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We study a number of supersymmetric solutions in the form of Mkw; x S3- and AdS; x S-sliced
domain walls in the maximal gauged supergravity in seven dimensions. These solutions require
nonvanishing three-form fluxes to support the AdS; and S subspaces. We consider solutions with
SO(4), SO(3), SO(2) x SO(2), and SO(2) symmetries in CSO(p,q,5—p —q), CSO(p,q,4—p —q),
and SO(2,1) X R* gauge groups. All of these solutions can be analytically obtained. For SO(5) and
CSO0(4,0, 1) gauge groups, the complete truncation ansatze in terms of 11-dimensional supergravity on S*
and type IIA theory on S3 are known. We give the full uplifted solutions to 11 and 10 dimensions in this
case. The solutions with an AdS; x S* slice are interpreted as two-dimensional surface defects in six-
dimensional N = (2,0) superconformal field theory in the case of SO(5) gauge group or N = (2,0)
nonconformal field theories for other gauge groups. For SO(4) symmetric solutions, it is possible to find
solutions with both the three-form fluxes and the SO(3) gauge fields turned on. However, in this case, the
solutions can be found only numerically. For SO(3) symmetric solutions, the three-form fluxes and SO(3)
gauge fields cannot be nonvanishing simultaneously.

DOI: 10.1103/PhysRevD.101.086012

I. INTRODUCTION

Gauged supergravities in various spacetime dimensions
have become a useful tool for studying different aspects of
the AdS/CFT correspondence [1-3] and the DW/QFT
correspondence [4-6]. Solutions to gauged supergravities
provide some insight to the dynamics of strongly coupled
conformal and nonconformal field theories via holographic
descriptions; see, for example, [7—11]. The study along
this line is particularly fruitful in the presence of super-
symmetry. In this case, many aspects of both the gravity
and the field theory sides are more controllable even at
strong coupling. This makes finding various types of
supersymmetric solutions in gauged supergravities worth
considering.

In this paper, we are interested in supersymmetric solu-
tions in the maximal gauged supergravity in seven dimen-
sions. The solutions under consideration here take the form
of Mkwsy x S3- and AdS; x S*-sliced domain walls. This
type of solution has originally been considered in the
minimal N = 2 gauged supergravity in [12]; see also [13]
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for similar solutions in the matter-coupled N = 2 gauged
supergravity. Some of these solutions have been interpreted
as surface defects within N = (1,0) superconformal field
theory (SCFT) in six dimensions in [14]; see [15,16] for
similar solutions in six dimensions and [17-22] for
examples of another holographic description of conformal
defects in terms of Janus solutions.

We will find these Mkw; x $3- and AdS; x S>-sliced
domain walls in the maximal N = 4 gauged supergravity
with various types of gauge groups. The most general
gaugings of the N = 4 supergravity can be constructed by
using the embedding tensor formalism [23]; for an earlier
construction see [24,25]. The embedding tensor describes
the embedding of an admissible gauge group G, in the
global symmetry group SL(5) and encodes all information
about the resulting gauged supergravity. Supersymmetry
allows for two components of the embedding tensor
transforming in 15 and 40 representations of SL(5). We
will consider CSO(p,q,5—p—g¢q) and CSO(p,q,4—
p — q) gauge groups obtained from the embedding tensor
in 15 and 40 representations, respectively. We will also
study similar solutions in SO(2, 1) X R* gauge group from
the embedding tensor in both 15 and 40 representations.
Vacuum solutions in terms of half-supersymmetric domain
walls for all these gauge groups have already been studied
in [26]. In this paper, we will extend these solutions, which
involve only the metric and scalars, by including non-
vanishing two- and three-form fields. In some cases, in
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addition to two- and three-form fields, it is also possible to
couple SO(3) gauge fields to the solutions.

As shown in [27] using the framework of exceptional
field theory, seven-dimensional gauged supergravity in 15
representation with CSO(p, ¢,5 — p — q) gauge group can
be obtained from a consistent truncation of 11-dimensional
supergravity on HP9oT>~P=4, On the other hand, a con-
sistent truncation of type IIB theory on HP-70T*~P~4 gives
rise to CSO(p,q,4 — p — q) gauging from 40 representa-
tion. This has been shown in [28] along with a partial result
on the corresponding truncation ansatze. In particular,
internal components of all 10-dimensional fields have been
given.

For SO(5) and CSO(4,0, 1) gauge groups, the complete
truncation ansatze have already been constructed long ago
in [29-31]. In this work, we will mainly consider uplifted
solutions from these two gauge groups using the truncation
ansatze given in [29-31], which are more useful for
solutions involving two- and three-form fields in seven
dimensions. We leave uplifting solutions from other gauge
groups for future work.

The paper is organized as follows. In Sec. II, we give a
brief review of the maximal gauged supergravity in seven
dimensions. Supersymmetric Mkw; x $3- and AdS; x S°-
sliced domain walls in CSO(p,q,5—p—q) gauge
group together with the uplifted solutions to 11 and 10
dimensions in the case of SO(5) and CSO(4,0, 1) gauge
groups are presented in Sec. III. Similar solutions for
CSO(p,q,4—p—q) and SO(2,1) X R* gauge groups
obtained from gaugings in 40 and (15, 40) representations
are given in Secs. IV and V, respectively. Conclusions and
comments are given in Sec. VL. In the two appendixes, all
bosonic field equations of the maximal gauged supergravity
and consistent truncation ansatze for 11-dimensional super-
gravity on $* and type IIA theory on S° are given.

II. MAXIMAL GAUGED SUPERGRAVITY
IN SEVEN DIMENSIONS

In this section, we briefly review N = 4 gauged super-
gravity in seven dimensions in the embedding tensor
formalism. We mainly focus on the bosonic Lagrangian
and fermionic supersymmetry transformations that are
relevant for finding supersymmetric solutions. The reader
is referred to [23] for the detailed construction of the
maximal gauged supergravity.

As in other dimensions, the maximal N = 4 supersym-
metry in seven dimensions allows only the supergravity
multiplet with the field content

(e wd, AMN By ™ V). (1)

This multiplet consists of the graviton e,’f , four gravitini yy,

[MN]

ten vectors AN = A", five two-form fields B, 16

spin-1 fermions ¢ = yl#l¢, and 14 scalar fields described
by the SL(5)/SO(5) coset representative V4.

Throughout the paper, we will use the following con-
vention on various types of indices. Curved and flat
spacetime indices are denoted by p,v,... and f[,7,...,
respectively. Lower (upper) M,N = 1,...,5 indices refer
to the (anti)fundamental representation 5 (5) of the global
SL(5) symmetry. Accordingly, the vector AMN and two-
form B, fields transform in the representations 10 and 5,
respectively.

On the other hand, fermionic fields transform in repre-
sentations of the local SO(5) ~ USp(4) R-symmetry with
USp(4) fundamental or SO(5) spinor indices a, b, ... = 1,
...,4. The gravitini then transform as 4 while the spin—%
fields ¥ transform as 16 of USp(4). The latter satisfy the
following conditions:

7 =0 and Q% =0 (2)

with Q,, = Q) being the USp(4) symplectic form
satisfying the properties

(Qu) =Q% and Q,QFF = 6. (3)

It should also be noted that the raising and lowering of
USp(4) indices by Q% and Q,;, correspond to complex
conjugation. Furthermore, all fermions are symplectic
Majorana spinors subject to the conditions

’l_/ga = Qawaz and )?gbc = QadeeQCfC)(def (4)
where C denotes the charge conjugation matrix obeying
C=C"=-C"=-C" (5)

With the spacetime gamma matrices denoted by y#, the
Dirac conjugate on a spinor ¥ is defined by ¥ = %",

The 14 scalars parametrizing SL(5)/SO(5) coset are
described by the coset representative V), transforming
under the global SL(5) and local SO(5) symmetries by left
and right multiplications. Indices M = 1,2,...,5 and A =
1,2,...,5 are accordingly SL(5) and SO(5) fundamental
indices, respectively. To couple fermions that transform
under US p(4), we write the SO(5) vector indices of V4 as
a pair of antisymmetric USp(4) fundamental indices in the
form of V)%’ = V,1%’l. In addition, the coset representa-
tive V%" satisfies the relation

Vi@, = 0. (6)

Similarly, the inverse of V)4 denoted by V,M will be
written as V,,™. We then have the following relations:

c 1 .
ViV =8Y and VMVl =58 — 7 Qa0

(7)
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Gaugings are deformations of the N = 4 supergravity by
promoting a subgroup G, C SL(5) to be a local symmetry.
The most general gaugings of a supergravity theory can be
efficiently described by using the embedding tensor for-
malism. The embedding of G, within SL(5) is achieved by
using a constant SL(5) tensor @y p¢ = Oy p? living in
the product representation [23]

10 ® 24 =10 + 15 + 40 + 175. (8)

It turns out that supersymmetry allows only the embedding
tensor in the 15 and 40 representations. These two
representations can be described by the tensors Y
and ZMNP with Yyy = Yy, ZMVF =ZIMNIP D and

ZMN-Pl — 0 in terms of which the embedding tensor can

be written as
GMN.PQ = 5[QMYN]P — 2epnprsZRHC. )

In term of the embedding tensor, gauge generators are
given by

Xyn = Oun plt’o (10)

in which M, satisfying 1, = 0, are SL(5) generators. In
particular, the gauge generators in the fundamental 5 and 10
representations are given by

Xunp? =Oyypl = 5§4YN]P — 2eynprsZRSC,  (11)

and (XMN>PQRS = 2XMN,[P[R52)]] (12)

with e)ypor being the invariant tensor of SL(5). To ensure

that the gauge generators form a closed subalgebra of
SL(5)

[XMN’XPQ] = _(XMN)PQRSXRS’ (13)

the embedding tensor needs to satisfy the quadratic
constraint

YMQZQN’P + 2€MRSTUZRS’NZTU'P =0. (14)

Gaugings introduce minimal coupling between the
gauge fields and other fields via the covariant derivative

D/t = Vﬂ - gAl}yNGMN,PQ[PQ, (15)

where V), is the spacetime covariant derivative including
(possibly) composite SO(5) connections. To restore super-
symmetry of the original N =4 supergravity, fermionic
masslike terms and the scalar potential at first and second
orders in the gauge coupling constant are needed. In addi-
tion, to ensure gauge covariance, the field strength tensors
of vector and two-form fields need to be modified as

H’(i)MN _ F%N + gZMN.PB’wP’ (16)

3
H/(ll/)pM = gYMNS/ava + 3D[}43yp]M

2
+ 6€MNPQRA1DV,P (OI/A/?]R + ggXST,UQAquﬁ]T ) .
(17)

where the non-Abelian gauge field strength tensor is
defined by

FIN =20, AMN 4 g(Xpg)ps"NALCARS. (18)

Note that the three-form fields Sj;, in H ,(2, only appear
under the projection of Y,,y. In ungauged supergravity, all
of the three-form fields can be dualized to two-form fields.
However, this is not the case in the gauged supergravity.
Therefore, different gaugings lead to different field contents
in the resulting gauged supergravity.

