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We study a number of supersymmetric solutions in the form of Mkw3 × S3- and AdS3 × S3-sliced
domain walls in the maximal gauged supergravity in seven dimensions. These solutions require
nonvanishing three-form fluxes to support the AdS3 and S3 subspaces. We consider solutions with
SOð4Þ, SOð3Þ, SOð2Þ × SOð2Þ, and SOð2Þ symmetries in CSOðp; q; 5 − p − qÞ, CSOðp; q; 4 − p − qÞ,
and SOð2; 1Þ ⋉ R4 gauge groups. All of these solutions can be analytically obtained. For SOð5Þ and
CSOð4; 0; 1Þ gauge groups, the complete truncation ansatze in terms of 11-dimensional supergravity on S4

and type IIA theory on S3 are known. We give the full uplifted solutions to 11 and 10 dimensions in this
case. The solutions with an AdS3 × S3 slice are interpreted as two-dimensional surface defects in six-
dimensional N ¼ ð2; 0Þ superconformal field theory in the case of SOð5Þ gauge group or N ¼ ð2; 0Þ
nonconformal field theories for other gauge groups. For SOð4Þ symmetric solutions, it is possible to find
solutions with both the three-form fluxes and the SOð3Þ gauge fields turned on. However, in this case, the
solutions can be found only numerically. For SOð3Þ symmetric solutions, the three-form fluxes and SOð3Þ
gauge fields cannot be nonvanishing simultaneously.

DOI: 10.1103/PhysRevD.101.086012

I. INTRODUCTION

Gauged supergravities in various spacetime dimensions
have become a useful tool for studying different aspects of
the AdS=CFT correspondence [1–3] and the DW/QFT
correspondence [4–6]. Solutions to gauged supergravities
provide some insight to the dynamics of strongly coupled
conformal and nonconformal field theories via holographic
descriptions; see, for example, [7–11]. The study along
this line is particularly fruitful in the presence of super-
symmetry. In this case, many aspects of both the gravity
and the field theory sides are more controllable even at
strong coupling. This makes finding various types of
supersymmetric solutions in gauged supergravities worth
considering.
In this paper, we are interested in supersymmetric solu-

tions in the maximal gauged supergravity in seven dimen-
sions. The solutions under consideration here take the form
of Mkw3 × S3- and AdS3 × S3-sliced domain walls. This
type of solution has originally been considered in the
minimal N ¼ 2 gauged supergravity in [12]; see also [13]

for similar solutions in the matter-coupled N ¼ 2 gauged
supergravity. Some of these solutions have been interpreted
as surface defects within N ¼ ð1; 0Þ superconformal field
theory (SCFT) in six dimensions in [14]; see [15,16] for
similar solutions in six dimensions and [17–22] for
examples of another holographic description of conformal
defects in terms of Janus solutions.
We will find these Mkw3 × S3- and AdS3 × S3-sliced

domain walls in the maximal N ¼ 4 gauged supergravity
with various types of gauge groups. The most general
gaugings of the N ¼ 4 supergravity can be constructed by
using the embedding tensor formalism [23]; for an earlier
construction see [24,25]. The embedding tensor describes
the embedding of an admissible gauge group G0 in the
global symmetry group SLð5Þ and encodes all information
about the resulting gauged supergravity. Supersymmetry
allows for two components of the embedding tensor
transforming in 15 and 40 representations of SLð5Þ. We
will consider CSOðp; q; 5 − p − qÞ and CSOðp; q; 4 −
p − qÞ gauge groups obtained from the embedding tensor
in 15 and 40 representations, respectively. We will also
study similar solutions in SOð2; 1Þ ⋉ R4 gauge group from
the embedding tensor in both 15 and 40 representations.
Vacuum solutions in terms of half-supersymmetric domain
walls for all these gauge groups have already been studied
in [26]. In this paper, we will extend these solutions, which
involve only the metric and scalars, by including non-
vanishing two- and three-form fields. In some cases, in

*parinya.ka@hotmail.com
†danai.nuchino@hotmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 086012 (2020)

2470-0010=2020=101(8)=086012(29) 086012-1 Published by the American Physical Society

https://orcid.org/0000-0002-6460-0510
https://orcid.org/0000-0002-5130-6101
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.086012&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1103/PhysRevD.101.086012
https://doi.org/10.1103/PhysRevD.101.086012
https://doi.org/10.1103/PhysRevD.101.086012
https://doi.org/10.1103/PhysRevD.101.086012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


addition to two- and three-form fields, it is also possible to
couple SOð3Þ gauge fields to the solutions.
As shown in [27] using the framework of exceptional

field theory, seven-dimensional gauged supergravity in 15
representation with CSOðp; q; 5 − p − qÞ gauge group can
be obtained from a consistent truncation of 11-dimensional
supergravity on Hp;q∘T5−p−q. On the other hand, a con-
sistent truncation of type IIB theory on Hp;q∘T4−p−q gives
rise to CSOðp; q; 4 − p − qÞ gauging from 40 representa-
tion. This has been shown in [28] along with a partial result
on the corresponding truncation ansatze. In particular,
internal components of all 10-dimensional fields have been
given.
For SOð5Þ and CSOð4; 0; 1Þ gauge groups, the complete

truncation ansatze have already been constructed long ago
in [29–31]. In this work, we will mainly consider uplifted
solutions from these two gauge groups using the truncation
ansatze given in [29–31], which are more useful for
solutions involving two- and three-form fields in seven
dimensions. We leave uplifting solutions from other gauge
groups for future work.
The paper is organized as follows. In Sec. II, we give a

brief review of the maximal gauged supergravity in seven
dimensions. Supersymmetric Mkw3 × S3- and AdS3 × S3-
sliced domain walls in CSOðp; q; 5 − p − qÞ gauge
group together with the uplifted solutions to 11 and 10
dimensions in the case of SOð5Þ and CSOð4; 0; 1Þ gauge
groups are presented in Sec. III. Similar solutions for
CSOðp; q; 4 − p − qÞ and SOð2; 1Þ ⋉ R4 gauge groups
obtained from gaugings in 40 and ð15; 4̄0Þ representations
are given in Secs. IV and V, respectively. Conclusions and
comments are given in Sec. VI. In the two appendixes, all
bosonic field equations of the maximal gauged supergravity
and consistent truncation ansatze for 11-dimensional super-
gravity on S4 and type IIA theory on S3 are given.

II. MAXIMAL GAUGED SUPERGRAVITY
IN SEVEN DIMENSIONS

In this section, we briefly review N ¼ 4 gauged super-
gravity in seven dimensions in the embedding tensor
formalism. We mainly focus on the bosonic Lagrangian
and fermionic supersymmetry transformations that are
relevant for finding supersymmetric solutions. The reader
is referred to [23] for the detailed construction of the
maximal gauged supergravity.
As in other dimensions, the maximal N ¼ 4 supersym-

metry in seven dimensions allows only the supergravity
multiplet with the field content

ðeμ̂μ;ψa
μ; AMN

μ ; BμνM; χabc;VM
AÞ: ð1Þ

This multiplet consists of the graviton eμ̂μ, four gravitini ψa
μ,

ten vectors AMN
μ ¼ A½MN�

μ , five two-form fields BμνM, 16

spin-1
2
fermions χabc ¼ χ½ab�c, and 14 scalar fields described

by the SLð5Þ=SOð5Þ coset representative VM
A.

Throughout the paper, we will use the following con-
vention on various types of indices. Curved and flat
spacetime indices are denoted by μ; ν;… and μ̂; ν̂;…,
respectively. Lower (upper) M;N ¼ 1;…; 5 indices refer
to the (anti)fundamental representation 5 (5̄) of the global
SLð5Þ symmetry. Accordingly, the vector AMN

μ and two-
form BμνM fields transform in the representations 10 and 5,
respectively.
On the other hand, fermionic fields transform in repre-

sentations of the local SOð5Þ ∼USpð4Þ R-symmetry with
USpð4Þ fundamental or SOð5Þ spinor indices a; b;… ¼ 1;
…; 4. The gravitini then transform as 4 while the spin-1

2

fields χabc transform as 16 of USpð4Þ. The latter satisfy the
following conditions:

χ½abc� ¼ 0 and Ωabχ
abc ¼ 0 ð2Þ

with Ωab ¼ Ω½ab� being the USpð4Þ symplectic form
satisfying the properties

ðΩabÞ� ¼ Ωab and ΩacΩbc ¼ δba: ð3Þ
It should also be noted that the raising and lowering of

USpð4Þ indices by Ωab and Ωab correspond to complex
conjugation. Furthermore, all fermions are symplectic
Majorana spinors subject to the conditions

ψ̄T
μa ¼ ΩabCψb

μ and χ̄Tabc ¼ ΩadΩbeΩcfCχdef ð4Þ
where C denotes the charge conjugation matrix obeying

C ¼ CT ¼ −C−1 ¼ −C†: ð5Þ
With the spacetime gamma matrices denoted by γμ, the
Dirac conjugate on a spinor Ψ is defined by Ψ̄ ¼ Ψ†γ0.
The 14 scalars parametrizing SLð5Þ=SOð5Þ coset are

described by the coset representative VM
A, transforming

under the global SLð5Þ and local SOð5Þ symmetries by left
and right multiplications. Indices M ¼ 1; 2;…; 5 and A ¼
1; 2;…; 5 are accordingly SLð5Þ and SOð5Þ fundamental
indices, respectively. To couple fermions that transform
underUSpð4Þ, we write the SOð5Þ vector indices of VM

A as
a pair of antisymmetric USpð4Þ fundamental indices in the
form of VM

ab ¼ VM
½ab�. In addition, the coset representa-

tive VM
ab satisfies the relation

VM
abΩab ¼ 0: ð6Þ

Similarly, the inverse of VM
A denoted by VA

M will be
written as Vab

M. We then have the following relations:

VM
abVab

N ¼ δNM and Vab
MVM

cd ¼ δ½ca δ
d�
b −

1

4
ΩabΩcd:

ð7Þ
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Gaugings are deformations of the N ¼ 4 supergravity by
promoting a subgroup G0 ⊂ SLð5Þ to be a local symmetry.
The most general gaugings of a supergravity theory can be
efficiently described by using the embedding tensor for-
malism. The embedding of G0 within SLð5Þ is achieved by
using a constant SLð5Þ tensorΘMN;P

Q ¼ Θ½MN�;PQ living in
the product representation [23]

10 ⊗ 24 ¼ 10þ 15þ 40þ 175: ð8Þ

It turns out that supersymmetry allows only the embedding
tensor in the 15 and 40 representations. These two
representations can be described by the tensors YMN

and ZMN;P with YMN ¼ YðMNÞ, ZMN;P ¼ Z½MN�;P, and

Z½MN;P� ¼ 0 in terms of which the embedding tensor can
be written as

ΘMN;P
Q ¼ δQ½MYN�P − 2ϵMNPRSZRS;Q: ð9Þ

In term of the embedding tensor, gauge generators are
given by

XMN ¼ ΘMN;P
QtPQ ð10Þ

in which tMN , satisfying tMM ¼ 0, are SLð5Þ generators. In
particular, the gauge generators in the fundamental 5 and 10
representations are given by

XMN;P
Q ¼ ΘMN;P

Q ¼ δQ½MYN�P − 2ϵMNPRSZRS;Q; ð11Þ

and ðXMNÞPQRS ¼ 2XMN;½P½Rδ
S�
Q� ð12Þ

with ϵMNPQR being the invariant tensor of SLð5Þ. To ensure
that the gauge generators form a closed subalgebra of
SLð5Þ

½XMN; XPQ� ¼ −ðXMNÞPQRSXRS; ð13Þ
the embedding tensor needs to satisfy the quadratic
constraint

YMQZQN;P þ 2ϵMRSTUZRS;NZTU;P ¼ 0: ð14Þ

Gaugings introduce minimal coupling between the
gauge fields and other fields via the covariant derivative

Dμ ¼ ∇μ − gAMN
μ ΘMN;P

QtPQ; ð15Þ

where ∇μ is the spacetime covariant derivative including
(possibly) composite SOð5Þ connections. To restore super-
symmetry of the original N ¼ 4 supergravity, fermionic
masslike terms and the scalar potential at first and second
orders in the gauge coupling constant are needed. In addi-
tion, to ensure gauge covariance, the field strength tensors
of vector and two-form fields need to be modified as

Hð2ÞMN
μν ¼ FMN

μν þ gZMN;PBμνP; ð16Þ

Hð3Þ
μνρM ¼ gYMNSNμνρ þ 3D½μBνρ�M

þ 6ϵMNPQRANP
½μ

�
∂νA

QR
ρ� þ 2

3
gXST;U

QARU
ν AST

ρ�

�
;

ð17Þ
where the non-Abelian gauge field strength tensor is
defined by

FMN
μν ¼ 2∂ ½μAMN

ν� þ gðXPQÞRSMNAPQ
½μ ARS

ν� : ð18Þ

Note that the three-form fields SMμνρ in Hð3Þ
μνρ only appear

under the projection of YMN . In ungauged supergravity, all
of the three-form fields can be dualized to two-form fields.
However, this is not the case in the gauged supergravity.
Therefore, different gaugings lead to different field contents
in the resulting gauged supergravity.
Following [23], we first define s≡ rankZ and t≡ rankY.

