiffiffiffiffiffiffi
detG

p
K2; d ¼ 4:

ð4:10Þ

At d ¼ 4, this term is the universal logarithmic term. The
value of its coefficient is in agreement with [16].
The next diverging correction to the area appears

whenever d ≥ 6. Reading Eqs. (3.31), (3.61) and (3.62),
we find

cð4Þ þ cð2Þγð2Þ þ γð4Þ ¼
d − 1

4ðd − 2Þ2ðd − 4ÞK
2

×

�
d2 − 5dþ 8

2ðd − 2Þ2 K2 −KabKab −
□K
K

�
: ð4:11Þ

1Even for connected surfaces it is possible that more than one
local maximum of the holographic coordinate exists. In such a
case, there are saddle points of the minimal surface. The topology
of the intersection of the minimal surface with the constant-r
planes changes at the value of the holographic coordinate where a
saddle point appears. At the level of the flow equation (2.28), a
saddle point is a point where the function aðρ; uaÞ becomes
infinite and the normal vector n is not well defined. In such cases,
the integral formula (4.2) has to be split into patches separated by
the saddle points; see also the discussion in Sec. II E.
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Therefore

ad−6 ¼

8>><
>>:

d−5
4ðd−2Þ2ðd−4Þðd−6Þ

R
dd−2u

h ffiffiffiffiffiffiffiffiffiffi
detG

p
K2

�
d2−5dþ8
2ðd−2Þ2 K

2 −KabKab − □K
K

	i
; d ≥ 6;

1
128

R
d4u

h ffiffiffiffiffiffiffiffiffiffi
detG

p
K2 ×

�
7
16
K2 −KabKab − □K

K

	i
; d ¼ 6:

ð4:12Þ

At d ¼ 6 this is a universal logarithmic term. It is in
agreement with the results of [23], where the logarithmic
term is expressed in terms of both the intrinsic and extrinsic
geometry of the entangling surface. Our result is expressed
in terms of the extrinsic geometry of the entangling surface
solely and it has a quite simple expression.
Let us verify the above in the simple case of a spherical

entangling surface of radius R. In this case K ¼ d−2
R ,

KabKab ¼ d−2
R2 and □K ¼ 0. Thus,

ad−4 ¼
8<
:

− ðd−3ÞAd−2
2ðd−4ÞR2 ; d ≥ 4;

− A2

2R2 ; d ¼ 4;

ad−6 ¼
8<
:

ðd−3Þðd−5ÞAd−2
8ðd−6ÞR4 ; d ≥ 6;

3A4

8R4 ; d ¼ 6;
ð4:13Þ

whereAd is the area of a d-dimensional sphere of radius R.
The minimal surface, which corresponds to a spherical
entangling surface, is analytically known, hence the above
coefficients can be calculated directly. This task is per-
formed in Appendix C. The result of the direct calculation,
which is provided by Eqs. (C17), (C24) and (C25), is in
perfect agreement with the perturbatively calculated coef-
ficients of the Eq. (4.13).

V. DISCUSSION

Since the initial formulation of the Ryu-Takayanagi
conjecture [4,5], which connects the entanglement entropy
in the boundary theory to the area of minimal surfaces in
the bulk, the study of minimal surfaces in asymptotically
AdS spaces has received a great interest. The problem of
the specification of a minimal surface in AdS for given
boundary data presents great difficulty due to the non-
linearity of the equations which are obeyed by the minimal
surfaces. Actually, very few minimal surfaces are explicitly
known; most of the related literature focuses on those that
correspond to spherical entangling surfaces or strip regions
on the boundary. An example of nontrivial minimal
surfaces with explicit expressions is the family of the
elliptic minimal surfaces in AdS4 [22], which includes the
helicoids, the catenoids and the cusps. More general
minimal surfaces are known in a more abstract, less handy
form in terms of hyperelliptic functions [24,25].