Following [23], we first define s =rank Z and t =rank Y.
In a given gauging, ¢ two-forms can be set to zero by tensor
gauge transformations of the three-form fields. This results
in ¢ self-dual massive three-forms. Similarly, s gauge fields
can be set to zero by tensor gauge transformations of the
two-forms giving rise to s massive two-form fields. It
should also be pointed out that there can be massive vector
fields arising from broken gauge symmetry via the usual
Higgs mechanism. We can see that the numbers of two- and
three-form tensor fields depend on the gauging under
consideration. However, the quadratic constraint ensures
that 4+ 5 <35, so the degrees of freedom from the ten
vector and five two-form fields in the ungauged super-
gravity are redistributed into two- and three-form fields in
the gauged theory. This fact will affect our ansatz for
finding supersymmetric solutions in subsequent sections.
To summarize, we repeat the distribution of degrees of
freedom after gauge fixing from [23] in Table I.

The covariance two- and three-form field strengths
satisfy the following modified Bianchi identities:

@mny _ 1 Py
DyH, " =3 gZMNEH) (19)
3 _3 @NP, 20k | 1 @)N
D[MHD/M]M - EEMNPQRHW, Hpﬂ] + ZgYMNH/pr’
(20)

TABLE I. Distribution of the tensor fields’ degrees of freedom
after gauge fixing.

Fields # #d.of
Massless vectors 10—+ 5
Massless 2-forms 5—-s—t 10
Massive 2-forms K 15
Massive sd. 3-forms t 10
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where the covariant field strengths of the three-form fields are given by

YMNH l/p/l = YMN[4D[/1S ] + 6FNPBP/1]P + 3gZNP’QB[ﬂyPB ]

7 [pv
+49€PQRVWXST UVAﬁPAQRASTAIfW + 8€PQRSTA AQR@ AST] (21)

It should be emphasized that the three-forms Sﬁ’{,/, and its field strength tensors always appear under the projection by Y-
With all these ingredients, the bosonic Lagrangian of the seven-dimensional maximal gauged supergravity can be

written as

1
e L= R = MypMygHy " HAPow MMNHM HOwr

(DﬂMMN)(DMMMN> - e_l’CVT - V. (22)

0| —

+

In this equation, the scalar fields are described by a unimodular symmetric matrix

My = ViV Q. (23)
Its inverse is given by

MMN =y My NQacqbd, (24)

We will not give the explicit form of the vector-tensor topological term Ly here due to its complexity but refer the reader to
[23]. Finally, the scalar potential is given by

2

V= 64 [ZMMNYNPMPQYQM (MMVY 5 )]

+ QZZMN’PZQR’S(MMQMNRMPS - MMQMNPMRS)- (25)
The supersymmetry transformations of fermionic fields that are essential for finding supersymmetric solutions read
a _ a ab 9 U, A ab M
oy, = D,e — gy, A" Qp € —|— HWIW - 55”3/ QY Me
L, omy, , y a e c
+ EHI(//)) (7//4 r— Séuyp)VM deeVN bgbce ’ (26)
5)(“[’" — 2ch1)”deahyyee 4 gAtzi.abCQdeee
1

+ ZH;%)MN}’”DQ,/{(; |:VMchNe[a€b] _ g (Qabéz _ Qc[a52])VMngthth€e:|

H

1
ﬂUpMyﬂypreM [Qafgbeec _ g (Qachf 4 4Qc[agb]f)€e] . (27)

The covariant derivative of the supersymmetry parameters is defined by

D,e" =V, e* — Q,,%€". (28)
The composite connection Q,,,” and the vielbein on the SL(5)/SO(5) coset P,,,,°? are obtained from the following relation:
420, Cab] = VM0,V = 94 X po 1V V). (29)
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The fermion shift matrices A; and A, are given by

1 /1 1
A = ——— (- BQ™ —|——C”b>, 30
! 42 (4 5 (30)

1
Ad.abc _ |:Qecgfd Cube _ Buhe
2 2\/5 ( f f)

1 1 4
+Z (Cabgcd 4 ggzabccd + ch[acb]d>:| (31)

with various components of B and C tensors defined by

2
B = ggacgbdyab,cd’ (32)
Babcd — \/E |:Qaegbf5£§/5g]

1/ 1
-5 <5L 80— Zgabgcd> Qegngh] Yo (33)

C* =8Q  zl )b, (34)
Cy = 8(=QueQyr84'6)) + Q0 8. Qpy ) Z(NI (35

In the above equations, we have introduced “dressed”
components of the embedding tensor defined by

Yah,cd = VathchYMN (36)
and  Z@)lef] = \/2),,90)\ Ay efQ, ZMNE - (37)

Finally, we note that the scalar potential can also be
written in terms of the fermion-shift matrices A; and A, as

1 1
V = —15A%"A,,, + gAg'deAza,bcd = —15|A,]* + 3 |A,|%.

(38)

In the following sections, we will find supersymmetric
solutions in a number of possible gauge groups.

III. SUPERSYMMETRIC SOLUTIONS FROM
GAUGINGS IN 15 REPRESENTATION

We begin with gaugings in 15 representation with
ZMN.P — (0. The SL(5) symmetry can be used to bring
Yyn to the form

Yyn = diag(1,...,1,-1,...,—1,0,...,0),
MN g( )
p q r
p+qg+r=>5. (39)

This corresponds to the gauge group
CSO(p.q.r) ~SO(p.q) X RPHO", (40)

To give an explicit parametrization of the SL(5)/SO(5)
coset, we first introduce GL(5) matrices

(eMN)KL = 5MK5%‘ (41)

We will use the following choice of SO(5) gamma matrices
to convert an SO(5) vector index to a pair of antisymmetric
spinor indices

=L ®o, =1, ® o,
FS = 03 ® 05, (42)

' =-0, ® 0y,

F4:61 ®02,

where o; are the usual Pauli matrices. 'y satisfy the
following relations:

{Ta. T} = 2064514,
Qu(Ta)® =0,

(T4 = =(Ty)",
(Ta)™)* = Qe Qpa(Ta) 4. (43)

The symplectic form of USp(4) is chosen to be
Qab = Qab = 12 ® iO'z. (44)

The coset representative of the form V% and the inverse
VM are then obtained from the following relations:

1 1
VM“bZEVMA(FA)ab and VabM:EVAM(FA)ab' (45)

We will use the metric ansatz in the form of an
AdS; x $3-sliced domain wall

ds? = eZU“)dsidS} + a2 4 e2W(’)ds§3. (46)

The seven-dimensional coordinates are taken to be x* =
(x™, r,x') withm =0, 1,2 and i = 4, 5, 6. Note that V(r)
is an arbitrary nondynamical function that can be set to zero
with a suitable gauge choice. The explicit forms for the
metrics on AdS; and S3 are given in Hopf coordinates by

1
dsigs, = = [—dr* + (dx')* 4 (dx?)* + 2 sinh x' drdx?],
S
(47)

1
ds; = =2 [(dx*)? + (dx°)* + (dx®)? + 2 sin X dx*dx9],

(48)
in which 7 and x are constants. In the limit 7 — 0 and

k — 0, the AdS; and S? parts become flat Minkowski space
Mkws and flat space R3, respectively.
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With the following choice of vielbeins:

e = %eU(”(dt — sinh x'dx?), el = %eU(’)(cos tdx" — sint cosh x'dx?),

2 = —eY0)(sin 1dx' + cos t cosh x'dx?), e =e"0dr,

e == eV (dx* + sin x3dx®), e = %ew(r)(cos x*dx — sin x* cos X3 dx®),

b = %ew(” (sin x*dx® + cos x* cos x> dx®), (49)

we find the following nonvanishing components of the spin
connection:

w;s = e VU (r)m, Oppp = EE_U(r)ff i po
o o K
oy = e IW()8L,  wyp =2 e (50)
; ; — _0f3 _ — 456 _
with the convention that g575 = —€"'~ = g5 = € 1

Throughout this paper, we will use a prime to denote the
r derivative.

Following [12], we take the ansatz for the Killing spinors
to be

et = eV [cos O(r)Tg + sinO(r)y 2 (51)

with € being constant spinors. In addition, we will use the
following ansatz for the three-form field strength tensors:

HES?%]?M = kM(I")e_’jU(r)S,ﬁﬁﬁ and
3 - r
H,EJ”')/EM = Ly (r)e3W )e;j,; (52)

or, equivalently,

M) = kyvolags, + Ly volg. (53)

In subsequent analysis, we will call the solutions with

nonvanishing HI(S) “charged” domain walls.

A. SO(4) symmetric charged domain walls

We first consider charged domain wall solutions with
SO(4) symmetry. As in [26], we will find supersymmetric
solutions with a given unbroken symmetry from many
gauge groups within a single framework. Gauge groups that
can give rise to SO(4) symmetric solutions are SO(S5),
SO(4,1),and CSO(4,0, 1). We will accordingly write Y,y
in the following form:

Yy = diag(+1,+1,+1,+1,p), (54)

where p = +1,—1, 0 corresponding to SO(5), SO(4,1),
and CSO(4,0,1) gauge groups, respectively. With this

embedding tensor, the SO(4) residual symmetry is gen-
erated by X,y with M, N =1, 2, 3, 4.

Among the 14 scalars in SL(5)/SO(5) coset, there is one
SO(4) invariant scalar corresponding to the noncompact
generator

A

Y=e11+en+esztesq—dess. (55)
With the coset representative
V=et, (56)

the scalar potential is given by

2
V= —%6_4{/)(8 + 8pel0 — p2e209), (57)

For p = 1, this potential admits two AdS; critical points
with SO(5) and SO(4) unbroken symmetries. The former
preserves all supersymmetry while the latter is nonsuper-
symmetric. These vacua are given, respectively, by

15

—0 and Vy=-— ¢ 58
® an 0 a1’ (58)
and
1 5¢°
¢—Eln2 and Vo——m (59)

The cosmological constant is denoted by V), the value of
the scalar potential at the vacuum.
To preserve SO(4) symmetry, we will keep only the

following components of H,(S,) nonvanishing

HS;ISS = k(r)e_3U(’)€,;,ﬁﬁ and

3 - r
Hz(‘j)is = 1(r)e M )&j,;. (60)
At this point, it is useful to consider the HES,) contribution in
more detail. For SO(5) and SO(4, 1) gauge groups corre-

sponding to a nondegenerate Yy, the field content of the
gauged supergravity contains =5 massive three-form
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fields S¥

Hup*
field strength tensor Hg? is then given by

For vanishing gauge and two-form fields, the

H/(j/)pM = 9Y unSpnp- (61)
Since the four-form field strengths do not enter the
supersymmetry transformations of fermionic fields, the
functions ky,(r) and [I,(r) will appear, in this case,
algebraically in the resulting Bogomol nyi-Prasad-
Sommereld (BPS) equations. This is in contrast to the
pure N =2 gauged supergravity considered in [12] in
which the four-form field strength of the massive three-
form field appears in the supersymmetry transformations.
Therefore, in that case, the BPS conditions result in
differential equations for k(r) and /(r).