In a given gauging, t two-forms can be set to zero by tensor
gauge transformations of the three-form fields. This results
in t self-dual massive three-forms. Similarly, s gauge fields
can be set to zero by tensor gauge transformations of the
two-forms giving rise to s massive two-form fields. It
should also be pointed out that there can be massive vector
fields arising from broken gauge symmetry via the usual
Higgs mechanism. We can see that the numbers of two- and
three-form tensor fields depend on the gauging under
consideration. However, the quadratic constraint ensures
that tþ s ≤ 5, so the degrees of freedom from the ten
vector and five two-form fields in the ungauged super-
gravity are redistributed into two- and three-form fields in
the gauged theory. This fact will affect our ansatz for
finding supersymmetric solutions in subsequent sections.
To summarize, we repeat the distribution of degrees of
freedom after gauge fixing from [23] in Table I.
The covariance two- and three-form field strengths

satisfy the following modified Bianchi identities:

D½μH
ð2ÞMN
νρ� ¼ 1

3
gZMN;PHð3Þ

μνρP; ð19Þ

D½μH
ð3Þ
νρλ�M ¼ 3

2
ϵMNPQRH

ð2ÞNP
½μν Hð2ÞQR

ρλ� þ 1

4
gYMNH

ð4ÞN
μνρλ ;

ð20Þ

TABLE I. Distribution of the tensor fields’ degrees of freedom
after gauge fixing.

Fields # # d.o.f

Massless vectors 10 − s 5
Massless 2-forms 5 − s − t 10
Massive 2-forms s 15
Massive sd. 3-forms t 10
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where the covariant field strengths of the three-form fields are given by

YMNH
ð4ÞN
μνρλ ¼ YMN ½4D½μSNνρλ� þ 6FNP

½μνBρλ�P þ 3gZNP;QB½μνPBρλ�Q

þ4gϵPQRVWXST;U
VANP

½μ AQR
ν AST

ρ AUW
λ� þ 8ϵPQRSTANP

½μ AQR
ν ∂ρAST

λ� �: ð21Þ

It should be emphasized that the three-forms SMμνρ and its field strength tensors always appear under the projection by YMN.
With all these ingredients, the bosonic Lagrangian of the seven-dimensional maximal gauged supergravity can be

written as

e−1L ¼ 1

2
R −MMPMNQH

ð2ÞMN
μν Hð2ÞPQμν −

1

6
MMNHð3Þ

μνρMH
ð3Þμνρ

N

þ 1

8
ðDμMMNÞðDμMMNÞ − e−1LVT − V: ð22Þ

In this equation, the scalar fields are described by a unimodular symmetric matrix

MMN ¼ VM
abVN

cdΩacΩbd: ð23Þ

Its inverse is given by

MMN ¼ Vab
MVcd

NΩacΩbd: ð24Þ

Wewill not give the explicit form of the vector-tensor topological term LVT here due to its complexity but refer the reader to
[23]. Finally, the scalar potential is given by

V ¼ g2

64
½2MMNYNPMPQYQM − ðMMNYMNÞ2�

þ g2ZMN;PZQR;SðMMQMNRMPS −MMQMNPMRSÞ: ð25Þ

The supersymmetry transformations of fermionic fields that are essential for finding supersymmetric solutions read

δψa
μ ¼ Dμϵ

a − gγμAab
1 Ωbcϵ

c þ 1

15
Hð3Þ

νρλM

�
γμ

νρλ −
9

2
δνμγ

ρλ

�
ΩabVbc

Mϵc

þ 1

5
Hð2ÞMN

νρ ðγμνρ − 8δνμγ
ρÞVM

adΩdeVN
ebΩbcϵ

c; ð26Þ

δχabc ¼ 2ΩcdPμde
abγμϵe þ gAd;abc

2 Ωdeϵ
e

þ 2Hð2ÞMN
μν γμνΩde

�
VM

cdVN
e½aϵb� −

1

5
ðΩabδcg −Ωc½aδb�g ÞVM

gfΩfhVN
hdϵe

�
−
1

6
Hð3Þ

μνρMγ
μνρVfe

M

�
ΩafΩbeϵc −

1

5
ðΩabΩcf þ 4Ωc½aΩb�fÞϵe

�
: ð27Þ

The covariant derivative of the supersymmetry parameters is defined by

Dμϵ
a ¼ ∇μϵ

a −Qμb
aϵb: ð28Þ

The composite connectionQμa
b and the vielbein on the SLð5Þ=SOð5Þ coset Pμab

cd are obtained from the following relation:

Pμab
cd þ 2Qμ½a½cδ

d�
b� ¼ Vab

Mð∂μVM
cd − gAPQ

μ XPQ;M
NVN

cdÞ: ð29Þ
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The fermion shift matrices A1 and A2 are given by

Aab
1 ¼ −

1

4
ffiffiffi
2

p
�
1

4
BΩab þ 1

5
Cab

�
; ð30Þ

Ad;abc
2 ¼ 1

2
ffiffiffi
2

p
�
ΩecΩfdðCab

ef − Bab
efÞ

þ 1

4

�
CabΩcd þ 1

5
ΩabCcd þ 4

5
Ωc½aCb�d

��
ð31Þ

with various components of B and C tensors defined by

B ¼
ffiffiffi
2

p

5
ΩacΩbdYab;cd; ð32Þ

Bab
cd ¼

ffiffiffi
2

p �
ΩaeΩbfδ½gc δ

h�
d

−
1

5

�
δ½ac δ

b�
d −

1

4
ΩabΩcd

�
ΩegΩfh

�
Yef;gh; ð33Þ

Cab ¼ 8ΩcdZðacÞ½bd�; ð34Þ

Cab
cd ¼ 8ð−ΩceΩdfδ

½a
g δ

b�
h þ Ωgðcδ

½a
dÞδ

b�
e ΩfhÞZðefÞ½gh�: ð35Þ

In the above equations, we have introduced “dressed”
components of the embedding tensor defined by

Yab;cd ¼ Vab
MVcd

NYMN ð36Þ

and ZðacÞ½ef� ¼
ffiffiffi
2

p
VM

abVN
cdVP

efΩbdZMN;P: ð37Þ

Finally, we note that the scalar potential can also be
written in terms of the fermion-shift matrices A1 and A2 as

V ¼ −15Aab
1 A1ab þ

1

8
Aa;bcd
2 A2a;bcd ¼ −15jA1j2 þ

1

8
jA2j2:
ð38Þ

In the following sections, we will find supersymmetric
solutions in a number of possible gauge groups.

III. SUPERSYMMETRIC SOLUTIONS FROM
GAUGINGS IN 15 REPRESENTATION

We begin with gaugings in 15 representation with
ZMN;P ¼ 0. The SLð5Þ symmetry can be used to bring
YMN to the form

YMN ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
p

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q

; 0;…; 0|fflfflffl{zfflfflffl}
r

Þ;

pþ qþ r ¼ 5: ð39Þ

This corresponds to the gauge group

CSOðp; q; rÞ ∼ SOðp; qÞ ⋉ RðpþqÞr: ð40Þ

To give an explicit parametrization of the SLð5Þ=SOð5Þ
coset, we first introduce GLð5Þ matrices

ðeMNÞKL ¼ δMKδ
L
N: ð41Þ

Wewill use the following choice of SOð5Þ gamma matrices
to convert an SOð5Þ vector index to a pair of antisymmetric
spinor indices

Γ1 ¼ −σ2 ⊗ σ2; Γ2 ¼ I2 ⊗ σ1; Γ3 ¼ I2 ⊗ σ3;

Γ4 ¼ σ1 ⊗ σ2; Γ5 ¼ σ3 ⊗ σ2; ð42Þ

where σi are the usual Pauli matrices. ΓA satisfy the
following relations:

fΓA;ΓBg ¼ 2δABI4; ðΓAÞab ¼ −ðΓAÞba;
ΩabðΓAÞab ¼ 0; ððΓAÞabÞ� ¼ ΩacΩbdðΓAÞcd: ð43Þ

The symplectic form of USpð4Þ is chosen to be

Ωab ¼ Ωab ¼ I2 ⊗ iσ2: ð44Þ

The coset representative of the form VM
ab and the inverse

Vab
M are then obtained from the following relations:

VM
ab ¼ 1

2
VM

AðΓAÞab and Vab
M ¼ 1

2
VA

MðΓAÞab: ð45Þ

We will use the metric ansatz in the form of an
AdS3 × S3-sliced domain wall

ds27 ¼ e2UðrÞds2AdS3 þ e2VðrÞdr2 þ e2WðrÞds2S3 : ð46Þ

The seven-dimensional coordinates are taken to be xμ ¼
ðxm; r; xiÞ with m ¼ 0, 1, 2 and i ¼ 4, 5, 6. Note that VðrÞ
is an arbitrary nondynamical function that can be set to zero
with a suitable gauge choice. The explicit forms for the
metrics on AdS3 and S3 are given in Hopf coordinates by

ds2AdS3 ¼
1

τ2
½−dt2 þ ðdx1Þ2 þ ðdx2Þ2 þ 2 sinh x1dtdx2�;

ð47Þ

ds2S3 ¼
1

κ2
½ðdx4Þ2 þ ðdx5Þ2 þ ðdx6Þ2 þ 2 sin x5dx4dx6�;

ð48Þ

in which τ and κ are constants. In the limit τ → 0 and
κ → 0, the AdS3 and S3 parts become flat Minkowski space
Mkw3 and flat space R3, respectively.
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With the following choice of vielbeins:

e0̂ ¼ 1

τ
eUðrÞðdt − sinh x1dx2Þ; e1̂ ¼ 1

τ
eUðrÞðcos tdx1 − sin t cosh x1dx2Þ;

e2̂ ¼ 1

τ
eUðrÞðsin tdx1 þ cos t cosh x1dx2Þ; e3̂ ¼ eVðrÞdr;

e4̂ ¼ 1

κ
eWðrÞðdx4 þ sin x5dx6Þ; e5̂ ¼ 1

κ
eWðrÞðcos x4dx5 − sin x4 cos x5dx6Þ;

e6̂ ¼ 1

κ
eWðrÞðsin x4dx5 þ cos x4 cos x5dx6Þ; ð49Þ

we find the following nonvanishing components of the spin
connection:

ωn̂
m̂
3̂ ¼ e−VðrÞU0ðrÞδm̂n̂ ; ωm̂ n̂ p̂ ¼ τ

2
e−UðrÞεm̂ n̂ p̂;

ωĵ
î
3̂
¼ e−VðrÞW0ðrÞδî

ĵ
; ωî ĵ k̂ ¼

κ

2
e−WðrÞεî ĵ k̂ ð50Þ

with the convention that ε0̂ 1̂ 2̂ ¼ −ε0̂ 1̂ 2̂ ¼ ε4̂ 5̂ 6̂ ¼ ε4̂ 5̂ 6̂ ¼ 1.
Throughout this paper, we will use a prime to denote the
r derivative.
Following [12], we take the ansatz for the Killing spinors

to be

ϵa ¼ eUðrÞ=2½cos θðrÞI8 þ sin θðrÞγ0̂ 1̂ 2̂�ϵa0 ð51Þ

with ϵa0 being constant spinors. In addition, we will use the
following ansatz for the three-form field strength tensors:

Hð3Þ
m̂ n̂ p̂M ¼ kMðrÞe−3UðrÞεm̂ n̂ p̂ and

Hð3Þ
î ĵ k̂ M

¼ lMðrÞe−3WðrÞεî ĵ k̂ ð52Þ

or, equivalently,

Hð3Þ
M ¼ kMvolAdS3 þ lMvolS3 : ð53Þ

In subsequent analysis, we will call the solutions with

nonvanishing Hð3Þ
M “charged” domain walls.

A. SOð4Þ symmetric charged domain walls

We first consider charged domain wall solutions with
SOð4Þ symmetry. As in [26], we will find supersymmetric
solutions with a given unbroken symmetry from many
gauge groups within a single framework. Gauge groups that
can give rise to SOð4Þ symmetric solutions are SOð5Þ,
SOð4; 1Þ, andCSOð4; 0; 1Þ. Wewill accordingly write YMN
in the following form:

YMN ¼ diagðþ1;þ1;þ1;þ1; ρÞ; ð54Þ
where ρ ¼ þ1;−1, 0 corresponding to SOð5Þ, SOð4; 1Þ,
and CSOð4; 0; 1Þ gauge groups, respectively. With this

embedding tensor, the SOð4Þ residual symmetry is gen-
erated by XMN with M;N ¼ 1, 2, 3, 4.
Among the 14 scalars in SLð5Þ=SOð5Þ coset, there is one

SOð4Þ invariant scalar corresponding to the noncompact
generator

Ŷ ¼ e1;1 þ e2;2 þ e3;3 þ e4;4 − 4e5;5: ð55Þ

With the coset representative

V ¼ eϕŶ ; ð56Þ

the scalar potential is given by

V ¼ −
g2

64
e−4ϕð8þ 8ρe10ϕ − ρ2e20ϕÞ: ð57Þ

For ρ ¼ 1, this potential admits two AdS7 critical points
with SOð5Þ and SOð4Þ unbroken symmetries. The former
preserves all supersymmetry while the latter is nonsuper-
symmetric. These vacua are given, respectively, by