In this work, instead of relying on exact minimal sur-
faces, which necessarily correspond to specific entangling
surfaces, we follow a different approach. First, we describe
the minimal surface as a geometric flow of the entangling
surface towards the interior of the bulk. In this language,
the evolving entangling surface traces the minimal surface,
in the same sense that a string traces its world sheet. Then,
we solve this flow equation perturbatively around the
boundary, obtaining an expression for the minimal surface
that corresponds to any smooth entangling surface.
The solution to the flow equation presents a specific

dependence on the boundary conditions. Since it is a
second order equation with respect to the holographic
coordinate, two boundary conditions are required in order
to uniquely specify a solution. The Dirichlet boundary
condition is obviously the form of the entangling surface at
the boundary. The second one is a Neumann-type boundary
condition. Similarly to all second order differential equa-
tions, the Neumann boundary condition can also be
expressed as a second Dirichlet boundary condition; it
depends on the existence of other disconnected parts of the
entangling surface, i.e., on nonlocal characteristics of the
latter. Assuming that the bulk is AdSdþ1, the solution does
not depend on the Neumann boundary condition at any
order smaller than d. All smaller orders are completely
determined by the Dirichlet condition, i.e., the local
characteristics of the entangling surface.
It turns out that the terms of order lower than d in this

perturbative solution of the flow equation are those which
determine all the divergent terms of the holographic
entanglement entropy, including the universal logarithmic
term in odd bulk spacetime dimensions. Thus, all the
divergent terms depend only on the local characteristics of
the entangling surface, such as its curvature. The perturba-
tive solution to the flow equation constitutes a systematic
method for the determination of these terms.
In this work, we found the three most divergent terms in

pure AdSdþ1 spaces, solely in terms of the extrinsic
geometry of the entangling surface. These include simple
expressions for the universal logarithmic terms both in
AdS5 and AdS7, which are in agreement with the literature
[16,23]. Therein, these terms are calculated through the use
of an ansatz dictated by the conformal symmetry. The
purely geometric method, which we have applied here,
verifies these results, without any assumptions. Moreover,
it simplifies the obtained expressions and extends them to
the polynomially divergent terms.
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Our method has a number of obvious direct uses and
generalizations. It is well known that the minimal surfaces,
which correspond to entangling surfaces with nonsmooth
points, such as conical or wedge singularities [26–28] or
more complicated logarithmic spiral ones [29], generate
new terms in the expansion of the holographic entangle-
ment entropy that do not emerge for smooth entangling
surfaces. These new terms include universal terms, which
are proportional to the logarithm of the UV cutoff in even
bulk dimensions and to its square in odd bulk dimensions.
The coefficients of these terms can be related to the central
charges of the dual CFT [27,30,31]. The machinery of
the geometric flow which describes the minimal surface can
be directly applied to the case of singular entangling
surfaces in order to provide simple analytic expressions
for all these terms in an arbitrary number of dimensions. In
this language, the singular points are simply singularities in
the Dirichlet boundary data (e.g., conical and wedge
singularities are delta function singularities of the extrinsic
curvature of the entangling surface) and therefore such
terms can be studied in a unified fashion with the terms that
emerge in the case of smooth entangling surfaces.
Whenever the CFT has an Einstein gravity holographic

dual, the central charges are proportional to each other at
leading order in the rank of the gauge group of the
boundary theory. In effect, their contributions to the
universal term are not discernible. For general higher
derivative gravitational duals, the central charges cease
being proportional to each other. These setups are very
interesting, since they allow the study of a broader class of
CFTs with unequal central charges. Since the central
charges can be distinguished, one can in principle obtain
a formula for the coefficient of the universal logarithmic
term that is valid for arbitrary values of the central charges,
independently of the specific gravitational dual.
In view of this, the generalization of the Ryu-Takayanagi

prescription for the calculation of the holographic entan-
glement entropy for more general gravitational theories is
required. The correspondence between the entanglement
entropy and the entropy of topological black holes [32],
motivates the use of Wald’s functional instead of the area,
for this purpose. Yet, this naive guess does not give the right
answer [33]. There are plenty of works in the literature that
discuss the functional that should be minimized. This
discussion was initiated in the context of Lovelock gravity
in [33,34]. The simplest case of Lovelock gravity, namely
Gauss-Bonnet gravity, is discussed extensively in [35],
whereas general curvature square theories are studied in
[36]. Even more general theories whose Lagrangians
depend on contractions of the Riemann tensor were treated
in [37]. Yet, the picture is far from clear since these results
were debated [38], while various subtleties are not well
understood [39–42].
In the present work, we have worked out a purely

geometric approach to this problem, which is generalizable

for any functional, via the appropriate modification of
Eq. (2.27). In effect, our approach enables a holographic
calculation, which does not rely on any ansatz for the
expected result.
Our geometric flow method can also be easily adapted