For CSO(4,0, 1) gauge group with Y55 = 0, S,SM,

not contribute to HZ(SI), but, in this case with s = 0 and
t =4, there is 5 — t = 1 massless two-form field B, s with
the field strength

does

Hiss = 3D By (62)
To satisfy Bianchi’s identity DH®) = 0, we need k' = I' =
0 or constant three-form fluxes. We will see that this
is indeed the case for our BPS solutions. Taking this
condition into account, we can write the ansatz for the two-
form field as

By = ky(r) s + Ly (r)d, (63)

with volygs, = dw, and volg = dw,. With the metrics
given in (47) and (48), the explicit form of w, and @, is
given by

1
w, = ——sinhx'dt A dx* and
T
1
@y = ——sinx’dx* A dx®. (64)
P

After imposing two projection conditions
yie6 = (Ts)" e = €. (65)

we find the following BPS equations from the conditions
oy =0 and Sy = 0:

/ eV 24 0 oo
U' = 55 coegg 908 = pe!™) + 3gpe!™ cos 40
— 1622/~ sin26], (66)
/ . 10¢ 109
W = o eos 2 (4 +20e7%) = gpe™™ cos 46
— 87¢2~U sin 26, (67)

/ eV 104 104
¢ = 9000520 [9(4 = 3pe'?) — gpe'? cos 46
— 87¢??~U sin 20, (68)
/ 1 V8¢ i
0 =- Tgope ¢ sin 20, (69)
1
k= 3 2V (47 — gpeV 8 sin 20), (70)

1
[ = §e3W‘6’/’ [g(pe'® —2)tan 20 + 4re**~Usec26], (71)
together with an algebraic constraint
1
0=e¢"k—eYrsec20+ 596‘2"’ tan20.  (72)

We note here that the appearance of the SO(5) gamma
matrix I's in the projection conditions is due to the

3) : 1
wps- Note also that the solutions are ;-
BPS since the Killing spinors € are subject to two
projectors. We now consider various possible solutions

to these BPS equations.

nonvanishing H

1. Mkws x R3-sliced domain walls

We begin with a simple case of Mkw; x R3-sliced
domain walls with vanishing 7 and x. Imposing 7 =k =
0 into the constraint (72) gives

1
0= Ege‘zd’ tan 26. (73)

Setting g = 0 corresponds to ungauged N = 4 supergravity
and gives rise to a supersymmetric Mkw; x R x R3 ~
Mkw- background as expected.

Another possibility to satisfy the condition (73) is to set
tan 20 = 0, which implies 0 =%, n=0,1,2,3,.... For
even n, we have sind =0, and from (51), the Killing
spinors take the form

€t = eV 2¢g (74)

with €fj satisfying the projection conditions given in (65).
For odd n with cos @ = 0, the Killing spinors become

€ — eU(r)/Zy(SlAZAeg. (75)
We can redefine €@ to &2 = y012
conditions

€ satisfying the projection

—736§ = (Is)“ 6 = €. (76)

This differs from the projectors in (65) only by a minus sign
in the y4 projector. Therefore, the two possibilities obtained

086012-7



PARINYA KARNDUMRI and PATHARADANAI NUCHINO

PHYS. REV. D 101, 086012 (2020)

from the condition tan 26 = 0 are equivalent by flipping the
sign of the y4 projector. We can accordingly choose 6 = 0
without losing any generality.

With 8 = 0, the BPS equations (66) to (71) become

1
U=W = %gev_z‘/’(4 + pe'%?), (77)
1
) 79)
k=1=0. (79)

By choosing V = —3¢, we find the following solution:

U=W=2¢ —iln [1 = pel®), (80)
[V
e = 7ﬁtanh [T (gr + C)} (81)

with an integration constant C. Since k = [ = 0 = 0, the I'5
projection in (65) is not needed. This is then a half-
supersymmetric solution with vanishing three-form fluxes
and is exactly the SO(4) symmetric domain wall studied in
[26]. Therefore, the Mkw; x R3-sliced solution is just the
standard flat domain wall.

2. Mkws x S3-sliced domain walls

In this case, we look for domain wall solutions with
Mkws x S3 slice. Following [12], we choose the following
gauge choice:

1
eV = 1—6€8¢. (82)

By setting 7 = 0, we can solve the BPS equations (66)—(71)
and obtain the following solution for p = +£1:

U = 2¢ —In(sin26), (83)
W = 2¢ — In (tan 26), (84)
' = 2C(cos46 — 3) + (4C + p) sec?20,  (85)

k:—%@f+cwummﬁw, (86)

[ = % [pC(cos 80 + 3) —2(2pC + 1) cos 40 csc? 20,

(87)

0 = arctan(e=29") (88)

with k = —g/2. C is an integration constant in the solution
for ¢.

For SO(5) gauge group with p =1, the solution is
locally asymptotic to the N = 4 supersymmetric AdS; in
the limit » — co with

U~W~2gr, ¢~60~0. (89)
It should be noted that in this limit, the main contribution to
the solution is obtained from the scalar. The contribution
from the three-form field strength is highly suppressed as
can be seen from its components in the flat basis given in
(60). In the limit » — 0, the solution is singular similar to
the solution studied in [12].

For SO(4, 1) gauge group with p = —1, there is no AdS,
asymptotic since this gauge group does not admit a
supersymmetric AdS; vacuum. In this case, the solution
is the SO(4) symmetric domain wall studied in [26] with a
dyonic profile of the three-form flux.

For CSO(4,0,1) gauge group with p =0, the BPS
equations (66)—(71), with 7 = 0, become

1
U =W = Egev‘z‘f’ sec 20, (90)
/ 1 V-2¢
¢ = 209 sec 20, (91)
0 k=0, (92)
1
l=- de3W‘64’ tan 20 (93)

together with the constraint
1
kK=-3 ge" =29 tan 20. (94)

Equation (92) implies that @ is constant. Note that for
0 = 0, these equations reduce to those of the Mkw; x R3-
sliced domain wall.

In the present case, the constraint (94) implies that 6
cannot be zero since x # 0. Furthermore, a nonvanishing 6
gives a nontrivial three-form flux according to (93) to
support the S part. For constant 6 # 0, we can find the
following solution, after choosing V = 0 gauge choice:

U=W=2p, k=0, (95)
1
l=- 29 tan 26, (96)
1
e = ToIrsee 204 2C (97)

with an integration constant C. The constant € is given by

12
ez—immtf. (98)
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As in the SO(4, 1) gauge group, it can be verified that for a
given constant 6, this solution is the SO(4) symmetric
domain wall of CSO(4,0,1) gauge group given in [26]
with a magnetic profile of a constant three-form flux.

3. AdS; x $3-sliced domain walls

We now consider more complicated solutions with an
AdS; x $3 slice. As in [12], we begin with a simpler
solution with a single warp factor U = W. From the BPS
equations (66)—(71), imposing U’ = W’ gives

=K. (99)

Setting & = 0, we find that the BPS equations become

U =L eV20(4 4 pel®), (100)
40
@ = 55" (1= pel®), (101)
1
k= Eer_M)T' (102)
By choosing V = —3¢, we obtain the following solution:
1 10
U:2¢—Zln(1—pe ), (103)
LY/,
e = —tanh [— gr+C }, 104
i [+ 0) (104)
1
k=7 rcosh [g (gr + c)] (105)

with an integration constant C. This solution is the SO(4)
symmetric domain wall coupled to a dyonic profile of the
three-form flux.

For SO(5) gauge group, the solution is locally asymp-
totic to the supersymmetric AdS; dual to N = (2,0) SCFT
in six dimensions. This solution is then expected to
describe a surface defect, corresponding to the AdS; part,
within the six-dimensional N = (2,0) SCFT. Similarly,
according to the DW/QFT correspondence, the usual
Mkwg-sliced domain wall without the three-form flux is
dual to an N = (2,0) nonconformal field theory in six
dimensions. We then interpret the solutions for SO(4, 1)
and CSO(4,0,1) gauge groups as describing a surface
defect within a nonconformal N = (2, 0) field theory in six
dimensions.

We now consider more general solutions with the
AdS; x S slice. We will find the solutions for the cases
of p==+£1 and p = 0 separately. With the same gauge
choice given in (82), the BPS equations (66)—(71) for p # 0
are solved by

U = 24 — In (sin 26), (106)

W = 2¢ —In (tan 20), (107)

104 39C +2gp —4zp + 4(zp — gC) cos 40 + gC cos 86
e — )
g(cos46+1)

(108)

k= % (47csc? 20 — gesct 20 — 4gpC) tan? 20, (109)
l= %(gcscz 20 — 2gcot’? 20 — 4t + 4gpCsin® 20), (110)
6 = arctan(e™29") (111)

together with the following relation obtained from the
constraint (72):

K:—g+r.

5 (112)

As in the previous case, for SO(5) gauge group, the
solution is locally asymptotically AdS; given in (89) as
r — 0. For SO(4, 1) gauge group, the solution is a charged
domain wall with a nonvanishing three-form flux. In
general, these solutions describe, respectively, holographic
RG flows from an N = (2,0) SCFT and N = (2,0) non-
conformal field theory to a singularity at » = 0 except for a
special case with 7 = g(pC + 1)/4. This is very similar to
the solutions of pure N = 2 gauged supergravity studied
in [12].

For the particular value of 7 = g(pC + 1)/4, the scalar
potential is constant as » — 0, and the solution turns out to
be described by a locally AdS; x T* geometry with the
following leading profile:

1
U ~ (p —4C)3, eV ~ 0, ¢~Eln(p—4C),

k~g(4pC— 1),

-

[~0. (113)

B

To obtain real solutions, we choose the integration constant
C <1tand C < —{ for SO(5) and SO(4, 1) gauge groups,
respectively.

For CSO(4,0, 1) gauge group with p = 0, we find the
following solution, after setting V = 0,

U=W =24, (114)
k=l (115)
= 21"
1 .
l= y) (2t — gsin20) sec 20, (116)
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1
e :I—Or(gseCZQ—2ftan29) +2C,  (117)
where the constant k is given by
1
K:rsecze—igtanw. (118)

Note also that, in this case, € is constant since the
corresponding BPS equation gives & = 0 as can be seen
from Eq. (69).