ϕ ¼ 0 and V0 ¼ −
15

64
g2 ð58Þ

and

ϕ ¼ 1

10
ln 2 and V0 ¼ −

5g2

16 × 22=5
: ð59Þ

The cosmological constant is denoted by V0, the value of
the scalar potential at the vacuum.
To preserve SOð4Þ symmetry, we will keep only the

following components of Hð3Þ
M nonvanishing

Hð3Þ
m̂ n̂ p̂ 5 ¼ kðrÞe−3UðrÞεm̂ n̂ p̂ and

Hð3Þ
î ĵ k̂ 5

¼ lðrÞe−3WðrÞεî ĵ k̂: ð60Þ

At this point, it is useful to consider theHð3Þ
M contribution in

more detail. For SOð5Þ and SOð4; 1Þ gauge groups corre-
sponding to a nondegenerate YMN , the field content of the
gauged supergravity contains t ¼ 5 massive three-form
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fields SMμνρ. For vanishing gauge and two-form fields, the

field strength tensor Hð3Þ
M is then given by

Hð3Þ
μνρM ¼ gYMNSNμνρ: ð61Þ

Since the four-form field strengths do not enter the
supersymmetry transformations of fermionic fields, the
functions kMðrÞ and lMðrÞ will appear, in this case,
algebraically in the resulting Bogomol’nyi-Prasad-
Sommereld (BPS) equations. This is in contrast to the
pure N ¼ 2 gauged supergravity considered in [12] in
which the four-form field strength of the massive three-
form field appears in the supersymmetry transformations.
Therefore, in that case, the BPS conditions result in
differential equations for kðrÞ and lðrÞ.
For CSOð4; 0; 1Þ gauge group with Y55 ¼ 0, S5μνρ does

not contribute to Hð3Þ
M , but, in this case with s ¼ 0 and

t ¼ 4, there is 5 − t ¼ 1 massless two-form field Bμν5 with
the field strength

Hð3Þ
μνρ5 ¼ 3D½μBνρ�5: ð62Þ

To satisfy Bianchi’s identity DHð3Þ ¼ 0, we need k0 ¼ l0 ¼
0 or constant three-form fluxes. We will see that this
is indeed the case for our BPS solutions. Taking this
condition into account, we can write the ansatz for the two-
form field as

BM ¼ kMðrÞω2 þ lMðrÞω̃2 ð63Þ

with volAdS3 ¼ dω2 and volS3 ¼ dω̃2. With the metrics
given in (47) and (48), the explicit form of ω2 and ω̃2 is
given by

ω2 ¼ −
1

τ3
sinh x1dt ∧ dx2 and

ω̃2 ¼ −
1

κ3
sin x5dx4 ∧ dx6: ð64Þ

After imposing two projection conditions

γ3̂ϵ
a
0 ¼ ðΓ5Þabϵb0 ¼ ϵa0; ð65Þ

we find the following BPS equations from the conditions
δψa

μ ¼ 0 and δχabc ¼ 0:

U0 ¼ eV−2ϕ

80 cos 2θ
½gð8 − ρe10ϕÞ þ 3gρe10ϕ cos 4θ

− 16τe2ϕ−U sin 2θ�; ð66Þ

W0 ¼ eV−2ϕ

40 cos 2θ
½gð4þ 2ρe10ϕÞ − gρe10ϕ cos 4θ

− 8τe2ϕ−U sin 2θ�; ð67Þ

ϕ0 ¼ eV−2ϕ

80 cos 2θ
½gð4 − 3ρe10ϕÞ − gρe10ϕ cos 4θ

− 8τe2ϕ−U sin 2θ�; ð68Þ

θ0 ¼ −
1

16
gρeVþ8ϕ sin 2θ; ð69Þ

k ¼ 1

8
e2U−4ϕð4τ − gρeUþ8ϕ sin 2θÞ; ð70Þ

l ¼ 1

8
e3W−6ϕ½gðρe10ϕ − 2Þ tan 2θ þ 4τe2ϕ−U sec 2θ�; ð71Þ

together with an algebraic constraint

0 ¼ e−Wκ − e−Uτ sec 2θ þ 1

2
ge−2ϕ tan 2θ: ð72Þ

We note here that the appearance of the SOð5Þ gamma
matrix Γ5 in the projection conditions is due to the

nonvanishing Hð3Þ
μνρ5. Note also that the solutions are 1

4
-

BPS since the Killing spinors ϵa0 are subject to two
projectors. We now consider various possible solutions
to these BPS equations.

1. Mkw3 ×R3-sliced domain walls

We begin with a simple case of Mkw3 ×R3-sliced
domain walls with vanishing τ and κ. Imposing τ ¼ κ ¼
0 into the constraint (72) gives

0 ¼ 1

2
ge−2ϕ tan 2θ: ð73Þ

Setting g ¼ 0 corresponds to ungauged N ¼ 4 supergravity
and gives rise to a supersymmetric Mkw3 × R × R3 ∼
Mkw7 background as expected.
Another possibility to satisfy the condition (73) is to set

tan 2θ ¼ 0, which implies θ ¼ nπ
2
, n ¼ 0; 1; 2; 3;…. For

even n, we have sin θ ¼ 0, and from (51), the Killing
spinors take the form

ϵa ¼ eUðrÞ=2ϵa0 ð74Þ

with ϵa0 satisfying the projection conditions given in (65).
For odd n with cos θ ¼ 0, the Killing spinors become

ϵa ¼ eUðrÞ=2γ0̂ 1̂ 2̂ϵa0: ð75Þ

We can redefine ϵa0 to ϵ̃
a
0 ¼ γ0̂ 1̂ 2̂ϵa0 satisfying the projection

conditions

−γ3̂ϵa0 ¼ ðΓ5Þabϵb0 ¼ ϵa0: ð76Þ

This differs from the projectors in (65) only by a minus sign
in the γ3̂ projector. Therefore, the two possibilities obtained
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from the condition tan 2θ ¼ 0 are equivalent by flipping the
sign of the γ3̂ projector. We can accordingly choose θ ¼ 0

without losing any generality.
With θ ¼ 0, the BPS equations (66) to (71) become

U0 ¼ W0 ¼ 1

40
geV−2ϕð4þ ρe10ϕÞ; ð77Þ

ϕ0 ¼ 1

20
geV−2ϕð1 − ρe10ϕÞ; ð78Þ

k ¼ l ¼ 0: ð79Þ

By choosing V ¼ −3ϕ, we find the following solution:

U ¼ W ¼ 2ϕ −
1

4
ln ½1 − ρe10ϕ�; ð80Þ

e5ϕ ¼ 1ffiffiffi
ρ

p tanh

� ffiffiffi
ρ

p
4

ðgrþ CÞ
�

ð81Þ

with an integration constant C. Since k ¼ l ¼ θ ¼ 0, the Γ5

projection in (65) is not needed. This is then a half-
supersymmetric solution with vanishing three-form fluxes
and is exactly the SOð4Þ symmetric domain wall studied in
[26]. Therefore, the Mkw3 ×R3-sliced solution is just the
standard flat domain wall.

2. Mkw3 × S3-sliced domain walls

In this case, we look for domain wall solutions with
Mkw3 × S3 slice. Following [12], we choose the following
gauge choice:

e−V ¼ 1

16
e8ϕ: ð82Þ

By setting τ ¼ 0, we can solve the BPS equations (66)–(71)
and obtain the following solution for ρ ¼ �1:

U ¼ 2ϕ − ln ðsin 2θÞ; ð83Þ

W ¼ 2ϕ − ln ðtan 2θÞ; ð84Þ

e10ϕ ¼ 2Cðcos 4θ − 3Þ þ ð4Cþ ρÞ sec2 2θ; ð85Þ

k ¼ −
g
8
ð4ρCþ csc4 2θÞ tan2 2θ; ð86Þ

l ¼ g
16

½ρCðcos 8θ þ 3Þ − 2ð2ρCþ 1Þ cos 4θ� csc2 2θ;
ð87Þ

θ ¼ arctanðe−2gρrÞ ð88Þ

with κ ¼ −g=2. C is an integration constant in the solution
for ϕ.

For SOð5Þ gauge group with ρ ¼ 1, the solution is
locally asymptotic to the N ¼ 4 supersymmetric AdS7 in
the limit r → ∞ with

U ∼W ∼ 2gr; ϕ ∼ θ ∼ 0: ð89Þ

It should be noted that in this limit, the main contribution to
the solution is obtained from the scalar. The contribution
from the three-form field strength is highly suppressed as
can be seen from its components in the flat basis given in
(60). In the limit r → 0, the solution is singular similar to
the solution studied in [12].
For SOð4; 1Þ gauge group with ρ ¼ −1, there is no AdS7

asymptotic since this gauge group does not admit a
supersymmetric AdS7 vacuum. In this case, the solution
is the SOð4Þ symmetric domain wall studied in [26] with a
dyonic profile of the three-form flux.
For CSOð4; 0; 1Þ gauge group with ρ ¼ 0, the BPS

equations (66)–(71), with τ ¼ 0, become

U0 ¼ W0 ¼ 1

10
geV−2ϕ sec 2θ; ð90Þ

ϕ0 ¼ 1

20
geV−2ϕ sec 2θ; ð91Þ

θ0 ¼ k ¼ 0; ð92Þ

l ¼ −
1

4
ge3W−6ϕ tan 2θ ð93Þ

together with the constraint

κ ¼ −
1

2
geW−2ϕ tan 2θ: ð94Þ

Equation (92) implies that θ is constant. Note that for
θ ¼ 0, these equations reduce to those of the Mkw3 ×R3-
sliced domain wall.
In the present case, the constraint (94) implies that θ

cannot be zero since κ ≠ 0. Furthermore, a nonvanishing θ
gives a nontrivial three-form flux according to (93) to
support the S3 part. For constant θ ≠ 0, we can find the
following solution, after choosing V ¼ 0 gauge choice:

U ¼ W ¼ 2ϕ; k ¼ 0; ð95Þ

l ¼ −
1

4
g tan 2θ; ð96Þ

e2ϕ ¼ 1

10
gr sec 2θ þ 2C ð97Þ

with an integration constant C. The constant θ is given by

θ ¼ −
1

2
tan−1

2κ

g
: ð98Þ
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As in the SOð4; 1Þ gauge group, it can be verified that for a
given constant θ, this solution is the SOð4Þ symmetric
domain wall of CSOð4; 0; 1Þ gauge group given in [26]
with a magnetic profile of a constant three-form flux.

3. AdS3 × S3-sliced domain walls

We now consider more complicated solutions with an
AdS3 × S3 slice. As in [12], we begin with a simpler
solution with a single warp factor U ¼ W. From the BPS
equations (66)–(71), imposing U0 ¼ W0 gives

θ ¼ 0; k ¼ l; τ ¼ κ: ð99Þ

Setting θ ¼ 0, we find that the BPS equations become

U0 ¼ g
40

eV−2ϕð4þ ρe10ϕÞ; ð100Þ

ϕ0 ¼ g
20

eV−2ϕð1 − ρe10ϕÞ; ð101Þ

k ¼ 1

2
e2U−4ϕτ: ð102Þ

By choosing V ¼ −3ϕ, we obtain the following solution:

U ¼ 2ϕ −
1

4
ln ð1 − ρe10ϕÞ; ð103Þ

e5ϕ ¼ 1ffiffiffi
ρ

p tanh

� ffiffiffi
ρ

p
4

ðgrþ CÞ
�
; ð104Þ

k ¼ 1

2
τ cosh

� ffiffiffi
ρ

p
4

ðgrþ CÞ
�

ð105Þ

with an integration constant C. This solution is the SOð4Þ
symmetric domain wall coupled to a dyonic profile of the
three-form flux.
For SOð5Þ gauge group, the solution is locally asymp-

totic to the supersymmetric AdS7 dual to N ¼ ð2; 0Þ SCFT
in six dimensions. This solution is then expected to
describe a surface defect, corresponding to the AdS3 part,
within the six-dimensional N ¼ ð2; 0Þ SCFT. Similarly,
according to the DW/QFT correspondence, the usual
Mkw6-sliced domain wall without the three-form flux is
dual to an N ¼ ð2; 0Þ nonconformal field theory in six
dimensions. We then interpret the solutions for SOð4; 1Þ
and CSOð4; 0; 1Þ gauge groups as describing a surface
defect within a nonconformal N ¼ ð2; 0Þ field theory in six
dimensions.
We now consider more general solutions with the

AdS3 × S3 slice. We will find the solutions for the cases
of ρ ¼ �1 and ρ ¼ 0 separately. With the same gauge
choice given in (82), the BPS equations (66)–(71) for ρ ≠ 0
are solved by

U ¼ 2ϕ − ln ðsin 2θÞ; ð106Þ

W ¼ 2ϕ − ln ðtan 2θÞ; ð107Þ

e10ϕ ¼ 3gCþ 2gρ− 4τρþ 4ðτρ− gCÞ cos4θþ gCcos8θ
gðcos4θþ 1Þ ;

ð108Þ

k ¼ 1

8
ð4τ csc2 2θ − g csc4 2θ − 4gρCÞ tan2 2θ; ð109Þ

l ¼ 1

8
ðg csc2 2θ − 2g cot2 2θ − 4τ þ 4gρC sin2 2θÞ; ð110Þ

θ ¼ arctanðe−2gρrÞ ð111Þ

together with the following relation obtained from the
constraint (72):

κ ¼ −
g
2
þ τ: ð112Þ

As in the previous case, for SOð5Þ gauge group, the
solution is locally asymptotically AdS7 given in (89) as
r → ∞. For SOð4; 1Þ gauge group, the solution is a charged
domain wall with a nonvanishing three-form flux. In
general, these solutions describe, respectively, holographic
RG flows from an N ¼ ð2; 0Þ SCFT and N ¼ ð2; 0Þ non-
conformal field theory to a singularity at r ¼ 0 except for a
special case with τ ¼ gðρCþ 1Þ=4. This is very similar to
the solutions of pure N ¼ 2 gauged supergravity studied
in [12].
For the particular value of τ ¼ gðρCþ 1Þ=4, the scalar

potential is constant as r → 0, and the solution turns out to
be described by a locally AdS3 × T4 geometry with the
following leading profile:

e2U ∼ ðρ − 4CÞ25; e2W ∼ 0; ϕ ∼
1

10
ln ðρ − 4CÞ;

θ ∼
π

4
; k ∼

g
8
ð4ρC − 1Þ; l ∼ 0: ð113Þ

To obtain real solutions, we choose the integration constant
C < 1

4
and C < − 1

4
for SOð5Þ and SOð4; 1Þ gauge groups,

respectively.
For CSOð4; 0; 1Þ gauge group with ρ ¼ 0, we find the

following solution, after setting V ¼ 0,

U ¼ W ¼ 2ϕ; ð114Þ

k ¼ 1

2
τ; ð115Þ

l ¼ 1

4
ð2τ − g sin 2θÞ sec 2θ; ð116Þ
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e2ϕ ¼ 1

10
rðg sec 2θ − 2τ tan 2θÞ þ 2C; ð117Þ

where the constant κ is given by

κ ¼ τ sec 2θ −
1

2
g tan 2θ: ð118Þ

Note also that, in this case, θ is constant since the
corresponding BPS equation gives θ0 ¼ 0 as can be seen
from Eq. (69).