to the study other bulk geometries, which have very
interesting applications, via the appropriate adaptation of
Eqs. (2.28) or (2.33). A first trivial example would be the
study of the AdS black hole geometry, which would allow
the specification of thermal corrections to the holographic
entanglement entropy. However, the form of the AdS Black
hole metric

ds2 ¼ −
�
k2r2 þ 1 −

C
rd−2

�
dt2 þ

�
k2r2 þ 1 −

C
rd−2

�
−1
dr2

þ r2dΩ2 ð5:1Þ

implies that deviations from the pure AdS case appear at
order d in the perturbation theory, hence they do not affect
the divergent terms of the holographic entanglement
entropy. This is not surprising since the thermal contribu-
tions are not expected to be relevant in the UVof the theory.
The same holds for any perturbation of the pure AdS
geometry, which obeys Dirichlet boundary conditions. This
becomes obvious via the Fefferman-Graham expansion of
such geometries. Among these geometries, one of particu-
lar interest is the AdS soliton background, which is related
to confinement-deconfinement phase transitions in the
boundary. Indeed, it is known that it is the constant
nondivergent term of entanglement entropy that plays
the role of a quantum order parameter [43,44].
On the other hand, one may study the geometry

generated by probe branes, which corresponds to massive
deformations of the boundary field theory. These geom-
etries do not possess AdS asymptotics and are known to
generate new universal logarithmic terms, associated with
the mass scale introduced in the boundary theory [45–49].
Furthermore, it would be particularly interesting to study

systems with Fermi surfaces, as in such systems, the
leading divergence of the entanglement entropy is not
the usual “area law” term, but it is enhanced from Λd−2 to
Λd−2 lnΛ [50,51]. Our method is appropriate for the
specification of all divergent terms and additionally, it
has the advantage that since it is a perturbative method, it
does not require the full explicit solution of the background
geometry, but only its expansion around the boundary.
Finally, the investigation of the thermalization process

in the boundary CFT requires the study of black hole
formation in the bulk [52], and, thus, the study of not static
geometries. In such cases, the problem cannot be reduced to
the problem of a codimension one minimal surface in a
Riemannian manifold. Therefore, the geometric flow
method that we presented has to be reformulated for
codimension two minimal surfaces.
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APPENDIX A: THE EMBEDDING OF THE
MINIMAL SURFACE IN THE BULK

In this Appendix, we provide some intermediate steps in
the derivation of the basic equation (2.28), which describes
a static minimal surface in an asymptotic AdS space as a
geometric flow of the entangling surface towards the
interior of the bulk. Since the defining property of the
minimal surface is its vanishing mean curvature, we need to
calculate the components of the second fundamental form,
for the embedding of the minimal surface in the bulk, in the
particular parametrization (2.16) that we use.
In the following the greek indices identify the coordi-

nates in the bulk, including the holographic coordinate,
thus they take d distinct values. The latin indices i, j and so
on, identify the coordinates that parametrize a constant-r
plane in the bulk, thus, they take d − 1 distinct values.
Finally, the latin indices a, b and so on identify the
variables that parametrize the intersection of the minimal
surface with the constant-r plane and thus, they take d − 2
distinct values.
Let us first derive some relations that are going to be

useful in the following. The form of the parametrization of
the minimal surface (2.4) and the particular choice of the
parameters ua that satisfy (2.16) imply that

∂ρ ¼
∂r
∂ρ ∂r þ

∂xk
∂ρ ∂k ¼ ∂r þ ank∂k; ðA1Þ

∂a ¼
∂r
∂ua ∂r þ

∂xk
∂ua ∂k ¼

∂xk
∂ua ∂k: ðA2Þ

Furthermore the parametrization (2.16) implies that

∂2xj

∂ua∂ρ ¼ ∂aðanjÞ ¼ ð∂aaÞnj þ a∂anj: ðA3Þ

The normal vector is normalized, i.e., ninjhij ¼ 1. This
implies that

2ð∂ρniÞnjhij þ ninj∂ρhij ¼ 0; ðA4Þ

2ð∂aniÞnjhij þ ninj∂ahij ¼ 0: ðA5Þ

The above equations combined with the Eqs. (A1) and (A2)
yield

ð∂ρniÞnjhij ¼ −
1

2
ninjð∂rhij þ ank∂khijÞ; ðA6Þ

ð∂aniÞnjhij ¼ −
1

2
ninj

∂xk
∂ua ∂khij: ðA7Þ

The specific choice of the parameters ua (2.16) implies
that ni ∂xj∂ua hij ¼ 0. It follows that