4. Coupling to SO(3) gauge fields

In this section, we extend the analysis by coupling the
previously obtained solutions to SO(3) vectors describing a
Hopf fibration of the three-sphere. With the projector

(T's)",eb = €4 and the identity I'y---I's = I, we turn
on the gauge fields corresponding to the anti-self-dual
SO(3) c SO(4). The ansatz for these gauge fields is
chosen to be

A%13> = —A(I?) = W) Zp(r)e4, (119)
K a

Al = —AY =0 1P(e, (120)
K A

A%f) = —A?ﬁ = e W) Zp(r)eé. (121)

The function p(r) is the magnetic charge with the depend-
ence on the radial coordinate. The corresponding two-form
field strengths can be computed to be

o ~ 2 a ~

Fj =-Fi3 = €_V_W§p/€3 N e—zw%p(z_gp)es A b (122)
. . 2 . .

Floy = =Fp) = e‘V-Wﬁp’é A+ e‘zw%p(Z —gp)e® A &, (123)
. . 2 . :

F(122) = _F?g) = e—V—ng/es N e‘zw%p(Z—gp)e“ A oS (124)

For gaugings in the 15 representation, there are no massive two-form fields due to the vanishing ZM"-?_ The modified two-

form field strengths HL%,)MN are simply given by the SO(3) gauge field strengths FiV.
To preserve some amount of supersymmetry, we need to impose additional projectors on the constant spinors €fj as
follows:
vizel = —(T12)“s€5, 73666 = —(Ta3) €0, v4€6 = —(T31)y€5- (125)
It should be noted that the last projector is not independent of the first two. Therefore, together with the projectors given in
(65), there are four independent projectors on €f, and the residual supersymmetry consists of two supercharges.

With all these, the resulting BPS equations for the AdS; x S°-sliced domain wall are given by

oV-2(W-9)
U/ = m [ezw(g(4 —+ p€]0¢)(3 cos46 — ]) + 32€2¢_UT sin 20)
+12e* (K p(gp — 2)(cos 40 — 3) + 2e"2¢x(gp — 1) sin40)], (126)
oV-2(Wt)
W = 10cos30 [2Y (g(4 + pe'?)(2 — cos 40) + 24e*?~Ursin 20)
+4e* (kP p(gp — 2)(cos 40 — 8) — 2e"2¢x(gp — 1) sin40)], (127)
oV-2(Wie)
¢ = S0cos 20 [€2Y (g(6cos 40 — 2 — pe'?(cos 40 + 3)) + 16e*¢~Uzsin 20)
+6e* (k*>p(gp —2)(3 — cos 40) + 2" 2Px(gp — 1) sin 40)], (128)
SV-2(W+)
0 = 6 [24eW+20 (eW=Ur + k(gp — 1) cos 20)
—(ge*™ (12 + pe'%) — 12e*x% p(gp — 2)) sin 26)], (129)
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A BPS flow from a locally AdS, geometry at r — oo to the singularity at r = 0 for the Mkws; x S3-sliced domain wall

1

k= §e3U_4¢ (4e7Yz — gped? sin 20), (130)
1
[ = g V=6 1g(4 + pe'®) tan 20 — 8e*¢~Vz sec 20

—12*2W (k2 p(gp — 2) tan 20 + eV 2 (gp — 1))], (131)

VWi

p = 5 [2eW+2¢(eW-Uz + k(gp — 1) cos 26)
K

—(ge®¥ — e* i p(gp —2)) sin 26)]. (132)

In contrast to the previous case, it can also be verified that
these equations satisfy the second-order field equations
without imposing any constraint. By setting 7 = 0, we can
obtain the BPS equations for a Mkws x S3-sliced domain
wall. For p(r) = 0, we obtain the BPS equations (66)—(71)
for charged domain walls without gauge fields. In this case,
Eq. (132) becomes the algebraic constraint (72).

The BPS equations in this case are much more compli-
cated, and we are not able to find analytic flow solutions.
We then look for numerical solutions with some appro-
priate boundary conditions. We first consider the solutions
in SO(5) gauge group with an AdS; asymptotic at large r.
With p =1, we find that the following locally AdS,
configuration solves the BPS equations at the leading order
as r — oo:

.
UnW e, ~O~0,
7 ¢

I
with L = % With this boundary condition and V = 0 gauge

choice, we find some examples of the BPS flows from this
locally AdS, geometry as r — oo to the singularity at r = 0
as shown in Figs. 1 and 2 for g = 16 and k = 2. It should be
noted that we have not imposed the boundary conditions on
k and [ since the corresponding BPS equations are
algebraic. This is rather different from the solutions in
[12] in which the BPS equations for k and [ are differential.

From the numerical solution in Fig. 2, the solutions for k
and [ appear to be diverging as k ~ ¢*V and [ ~ e?V for
r — oo. However, the contribution from the three-form flux
is sufficiently suppressed for r — oo since the terms invol-

ving H(53) in the BPS equations behave as ke™3U + [e73V.

For SO(4,1) and CSO(4,0, 1) gauge groups, there is no
locally asymptotic AdS; configuration. However, we can
look for solutions of the BPS equations (126)—(132) in the
form of a flow from the charged domain wall without
vector fields given previously to the singularity at r = 0.
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FIG. 2. A BPS flow from a locally AdS; geometry at r — oo to the singularity at r = 0 for the AdS; x S>-sliced domain wall

with 7 = 1.

We first choose the gauge choice V = —3¢ and consider
the following behavior at the leading order when gr — C,

for a constant C,

2
U~ W~§ln(gr -0),

and k~l~"

0~ p~0.
p 2

(a) U solution

p(n
.030f

.025¢
0.020f
0.015f
0.0101

0.005F

1
¢~ gln(gr - C),

(134)

with k = 7. It can be verified that this configuration solves
the BPS equations (66)—(72) in the limit gr — C. Since this

configuration also appears in SO(5) gauge group, we will
consider the solutions for SO(5) gauge group as well.
Examples of the BPS flows from the charged domain
wall in (134) as gr — C to the singularity at r =0 in
SO(5), SO(4,1), and CSO(4,0,1) gauge groups are
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FIG. 4. A BPS flow from a charged domain wall at r = —1 to the singularity at r = 0 in SO(4, 1) gauge group.

have chosen the following numerical values g =1,
k =7 =2, and C = —1. These solutions should describe
surface defects within N = (2,0) nonconformal field
theories in six dimensions. For the solution in Fig. 5, k
is constant since, for p = 0, the BPS equations (126) and

(128) give constant U — 2¢.

(a) U solution

(e) k solution

(f) I solution

r
0.0

For SO(5) gauge group, it is also possible to find flow
solutions between the asymptotically locally AdS; geom-
etry and the charged domain wall configuration with an
intermediate singularity in the presence of nonvanishing
vector fields at r = 0. With the gauge choice V = -3¢ and

g=1, k=7=2 and C= -1, an example of these
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FIG. 6. A BPS flow between a charged domain wall at » = —1 and an asymptotically locally AdS; geometry as r — co with an

intermediate singularity at » = 0 in SO(5) gauge group.

solutions is shown in Fig. 6. In this solution, it is clearly
seen that the vector fields vanish at both ends of the flow
with a singularity at r = 0.

B. SO(3) symmetric charged domain walls

In this section, we consider charged domain walls
preserving SO(3) residual symmetry. There are three
singlet scalars corresponding to the following noncompact
generators:

?1 = 281’1 + 282‘2 + 263’3 - 364’4 - 365’5,

Y, =e45+es4,

in a single framework, we use the embedding tensor of
the form
Yy = diag(+1,+1,+1,0,p). (136)
For different values of p, 6 = 0, £1, this embedding tensor
gives rise to the following gauge groups: SO(5) (p =
c=1), SO4,1) (-p=06=1), SO3,2) (p =0=-1),
CS0(4,0,1) (p=0, o=1), CSO3,1,1) (p=0,
o =-1), and CSO(3,0,2) (p =0 =0). The unbroken
SO(3) symmetry is generated by Xy, M,N =1, 2, 3,
generators.
With the SL(5)/SO(5) coset representative of the form

?3 = €44 — €55, (135) ; ., .
VY = ehVithYotgsYs (137)
There are many possible gauge groups with an SO(3)
subgroup. To accommodate all of these gauge groups  the scalar potential reads
|
7
V= ~6i [3e31 + 62?1 [(p 4 6) cosh 2¢h, cosh 2¢p5 + (p — ©) sinh 2¢h5]
1
+3 e??[p? + 10pc + 6% — (3p* — 2po + 36?) coshdgh,
— (p + 06)* coshdg, (1 + cosh 4¢hs) — 4(p? — 67) cosh 2¢, sinh 4¢hs]]. (138)

For SO(5) gauge group, this potential admits a supersymmetric AdS; vacuum given in (58) at ¢p; = ¢, = ¢p3 =0 and a
nonsupersymmetric AdS; given in (59) at ¢p; = 551n2, ¢, = £1In2, and ¢; = 0.
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We now repeat the same procedure as in the previous section to set up the BPS equations. The SO(3) residual symmetry

allows for two three-form field strengths, HSJLM with M = 4, 5. We will choose the following ansatz:

3 _3U(r 3 _3W(r

Hfﬁ)ﬁﬁzt = ky(r)e 3U( )grﬁr?ﬁ’ ng),gét = ly(r)e 3w )85]'12’ (139)
3 _3U(r 3 _3w(r

Hfﬁza,as = ks(r)e 30t >€naﬁ,a7 H,E,);Gs = Is(r)e 3w )efj'lé- (140)

With Hl(jzﬂ nonvanishing, the SO(5) gamma matrix I'y will appear in the BPS conditions. To avoid an additional projector,
which will break more supersymmetry, we impose the following condition:

k4(r) = tanh ¢h,ks(r) and

1,(r) = tanh g, l5(r). (141)

This simply makes the coefficient of 'y vanish. It would also be interesting to consider a more general projector.
With the projection conditions in (65), we can find a consistent set of BPS equations for

0=0 and 7=e"Wk (142)
The latter forbids the possibility of setting either 7 = 0 or x = 0 without ending up with x = 7 = 0. Therefore, the solutions
in this case can only be AdS; x S3-sliced domain walls.

The resulting BPS equations take the form

U = % V691 (3¢=100 4 (p + ) cosh 2¢h, cosh 26 + (p — &) sinh 23, (143)
W = % VH601 (3¢9 1 (p + 5) cosh 2¢b, cosh 2¢b3 + (p — &) sinh 2¢3), (144)
¢ = %e”% (2¢71%: — (p + &) cosh 26, cosh 2¢h5 — (p — &) sinh 2¢p3), (145)
¢ =— g e+ (p + o) sinh 2¢h,sech2¢hs, (146)

P = — g "+ ((p + o) cosh 2¢b, sinh 2¢b; + (p — ) cosh 2¢p3), (147)

ks = %ESU—W—3¢1—¢3 cosh ¢k, (148)

Is = %ezw‘3¢l‘¢3 cosh ¢hk. (149)

However, the compatibility between these BPS equations
and the corresponding field equations requires either ¢, =
0 or ¢3 = 0. It should be noted that setting ¢p3 = 0 is
consistent with Eq. (147), namely ¢4 = 0, only for o = p,
so solutions with vanishing ¢; can only be obtained in
SO(5), SO(3,2), and CSO(3,0,2) gauge groups. To find
explicit solutions, we separately consider various possible
values of p and o.