4. Coupling to SOð3Þ gauge fields

In this section, we extend the analysis by coupling the
previously obtained solutions to SOð3Þ vectors describing a
Hopf fibration of the three-sphere. With the projector

ðΓ5Þabϵb0 ¼ ϵa0 and the identity Γ1 � � �Γ5 ¼ I4, we turn
on the gauge fields corresponding to the anti-self-dual
SOð3Þ ⊂ SOð4Þ. The ansatz for these gauge fields is
chosen to be

A23
ð1Þ ¼ −A14

ð1Þ ¼ e−WðrÞ κ
4
pðrÞe4̂; ð119Þ

A31
ð1Þ ¼ −A24

ð1Þ ¼ e−WðrÞ κ
4
pðrÞe5̂; ð120Þ

A12
ð1Þ ¼ −A34

ð1Þ ¼ e−WðrÞ κ
4
pðrÞe6̂: ð121Þ

The function pðrÞ is the magnetic charge with the depend-
ence on the radial coordinate. The corresponding two-form
field strengths can be computed to be

F23
ð2Þ ¼ −F14

ð2Þ ¼ e−V−W
κ

4
p0e3̂ ∧ e4̂ þ e−2W

κ2

8
pð2 − gpÞe5̂ ∧ e6̂; ð122Þ

F31
ð2Þ ¼ −F24

ð2Þ ¼ e−V−W
κ

4
p0e3̂ ∧ e5̂ þ e−2W

κ2

8
pð2 − gpÞe6̂ ∧ e4̂; ð123Þ

F12
ð2Þ ¼ −F34

ð2Þ ¼ e−V−W
κ

4
p0e3̂ ∧ e6̂ þ e−2W

κ2

8
pð2 − gpÞe4̂ ∧ e5̂: ð124Þ

For gaugings in the 15 representation, there are no massive two-form fields due to the vanishing ZMN;P. The modified two-

form field strengths Hð2ÞMN
μν are simply given by the SOð3Þ gauge field strengths FMN

μν .
To preserve some amount of supersymmetry, we need to impose additional projectors on the constant spinors ϵa0 as

follows:

γ4̂ 5̂ϵ
a
0 ¼ −ðΓ12Þabϵb0; γ5̂ 6̂ϵ

a
0 ¼ −ðΓ23Þabϵb0; γ6̂ 4̂ϵ

a
0 ¼ −ðΓ31Þabϵb0: ð125Þ

It should be noted that the last projector is not independent of the first two. Therefore, together with the projectors given in
(65), there are four independent projectors on ϵa0, and the residual supersymmetry consists of two supercharges.
With all these, the resulting BPS equations for the AdS3 × S3-sliced domain wall are given by

U0 ¼ eV−2ðWþϕÞ

80 cos 2θ
½e2Wðgð4þ ρe10ϕÞð3 cos 4θ − 1Þ þ 32e2ϕ−Uτ sin 2θÞ

þ12e4ϕðκ2pðgp − 2Þðcos 4θ − 3Þ þ 2eW−2ϕκðgp − 1Þ sin 4θÞ�; ð126Þ

W0 ¼ eV−2ðWþϕÞ

40 cos 2θ
½e2Wðgð4þ ρe10ϕÞð2 − cos 4θÞ þ 24e2ϕ−Uτ sin 2θÞ

þ4e4ϕðκ2pðgp − 2Þðcos 4θ − 8Þ − 2eW−2ϕκðgp − 1Þ sin 4θÞ�; ð127Þ

ϕ0 ¼ eV−2ðWþϕÞ

80 cos 2θ
½e2Wðgð6 cos 4θ − 2 − ρe10ϕðcos 4θ þ 3ÞÞ þ 16e2ϕ−Uτ sin 2θÞ

þ6e4ϕðκ2pðgp − 2Þð3 − cos 4θÞ þ 2eW−2ϕκðgp − 1Þ sin 4θÞ�; ð128Þ

θ0 ¼ eV−2ðWþϕÞ

16
½24eWþ2ϕðeW−Uτ þ κðgp − 1Þ cos 2θÞ

−ðge2Wð12þ ρe10ϕÞ − 12e4ϕκ2pðgp − 2ÞÞ sin 2θ�; ð129Þ
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k ¼ 1

8
e3U−4ϕð4e−Uτ − gρe8ϕ sin 2θÞ; ð130Þ

l ¼ 1

8
e3W−6ϕ½gð4þ ρe10ϕÞ tan 2θ − 8e2ϕ−Uτ sec 2θ

−12e4ϕ−2Wðκ2pðgp − 2Þ tan 2θ þ eW−2ϕκðgp − 1ÞÞ�; ð131Þ

p0 ¼ eV−W−4ϕ

2κ
½2eWþ2ϕðeW−Uτ þ κðgp − 1Þ cos 2θÞ

−ðge2W − e4ϕκ2pðgp − 2ÞÞ sin 2θ�: ð132Þ

In contrast to the previous case, it can also be verified that
these equations satisfy the second-order field equations
without imposing any constraint. By setting τ ¼ 0, we can
obtain the BPS equations for a Mkw3 × S3-sliced domain
wall. For pðrÞ ¼ 0, we obtain the BPS equations (66)–(71)
for charged domain walls without gauge fields. In this case,
Eq. (132) becomes the algebraic constraint (72).
The BPS equations in this case are much more compli-

cated, and we are not able to find analytic flow solutions.
We then look for numerical solutions with some appro-
priate boundary conditions. We first consider the solutions
in SOð5Þ gauge group with an AdS7 asymptotic at large r.
With ρ ¼ 1, we find that the following locally AdS7
configuration solves the BPS equations at the leading order
as r → ∞:

U ∼W ∼
r
L
; ϕ ∼ θ ∼ 0; p ∼

1

g

�
1 −

τ

κ

�
ð133Þ

with L ¼ 8
g. With this boundary condition and V ¼ 0 gauge

choice, we find some examples of the BPS flows from this
locally AdS7 geometry as r → ∞ to the singularity at r ¼ 0
as shown in Figs. 1 and 2 for g ¼ 16 and κ ¼ 2. It should be
noted that we have not imposed the boundary conditions on
k and l since the corresponding BPS equations are
algebraic. This is rather different from the solutions in
[12] in which the BPS equations for k and l are differential.
From the numerical solution in Fig. 2, the solutions for k

and l appear to be diverging as k ∼ e2U and l ∼ e2W for
r → ∞. However, the contribution from the three-form flux
is sufficiently suppressed for r → ∞ since the terms invol-

ving Hð3Þ
5 in the BPS equations behave as ke−3U þ le−3W .

For SOð4; 1Þ and CSOð4; 0; 1Þ gauge groups, there is no
locally asymptotic AdS7 configuration. However, we can
look for solutions of the BPS equations (126)–(132) in the
form of a flow from the charged domain wall without
vector fields given previously to the singularity at r ¼ 0.

FIG. 1. A BPS flow from a locally AdS7 geometry at r → ∞ to the singularity at r ¼ 0 for the Mkw3 × S3-sliced domain wall
with τ ¼ 0.
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We first choose the gauge choice V ¼ −3ϕ and consider
the following behavior at the leading order when gr → C,
for a constant C,

U ∼W ∼
2

5
lnðgr − CÞ; ϕ ∼

1

5
lnðgr − CÞ;

θ ∼ p ∼ 0; and k ∼ l ∼
τ

2
ð134Þ

with κ ¼ τ. It can be verified that this configuration solves
the BPS equations (66)–(72) in the limit gr → C. Since this
configuration also appears in SOð5Þ gauge group, we will
consider the solutions for SOð5Þ gauge group as well.
Examples of the BPS flows from the charged domain

wall in (134) as gr → C to the singularity at r ¼ 0 in
SOð5Þ, SOð4; 1Þ, and CSOð4; 0; 1Þ gauge groups are
shown in Figs. 3–5, respectively. In these solutions, we

FIG. 2. A BPS flow from a locally AdS7 geometry at r → ∞ to the singularity at r ¼ 0 for the AdS3 × S3-sliced domain wall
with τ ¼ 1.

FIG. 3. A BPS flow from a charged domain wall at r ¼ −1 to the singularity at r ¼ 0 in SOð5Þ gauge group.
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have chosen the following numerical values g ¼ 1,
κ ¼ τ ¼ 2, and C ¼ −1. These solutions should describe
surface defects within N ¼ ð2; 0Þ nonconformal field
theories in six dimensions. For the solution in Fig. 5, k
is constant since, for ρ ¼ 0, the BPS equations (126) and
(128) give constant U − 2ϕ.

For SOð5Þ gauge group, it is also possible to find flow
solutions between the asymptotically locally AdS7 geom-
etry and the charged domain wall configuration with an
intermediate singularity in the presence of nonvanishing
vector fields at r ¼ 0. With the gauge choice V ¼ −3ϕ and
g ¼ 1, κ ¼ τ ¼ 2 and C ¼ −1, an example of these

FIG. 4. A BPS flow from a charged domain wall at r ¼ −1 to the singularity at r ¼ 0 in SOð4; 1Þ gauge group.

FIG. 5. A BPS flow from a charged domain wall at r ¼ −1 to the singularity at r ¼ 0 in CSOð4; 0; 1Þ gauge group.
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solutions is shown in Fig. 6. In this solution, it is clearly
seen that the vector fields vanish at both ends of the flow
with a singularity at r ¼ 0.

B. SOð3Þ symmetric charged domain walls

In this section, we consider charged domain walls
preserving SOð3Þ residual symmetry. There are three
singlet scalars corresponding to the following noncompact
generators:

Ŷ1 ¼ 2e1;1 þ 2e2;2 þ 2e3;3 − 3e4;4 − 3e5;5;

Ŷ2 ¼ e4;5 þ e5;4;

Ŷ3 ¼ e4;4 − e5;5: ð135Þ

There are many possible gauge groups with an SOð3Þ
subgroup. To accommodate all of these gauge groups

in a single framework, we use the embedding tensor of
the form

YMN ¼ diagðþ1;þ1;þ1; σ; ρÞ: ð136Þ

For different values of ρ; σ ¼ 0;�1, this embedding tensor
gives rise to the following gauge groups: SOð5Þ (ρ ¼
σ ¼ 1), SOð4; 1Þ (−ρ ¼ σ ¼ 1), SOð3; 2Þ (ρ ¼ σ ¼ −1),
CSOð4; 0; 1Þ (ρ ¼ 0, σ ¼ 1), CSOð3; 1; 1Þ (ρ ¼ 0,
σ ¼ −1), and CSOð3; 0; 2Þ (ρ ¼ σ ¼ 0). The unbroken
SOð3Þ symmetry is generated by XMN, M;N ¼ 1, 2, 3,
generators.
With the SLð5Þ=SOð5Þ coset representative of the form

V ¼ eϕ1Ŷ1þϕ2Ŷ2þϕ3Ŷ3 ; ð137Þ

the scalar potential reads

V ¼ −
g2

64
½3e−8ϕ1 þ 6e2ϕ1 ½ðρþ σÞ cosh 2ϕ2 cosh 2ϕ3 þ ðρ − σÞ sinh 2ϕ3�

þ 1

4
e12ϕ1 ½ρ2 þ 10ρσ þ σ2 − ð3ρ2 − 2ρσ þ 3σ2Þ cosh 4ϕ3

− ðρþ σÞ2 cosh 4ϕ2ð1þ cosh 4ϕ3Þ − 4ðρ2 − σ2Þ cosh 2ϕ2 sinh 4ϕ3��: ð138Þ

For SOð5Þ gauge group, this potential admits a supersymmetric AdS7 vacuum given in (58) at ϕ1 ¼ ϕ2 ¼ ϕ3 ¼ 0 and a
nonsupersymmetric AdS7 given in (59) at ϕ1 ¼ 1

20
ln 2, ϕ2 ¼ � 1

4
ln 2, and ϕ3 ¼ 0.

FIG. 6. A BPS flow between a charged domain wall at r ¼ −1 and an asymptotically locally AdS7 geometry as r → ∞ with an
intermediate singularity at r ¼ 0 in SOð5Þ gauge group.