∂ρni
∂xj
∂ua hij þ ni

∂2xj

∂ua∂ρ hij þ ni
∂xj
∂ua ∂ρhij ¼ 0: ðA8Þ

Implementing Eq. (A3), the above equation assumes
the form

−∂ρni
∂xj
∂ua hij ¼ ∂aaþ ani∂anjhij þ ni

∂xj
∂ua ∂ρhij: ðA9Þ

Finally, Eqs. (A1) and (A7) allow the reexpression of the
above equation as

−∂ρni
∂xj
∂ua hij ¼ ∂aa −

1

2
aninj

∂xk
∂ua ∂khij þ ni

∂xj
∂ua ∂rhij

þ a
∂xj
∂ua n

ink∂khij: ðA10Þ

Let us now calculate the components of the second
fundamental form for the embedding of the minimal
surface in the bulk. We start with the ρρ component.
This equals

Kρρ ¼ −∇κNμ ∂xκ
∂ρ

∂xν
∂ρ Gμν; ðA11Þ

where G is the bulk metric that corresponds to the line
element (2.1). The indices μ and ν may be equal to r or to
any other value i. Since the bulk metric does not contain ri
elements, we get

Kρρ ¼ −∇κNr ∂xκ
∂ρ f −∇κNi ∂xκ

∂ρ
∂xj
∂ρ hij: ðA12Þ

Then, implementing the definition of the covariant deriva-
tive ∇κ in terms of the Christoffel symbols, we get
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Kρρ ¼ −∂ρNrf − Γr
κλN

λ ∂xκ
∂ρ f − ∂ρNi ∂xj

∂ρ hij

− Γi
κλN

λ ∂xκ
∂ρ

∂xj
∂ρ hij: ðA13Þ

Equation (2.3) states that the Christoffel symbols with two
r indices vanish, hence,

Kρρ ¼ −∂ρNrf − Γr
rrNrf − Γr

klN
l ∂xk
∂ρ f

− ∂ρNi ∂xj
∂ρ hij − Γi

krN
r ∂xk
∂ρ

∂xj
∂ρ hij

− Γi
rlN

l ∂xj
∂ρ hij − Γi

klN
l ∂xk
∂ρ

∂xj
∂ρ hij: ðA14Þ

We now take advantage of the particular parametrization
(2.16). In this parametrization, it holds that Ni ¼ cni and
Nr ¼ −ca=f. Furthermore, we substitute the values of the
Christoffel symbols from Eq. (2.3) and after some algebra
we find

Kρρ ¼
ffiffiffi
f

p
c∂ρ

�
affiffiffi
f

p
�
− cað∂ρniÞnjhij þ

ca3

2f
nknj∂rhjk

− ca2γikln
lnknjhij: ðA15Þ

At this point it is useful to implement the Eq. (A6), which
allows the reexpression of the above equation as

Kρρ ¼
ffiffiffi
f

p
c∂ρ

�
affiffiffi
f

p
�
þ ca

2

�
1þ a2

f

�
ninj∂rhij

þ ca2

2
ð∂khij − γlkjhil − γlkihljÞninjnk: ðA16Þ

The parentheses in the last term contain the covariant deri-
vative of the metric hij with respect to itself, thus it vani-
shes. Finally, using the fact that c−2 ¼ 1þ a2=f, we find

Kρρ ¼
ffiffiffi
f

p
c∂ρ

�
affiffiffi
f

p
�
þ a
2c

ninj∂rhij: ðA17Þ

We proceed to the ρa element of the second fundamental
form. We recall that ∂r

∂ua ¼ 0, Gri ¼ 0 and Γi
rr ¼ 0. Then,

Kρa is given by

Kρa ¼ −∇κNμ ∂xκ
∂ρ

∂xν
∂ua Gμν ¼ −∇κNi ∂xκ

∂ρ
∂xj
∂ua hij

¼ −∂ρNi ∂xj
∂ua hij − Γi

κλN
λ ∂xκ
∂ρ

∂xj
∂ua hij

¼ −∂ρNi ∂xj
∂ua hij − Γi

rlN
l ∂xj
∂ua hij

− Γi
krN

r ∂xk
∂ρ

∂xj
∂ua hij − Γi

klN
l ∂xk
∂ρ

∂xj
∂ua hij: ðA18Þ

Finally, substituting the values of the Christoffel symbols
from Eq. (2.3) and the components of the vector N in terms
of components of the vector n and the functions c and a, as
we did for the Kρρ component, we find