1. Charged domain walls in CSO(3,0,2) gauge group
For the simplest CSO(3,0,2) gauge group correspond-
ing to p=0=0, we find ¢, =¢5 =0, so we can
consistently set ¢3; =0 and ¢, =0. With ¢, =0,

Eq. (141) gives k4 =14 =0. Choosing V =0 gauge
choice, we find the following charged domain wall
solution:

U=W=>2mn [ﬂjtc}, (150)
§ |5
b= m|L 4 (151)
1_4 5 s
|
and k5 = 15 = ET (152)

with an integration constant C.
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2. Charged domain walls in CSO(4.0.1)
and CSO(3,1,1) gauge groups
In this case, we have p = 0 and 6 = %=1 corresponding to
CS0(4,0,1) (6 = +1) and CSO(3,1,1) (6 = —1) gauge
groups. Choosing V = —6¢; gauge choice, we can find a
charged domain wall solution, with ¢, = 0,

1 gor
b3 = Eln [T+ C1}, (153)
¢, = 1¢ + ! In[C, + e*%] (154)
B R TR
U—W—lqﬁ +iln[C + %3] (155)
T TP Ty T el
1
k4 = l4 =0 and k5 = 15 =T, (156)

2

where C; and C, are integration constants. For these gauge
groups, it is not possible to find solutions with ¢; = 0.

3. Charged domain walls in SO(4,1) gauge group

In this case, the gauge group is a noncompact SO(4, 1)
with 6 = —p = 1. As in the previous case, it is not possible
to set ¢p3 = 0, so we only consider solutions with ¢, = 0.
Using the same gauge choice V = —6¢);, we find the
following solution:

62(/)3 = tan |:% + C1:| . (157)
1 w
b1 :—3453 +1—Oln[C2(e s+1)—1],  (158)

1 1 3
U=W= §¢3 —Zln [€4¢3 + 1} +%ln [C2(€4¢3 + 1) - 1}7

(159)
k4 — l4 - 0, (160)
1
k5 :ls :ETCOS |:%+C1:| (161)

4. Charged domain walls in SO(5)
and SO(3,2) gauge groups
We now look at the last possibility with p =6 = +1
corresponding to SO(5) and SO(3, 2) gauge groups. In this
case, it is possible to set ¢, = 0 or ¢p; = 0. With ¢, =0
and V = —6¢);, we find the following solution:

1 [e7-C
?s 2 LT‘FCJ o2
1 1 )
h = —5453 +Eln [Cy(e*s = 1) +1],  (163)

1 1 3
U=W =gy = Infe* — 1]+ I [Cy(e* 1) +1]

(164)
together with
ky=1,=0 and ks=1l5=——" (165)
M WV A

For ¢; = 0, we find the same solution as in (162)—(164)
with ¢; replaced by ¢,, but the solutions for k4 5 and I, 5 are
now given by

24 _q 22 41
k4:l4:u and ks:ls:u.
4v/ et — 1 4v/ et — 1
(166)

Unlike the previous cases, this solution has two non-
vanishing three-form fluxes.

We end this section by giving a comment on solutions
with nonvanishing SO(3) gauge fields. Repeating the
same procedure as in the SO(4) symmetric solutions leads
to a set of BPS equations together with the following
constraints:
k—r1e"U

p (167)

p'=0 and p=

It turns out that, in this case, the compatibility between the
resulting BPS equations and the corresponding field
equations requires that

7(eV7 —eYx) = 0. (168)
For 7 = 0, we can have a constant magnetic charge p as
required by the conditions in (167), but in this case, the
three-form flux vanishes unless ez = eV« as required by
(142). This case corresponds to performing a topological
twist along the S part. Since this type of solutions is not the
main aim of this paper, we will not consider them here. On
the other hand, setting e"'z = eV does lead to nonvanish-
ing three-form fluxes, but Eq. (167) gives vanishing gauge
fields. This corresponds to the charged domain walls given
above. Therefore, there does not seem to be solutions with
both SO(3) gauge fields and three-form fluxes nonvanish-
ing at least for the ansatz considered here. This is very
similar to the result of [13] in the matter-coupled N = 2
gauged supergravity.

C. SO(2) x SO(2) symmetric charged domain walls

We finally consider charged domain walls with SO(2) x
SO(2) symmetry generated by X, and X34. There are two
SO(2) x SO(2) invariant scalars corresponding to the
noncompact generators
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Yy =€ +ep—2ess and ¥V, =e35+e4y —2ess.
(169)

The SL(5)/SO(5) coset representative can be written as

V= eh Vitdals (170)
The embedding tensor giving rise to gauge groups with an
SO(2) x SO(2) subgroup is given by
Yy = diag(+1,+1,0.0,p) (171)

with p,o = 0,%1. These gauge groups are SO(5) (p =
c=1), SO4,1) (~p=0c=1), SO3,2) (p=—-0=1),
CS0(4,0,1) (p=0, o=1), and CSO(2,2,1)
(p=0,0=-1).

Using the coset representative (170), we obtain the scalar
potential

1
V= —ag2€_2(¢1+¢2>[86 — p2610(¢1+¢2)

+ 4p(eP1 602 4 gbhitaen)], (172)
As in the previous case, a consistent set of BPS equations
can be found only for 8 =0 and ze" = keV. With the
three-form flux (60), which is manifestly invariant under
SO(2) x SO(2), and the projectors given in (65), the
resulting BPS equations read

U/ = W/ = %eV(Ze_z(/)l +pe4((/)l+(/’2) + 203_2(/)2), (173)
¢ = 2_%6V(3e—2¢1 —pedith) _2gem2) (174)
¢, = 2—goev(30-e—2¢z _peitd) _em2) (175)

k = %er—2<‘/J)I+¢Z)T’ (176)
| = le3W—U—2((/’1+(/’z)1. (177)
By choosing V = 2¢);, we obtain the solution

1 C _gr 1 C _gr

¢ =——=In[e“ T +p|—-In[e“>"2 +0], (178)
10 5
3 1 o

¢2:—§¢1—Zln[€ 72 +pl, (179)

1 1 gr 1 gr
U=W=ggr+55mn[e™ +p] +5In[e?72 + o,

(180)

1 &
)

k=1l=gzet ) (181)

with the integration constants C; and C,. This solution is
just the SO(2) x SO(2) symmetric domain wall found in
[26] with a dyonic profile for the three-form flux. In this
case, coupling to SO(3) gauge fields is not possible due to
the absence of any unbroken SO(3) gauge symmetry.

D. Uplifted solutions in 10 and 11 dimensions

We now give the uplifted solutions in the case of SO(5)
and CSO(4,0, 1), which can be obtained from consistent
truncations of 11-dimensional supergravity on S* and type
IIA theory on S°, respectively. As shown in [27], other
gauge groups of the form CSO(p,q,5—p—gq) with
the embedding tensor in 15 representation can also be
obtained from truncations of 11-dimensional supergravity
on HP4oT>~P~4, However, in this paper, we will not
consider uplifted solutions for these gauge groups since
the complete truncation ansatze have not been constructed
so far. Furthermore, we will not consider uplifting solutions
with nonvanishing vector fields since, in this case, the
uplifted solutions are not very useful due to the lack of
analytic solutions.

1. Uplift to 11 dimensions

We first consider uplifting the seven-dimensional sol-
utions in SO(5) gauge group to 11-dimensional super-
gravity. We begin with the SO(4) symmetric solution with
the SL(5)/SO(5) scalar matrix

My = diag(e??, P, e, ¢, e78%) (182)
and the coordinates on S* given by
M = (p', @) = (sin&ff,cosé), i=1,2,3,4, (183)

with /i’ being coordinates on S° satisfying '’ = 1. With
the formulas given in Appendix B, the 11-dimensional
metric and the four-form field strength are given by

s} = A3 (V0 dsy, + eV dr? + 2V ds,)
16
+ — A3 [e=8 sin? £d&?
g

+ e/ (cos? £dg? + sin® £y ). (184)

64
Faoy="7 A7Zsin*é(U sin EdE — 106’ cos Edr) A e
— ZCOS 568¢(k63w+v_3udr AN V01S3

— 13V Wdr A voly,)

8
— —sin&(kvoly, + Ivolg) A d& (185)
g :

with d9%3> = dji'dji’ being the metric on a unit $* and
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A = e8%cos’E + e 2Psin?é,

.
€)= gy Cifl A 1 di* A dp!,

interesting to find a relation between the solution with
M3 = AdS; and the SO(2,2) x SO(4) x SO(4) symmetric
solution studied in [32].

We can repeat a similar procedure for the SO(3) sym-
metric solutions. With the index M = (a,4,5),a =1, 2, 3,
the SL(5)/SO(5) scalar matrix is given by

U= (e'% — 4¢50)cos?E — (€% + 2e4P)sin?¢.  (186)

The SO(4) residual symmetry of the seven-dimensional
solution is the isometry of the S° inside the S*. The

49
3-manifold M3 can be Mkw; or AdS;. Because of the M = (e 'Is 0 ) (187)
dyonic profile of the four-form field strength, this solution 0 e MM,
should describe a bound state of M2- and MS5-branes
similar to the solutions considered in [12]. It is also  with the 2 x 2 matrix M, given by
|
B ( 2?3 cosh? ¢, + sinh? ¢p, ~ sinh ¢, cosh ¢, (1 + e2%3) ) (188)
~ \sinhg, coshghy (1 + €2#) 2% cosh? b, + sinh? ¢, )

We now separately discuss the uplifted solutions for the two cases with ¢, = 0 and ¢3 = 0. We will also denote k5 and /5
simply by k and [ with k, = tanh ¢,k and [, = tanh ¢,/. Recall also that for SO(3) symmetric solutions, we only have
M5 = AdS;.