PARINYA KARNDUMRI and PATHARADANAI NUCHINO PHYS. REV. D 101, 086012 (2020)

086012-14



We now repeat the same procedure as in the previous section to set up the BPS equations. The SOð3Þ residual symmetry

allows for two three-form field strengths, Hð3Þ
μνρM with M ¼ 4, 5. We will choose the following ansatz:

Hð3Þ
m̂ n̂ p̂ 4 ¼ k4ðrÞe−3UðrÞεm̂ n̂ p̂; Hð3Þ

î ĵ k̂ 4
¼ l4ðrÞe−3WðrÞεî ĵ k̂; ð139Þ

Hð3Þ
m̂ n̂ p̂ 5 ¼ k5ðrÞe−3UðrÞεm̂ n̂ p̂; Hð3Þ

î ĵ k̂ 5
¼ l5ðrÞe−3WðrÞεî ĵ k̂: ð140Þ

WithHð3Þ
μνρ4 nonvanishing, the SOð5Þ gamma matrix Γ4 will appear in the BPS conditions. To avoid an additional projector,

which will break more supersymmetry, we impose the following condition:

k4ðrÞ ¼ tanhϕ2k5ðrÞ and l4ðrÞ ¼ tanhϕ2l5ðrÞ: ð141Þ

This simply makes the coefficient of Γ4 vanish. It would also be interesting to consider a more general projector.
With the projection conditions in (65), we can find a consistent set of BPS equations for

θ ¼ 0 and τ ¼ eU−Wκ: ð142Þ

The latter forbids the possibility of setting either τ ¼ 0 or κ ¼ 0 without ending up with κ ¼ τ ¼ 0. Therefore, the solutions
in this case can only be AdS3 × S3-sliced domain walls.
The resulting BPS equations take the form

U0 ¼ g
40

eVþ6ϕ1ð3e−10ϕ1 þ ðρþ σÞ cosh 2ϕ2 cosh 2ϕ3 þ ðρ − σÞ sinh 2ϕ3Þ; ð143Þ

W0 ¼ g
40

eVþ6ϕ1ð3e−10ϕ1 þ ðρþ σÞ cosh 2ϕ2 cosh 2ϕ3 þ ðρ − σÞ sinh 2ϕ3Þ; ð144Þ

ϕ0
1 ¼

g
40

eVþ6ϕ1ð2e−10ϕ1 − ðρþ σÞ cosh 2ϕ2 cosh 2ϕ3 − ðρ − σÞ sinh 2ϕ3Þ; ð145Þ

ϕ0
2 ¼ −

g
8
eVþ6ϕ1ðρþ σÞ sinh 2ϕ2sech2ϕ3; ð146Þ

ϕ0
3 ¼ −

g
8
eVþ6ϕ1ððρþ σÞ cosh 2ϕ2 sinh 2ϕ3 þ ðρ − σÞ cosh 2ϕ3Þ; ð147Þ

k5 ¼
1

2
e3U−W−3ϕ1−ϕ3 coshϕ2κ; ð148Þ

l5 ¼
1

2
e2W−3ϕ1−ϕ3 coshϕ2κ: ð149Þ

However, the compatibility between these BPS equations
and the corresponding field equations requires either ϕ2 ¼
0 or ϕ3 ¼ 0. It should be noted that setting ϕ3 ¼ 0 is
consistent with Eq. (147), namely ϕ0

3 ¼ 0, only for σ ¼ ρ,
so solutions with vanishing ϕ3 can only be obtained in
SOð5Þ, SOð3; 2Þ, and CSOð3; 0; 2Þ gauge groups. To find
explicit solutions, we separately consider various possible
values of ρ and σ.

1. Charged domain walls in CSOð3;0;2Þ gauge group

For the simplest CSOð3; 0; 2Þ gauge group correspond-
ing to ρ ¼ σ ¼ 0, we find ϕ0

2 ¼ ϕ0
3 ¼ 0, so we can

consistently set ϕ3 ¼ 0 and ϕ2 ¼ 0. With ϕ2 ¼ 0,

Eq. (141) gives k4 ¼ l4 ¼ 0. Choosing V ¼ 0 gauge
choice, we find the following charged domain wall
solution:

U ¼ W ¼ 3

8
ln

�
gr
5
þ C

�
; ð150Þ

ϕ1 ¼
1

4
ln

�
gr
5
þ C

�
; ð151Þ

and k5 ¼ l5 ¼
1

2
τ ð152Þ

with an integration constant C.
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2. Charged domain walls in CSOð4;0;1Þ
and CSOð3;1;1Þ gauge groups

In this case, we have ρ ¼ 0 and σ ¼ �1 corresponding to
CSOð4; 0; 1Þ (σ ¼ þ1) and CSOð3; 1; 1Þ (σ ¼ −1) gauge
groups. Choosing V ¼ −6ϕ1 gauge choice, we can find a
charged domain wall solution, with ϕ2 ¼ 0,

ϕ3 ¼
1

2
ln

�
gσr
4

þ C1

�
; ð153Þ

ϕ1 ¼ −
1

5
ϕ3 þ

1

10
ln ½C2 þ e4ϕ3 �; ð154Þ

U ¼ W ¼ 1

5
ϕ3 þ

3

20
ln ½C2 þ e4ϕ3 �; ð155Þ

k4 ¼ l4 ¼ 0 and k5 ¼ l5 ¼
1

2
τ; ð156Þ

where C1 and C2 are integration constants. For these gauge
groups, it is not possible to find solutions with ϕ3 ¼ 0.

3. Charged domain walls in SOð4;1Þ gauge group

In this case, the gauge group is a noncompact SOð4; 1Þ
with σ ¼ −ρ ¼ 1. As in the previous case, it is not possible
to set ϕ3 ¼ 0, so we only consider solutions with ϕ2 ¼ 0.
Using the same gauge choice V ¼ −6ϕ1, we find the
following solution:

e2ϕ3 ¼ tan
�
gr
4
þ C1

�
; ð157Þ

ϕ1 ¼ −
1

5
ϕ3 þ

1

10
ln ½C2ðe4ϕ3 þ 1Þ − 1�; ð158Þ

U ¼ W ¼ 1

5
ϕ3 −

1

4
ln ½e4ϕ3 þ 1� þ 3

20
ln ½C2ðe4ϕ3 þ 1Þ − 1�;

ð159Þ
k4 ¼ l4 ¼ 0; ð160Þ

k5 ¼ l5 ¼
1

2
τ cos

�
gr
4
þ C1

�
: ð161Þ

4. Charged domain walls in SOð5Þ
and SOð3;2Þ gauge groups

We now look at the last possibility with ρ ¼ σ ¼ �1
corresponding to SOð5Þ and SOð3; 2Þ gauge groups. In this
case, it is possible to set ϕ2 ¼ 0 or ϕ3 ¼ 0. With ϕ2 ¼ 0
and V ¼ −6ϕ1, we find the following solution:

ϕ3 ¼
1

2
ln
�
e
gρr
2 − C1

e
gρr
2 þ C1

�
; ð162Þ

ϕ1 ¼ −
1

5
ϕ3 þ

1

10
ln ½C2ðe4ϕ3 − 1Þ þ 1�; ð163Þ

U ¼ W ¼ 1

5
ϕ3 −

1

4
ln ½e4ϕ3 − 1� þ 3

20
ln ½C2ðe4ϕ3 − 1Þ þ 1�

ð164Þ

together with

k4 ¼ l4 ¼ 0 and k5 ¼ l5 ¼
τ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4ϕ3 − 1

p : ð165Þ

For ϕ3 ¼ 0, we find the same solution as in (162)–(164)
with ϕ3 replaced by ϕ2, but the solutions for k4;5 and l4;5 are
now given by

k4 ¼ l4 ¼
ðe2ϕ2 − 1Þτ
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4ϕ2 − 1

p and k5 ¼ l5 ¼
ðe2ϕ2 þ 1Þτ
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4ϕ2 − 1

p :

ð166Þ

Unlike the previous cases, this solution has two non-
vanishing three-form fluxes.
We end this section by giving a comment on solutions

with nonvanishing SOð3Þ gauge fields. Repeating the
same procedure as in the SOð4Þ symmetric solutions leads
to a set of BPS equations together with the following
constraints:

p0 ¼ 0 and p ¼ κ − τeW−U

gκ
: ð167Þ

It turns out that, in this case, the compatibility between the
resulting BPS equations and the corresponding field
equations requires that

τðeWτ − eUκÞ ¼ 0: ð168Þ

For τ ¼ 0, we can have a constant magnetic charge p as
required by the conditions in (167), but in this case, the
three-form flux vanishes unless eWτ ¼ eUκ as required by
(142). This case corresponds to performing a topological
twist along the S3 part. Since this type of solutions is not the
main aim of this paper, we will not consider them here. On
the other hand, setting eWτ ¼ eUκ does lead to nonvanish-
ing three-form fluxes, but Eq. (167) gives vanishing gauge
fields. This corresponds to the charged domain walls given
above. Therefore, there does not seem to be solutions with
both SOð3Þ gauge fields and three-form fluxes nonvanish-
ing at least for the ansatz considered here. This is very
similar to the result of [13] in the matter-coupled N ¼ 2
gauged supergravity.

C. SOð2Þ × SOð2Þ symmetric charged domain walls

We finally consider charged domain walls with SOð2Þ ×
SOð2Þ symmetry generated by X12 and X34. There are two
SOð2Þ × SOð2Þ invariant scalars corresponding to the
noncompact generators
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Ỹ1 ¼ e1;1 þ e2;2 − 2e5;5 and Ỹ2 ¼ e3;3 þ e4;4 − 2e5;5:

ð169Þ

The SLð5Þ=SOð5Þ coset representative can be written as

V ¼ eϕ1Ỹ1þϕ2Ỹ2 : ð170Þ
The embedding tensor giving rise to gauge groups with an
SOð2Þ × SOð2Þ subgroup is given by

YMN ¼ diagðþ1;þ1; σ; σ; ρÞ ð171Þ

with ρ; σ ¼ 0;�1. These gauge groups are SOð5Þ (ρ ¼
σ ¼ 1), SOð4; 1Þ (−ρ ¼ σ ¼ 1), SOð3; 2Þ (ρ ¼ −σ ¼ 1),
CSOð4; 0; 1Þ (ρ ¼ 0, σ ¼ 1), and CSOð2; 2; 1Þ
(ρ ¼ 0, σ ¼ −1).
Using the coset representative (170), we obtain the scalar

potential

V ¼ −
1

64
g2e−2ðϕ1þϕ2Þ½8σ − ρ2e10ðϕ1þϕ2Þ

þ 4ρðe4ϕ1þ6ϕ2 þ σe6ϕ1þ4ϕ2Þ�: ð172Þ

As in the previous case, a consistent set of BPS equations
can be found only for θ ¼ 0 and τeW ¼ κeU. With the
three-form flux (60), which is manifestly invariant under
SOð2Þ × SOð2Þ, and the projectors given in (65), the
resulting BPS equations read

U0 ¼ W0 ¼ g
40

eVð2e−2ϕ1 þ ρe4ðϕ1þϕ2Þ þ 2σe−2ϕ2Þ; ð173Þ

ϕ0
1 ¼

g
20

eVð3e−2ϕ1 − ρe4ðϕ1þϕ2Þ − 2σe−2ϕ2Þ; ð174Þ

ϕ0
2 ¼

g
20

eVð3σe−2ϕ2 − ρe4ðϕ1þϕ2Þ − 2e−2ϕ1Þ; ð175Þ

k ¼ 1

2
e2U−2ðϕ1þϕ2Þτ; ð176Þ

l ¼ 1

2
e3W−U−2ðϕ1þϕ2Þτ: ð177Þ

By choosing V ¼ 2ϕ1, we obtain the solution

ϕ1 ¼ −
1

10
ln ½eC1−

gr
2 þ ρ� − 1

5
ln ½eC2−

gr
2 þ σ�; ð178Þ

ϕ2 ¼ −
3

2
ϕ1 −

1

4
ln ½eC1−

gr
2 þ ρ�; ð179Þ

U ¼ W ¼ 1

8
grþ 1

20
ln ½eC1−

gr
2 þ ρ� þ 1

10
ln ½eC2−

gr
2 þ σ�;

ð180Þ

k ¼ l ¼ 1

2
τe

gr
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eC1−

gr
2 þ ρ

q
ð181Þ

with the integration constants C1 and C2. This solution is
just the SOð2Þ × SOð2Þ symmetric domain wall found in
[26] with a dyonic profile for the three-form flux. In this
case, coupling to SOð3Þ gauge fields is not possible due to
the absence of any unbroken SOð3Þ gauge symmetry.

D. Uplifted solutions in 10 and 11 dimensions

We now give the uplifted solutions in the case of SOð5Þ
and CSOð4; 0; 1Þ, which can be obtained from consistent
truncations of 11-dimensional supergravity on S4 and type
IIA theory on S3, respectively. As shown in [27], other
gauge groups of the form CSOðp; q; 5 − p − qÞ with
the embedding tensor in 15 representation can also be
obtained from truncations of 11-dimensional supergravity
on Hp;q∘T5−p−q. However, in this paper, we will not
consider uplifted solutions for these gauge groups since
the complete truncation ansatze have not been constructed
so far. Furthermore, we will not consider uplifting solutions
with nonvanishing vector fields since, in this case, the
uplifted solutions are not very useful due to the lack of
analytic solutions.