Kρa ¼ −c∂ρni
∂xj
∂ua hij −

c
2
nl

∂xj
∂ua ∂rhjl þ

ca2

2f
nk

∂xj
∂ua ∂rhjk

− caγikln
lnk

∂xj
∂ua hij: ðA19Þ

Implementation of Eq. (A10) yields

Kρa ¼ c∂aa −
1

2
caninj

∂xk
∂ua ∂khij

þ canink
∂xj
∂ua ∂khij þ

c
2

�
1þ a2

f

�
ni

∂xj
∂ua ∂rhij

− caγikln
lnk

∂xj
∂ua hij: ðA20Þ

Using the fact that c−2 ¼ 1þ a2=f and after an appropriate
relabeling of some indices we find

Kρa ¼ c∂aaþ 1

2c
ni

∂xj
∂ua ∂rhij

þ cani
�
nk

∂xj
∂ua −

1

2
nj

∂xk
∂ua

�
× ð∂khij − γlkihlj − γlkjhilÞ: ðA21Þ

The last parentheses contain the covariant derivative of the
metric hij with respect to itself, therefore it vanishes. So we
are left with

Kρa ¼ c∂aaþ 1

2c
ni

∂xj
∂ua ∂rhij: ðA22Þ

The ab element of the second fundamental form for the
embedding of the minimal surface in the bulk is given by

Kab ¼ −∇κNμ ∂xκ
∂ua

∂xν
∂ub Gμν: ðA23Þ

If either κ or ν is equal to r the partial derivatives are
vanishing. Thus, the above expression can be simplified to

Kab ¼ −∇kNi ∂xk
∂ua

∂xj
∂ub hij: ðA24Þ

We write the covariant derivative in terms of the Christoffel
symbols to find
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Kab ¼ −∂kNi ∂xk
∂ua

∂xj
∂ub hij − Γi

kλN
λ ∂xk
∂ua

∂xj
∂ub hij

¼ −∂aNi ∂xj
∂ub hij − Γi

krN
r ∂xk
∂ua

∂xj
∂ub hij

− Γi
klN

l ∂xk
∂ua

∂xj
∂ub hij: ðA25Þ

We substitute the Christoffel symbols from Eq. (2.3), as
well as Ni ¼ cni and Nr ¼ −ca=f, and we find

Kab ¼ −c∂ani
∂xj
∂ub hij þ

ca
2f

∂xk
∂ua

∂xj
∂ub ∂rhkj

− γiklcn
l ∂xk
∂ua

∂xj
∂ub hij: ðA26Þ

Taking into account the Eq. (2.22), we have

Kab ¼ ckab þ
ca
2f

∂xk
∂ua

∂xj
∂ub ∂rhkj: ðA27Þ

It is now simple to calculate the trace of the second
fundamental form, using Eqs. (2.21), (A17) and (A27),

K ¼ ΓρρKρρ þ ΓabKab

¼ ckþ c3ffiffiffi
f

p ∂ρ

�
affiffiffi
f

p
�
þ ca
2f

�
γab

∂xi
∂ua

∂xj
∂ub þ ninj

�
∂rhij

¼ ckþ c3ffiffiffi
f

p ∂ρ

�
affiffiffi
f

p
�
þ ca
2f

hij∂rhij: ðA28Þ

APPENDIX B: A NONTRIVIAL VERIFYING
SOLUTION OF THE FLOW EQUATION

It is quite trivial to show that explicitly known minimal
surfaces, which possess either rotational or translational
symmetry, satisfy the Eq. (2.28). These include the minimal
surfaces that correspond to a spherical entangling surface or
a strip region in AdSdþ1 and the catenoid minimal surfaces
in AdS4. In all these cases, the symmetry allows the
reduction of (2.28) to an ordinary differential equation

for a single variable. As a nontrivial verifying example, we
will study the case of a helicoid minimal surface in AdS4 in
Poincaré coordinates. In this case the boundary data depend
on the position on the entangling curve and Eq. (2.28) is a
nontrivial partial differential equation.
The equation of the helicoid [22] is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ωϕ − x2

p
: ðB1Þ

We will use the following parametrization

r ¼ ρ;