For ¢, = 0 and the $* coordinates

v

u cos EA%, sin £ cosy, sin & siny) (189)

with g%4% = 1, we find the 11-dimensional metric
16
ds} = AY(eVds} g, + eV dr? + eV dsk) + 7 A% (sin? £dE2

+ cos? Edptdp®) + e~ {sin? £(e??3 sin® y + e72%3 cos? y ) dy?
— sin 2y sin 2¢ sinh 2¢h3dédy + cos? E(e?s cos® w + €293 sin? w)dE? )], (190)

where
A = 71 cos? & + €51 sin? E(e72%3 cos? y + 23 sin? ). (191)
The four-form field strength is given by

F(4) = =250 205 sinEsinydr A (ke TV 0volg — 13UV 3 vol g, )

8
+ = (kvolags, + Ivolg) A (cos Esinydé + sin& cosydy)
g 3

—— A2e) A [cos’ Esin EUAE N dy + Phe'*Pisin®Ecos?E sin 2pdr A dE
g E

— 2017203 sin Ecos*Edr A {(64)] sin & + 24, sin & cos y ) dy — 24, cos &
x sinwd&} — 24, 21 sin 2Ecos?Edr A { (7293 — ¢2%3) siny cos y cos EdE
+ sin &(e?3sin’y + e~ *Pscos’y ) dy}] (192)

with

1 Ha Jn He
€() = ~€apc A di” N fi°, (193)

2
1
U= 5 2N [sinE(1 — e7493){3e%%5 cos 2y — e'%%1 (1 + cos 2y — 2e*3sin’y) }
+(cos 2& — 5) cosh 2¢h3] — e~ 3%1cos?E. (194)
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For ¢35 = 0, we find

16
ds} = AN (eVdshys, + eV dr? + Vdsk) + ?A—%[e% (sin? £d&2

+ cos? Edftdic) + e~ sinh 2¢h, {sin 2y (cos? EdE? — sin? Edy?)

+ sin 2¢ cos 2w dydE} + e~ cosh 2¢h, (cos? EdE? + sin? Edy?)] (195)
and
Fg) = 2sin£e®+V (cos y tanh ¢, — siny)dr A (ke’"VVvolg — 1e3V3Wvolyys, )
8
+ — (kvolgs, + Ivolgs) A [(tanh ¢, cosy + siny ) cos £dé
g
. . 64 . )
+ sin&(cos y — tanh ¢, siny)] — —=UA™ sin cos*Ee(y) A dE A dyr
g
64 2 Uy g1 i a2
+—5ATdr Aepy A 56 1¢h,’ sin Esin=2& cos 2y dé
g
1
+3 e~ 41¢cos?¢ sin 2&{sin?&(e®1 cosh 2¢b, ) dyr
+ (€591 sinh 2¢p,)' (cos & cos 2w dé — sin & sin 2y dy ) }
+ 2¢p,"*P1cos?E sin 2E{sin & cosh 2, dy
— sinh 2¢h, (sin & sin 2y dy — cos 2y/d§)}] . (196)
where
A = 71 cos? & + €591 sin? £(cosh 2¢h, — sin 2y sinh 2¢h, ), (197)
U = sin?&[3e?? sin 2y sinh 2¢h, + €'2#1(6cosh?2¢h, — sin 2y sinh 4¢h, )]
1
+ (2e741 — 3e78%1)cos?E + 3 e>1 cosh 2¢h, (cos 2€ — 5). (198)

All of these solutions should describe bound states of
M2- and M5-branes with different transverse spaces and are
expected to be holographically dual to conformal surface
defects in N = (2,0) SCFT in six dimensions. Solutions
with SO(2) x SO(2) symmetry can similarly be uplifted,
but we will not give them here due to their complexity.

2. Uplift to type 1IA theory

We now carry out a similar analysis for solutions in
CS0(4,0, 1) gauge group to find uplifted solutions in ten-
dimensional type IIA theory. Relevant formulas are
reviewed in Appendix B. In the solutions we will consider,
gauge fields, massive three-forms, and axions b; =y;
vanish. The ten-dimensional fields are then given only
by the metric, the dilaton, and the Neveu Schwarz-Neveu
Schwarz (NS-NS) two-form field. Therefore, in this case,
we expect the solutions to describe bound states of NS5-
branes and the fundamental strings.

|

We begin with a simpler SO(4) symmetric solution
in which the SL(4)/SO(4) scalar matrix is given by
M,;;j =0;;. The ten-dimensional metric, the NS-NS
three-form flux, and the dilaton are given by

16
ds3y = e (eXVdsy, + eV dr? + eV dsh) + ?e‘%%dgé),

. 128 8
H(3> = g—3€(3) + 5 (kVOlM3 + lVOlS3),

¢ = S¢ho- (199)

It should be noted that, in this case, we have a constant NS-
NS flux.

For SO(3) symmetric solutions, we parametrize the
SL(4)/S0O(4) scalar matrix as

M,;; = diag(e?*?, e, ¢*?, e77) (200)
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and choose the S3 coordinates to be

ut = (sinén®, cosé), a=1,2,3, (201)
with /i being the coordinates on S? subject to the condition
A4 = 1. We again recall that only solutions with ¢, = 0
are possible in this case.

With all these ingredients and writing k = k5 and [ = [s,

we find that the ten-dimensional fields are given by

« 3o AL
d§iy = eP0Ni(e?Vdsyys, + e*Vdr? + eV dsy)

16 s .
+— e 0 A=3[(e76% sin? & + €2 cos? E)dE?
g

+ sin? £ dptdic), (202)
€20 = A1el0, (203)
N 64
H3) = — A72in’E(U sin EdE + 8e*? cos E¢p'dr)
g
8
A €y + = (kvolygs, + Ivolgs), (204)
g
in which
_ ,6¢ 2 =20 cin2 _ 1 na Jnb nc
A = ePcos”E + e ?sin“E, €2) = 5 €abehl dp’ A djc,
U = e'2Pcos?E — e sin’E — e* (sin®¢ + 3cos?E).  (205)

The solutions for ¢, and ¢ are obtained from ¢ and ¢5 in
Sec. III B by the following relations:

1 1
¢:1(5¢1 —¢3) and ¢y = _Z(¢3+3¢1)' (206)
These are obtained by comparing the scalar matrices
obtained from (137) and (B10).

IV. SUPERSYMMETRIC SOLUTIONS FROM
GAUGINGS IN 40 REPRESENTATION

In this section, we repeat the same analysis for gaugings
from 40 representation. Setting Y,y = 0, we are left with
the quadratic constraint
ZRSN 7TUP _ ()

E€MRSTU (207)

Following [23], we can solve this constraint by taking

ZMNP = MNP (208)

with wMN = yy(MN)
vector.

The SL(5) symmetry can be used to fix the vector
vM = Y. Therefore, it is useful to split the SL(5) index as

and v™ being a five-dimensional

M = (i,5). Setting w>> = w”® = 0 for simplicity, we can
use the remaining SL(4) C SL(5) symmetry to diagonalize
wl as

wi = diag(1,...,1,-1,...,-1,0,...,0).  (209)
—— —— Y~
P q r
The resulting gauge generators read
(Xij)kl = zeijkmwml (210)

corresponding to a CSO(p,q,r) gauge group with
p+qg+r=4
With the split of SL(5) index M = (i,5) and the
decomposition SL(5) — SL(4) x SO(1,1), we can para-
metrize the SL(5)/SO(5) coset representative in terms of
the SL(4)/SO(4) one as
Y = el Pethoto, (211)
Vis the SL(4)/SO(4) coset representative, and f,, ' refer

to SO(1, 1) and four nilpotent generators, respectively. The
unimodular matrix M,y is then given by

e_2¢0./\~/l,'j + €8¢Obibj 68¢0bi

My = ( ) (212)

with /\~/l,»j = (]7]77)1-]-. Using (25), we can compute the
scalar potential for these gaugings

V_92 ot 1oif KA okl

= Z e biW M jkW b 1
T (2N, Rl — (K, w)). (213)
4 ij kl ij .

The presence of the dilaton prefactor e?0 shows that this
potential does not admit any critical points. Note also that
we can always consistently set the nilpotent scalars b; to
zero for simplicity since they do not appear linearly in any
terms in the Lagrangian.

We will use the same ansatz as in the case of gaugings in
the 15 representation to find charged domain wall solu-
tions. However, we note here that, for gaugings in the 40
representation, there are no massive three-form fields S%/,.
The three-form fluxes given in (52) in this case correspond
solely to the two-form fields B,,,. We now consider a
number of possible solutions with different symmetries.

A. SO(4) symmetric charged domain walls
For SO(4) residual symmetry under which only the

scalar field ¢ is invariant, we have M ij = 6;;. The only
gauge group that can accommodate the SO(4) unbroken
symmetry is SO(4) with the embedding tensor component
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wi = §/. The scalar potential as obtained from (213) takes
a very simple form

V = 252, (214)

which does not admit any critical points. We will consider
solutions with nonvanishing Hfi;s which is an SO(4)
singlet.

In this SO(4) gauging, there are four massive two-form
fields Buw" i=1,...,4, and one massless two-form field
B,,s with the latter being an SO(4) singlet. We will take the
ansatz for B, as given in (60). With the following
projection conditions:

vse5 = —(s)" peq = €. (215)
the BPS equations are given by
1
U=w = 3 eV (2e7?hgsec20 — e~ Yrtan20), (216)
1
dy = EeV(Ze‘MOg sec 20 — e Yz tan 20), (217)
1 v /
k:—ie Pr,0 =0, (218)
1
l=- 3 e?U=4orsec20 + 33U gtan20,  (219)
together with an algebraic constraint
Kk = 7sec 260 — 2eY=2% g tan 26. (220)

Fl2 — 34 — e‘V‘Wip’eﬁ A et e‘ZWK—p(Z—gp)e‘i A e,

2 2) 16

FB3 o pla e-v-wﬁp/ei A e‘i—l—e‘ZWK—p(Z—gp)eSA A eé’

) 2) 16

F3l = F2 — e‘V‘WLp’e3 NS e‘ZWK—p(Z —gp)eé N

) 2) 16

In this case, we find that @ is constant. Choosing V = 0, we
find the following solution:

U=W =2, (221)
2 2 !
2o :ggrseCZG—grrtanZQ—l-C, (222)
1
k= —ET, (223)
1
| = _ETSGC 20 + gtan 20 (224)

with an integration constant C. For a particular value of
0 = 0, we find the solution

1
k = l = —ET.
(225)

2
U=W =24y, eho :§gr+C,

1. Coupling to SO(3) gauge fields
We now consider charged domain wall solutions with
nonvanishing SO(3) C SO(4) gauge fields. In this case, the
projector (I's)? el = —€% implies that the nonvanishing
gauge fields correspond to the self-dual SO(3) C SO(4)
given by

K

A%f) = A(lf> = 1—6p(r)e_w<’) e*, (226)
K' ~

A?ll) = A(Zf) = Ep(r)e‘W“)eS, (227)
K ~

A(llz) = A?f) = 1—6p(r)e_W(’)e6. (228)

The two-form field strengths are straightforward to obtain

2

- (229)
2

- (230)
i (231)

32

Since the components of the embedding tensor Z"* vanish, the two-form field B,,5 does not contribute to the modified
two-form field strengths. Imposing the projection conditions (125) and (215), we find the following BPS equations:

V-2V +40)
U = S0cos 29 [16€2Y (g(3 cos 40 — 1) + 2e*#~Uzsin 20)
cos
=3e*0(k?p(gp — 2)(cos 40 — 3) — 8=tk (gp — 1) sin40)], (232)
oV-2(W-y)
W = m [8€2W(2g(2 — COS 49) - 3€2¢0_UT sin 26)
+e* (k*p(gp — 2)(cos 40 — 8) — 8" 2Pk (gp — 1) sin40)], (233)

086012-21



PARINYA KARNDUMRI and PATHARADANAI NUCHINO

PHYS. REV. D 101, 086012 (2020)

oV -2(W-)
¢/

0= 760 cos 20 [16e2% (g(3 cos 40 — 1) + 2e2h~Uz 5in 20)

+3e*0 (k2 p(gp — 2)(3 — cos 40) + 8" 2ok (gp — 1) sin40)], (234)
oV=2(W-)
0 = e [24e"+2¢0 (W =Uz 4 k(gp — 1) cos 20)
—-3(16ge>V — e*ox? p(gp — 2)) sin 26)], (235)
1
k= -5 e, (236)
1
[ = 3 e3W=6%0[—16gtan 20 4 8e*P~Uz sec 20
+3e*0=2W (k2 p(gp — 2) tan 20 + 4" 2Pk (gp — 1))], (237)
oV W=ddy
p = e [8eW+200(W=Ur + k(gp — 1) cos 20)
K
—(16ge?¥ — e*Pox?p(gp — 2)) sin 24). (238)
|
Itcan be verified that these BPS equations satisfy the second- 2g 1. (2¢9r
order field equations without any additional constraint. U~W~In {? +C. ¢~ Eln 5 Cl.
Since there is not an asymptotically locally AdS; con- T
figuration, we will consider flow solutions from a charged p~0, k~l~—3 (239)

domain wall without vector fields given in (221)-(224) to a
singular solution with nonvanishing gauge fields. To find
numerical solutions, we will consider the charged domain

5C

wall with @ = 0 given in (225) for simplicity. As r — -3

we impose the following boundary conditions:

uln

with k = 7. An example of the BPS flows is shown in
Fig. 7. From this solution, it can be seen that k is constant
along the flow since the above BPS equations give U’
2¢’, which implies the constancy of U — 2¢,. It should

@

(b) W solution

(¢) ¢ solution

n
-1.001

-1.01p
-1.02-

-1.03-

-0.6 -04

(d) p solution

(e) k solution

oles!
I Q
Ll\\l\)\]
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also be noted that this solution is similar to that in
CSO(4,0,1) gauge group given in Fig. 5. We also expect
this solution to describe a surface defect within an N =
(2,0) nonconformal field theory.

B. SO(3) symmetric charged domain walls

In this section, we look for more complicated solutions
with SO(3) residual symmetry generated by X;; with i,
j =1, 2, 3. Gauge groups containing an SO(3) subgroup
are SO(4), SO(3,1), and CSO(3,0,1). These gauge
groups are described by the embedding tensor w'/ of the
form

wi = diag(+1,+1,+1,p) (240)
with p =1, -1, 0, respectively.

Among the ten SL(4)/SO(4) scalars, there is one
SO(3) singlet parametrized by the SL(4)/SO(4) coset
representative

V = diag(e?, e?, e?, e73?). (241)
We then obtain the scalar potential using (213)
7
V= = (3019 4 6pett — ). (242)

To find the BPS equations, we use the same ansatz for
the modified three-form field strength (60) and impose the
projection conditions (215). We note here that, in this case,
there are two two-form fields, B,,, and B, s, which are
SO(3) singlets. For CSO(3,0, 1) gauge group with p = 0,
both of them are massless while for the other two gauge
groups, the former is massive while the latter is massless.
However, in this case, we are not able to consistently
incorporate B4 in the BPS equations. We will accordingly
restrict ourselves to the solutions with only B,
nonvanishing.

Consistency with the field equations also leads to the
conditions given in (142). With all these, the resulting BPS
equations are given by

U =W = Tg()ev_6¢_2¢0(3eg¢l _|_p), (243)
o = % V=602 (36541  p), (244)
¢/ _ _%eV—ﬁl/)—zl/’o (368(/’1 _p), (245)

1 3U-w—-4
k= _Ee bog, (246)
1 2W—4
[ = _Ee {/)OK. (247)

Setting W = U and V = 0, we find the solutions for U, ¢y,
k, and [ as functions of ¢,

2 1
U==-¢——-In(ed —p), (248)
5 5
b= gh— (e —p)+Co  (249)
= — —— n —
0=3 10 € P 0
Ly
k:l:—ie 0K, (250)
in which Cj is an integration constant.
The solution for ¢(r) is given by
5 4
¢ = —Eln [g(e‘QCOgr—Cl)} (251)

for p =0 and
Agpr(e —p)'/3
149
— 5020450 |4 —3(] — peSNV/5 F (2 2 2 b
Se |: 3( pe ) 211 575’5’pe
(252)

for p = £1. In the last equation, , F is the hypergeometric
function. This solution is again the domain wall found in
[26] with a nonvanishing three-form flux.

As in the SO(3) symmetric solutions from the gaugings
in the 15 representation, coupling to SO(3) vector fields
does not lead to new solutions. Consistency with the field
equations implies either vanishing two-form fields or
vanishing gauge fields. We also note that repeating the
same analysis for SO(2) x SO(2) and SO(2) symmetric
solutions leads to the domain wall solutions given in [26]
with a constant three-form flux

k=1=—-=1. (253)

We will not give further detail for these cases to avoid a
repetition.

V. SUPERSYMMETRIC SOLUTIONS FROM
GAUGINGS IN 15 AND 40 REPRESENTATIONS

In this section, we consider gaugings with both compo-
nents of the embedding tensor in 15 and 40 representations
nonvanishing. We first give a brief review of these gaugings
as constructed in [23]. A particular basis can be chosen
such that nonvanishing components of the embedding
tensor are given by
zxab — zx(ap) Zaby

Y (254)

Xy
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with x=1,...,t and a =1+ 1,...,5. The SL(5) index
M, N, ..., are then split into (x, ).

In terms of these components, the quadratic constraint
(14) reads

Yo 2% + 26 ynpoZMN9ZPOP = 0. (255)
Y,, is chosen to be
ny:diag(l,...,l,—l,...,—l). (256)

P q

We will consider two gauge groups, namely SO(2, 1) X
R* and SO(2) X R* given in [23]. The latter can also be
obtained from the Scherk-Schwarz reduction of the maxi-
mal gauged supergravity in eight dimensions.

We begin with the =3 case in which Y,, =
diag(1,1,-1) corresponding to SO(2,1) X R* gauge
group. The corresponding gauge generators are given by

- (100 @)
e
3448’

02><3
with 2 € R and (rf)> = €“"Y,, being generators of
SO(2,1) in the adjoint representation. The nilpotent gen-
erators Q)(f)" transform as 4 under SO(2, 1). In terms of ¥,

the component Z**/ of the embedding tensor takes the
form

(257)

1
7 = e (258)

The explicit form of {* can be given in terms of Pauli
matrices as

Cl =0y, 5:2 = 03, 4’3 = i62. (259)

We now consider charged domain wall solutions with
SO(2) c SO(2,1) symmetry. As shown in [26], there are
four SO(2) singlet scalars corresponding to the following
noncompact generators:

g _
U =W = -L ¢~2Q2¢1+¢2)+V
40

9

/o
"51*240

P, = 9 e 21+h2)+V (3sech2¢pysech2¢p, + 3 cosh 2¢h5 cosh 2¢p, + 4e52),

2748

3
B = =2 0200110 sinh 2¢hssech2,,

3716

e~2(@1+42)+V (155ech2¢hysech2¢hy — 3 cosh 2¢h; cosh 2¢h, — 4e0%2),

Y| =2e, +2ey5 +2e33 — ey, — 3ess,
Yy =eyy +ep5 —2es3,
Yi=ej4+ers+es +esn,
Yy=es—ers—eqr+es). (260)

The SL(5)/SO(5) coset representative can be written as

VY = et VithVothsVitda¥y (261)
The resulting scalar potential is given by
2
V= %€_2<4¢1_¢2) [6 cosh 2¢p3 cosh 2, + €52],  (262)

which does not admit any critical points.

We now repeat the same analysis as in the previous
sections. We first discuss the three-form fluxes that are
singlet under the SO(2) residual symmetry. In the unga-
uged supergravity, the five two-forms transform as 5 under
SL(5). From the particular form of the gauge generators
given in (257), we can see that the SO(2) symmetry under
consideration here is embedded diagonally along the
1,2,4,5 directions. Under SO(2) x SO(2) c SO(5) Cc SL(5),
the two-forms transform as (1,1) + (1,2) + (2,1). Under
S0(2) = [SO(2) x SO(2)]g,e- these two-forms transform
as 1 4 2 + 2. Therefore, there is only one singlet two-form
field under the SO(2) unbroken symmetry. In gauged
supergravity, this two-form field will be gauged away by
a three-form gauge transformation due to the nonvanishing
component Y33 of the embedding tensor. The SO(2) singlet
is then described by a massive three-form field wap.

We will take the ansatz for the three-form field strength
to be

HS%I;?’ = k(r)e'SU(’)emﬁﬁ and
3 - r

Hy = Ur)e™ Ve (263)

After imposing the following projection conditions:
rseg = —(03)"pe§ = €. (264)

we find the following BPS equations:

(3 cosh 25 cosh 2¢p, — €592), (265)
(266)
(267)
(268)
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3
o, = — % =225+ cosh 2¢h, sinh 24, (269)
k= — 1 62U+2¢1_2¢2’[, (27())
1

| = ——3W-UF201=20 (271)

In these equations, we have imposed the conditions (142) for consistency.

By choosing V = 4¢; + 2¢), and taking W = U for convenience, we obtain a charged domain wall solution
2 1 1 9
¢] — Bd)? 4 §C2 _ @ln |:16 (€2C4 _ e4¢)3 _ 2e2C4+4(/)3 + 82C4+8</)3 ):|
1 1
+1—Oln [e*s +1] - gln [e*s — 1], (272)
¢y = =5¢; + C, +In[e’? + 1] —In[e3?s — 1], (273)
1 [1 44620 —2e¥ 4 ¥
¢3 = _ln |: + ¢ ej/r + e}qr:| ’ (274)
4 114 4e% 4267 + o7

1 295 _ ,C4 Cy+4ds
¢4 =7In 62 - : (275)

47 | e2#s 1 eCs — oCatids

U=— 145 — L C, + iln [62C4 — e — Dp2Cutads 62C4+8¢3}
5777202720
16

—In [3] ——In[e*s — 1] (276)
P e Catads) (€2C+ — oMb — 22Ci+4bs | Q2Ci+8¢3)1/10 )

T 92/5 « 33/10

This is just the %—BPS domain wall obtained in [26] together
with the running dyonic profile of the three-form flux. It is
useful to emphasize here that this solution is }L-super—
symmetric. In general, domain wall solutions from gaug-
ings in both 15 and 40 representations preserve only jof the
original supersymmetry; see a general discussion in [33]
and explicit solutions in [26]. From the above solution, we
see that the solutions with a nonvanishing three-form flux
do not break supersymmetry any further.