1. Uplift to 11 dimensions

We first consider uplifting the seven-dimensional sol-
utions in SOð5Þ gauge group to 11-dimensional super-
gravity. We begin with the SOð4Þ symmetric solution with
the SLð5Þ=SOð5Þ scalar matrix

MMN ¼ diagðe2ϕ; e2ϕ; e2ϕ; e2ϕ; e−8ϕÞ ð182Þ

and the coordinates on S4 given by

μM ¼ ðμi; μ5Þ ¼ ðsin ξμ̂i; cos ξÞ; i ¼ 1; 2; 3; 4; ð183Þ

with μ̂i being coordinates on S3 satisfying μ̂iμ̂i ¼ 1. With
the formulas given in Appendix B, the 11-dimensional
metric and the four-form field strength are given by

dŝ211 ¼ Δ1
3ðe2UðrÞds2M3

þ e2VðrÞdr2 þ e2WðrÞds2S3Þ

þ 16

g2
Δ−2

3½e−8ϕ sin2 ξdξ2

þ e2ϕðcos2 ξdξ2 þ sin2 ξdΩ2
ð3ÞÞ�; ð184Þ

F̂ð4Þ ¼
64

g3
Δ−2sin4ξðU sin ξdξ − 10e6ϕϕ0 cos ξdrÞ ∧ ϵð3Þ

− 2 cos ξe8ϕðke3WþV−3Udr ∧ volS3

− le3UþV−3Wdr ∧ volM3
Þ

−
8

g
sin ξðkvolM3

þ lvolS3Þ ∧ dξ ð185Þ

with dΩ2
ð3Þ ¼ dμ̂idμ̂i being the metric on a unit S3 and
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Δ ¼ e8ϕcos2ξþ e−2ϕsin2ξ;

ϵð3Þ ¼
1

3!
ϵijklμ̂

idμ̂j ∧ dμ̂k ∧ dμ̂l;

U ¼ ðe16ϕ − 4e6ϕÞcos2ξ − ðe6ϕ þ 2e−4ϕÞsin2ξ: ð186Þ

The SOð4Þ residual symmetry of the seven-dimensional
solution is the isometry of the S3 inside the S4. The
3-manifold M3 can be Mkw3 or AdS3. Because of the
dyonic profile of the four-form field strength, this solution
should describe a bound state of M2- and M5-branes
similar to the solutions considered in [12]. It is also

interesting to find a relation between the solution with
M3 ¼ AdS3 and the SOð2; 2Þ × SOð4Þ × SOð4Þ symmetric
solution studied in [32].
We can repeat a similar procedure for the SOð3Þ sym-

metric solutions. With the indexM ¼ ða; 4; 5Þ, a ¼ 1, 2, 3,
the SLð5Þ=SOð5Þ scalar matrix is given by

M ¼
�
e4ϕ1I3 0

0 e−6ϕ1M2

�
ð187Þ

with the 2 × 2 matrix M2 given by

M2 ¼
�

e2ϕ3 cosh2 ϕ2 þ sinh2 ϕ2 sinhϕ2 coshϕ2ð1þ e−2ϕ3Þ
sinhϕ2 coshϕ2ð1þ e2ϕ3Þ e−2ϕ3 cosh2 ϕ2 þ sinh2 ϕ2

�
: ð188Þ

We now separately discuss the uplifted solutions for the two cases with ϕ2 ¼ 0 and ϕ3 ¼ 0. We will also denote k5 and l5
simply by k and l with k4 ¼ tanhϕ2k and l4 ¼ tanhϕ2l. Recall also that for SOð3Þ symmetric solutions, we only have
M3 ¼ AdS3.
For ϕ2 ¼ 0 and the S4 coordinates

μM ¼ ðcos ξμ̂a; sin ξ cosψ ; sin ξ sinψÞ ð189Þ
with μ̂aμ̂a ¼ 1, we find the 11-dimensional metric

dŝ211 ¼ Δ1
3ðe2Uds2AdS3 þ e2Vdr2 þ e2Wds2S3Þ þ

16

g2
Δ−2

3½e4ϕ1ðsin2 ξdξ2

þ cos2 ξdμ̂adμ̂aÞ þ e−6ϕ1fsin2 ξðe2ϕ3 sin2 ψ þ e−2ϕ3 cos2 ψÞdψ2

− sin 2ψ sin 2ξ sinh 2ϕ3dξdψ þ cos2 ξðe2ϕ3 cos2 ψ þ e−2ϕ3 sin2 ψÞdξ2g�; ð190Þ
where

Δ ¼ e−4ϕ1 cos2 ξþ e6ϕ1 sin2 ξðe−2ϕ3 cos2 ψ þ e2ϕ3 sin2 ψÞ: ð191Þ

The four-form field strength is given by

F̂ð4Þ ¼ −2e6ϕ1þ2ϕ3 sin ξ sinψdr ∧ ðke3WþV−3UvolS3 − le3UþV−3WvolAdS3Þ

þ 8

g
ðkvolAdS3 þ lvolS3Þ ∧ ðcos ξ sinψdξþ sin ξ cosψdψÞ

−
64

g3
Δ−2ϵð2Þ ∧ ½cos2ξ sin ξUdξ ∧ dψ þ ϕ0

3e
12ϕ1sin3ξcos2ξ sin 2ψdr ∧ dξ

− e2ϕ1−2ϕ3 sin ξcos3ξdr ∧ fð6ϕ0
1 sin ξþ 2ϕ0

3 sin ξ cosψÞdψ − 2ϕ0
3 cos ξ

× sinψdξg − 2ϕ0
1e

2ϕ1 sin 2ξcos2ξdr ∧ fðe−2ϕ3 − e2ϕ3Þ sinψ cosψ cos ξdξ

þ sin ξðe2ϕ3sin2ψ þ e−2ϕ3cos2ψÞdψg� ð192Þ
with

ϵð2Þ ¼
1

2
ϵabcμ̂

adμ̂b ∧ μ̂c; ð193Þ

U ¼ 1

2
e2ϕ1 ½sin2ξð1 − e−4ϕ3Þf3e2ϕ3 cos 2ψ − e10ϕ1ð1þ cos 2ψ − 2e4ϕ3sin2ψÞg

þðcos 2ξ − 5Þ cosh 2ϕ3� − e−8ϕ1cos2ξ: ð194Þ
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For ϕ3 ¼ 0, we find

dŝ211 ¼ Δ1
3ðe2Uds2AdS3 þ e2Vdr2 þ e2Wds2S3Þ þ

16

g2
Δ−2

3½e4ϕ1ðsin2 ξdξ2

þ cos2 ξdμ̂adμ̂aÞ þ e−6ϕ1 sinh 2ϕ2fsin 2ψðcos2 ξdξ2 − sin2 ξdψ2Þ
þ sin 2ξ cos 2ψdψdξg þ e−6ϕ1 cosh 2ϕ2ðcos2 ξdξ2 þ sin2 ξdψ2Þ� ð195Þ

and

F̂ð4Þ ¼ 2 sin ξe6ϕ1þVðcosψ tanhϕ2 − sinψÞdr ∧ ðke3W−3UvolS3 − le3U−3WvolAdS3Þ

þ 8

g
ðkvolAdS3 þ lvolS3Þ ∧ ½ðtanhϕ2 cosψ þ sinψÞ cos ξdξ

þ sin ξðcosψ − tanhϕ2 sinψÞ� −
64

g3
UΔ−2 sin ξcos2ξϵð2Þ ∧ dξ ∧ dψ

þ 64

g3
Δ−2dr ∧ ϵð2Þ ∧

�
1

2
e12ϕ1ϕ2

0 sin ξsin22ξ cos 2ψdξ

þ 1

2
e−4ϕ1cos2ξ sin 2ξfsin2ξðe6ϕ1 cosh 2ϕ2Þ0dψ

þ ðe6ϕ1 sinh 2ϕ2Þ0ðcos ξ cos 2ψdξ − sin ξ sin 2ψdψÞg
þ 2ϕ1

0e2ϕ1cos2ξ sin 2ξfsin ξ cosh 2ϕ2dψ

− sinh 2ϕ2ðsin ξ sin 2ψdψ − cos 2ψdξÞg
�
; ð196Þ

where

Δ ¼ e−4ϕ1 cos2 ξþ e6ϕ1 sin2 ξðcosh 2ϕ2 − sin 2ψ sinh 2ϕ2Þ; ð197Þ

U ¼ sin2ξ½3e2ϕ1 sin 2ψ sinh 2ϕ2 þ e12ϕ1ð6cosh22ϕ2 − sin 2ψ sinh 4ϕ2Þ�

þ ð2e−4ϕ1 − 3e−8ϕ1Þcos2ξþ 1

2
e2ϕ1 cosh 2ϕ2ðcos 2ξ − 5Þ: ð198Þ

All of these solutions should describe bound states of
M2- andM5-branes with different transverse spaces and are
expected to be holographically dual to conformal surface
defects in N ¼ ð2; 0Þ SCFT in six dimensions. Solutions
with SOð2Þ × SOð2Þ symmetry can similarly be uplifted,
but we will not give them here due to their complexity.

2. Uplift to type IIA theory

We now carry out a similar analysis for solutions in
CSOð4; 0; 1Þ gauge group to find uplifted solutions in ten-
dimensional type IIA theory. Relevant formulas are
reviewed in Appendix B. In the solutions we will consider,
gauge fields, massive three-forms, and axions bi ¼ χi
vanish. The ten-dimensional fields are then given only
by the metric, the dilaton, and the Neveu Schwarz-Neveu
Schwarz (NS-NS) two-form field. Therefore, in this case,
we expect the solutions to describe bound states of NS5-
branes and the fundamental strings.

We begin with a simpler SOð4Þ symmetric solution
in which the SLð4Þ=SOð4Þ scalar matrix is given byfMij ¼ δij. The ten-dimensional metric, the NS-NS
three-form flux, and the dilaton are given by

dŝ210 ¼ e
3
2
ϕ0ðe2Uds2M3

þ e2Vdr2 þ e2Wds2S3Þ þ
16

g2
e−

5
2
ϕ0dΩ2

ð3Þ;

Ĥð3Þ ¼
128

g3
ϵð3Þ þ

8

g
ðkvolM3

þ lvolS3Þ;

φ̂¼ 5ϕ0: ð199Þ

It should be noted that, in this case, we have a constant NS-
NS flux.
For SOð3Þ symmetric solutions, we parametrize the

SLð4Þ=SOð4Þ scalar matrix as

fMij ¼ diagðe2ϕ; e2ϕ; e2ϕ; e−6ϕÞ ð200Þ

SUPERSYMMETRIC SOLUTIONS OF 7D MAXIMAL GAUGED … PHYS. REV. D 101, 086012 (2020)

086012-19



and choose the S3 coordinates to be

μi ¼ ðsin ξμ̂a; cos ξÞ; a ¼ 1; 2; 3; ð201Þ

with μ̂a being the coordinates on S2 subject to the condition
μ̂aμ̂a ¼ 1. We again recall that only solutions with ϕ2 ¼ 0
are possible in this case.
With all these ingredients and writing k ¼ k5 and l ¼ l5,

we find that the ten-dimensional fields are given by

dŝ210 ¼ e
3
2
ϕ0Δ1

4ðe2Uds2AdS3 þ e2Vdr2 þ e2Wds2S3Þ

þ 16

g2
e−

5
2
ϕ0Δ−3

4½ðe−6ϕ sin2 ξþ e2ϕ cos2 ξÞdξ2

þ sin2 ξe2ϕdμ̂adμ̂a�; ð202Þ

e2φ̂ ¼ Δ−1e10ϕ0 ; ð203Þ

Ĥð3Þ ¼
64

g3
Δ−2sin3ξðU sin ξdξþ 8e4ϕ cos ξϕ0drÞ

∧ ϵð2Þ þ
8

g
ðkvolAdS3 þ lvolS3Þ; ð204Þ

in which

Δ ¼ e6ϕcos2ξþ e−2ϕsin2ξ; ϵð2Þ ¼
1

2
ϵabcμ̂

adμ̂b ∧ dμ̂c;

U ¼ e12ϕcos2ξ − e−4ϕsin2ξ − e4ϕðsin2ξþ 3cos2ξÞ: ð205Þ

The solutions for ϕ0 and ϕ are obtained from ϕ1 and ϕ3 in
Sec. III B by the following relations:

ϕ ¼ 1

4
ð5ϕ1 − ϕ3Þ and ϕ0 ¼ −

1

4
ðϕ3 þ 3ϕ1Þ: ð206Þ

These are obtained by comparing the scalar matrices
obtained from (137) and (B10).

IV. SUPERSYMMETRIC SOLUTIONS FROM
GAUGINGS IN 40 REPRESENTATION

In this section, we repeat the same analysis for gaugings
from 40 representation. Setting YMN ¼ 0, we are left with
the quadratic constraint

ϵMRSTUZRS;NZTU;P ¼ 0: ð207Þ

Following [23], we can solve this constraint by taking

ZMN;P ¼ v½MwN�P ð208Þ

with wMN ¼ wðMNÞ and vM being a five-dimensional
vector.
The SLð5Þ symmetry can be used to fix the vector

vM ¼ δM5 . Therefore, it is useful to split the SLð5Þ index as

M ¼ ði; 5Þ. Setting w55 ¼ wi5 ¼ 0 for simplicity, we can
use the remaining SLð4Þ ⊂ SLð5Þ symmetry to diagonalize
wij as

wij ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
p

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q

; 0;…; 0|fflfflffl{zfflfflffl}
r

Þ: ð209Þ

The resulting gauge generators read

ðXijÞkl ¼ 2ϵijkmwml ð210Þ

corresponding to a CSOðp; q; rÞ gauge group with
pþ qþ r ¼ 4.
With the split of SLð5Þ index M ¼ ði; 5Þ and the

decomposition SLð5Þ → SLð4Þ × SOð1; 1Þ, we can para-
metrize the SLð5Þ=SOð5Þ coset representative in terms of
the SLð4Þ=SOð4Þ one as

V ¼ ebit
i
Ṽeϕ0t0 : ð211Þ

Ṽ is the SLð4Þ=SOð4Þ coset representative, and t0, ti refer
to SOð1; 1Þ and four nilpotent generators, respectively. The
unimodular matrix MMN is then given by

MMN ¼
�
e−2ϕ0M̃ij þ e8ϕ0bibj e8ϕ0bi

e8ϕ0bj e8ϕ0

�
ð212Þ

with M̃ij ¼ ðṼṼTÞij. Using (25), we can compute the
scalar potential for these gaugings

V ¼ g2

4
e14ϕ0biwijM̃jkwklbl

þ g2

4
e4ϕ0ð2M̃ijwjkM̃klwli − ðM̃ijwijÞ2Þ: ð213Þ

The presence of the dilaton prefactor eϕ0 shows that this
potential does not admit any critical points. Note also that
we can always consistently set the nilpotent scalars bi to
zero for simplicity since they do not appear linearly in any
terms in the Lagrangian.
We will use the same ansatz as in the case of gaugings in

the 15 representation to find charged domain wall solu-
tions. However, we note here that, for gaugings in the 40
representation, there are no massive three-form fields SMμνρ.
The three-form fluxes given in (52) in this case correspond
solely to the two-form fields BμνM. We now consider a
number of possible solutions with different symmetries.