ϕ ¼ ϕðρ; uÞ;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ωϕðρ;uÞ − ρ2

q
ðB2Þ

and specify the function ϕðρ; uÞ so that the parametri-
zation obeys Eq. (2.16). This is equivalent to imposing
Γuρ ¼ 0, i.e.,

∂ux∂zxþ x2∂uϕ∂zϕ ¼ 0: ðB3Þ
Substituting (B2) in (B3) yields

e2ωϕ∂ρϕ½ðe−2ωϕ − ρ2Þ2 þ ω2e−4ωϕ� þ ωρ ¼ 0: ðB4Þ
This equation has the solution

2e−2ωφ ¼ uð1þ ω2Þ þ ρ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4

q
; ðB5Þ

2x2 ¼ uð1þ ω2Þ − ρ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4

q
: ðB6Þ

The special parametrization (2.16), implies that ∂ρx ¼
anx, ∂ρφ ¼ anφ. Thus, the normalization of the vector ni

reads

a ¼ 1

ρ
½ð∂ρxÞ2 þ x2ð∂ρφÞ2�12: ðB7Þ

Substituting Eqs. (B5) and (B6) yields

ðaρÞ2 ¼ uð1þ ω2Þ þ ρ2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4

p : ðB8Þ

In a trivial manner, the induced metric on the r ¼ ρ plane reads ds2 ¼ 1
ρ2
ðdx2 þ x2dφ2Þ. The only nonvanishing

Christoffel symbols are γxφφ ¼ −x and γxxφ ¼ 1=x. Thus, using the definition of the second fundamental form, we get

−ρ2kuu ¼ ð∂unxÞð∂uxÞ þ x2ð∂unφÞð∂uφÞ þ xnxð∂uφÞ2

¼ 1

a
½ð∂uxÞð∂ρ∂uxÞ − x2ð∂uφÞð∂ρ∂uφÞ − xð∂uxÞð∂uφÞ2�

¼ ∂ρðρ2γuuÞ
2a

; ðB9Þ
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since

ρ2γuu ¼ ð∂uxÞ2 − x2ð∂uφÞ2: ðB10Þ

The intersection of the minimal surface with the constant-r plane is a one-dimensional curve. It follows that γuu ¼ 1=γuu
and thus,

2ka ¼ −
∂ρðρ2γuuÞ
ρ2γuu

: ðB11Þ

Finally, upon substitution of (B5) and (B6) in (B10), we find

ρ2γuu ¼
1

8

�
ð1þ ω2Þ þ uð1þ ω2Þ þ ðω2 − 1Þρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4
p �

2

×
uð1þ ω2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4

p
uð1þ ω2Þ þ ρ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1þ ω2Þ2 þ 2uðω2 − 1Þρ2 þ ρ4

p : ðB12Þ

It is now a matter of tedious algebra to show that upon
substitution of (B8), (B11) and (B12) into (2.28), the latter
is satisfied.

APPENDIX C: THE DIVERGENT TERMS OF
ENTANGLEMENT ENTROPY FOR SPHERICAL

ENTANGLING SURFACES

In this Appendix, we calculate all the divergent terms of
the expansion of the entanglement entropy in the case of a
spherical entangling surface in AdSdþ1, taking advantage
of the fact that the minimal surface is explicitly known, in
order to compare with the general formulas of Sec. IV.
We adopt polar coordinates on the constant-r plane. Let x

denote the radial coordinate, i.e., x ¼
ffiffiffiffiffiffiffiffi
xixi

p
. Then the bulk

metric assumes the form

ds2 ¼ 1

r2
ðdr2 − dt2 þ dx2 þ x2dΩ2

d−2Þ: ðC1Þ

The minimal surface, corresponding to a spherical entan-
gling surface of radius R, is given by

rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
: ðC2Þ

We parametrize the minimal surface using x and the d −
2 spherical coordinates on the constant-r slices (and
constant time slices). Then, the only nontrivial element
of the induced metric for the embedding of the minimal
surface in the bulk is