We end this section by giving a comment on the ¢ = 2
case with SO(2) X R* gauge group. Repeating the same
procedure leads to a charged domain wall given by the
solution found in [26] with a constant three-form flux given
in (253). In contrast to the r = 3 case, the three-form flux

H;(Ea is due to the massless two-form field B, 3 since, in this

case, we have Y33 = 0. We will not give the full detail of this
analysis here as it closely follows that of the previous cases.

("5 — 1)*5

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied supersymmetric solutions
of the maximal gauged supergravity in seven dimensions
with various gauge groups. These solutions are charged
domain walls with M5 x §3 slices, for M5 = Mkws, AdS;,
and nonvanishing three-form fluxes. All of these solutions
can be obtained analytically. For SO(4) residual symmetry,
the charged domain wall solutions can couple to SO(3) C
SO(4) gauge fields, but the corresponding solutions can
only be obtained numerically. For SO(3) symmetric
solutions, coupling to SO(3) gauge fields does not lead
to a consistent set of BPS equations that is compatible with
the field equations. In this case, only solutions with either
nonvanishing three-form fluxes or nonvanishing gauge
fields are possible. Apart from these solutions, we have
also given a number of SO(2) x SO(2) and SO(2) sym-
metric solutions.
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For SO(5) gauge group, the gauged supergravity admits
a supersymmetric AdS; vacuum dual to an N = (2,0)
SCFT in six dimensions. In this case, the solutions with an
AdS; x S slice can be interpreted as surface defects within
the N = (2,0) SCFT. For other gauge groups, the super-
symmetric vacua, with only the metric and scalars non-
vanishing, take the form of half-supersymmetric domain
walls dual to N = (2, 0) nonconformal field theories in six
dimensions. We then expect these AdS; x S3-sliced
domain wall solutions to describe i-BPS surface defects
in the dual N = (2, 0) quantum field theories. For a number
of solutions, we have found that the charged domain walls
are simply given by the domain wall solutions given in [26]
with constant three-form fluxes. However, the charged
domain walls preserve only 4—11 of the original supersymmetry
as opposed to the usual domain walls, which are % super-
symmetric except for the domain walls from gaugings in
both 15 and 40 representations in which both charged and
standard domain walls are }1 supersymmetric.

Both gaugings in 15 and 40 representations we have
studied can, respectively, be uplifted to 11-dimensional
supergravity and type IIB theory as shown in [27,28]. We
have performed only the uplift for solutions in SO(5) and
CSO(4,0,1) gauge groups with SO(4) and SO(3) sym-
metries. In these cases, the complete truncation ansatze of
11-dimensional supergravity on S$* and type IIA theory on
§3 are known. Similar to the solutions in [12], the uplifted
solutions in these two gauge groups should describe
bound states of M2- and M5-branes and of Fl-strings
|

and NS5-branes, respectively. It is natural to extend this
study by constructing the full truncation ansatze of
11-dimensional supergravity on HP74oT3P~¢ and type
IIB theory on HP90T* P4 These can be used to
uplift the solutions in CSO(p, ¢,5 — p — q) and CSO(p, g,
4 — p — q) gauge groups for any values of p and ¢ leading
to the full holographic interpretation of the seven-
dimensional solutions found here.

Finding the description of conformal defects, dual to the
supergravity solutions given in this paper, in the dual N =
(2,0) SCFT and N = (2,0) QFT would be interesting and
could provide another verification for the validity of the
AdS/CFT correspondence. Finally, finding solutions of the
form AdS,; x £’~¢ in seven-dimensional gauged super-
gravity with various gauge groups is also of particular
interest. These solutions would be dual to twisted com-
pactifications of N = (2,0) SCFT and N = (2,0) QFT in
six dimensions on a (7 — d)-manifold X~ to (d — 1)-
dimensional SCFT.
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APPENDIX A: BOSONIC FIELD EQUATIONS

In this appendix, we give the explicit form of the bosonic
field equations derived from the Lagrangian (22). These
equations read

1 2
0= R/w - ZMMPMNQ(D/JMMN)(DUMPQ) - gg;wv

1
M My (PO — g e

;2
_ N <H<3> e

upo

Bgﬂl/ P

S [

H@WH“WN), (A1)

2
0 = D*(MypD M) ~ %MPQMRN@YRQYPM = YpoYru)

4
— MV HOWP = 8 Myp Mg H O H RN

+ 4P ZOTPZVRS M 501 (2 Mg Mips — Myp M)
+ 42 ZOT P ZRSN M o5 (2Mpp Mpay = Mg Mpyy)
— 4g7 6 2TV P ZORS Mo (MygMps — Myp M)

5

8 1
+2 8y <V + MspMopHy) " OHORS + 1—6MPQH;2,PH<3WQ) ,

(A2)
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0 = 4D, (MypMyoHPFom) — gXMNPQMQRDﬂMPR

— 2epnpor MPSHIIP 1) +ée‘1€’”/”‘”’<7-{ Mo (A3)
0— Dp(MMNH(3)pﬂIJN) _ 2gZNP.MMNQMPRH(2)QR;w

- % o mian DN (A4)

0= e ey HIDN — 67y MVPHOW (AS)

APPENDIX B: TRUNCATION ANSATZE

In this appendix, we collect relevant formulas for truncations of 11-dimensional supergravity on S* and type IIA theory
on S3. These give rise to SO(5) and CSO(4, 0, 1) gauged supergravities in seven dimensions, respectively. The complete S*
truncation of 11-dimensional supergravity has been constructed in [29,30] while the S? truncation of type IIA theory has
been given in [31]. For both truncations, we will use the convention of [31].

1. The 11-dimensional supergravity on S*

The ansatz for the 11-dimensional metric is given by
1
d§?, = Aids2 + 7 AZTy DpM DN (B1)

with the coordinates ™, M =1, 2, 3, 4, 5, on S* satisfying y"uM = 1. T),y is a unimodular 5 x 5 symmetric matrix
describing scalar fields in the SL(5)/SO(5) coset. The warped factor is defined by

A = TyypMp. (B2)

The ansatz for the four-form field strength reads

" 1 1
Fly=—5A"2 T N T DTN A DUMs A DpMs A DpMs
1 1
) -1 MM M MyTM;sN , N
—?A M€(4)+4—g2A €M1.“M5F(2; 2 /\D,M 3 /\D/l 4TMs M
1. .

In these equations, we have used the following definitions: . .
DTyy = dTyy + JAY Ten + GAYTyp.  (BT)

U = 2T ynTypp™ u” — AT yp, (B4) We have denoted the vector and massive three-form fields
A”{N and S ) to avoid confusion with those appearing
1 in (2&

To find the identification between the seven-dimensional

(B5) fields and parameters obtained from the S$* truncation and
those in seven-dimensional gauged supergravity of [23],

we consider the kinetic terms of various fields and the

€y = EeMl,,,MS,uMIDyMZ A DuMs A DuMs A DuMs |

DuM = duM +gﬁ?{§" N, F?/zfg\’ :dgf(‘ﬁv +QA1("11§’ A Am’ ; scalar .potential. Aft(j:l' beir.lg multiplied .by %, the relevant
terms in the seven-dimensional Lagrangian of [31] can be
(B6) written as

086012-27



PARINYA KARNDUMRI and PATHARADANAI NUCHINO

PHYS. REV. D 101, 086012 (2020)

1 1 1.
e Lo = ER + <D, Ty DF Ty — ZQZ[ZTMNTMN = (Tyum)?]

8 H

1 FMNFPQ;U/

- 1_6 T[TllPTXfQ v

Comparing (22) with Y,y = Syn, ZYNF

s 3
TMN — MMN, S%) - Q’H[(W)’

2. Type IIA supergravity on S3

The consistent truncation of type IIA supergravity on 3
has been obtained in [31] by taking a degenerate limit of the
§* truncation of 11-dimensional supergravity. To write
down this truncation ansatz, we first split the index M
as M =(i,5), i=1, 2, 3, 4. The scalar matrix of
SL(5)/S0O(5) coset is then given by

|

= 0, we find the following identification:

-3 TynSi SV (B8)
1
Fol =41y =59 (BY)
O M+ Dy, Dy,
TMlNZ< M+ Driy; )() (B10)

where M;; is a unimodular 4 x 4 symmetric matrix describ-
ing the SL(4)/SO(4) coset.

The ten-dimensional metric, dilaton, and field strength
tensors of various form fields are given by

1 1 5 . .
ds?, = drAids? + ?qrm—%M;leﬂ'Du/, (B11)
esz’ = A_](I)%, (Blz)
ﬁ(Z) = GEI) A D/.li + gAMiGEZ),
. 1 1 . ) )
Hg) = §A_2 —Ue) + 56i1i2i3i4Mi1jﬂjﬂkDMizk A Dp's N Dp's
1 i 15
+FA_1€ijk1Mimﬂme§) A Dpl 4+ =S, (B13)
g g
Fy =~ A M, i G LA M; /G A Du> A Dyt
W=7 i Oy N €3 +2—gz €iririgiy My j G ) N Dpz A D
50 i 1 i
with
o o
€@) = 3; €k D A Dt A Dl Dt = du' + GAG ', (B1S)
U= 2Miijk/"iﬂk —AM;;, A= Mij/'ti/"jv (B16)
i AATS i ASi ji
G,y = Dyi + 9A7). Gy = DAY +xF (), (B17)
i i $ | gAl A Aik Aki
Gla) = Sto) =450 2) = dAn) + 945 A AG), (B18)
S = By + ey Fiy A AH — L&l Atm A Zn B19
(3) = db(y) +§€iﬂ<l @ N A T 3940 A Aa) AA) ) (B19)

By comparing the truncated Lagrangian and the seven-dimensional gauged Lagrangian given in (22) with ¥;; = 6;; and

Y55 = 0, we find the following relations:

086012-28



SUPERSYMMETRIC SOLUTIONS OF 7D MAXIMAL GAUGED ...

PHYS. REV. D 101, 086012 (2020)

b = 68¢0, Xi— bi’ M~_~1
~ 1 Si o
g - ng S(3) — 2Hl )

In this case, ' are coordinates on S satisfying 'y’ = 1.

- M

ij ij
Fy=4Hp),

ijs

Fiy) = 4Hp,. (B20)
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