A. SOð4Þ symmetric charged domain walls

For SOð4Þ residual symmetry under which only the

scalar field ϕ0 is invariant, we have fMij ¼ δij. The only
gauge group that can accommodate the SOð4Þ unbroken
symmetry is SOð4Þ with the embedding tensor component
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wij ¼ δij. The scalar potential as obtained from (213) takes
a very simple form

V ¼ −2g2e4ϕ0 ; ð214Þ

which does not admit any critical points. We will consider

solutions with nonvanishing Hð3Þ
μνρ5 which is an SOð4Þ

singlet.
In this SOð4Þ gauging, there are four massive two-form

fields Bμνi, i ¼ 1;…; 4, and one massless two-form field
Bμν5 with the latter being an SOð4Þ singlet. We will take the
ansatz for Bμν5 as given in (60). With the following
projection conditions:

γ3̂ϵ
a
0 ¼ −ðΓ5Þabϵb0 ¼ ϵa0; ð215Þ

the BPS equations are given by

U0 ¼ W0 ¼ 1

5
eVð2e−2ϕ0g sec 2θ − e−Uτ tan 2θÞ; ð216Þ

ϕ0
0 ¼

1

10
eVð2e−2ϕ0g sec 2θ − e−Uτ tan 2θÞ; ð217Þ

k ¼ −
1

2
e2U−4ϕ0τ; θ0 ¼ 0; ð218Þ

l ¼ −
1

2
e2U−4ϕ0τ sec 2θ þ 3e3U−6ϕ0g tan 2θ; ð219Þ

together with an algebraic constraint

κ ¼ τ sec 2θ − 2eU−2ϕ0g tan 2θ: ð220Þ

In this case, we find that θ is constant. Choosing V ¼ 0, we
find the following solution:

U ¼ W ¼ 2ϕ0; ð221Þ

e2ϕ0 ¼ 2

5
gr sec 2θ −

1

5
τr tan 2θ þ C; ð222Þ

k ¼ −
1

2
τ; ð223Þ

l ¼ −
1

2
τ sec 2θ þ g tan 2θ ð224Þ

with an integration constant C. For a particular value of
θ ¼ 0, we find the solution

U ¼ W ¼ 2ϕ0; e2ϕ0 ¼ 2

5
grþ C; k ¼ l ¼ −

1

2
τ:

ð225Þ

1. Coupling to SOð3Þ gauge fields

We now consider charged domain wall solutions with
nonvanishing SOð3Þ ⊂ SOð4Þ gauge fields. In this case, the
projector ðΓ5Þabϵb0 ¼ −ϵa0 implies that the nonvanishing
gauge fields correspond to the self-dual SOð3Þ ⊂ SOð4Þ
given by

A23
ð1Þ ¼ A14

ð1Þ ¼
κ

16
pðrÞe−WðrÞe4̂; ð226Þ

A31
ð1Þ ¼ A24

ð1Þ ¼
κ

16
pðrÞe−WðrÞe5̂; ð227Þ

A12
ð1Þ ¼ A34

ð1Þ ¼
κ

16
pðrÞe−WðrÞe6̂: ð228Þ

The two-form field strengths are straightforward to obtain

F12
ð2Þ ¼ F34

ð2Þ ¼ e−V−W
κ

16
p0e3̂ ∧ e6̂ þ e−2W

κ2

32
pð2 − gpÞe4̂ ∧ e5̂; ð229Þ

F23
ð2Þ ¼ F14

ð2Þ ¼ e−V−W
κ

16
p0e3̂ ∧ e4̂ þ e−2W

κ2

32
pð2 − gpÞe5̂ ∧ e6̂; ð230Þ

F31
ð2Þ ¼ F24

ð2Þ ¼ e−V−W
κ

16
p0e3̂ ∧ e5̂ þ e−2W

κ2

32
pð2 − gpÞe6̂ ∧ e4̂: ð231Þ

Since the components of the embedding tensor Zij;5 vanish, the two-form field Bμν5 does not contribute to the modified
two-form field strengths. Imposing the projection conditions (125) and (215), we find the following BPS equations:

U0 ¼ eV−2ðWþϕ0Þ

80 cos 2θ
½16e2Wðgð3 cos 4θ − 1Þ þ 2e2ϕ0−Uτ sin 2θÞ

−3e4ϕ0ðκ2pðgp − 2Þðcos 4θ − 3Þ − 8eW−2ϕ0κðgp − 1Þ sin 4θÞ�; ð232Þ

W0 ¼ eV−2ðWþϕ0Þ

40 cos 2θ
½8e2Wð2gð2 − cos 4θÞ − 3e2ϕ0−Uτ sin 2θÞ

þe4ϕ0ðκ2pðgp − 2Þðcos 4θ − 8Þ − 8eW−2ϕ0κðgp − 1Þ sin 4θÞ�; ð233Þ
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ϕ0
0 ¼

eV−2ðWþϕ0Þ

160 cos 2θ
½16e2Wðgð3 cos 4θ − 1Þ þ 2e2ϕ0−Uτ sin 2θÞ

þ3e4ϕ0ðκ2pðgp − 2Þð3 − cos 4θÞ þ 8eW−2ϕ0κðgp − 1Þ sin 4θÞ�; ð234Þ

θ0 ¼ eV−2ðWþϕ0Þ

16
½24eWþ2ϕ0ðeW−Uτ þ κðgp − 1Þ cos 2θÞ

−3ð16ge2W − e4ϕ0κ2pðgp − 2ÞÞ sin 2θ�; ð235Þ

k ¼ −
1

2
e2U−4ϕ0τ; ð236Þ

l ¼ 1

8
e3W−6ϕ0 ½−16g tan 2θ þ 8e2ϕ0−Uτ sec 2θ

þ3e4ϕ0−2Wðκ2pðgp − 2Þ tan 2θ þ 4eW−2ϕ0κðgp − 1ÞÞ�; ð237Þ

p0 ¼ eV−W−4ϕ0

2κ
½8eWþ2ϕ0ðeW−Uτ þ κðgp − 1Þ cos 2θÞ

−ð16ge2W − e4ϕ0κ2pðgp − 2ÞÞ sin 2θ�: ð238Þ

It can beverified that theseBPSequations satisfy the second-
order field equations without any additional constraint.
Since there is not an asymptotically locally AdS7 con-

figuration, we will consider flow solutions from a charged
domain wall without vector fields given in (221)–(224) to a
singular solution with nonvanishing gauge fields. To find
numerical solutions, we will consider the charged domain
wall with θ ¼ 0 given in (225) for simplicity. As r → − 5C

2g ,
we impose the following boundary conditions:

U ∼W ∼ ln

�
2gr
5

þ C

�
; ϕ ∼

1

2
ln

�
2gr
5

þ C

�
;

p ∼ 0; k ∼ l ∼ −
τ

2
ð239Þ

with κ ¼ τ. An example of the BPS flows is shown in
Fig. 7. From this solution, it can be seen that k is constant
along the flow since the above BPS equations give U0 ¼
2ϕ0

0, which implies the constancy of U − 2ϕ0. It should

FIG. 7. A BPS flow from a charged domain wall at r ¼ −1 to a singularity at r ¼ 0 in SOð4Þ gauge group with g ¼ 1, κ ¼ τ ¼ 2, and
C ¼ 2

5
.
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also be noted that this solution is similar to that in
CSOð4; 0; 1Þ gauge group given in Fig. 5. We also expect
this solution to describe a surface defect within an N ¼
ð2; 0Þ nonconformal field theory.

B. SOð3Þ symmetric charged domain walls

In this section, we look for more complicated solutions
with SOð3Þ residual symmetry generated by Xij with i,
j ¼ 1, 2, 3. Gauge groups containing an SOð3Þ subgroup
are SOð4Þ, SOð3; 1Þ, and CSOð3; 0; 1Þ. These gauge
groups are described by the embedding tensor wij of the
form

wij ¼ diagðþ1;þ1;þ1; ρÞ ð240Þ

with ρ ¼ 1;−1, 0, respectively.
Among the ten SLð4Þ=SOð4Þ scalars, there is one

SOð3Þ singlet parametrized by the SLð4Þ=SOð4Þ coset
representative

Ṽ ¼ diagðeϕ; eϕ; eϕ; e−3ϕÞ: ð241Þ

We then obtain the scalar potential using (213)

V ¼ −
g2

4
e−4ðϕ0þ3ϕÞð3e16ϕ þ 6ρe8ϕ − ρ2Þ: ð242Þ

To find the BPS equations, we use the same ansatz for
the modified three-form field strength (60) and impose the
projection conditions (215). We note here that, in this case,
there are two two-form fields, Bμν4 and Bμν5, which are
SOð3Þ singlets. For CSOð3; 0; 1Þ gauge group with ρ ¼ 0,
both of them are massless while for the other two gauge
groups, the former is massive while the latter is massless.
However, in this case, we are not able to consistently
incorporate Bμν4 in the BPS equations. We will accordingly
restrict ourselves to the solutions with only Bμν5

nonvanishing.
Consistency with the field equations also leads to the

conditions given in (142). With all these, the resulting BPS
equations are given by

U0 ¼ W0 ¼ g
10

eV−6ϕ−2ϕ0ð3e8ϕ1 þ ρÞ; ð243Þ

ϕ0
0 ¼

g
20

eV−6ϕ−2ϕ0ð3e8ϕ1 þ ρÞ; ð244Þ

ϕ0 ¼ −
g
4
eV−6ϕ−2ϕ0ð3e8ϕ1 − ρÞ; ð245Þ

k ¼ −
1

2
e3U−W−4ϕ0κ; ð246Þ

l ¼ −
1

2
e2W−4ϕ0κ: ð247Þ

SettingW ¼ U and V ¼ 0, we find the solutions for U, ϕ0,
k, and l as functions of ϕ,

U ¼ 2

5
ϕ −

1

5
ln ðe8ϕ − ρÞ; ð248Þ

ϕ0 ¼
1

5
ϕ −

1

10
ln ðe8ϕ − ρÞ þ C0; ð249Þ

k ¼ l ¼ −
1

2
e−4C0κ; ð250Þ

in which C0 is an integration constant.
The solution for ϕðrÞ is given by

ϕ ¼ −
5

16
ln

�
4

5
ðe−2C0gr − C1Þ

�
ð251Þ

for ρ ¼ 0 and

4gρrðe8ϕ − ρÞ1=5

¼ 5e2C1þ32
5
ϕ

�
4 − 3ð1 − ρe8ϕÞ1=52F1

�
1

5
;
4

5
;
9

5
; ρe8ϕ

��
ð252Þ

for ρ ¼ �1. In the last equation, 2F1 is the hypergeometric
function. This solution is again the domain wall found in
[26] with a nonvanishing three-form flux.
As in the SOð3Þ symmetric solutions from the gaugings

in the 15 representation, coupling to SOð3Þ vector fields
does not lead to new solutions. Consistency with the field
equations implies either vanishing two-form fields or
vanishing gauge fields. We also note that repeating the
same analysis for SOð2Þ × SOð2Þ and SOð2Þ symmetric
solutions leads to the domain wall solutions given in [26]
with a constant three-form flux

k ¼ l ¼ −
1

2
τ: ð253Þ

We will not give further detail for these cases to avoid a
repetition.

V. SUPERSYMMETRIC SOLUTIONS FROM
GAUGINGS IN 15 AND 40 REPRESENTATIONS

In this section, we consider gaugings with both compo-
nents of the embedding tensor in 15 and 40 representations
nonvanishing. We first give a brief review of these gaugings
as constructed in [23]. A particular basis can be chosen
such that nonvanishing components of the embedding
tensor are given by

Yxy; Zxα;β ¼ Zxðα;βÞ; Zαβ;γ ð254Þ
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with x ¼ 1;…; t and α ¼ tþ 1;…; 5. The SLð5Þ index
M;N;…, are then split into ðx; αÞ.
In terms of these components, the quadratic constraint

(14) reads

YxyZyα;β þ 2ϵxMNPQZMN;αZPQ;β ¼ 0: ð255Þ

Yxy is chosen to be

Yxy ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
p

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q

Þ: ð256Þ

We will consider two gauge groups, namely SOð2; 1Þ ⋉
R4 and SOð2Þ ⋉ R4 given in [23]. The latter can also be
obtained from the Scherk-Schwarz reduction of the maxi-
mal gauged supergravity in eight dimensions.
We begin with the t ¼ 3 case in which Yxy ¼

diagð1; 1;−1Þ corresponding to SOð2; 1Þ ⋉ R4 gauge
group. The corresponding gauge generators are given by

XM
N ¼

 
λzðtzÞxy Qð4Þβ

x

02×3
1
2
λzðζzÞαβ

!
ð257Þ

with λz ∈ R and ðtzÞxy ¼ ϵzyuYux being generators of
SOð2; 1Þ in the adjoint representation. The nilpotent gen-

erators Qð4Þα
x transform as 4 under SOð2; 1Þ. In terms of ζx,

the component Zxα;β of the embedding tensor takes the
form

Zxα;β ¼ −
1

16
ϵαγðζxÞγβ: ð258Þ

The explicit form of ζx can be given in terms of Pauli
matrices as

ζ1 ¼ σ1; ζ2 ¼ σ3; ζ3 ¼ iσ2: ð259Þ

We now consider charged domain wall solutions with
SOð2Þ ⊂ SOð2; 1Þ symmetry. As shown in [26], there are
four SOð2Þ singlet scalars corresponding to the following
noncompact generators:

Ȳ1 ¼ 2e1;1 þ 2e2;2 þ 2e3;3 − 3e4;4 − 3e5;5;

Ȳ2 ¼ e1;1 þ e2;2 − 2e3;3;