Γxx ¼
1

rðxÞ2
�
1þ

�
drðxÞ
dx

�
2
�

¼ R2

ðR2 − x2Þ2 ; ðC3Þ

while all the others are directly inherited from the bulk
metric, since the angular coordinates do not appear in the
minimal surface equation. Thus, the induced metric on the
minimal surface is given by

ds2 ¼ 1

R2 − x2

�
R2

R2 − x2
dx2 þ x2dΩ2

d−2

�
: ðC4Þ

The area element of the minimal surface can thus be
expressed as

dA ¼ Rxd−2

ðR2 − x2Þd2 dxdΩd−2: ðC5Þ

We cut off the minimal surface at r ¼ 1=Λ. This is
equivalent to restricting to the region x <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1=Λ2

p
.

Thus, the area of the cutoff minimal surface equals

Aðd;ΛÞ ¼
Z

dΩd−2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−1=Λ2

p

0

Rxd−2

ðR2 − x2Þd2 dx

¼ Ad−2

Rd−2 B1− 1

R2Λ2

�
d − 1

2
;−

d − 2

2

�
; ðC6Þ

where Ad is the area of a d-dimensional sphere with radius
R (thus Ad−2 is the area of the entangling surface) and
Bxða; bÞ is the incomplete beta function.
For d ¼ 2, 3, 4, 5, the above expression reads

Að2;ΛÞ ¼ 2 tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

R2Λ2

r
; ðC7Þ

Að3;ΛÞ ¼ 2πðRΛ − 1Þ; ðC8Þ

Að4;ΛÞ ¼ 2π

�
R2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

R2Λ2

r
− tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

R2Λ2

r �
;

ðC9Þ

Að5;ΛÞ ¼ 2π2

3
ðR3Λ3 − 3RΛþ 2Þ: ðC10Þ

It is possible to derive explicit formulas at all dimensions
using the recursive relation
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bBxða; bÞ ¼ ða − 1ÞBxða − 1; bþ 1Þ − xa−1ð1 − xÞb:
ðC11Þ

We also recall that

Ad ¼ 2
π

dþ1
2

Γðdþ1
2
ÞR

d: ðC12Þ

The above imply that

Aðdþ 2;ΛÞ ¼ π
dþ1
2

Γðdþ1
2
ÞB1− 1

R2Λ2

�
dþ 1

2
;−

d
2

�

¼ 4π

dðd − 1Þ
π

d−1
2

Γðd−1
2
Þ
��

1 −
1

R2Λ2

�d−1
2 ðR2Λ2Þd2

−
d − 1

2
B1− 1

R2Λ2

�
d − 1

2
;−

d − 2

2

��

¼ −
2π

d
Aðd;ΛÞ þ 2

d
π

dþ1
2

Γðdþ1
2
ÞRΛðR

2Λ2 − 1Þd−12 :

ðC13Þ

For odd d ¼ 2kþ 1, the above formula can be written as

Að2kþ 1;ΛÞ ¼ −
2π

2k − 1
Að2k − 1;ΛÞ

þ 2

2k − 1

πd

ðk − 1Þ!RΛðR
2Λ2 − 1Þk−1:

ðC14Þ

This equation, combined with the fact that Að1;ΛÞ ¼ 1,
iteratively results in

Að2kþ 1;ΛÞ

¼ ð−2πÞk
ð2k − 1Þ!!

�
1 −

Xk−1
n¼0

ð−1Þnð2n − 1Þ!!
ð2nÞ!! RΛðR2Λ2 − 1Þn

�
:

ðC15Þ

The above expression is clearly a polynomial ofRΛ of order
2k − 1 ¼ d − 2, containing only odd powers of RΛ, except
for a constant term. We can use Newton’s binomial theorem
in order to acquire an explicit form of this polynomial

ð2k − 1Þ!!
ð−2πÞk Að2kþ 1;ΛÞ ¼ 1 −

Xk−1
n¼0

Xn
m¼0

ð−1Þmð2n − 1Þ!!n!ðRΛÞ2mþ1

ð2nÞ!!m!ðn −mÞ!

¼ 1 −
Xk−1
m¼0

�Xk−1
n¼m

ð2n − 1Þ!!
2nðn −mÞ!

� ð−1ÞmðRΛÞ2mþ1

m!

¼ 1 −
ð2k − 1Þ!!

2k−1

Xk−1
m¼0

ð−1ÞmðRΛÞ2mþ1

ð1þ 2mÞm!ðk −m − 1Þ! : ðC16Þ

Adopting the notation (4.8), we find that

ad−2−2n ¼
ð2πÞd−12 Rd−2−2n

ð−2Þnn!ðd − 2 − 2nÞðd − 3 − 2nÞ!! ¼
ðd − 3Þ!!

ð−2Þnn!ðd − 2 − 2nÞðd − 3 − 2nÞ!!
Ad−2

R2n : ðC17Þ

For completeness, we note that the constant finite term ã equals

ã ¼ ð−2πÞd−12
ðd − 2Þ!! ¼

ð−1Þd−12 2ðd − 3Þ!!
ðd − 2Þ!!

Ad−2

Rd−2 : ðC18Þ

For even d ¼ 2k the iterative formula (C13) assumes the form

Að2k;ΛÞ ¼ −
2π

2ðk − 1ÞAð2k − 2;ΛÞ þ 2

2ðk − 1Þ
ð2πÞk−1

ð2k − 3Þ!!RΛðR
2Λ2 − 1Þk−3

2; ðC19Þ

which combined with the Eq. (C7) results in

Að2k;ΛÞ ¼ 2ð−πÞk−1
ðk − 1Þ!

�
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

R2Λ2

r
−
Xk−2
n¼0

ð−1Þnð2nÞ!!
ð2nþ 1Þ!! ðRΛÞnþ2

�
1 −

1

R2Λ2

�
nþ1

2

�
: ðC20Þ
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If one expands the square root and the inverse hyper-
bolic tangent in powers of RΛ, it is evident that only
even powers will appear, apart from a logarithmic term
from the expansion of the inverse hyperbolic tangent. The
polynomially divergent terms, which are denoted by
Aþð2k;ΛÞ, can be easily found, via the Taylor expansion
of ð1 − xÞnþ1

2,

ð1 − xÞnþ1
2 ¼

X∞
m¼0

ð−1Þmð2nþ 1Þ!!
m!2mð2nþ 1 − 2mÞ!! x

m: ðC21Þ

Thus,

−
ðk − 1Þ!
2ð−πÞk−1 A

þð2k;ΛÞ

¼
Xk−2
n¼0

Xn
m¼0

ð−1Þmþnð2nÞ!!ðRΛÞ2nþ2−2m

m!2mð2nþ 1 − 2mÞ!!

¼
Xk−2
m¼0

�Xk−2
n¼m

n!
ðn −mÞ!

� ð−2ÞmðRΛÞ2mþ2

ð2mþ 1Þ!!

¼ ðk − 1Þ!
Xk−2
m¼0

ð−2ÞmðRΛÞ2mþ2

ðmþ 1Þðk −m − 2Þ!ð2mþ 1Þ!! : ðC22Þ

Adopting the same notation (4.8), as in the case of odd d, it
is clear that

ad−2−2n ¼
2ð2πÞd−22 Rd−2−2m

ð−2Þnðd − 2 − 2nÞn!ðd − 3 − 2nÞ!!

¼ ðd − 3Þ!!
ð−2Þnðd − 2 − 2nÞn!ðd − 3 − 2nÞ!!

Ad−2

R2n :

ðC23Þ
Comparing to the Eq. (C17) we see that the coefficients an
are given by the same formula for both odd and even
dimensions, when they are expressed in terms of the area of
the entangling surface.
The logarithmic term emerges from the asymptotic

expansion tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
¼ − ln xþOð1Þ. It follows that

a0 ¼ 2
ð−2πÞd−22
ðd − 2Þ!! ¼ ð−1Þd−22 ðd − 3Þ!!

ðd − 2Þ!!
Ad−2

R2n : ðC24Þ

Studying Eq. (C17), we observe that the leading diver-
gent terms are

ad−2 ¼
1

ðd − 2ÞAd−2;

ad−4 ¼ −
d − 3

2ðd − 4Þ
Ad−2

R2
;

ad−6 ¼
ðd − 3Þðd − 5Þ

8ðd − 6Þ
Ad−2

R4
: ðC25Þ

The first one is the usual “area law term.”
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