Ȳ3 ¼ e1;4 þ e2;5 þ e4;1 þ e5;2;

Ȳ4 ¼ e1;5 − e2;4 − e4;2 þ e5;1: ð260Þ
The SLð5Þ=SOð5Þ coset representative can be written as

V ¼ eϕ1Ȳ1þϕ2Ȳ2þϕ3Ȳ3þϕ4Ȳ4 : ð261Þ
The resulting scalar potential is given by

V ¼ g2

64
e−2ð4ϕ1−ϕ2Þ½6 cosh 2ϕ3 cosh 2ϕ4 þ e6ϕ2 �; ð262Þ

which does not admit any critical points.
We now repeat the same analysis as in the previous

sections. We first discuss the three-form fluxes that are
singlet under the SOð2Þ residual symmetry. In the unga-
uged supergravity, the five two-forms transform as 5 under
SLð5Þ. From the particular form of the gauge generators
given in (257), we can see that the SOð2Þ symmetry under
consideration here is embedded diagonally along the
1,2,4,5 directions. Under SOð2Þ×SOð2Þ⊂SOð5Þ⊂SLð5Þ,
the two-forms transform as ð1; 1Þ þ ð1; 2Þ þ ð2; 1Þ. Under
SOð2Þ ¼ ½SOð2Þ × SOð2Þ�diag, these two-forms transform
as 1þ 2þ 2. Therefore, there is only one singlet two-form
field under the SOð2Þ unbroken symmetry. In gauged
supergravity, this two-form field will be gauged away by
a three-form gauge transformation due to the nonvanishing
component Y33 of the embedding tensor. The SOð2Þ singlet
is then described by a massive three-form field S3μνρ.
We will take the ansatz for the three-form field strength

to be

Hð3Þ
m̂ n̂ p̂ 3 ¼ kðrÞe−3UðrÞεm̂ n̂ p̂ and

Hð3Þ
î ĵ k̂ 3

¼ lðrÞe−3WðrÞεî ĵ k̂: ð263Þ

After imposing the following projection conditions:

γ3̂ϵ
a
0 ¼ −ðΓ3Þabϵb0 ¼ ϵa0; ð264Þ

we find the following BPS equations:

U0 ¼ W0 ¼ g
40

e−2ð2ϕ1þϕ2ÞþVð3 cosh 2ϕ3 cosh 2ϕ4 − e6ϕ2Þ; ð265Þ

ϕ0
1 ¼

g
240

e−2ðϕ1þϕ2ÞþVð15sech2ϕ3sech2ϕ4 − 3 cosh 2ϕ3 cosh 2ϕ4 − 4e6ϕ2Þ; ð266Þ

ϕ0
2 ¼

g
48

e−2ðϕ1þϕ2ÞþVð3sech2ϕ3sech2ϕ4 þ 3 cosh 2ϕ3 cosh 2ϕ4 þ 4e6ϕ2Þ; ð267Þ

ϕ0
3 ¼ −

3g
16

e−2ð2ϕ1þϕ2ÞþV sinh 2ϕ3sech2ϕ4; ð268Þ
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ϕ0
4 ¼ −

3g
16

e−2ð2ϕ1þϕ2ÞþV cosh 2ϕ3 sinh 2ϕ4; ð269Þ

k ¼ −
1

2
e2Uþ2ϕ1−2ϕ2τ; ð270Þ

l ¼ −
1

2
e3W−Uþ2ϕ1−2ϕ2τ: ð271Þ

In these equations, we have imposed the conditions (142) for consistency.
By choosing V ¼ 4ϕ1 þ 2ϕ2 and taking W ¼ U for convenience, we obtain a charged domain wall solution

ϕ1 ¼
2

15
ϕ3 þ

1

5
C2 −

1

60
ln

�
9

16
ðe2C4 − e4ϕ3 − 2e2C4þ4ϕ3 þ e2C4þ8ϕ3Þ

�
þ 1

10
ln ½e4ϕ3 þ 1� − 1

5
ln ½e4ϕ3 − 1�; ð272Þ

ϕ2 ¼ −5ϕ1 þ C2 þ ln ½e3ϕ3 þ 1� − ln ½e3ϕ3 − 1�; ð273Þ

ϕ3 ¼
1

4
ln

�
1þ 4e2C4 − 2e

3gr
8 þ e

3gr
4

1þ 4e2C4 þ 2e
3gr
8 þ e

3gr
4

�
; ð274Þ

ϕ4 ¼
1

4
ln

�
e2ϕ3 − eC4 þ eC4þ4ϕ3

e2ϕ3 þ eC4 − eC4þ4ϕ3

�
; ð275Þ

U ¼ −
1

5
ϕ3 −

1

20
C2 þ

3

20
ln ½e2C4 − e4ϕ3 − 2e2C4þ4ϕ3 þ e2C4þ8ϕ3 �

− ln

�
16

9

�
−
1

5
ln ½e4ϕ3 − 1�; ð276Þ

k ¼ l ¼ −
e

3
10
ðC2þ4ϕ3Þτ

22=5 × 33=10
ðe2C4 − e4ϕ3 − 2e2C4þ4ϕ3 þ e2C4þ8ϕ3Þ1=10

ðe4ϕ3 − 1Þ4=5 : ð277Þ

This is just the 1
4
-BPS domain wall obtained in [26] together

with the running dyonic profile of the three-form flux. It is
useful to emphasize here that this solution is 1

4
-super-

symmetric. In general, domain wall solutions from gaug-
ings in both 15 and 40 representations preserve only 1

4
of the

original supersymmetry; see a general discussion in [33]
and explicit solutions in [26]. From the above solution, we
see that the solutions with a nonvanishing three-form flux
do not break supersymmetry any further.
We end this section by giving a comment on the t ¼ 2

case with SOð2Þ ⋉ R4 gauge group. Repeating the same
procedure leads to a charged domain wall given by the
solution found in [26] with a constant three-form flux given
in (253). In contrast to the t ¼ 3 case, the three-form flux

Hð3Þ
μνρ3 is due to the massless two-form fieldBμν3 since, in this

case, we have Y33 ¼ 0. We will not give the full detail of this
analysis here as it closely follows that of the previous cases.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied supersymmetric solutions
of the maximal gauged supergravity in seven dimensions
with various gauge groups. These solutions are charged
domain walls with M3 × S3 slices, for M3 ¼ Mkw3;AdS3,
and nonvanishing three-form fluxes. All of these solutions
can be obtained analytically. For SOð4Þ residual symmetry,
the charged domain wall solutions can couple to SOð3Þ ⊂
SOð4Þ gauge fields, but the corresponding solutions can
only be obtained numerically. For SOð3Þ symmetric
solutions, coupling to SOð3Þ gauge fields does not lead
to a consistent set of BPS equations that is compatible with
the field equations. In this case, only solutions with either
nonvanishing three-form fluxes or nonvanishing gauge
fields are possible. Apart from these solutions, we have
also given a number of SOð2Þ × SOð2Þ and SOð2Þ sym-
metric solutions.
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For SOð5Þ gauge group, the gauged supergravity admits
a supersymmetric AdS7 vacuum dual to an N ¼ ð2; 0Þ
SCFT in six dimensions. In this case, the solutions with an
AdS3 × S3 slice can be interpreted as surface defects within
the N ¼ ð2; 0Þ SCFT. For other gauge groups, the super-
symmetric vacua, with only the metric and scalars non-
vanishing, take the form of half-supersymmetric domain
walls dual to N ¼ ð2; 0Þ nonconformal field theories in six
dimensions. We then expect these AdS3 × S3-sliced
domain wall solutions to describe 1

4
-BPS surface defects

in the dual N ¼ ð2; 0Þ quantum field theories. For a number
of solutions, we have found that the charged domain walls
are simply given by the domain wall solutions given in [26]
with constant three-form fluxes. However, the charged
domain walls preserve only 1

4
of the original supersymmetry

as opposed to the usual domain walls, which are 1
2
super-

symmetric except for the domain walls from gaugings in
both 15 and 40 representations in which both charged and
standard domain walls are 1

4
supersymmetric.

Both gaugings in 15 and 40 representations we have
studied can, respectively, be uplifted to 11-dimensional
supergravity and type IIB theory as shown in [27,28]. We
have performed only the uplift for solutions in SOð5Þ and
CSOð4; 0; 1Þ gauge groups with SOð4Þ and SOð3Þ sym-
metries. In these cases, the complete truncation ansatze of
11-dimensional supergravity on S4 and type IIA theory on
S3 are known. Similar to the solutions in [12], the uplifted
solutions in these two gauge groups should describe
bound states of M2- and M5-branes and of F1-strings

and NS5-branes, respectively. It is natural to extend this
study by constructing the full truncation ansatze of
11-dimensional supergravity on Hp;q∘T5−p−q and type
IIB theory on Hp;q∘T4−p−q. These can be used to
uplift the solutions in CSOðp; q; 5 − p − qÞ and CSOðp; q;
4 − p − qÞ gauge groups for any values of p and q leading
to the full holographic interpretation of the seven-
dimensional solutions found here.
Finding the description of conformal defects, dual to the

supergravity solutions given in this paper, in the dual N ¼
ð2; 0Þ SCFT and N ¼ ð2; 0Þ QFT would be interesting and
could provide another verification for the validity of the
AdS=CFT correspondence. Finally, finding solutions of the
form AdSd × Σ7−d in seven-dimensional gauged super-
gravity with various gauge groups is also of particular
interest. These solutions would be dual to twisted com-
pactifications of N ¼ ð2; 0Þ SCFT and N ¼ ð2; 0Þ QFT in
six dimensions on a (7 − d)-manifold Σ7−d to (d − 1)-
dimensional SCFT.
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APPENDIX A: BOSONIC FIELD EQUATIONS

In this appendix, we give the explicit form of the bosonic
field equations derived from the Lagrangian (22). These
equations read

0 ¼ Rμν −
1

4
MMPMNQðDμMMNÞðDνMPQÞ − 2

5
gμνV

− 4MMPMNQ

�
Hð2ÞMN

μρ Hð2ÞPQ
ν
ρ −

1

10
gμνH

ð2ÞMN
ρσ Hð2ÞPQρσ

�
−MMN

�
Hð3Þ

μρσMH
ð3Þρσ
ν N −

2

15
gμνH

ð3Þ
ρσλMH

ð3Þρσλ
N

�
; ðA1Þ

0 ¼ DμðMMPDμMPNÞ − g2

8
MPQMRNð2YRQYPM − YPQYRMÞ

−
4

6
MPNHð3Þ

μνρMH
ð3Þμνρ

P − 8MMPMQRH
ð2ÞPQ
μν Hð2ÞRNμν

þ 4g2ZQT;PZNR;SMQMð2MTRMPS −MTPMRSÞ
þ 4g2ZQT;PZRS;NMQSð2MTPMRM −MTRMPMÞ
− 4g2δNMZ

TU;PZQR;SMTQðMURMPS −MUPMRSÞ

þ 8

5
δNM

�
V þMSPMQRH

ð2ÞPQ
μν Hð2ÞRSμν þ 1

16
MPQHð3Þ

μνρPH
ð3Þμνρ

Q

�
; ðA2Þ
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0 ¼ 4DνðMMPMNQHð2ÞPQνμÞ − g
2
XMNP

QMQRDμMPR

− 2ϵMNPQRMPSHð3Þμνρ
SH

ð2ÞQR
νρ þ 1

9
e−1ϵμνρλστκHð3Þ

νρλMH
ð3Þ
στκN; ðA3Þ

0 ¼ DρðMMNHð3Þρμν
NÞ − 2gZNP;MMNQMPRHð2ÞQRμν

−
1

3
e−1ϵμνρλστκHð2ÞMN

ρλ Hð3Þ
στκN; ðA4Þ

0 ¼ e−1ϵμνρλστκYMNH
ð4ÞN
λστκ − 6YMNMNPHð3Þμνρ

P: ðA5Þ

APPENDIX B: TRUNCATION ANSATZE

In this appendix, we collect relevant formulas for truncations of 11-dimensional supergravity on S4 and type IIA theory
on S3. These give rise to SOð5Þ and CSOð4; 0; 1Þ gauged supergravities in seven dimensions, respectively. The complete S4

truncation of 11-dimensional supergravity has been constructed in [29,30] while the S3 truncation of type IIA theory has
been given in [31]. For both truncations, we will use the convention of [31].

1. The 11-dimensional supergravity on S4

The ansatz for the 11-dimensional metric is given by

dŝ211 ¼ Δ1
3ds27 þ

1

ĝ2
Δ−2

3T−1
MNDμMDμN ðB1Þ

with the coordinates μM, M ¼ 1, 2, 3, 4, 5, on S4 satisfying μMμM ¼ 1. TMN is a unimodular 5 × 5 symmetric matrix
describing scalar fields in the SLð5Þ=SOð5Þ coset. The warped factor is defined by

Δ ¼ TMNμ
MμN: ðB2Þ

The ansatz for the four-form field strength reads

F̂ð4Þ ¼
1

ĝ3
Δ−2

�
1

3!
ϵM1…M5

μMμNTM1MDTM2N ∧ DμM3 ∧ DμM4 ∧ DμM5

�
−

1

ĝ3
Δ−2Uϵð4Þ þ

1

4ĝ2
Δ−1ϵM1…M5

FM1M2

ð2Þ ∧ DμM3 ∧ DμM4TM5NμN

þ 1

ĝ
S̃Mð3Þ ∧ DμM − TMN � S̃Mð3ÞμN: ðB3Þ

In these equations, we have used the following definitions:

U ¼ 2TMNTNPμ
MμP − ΔTMM; ðB4Þ

ϵð4Þ ¼
1

4!
ϵM1���M5

μM1DμM2 ∧ DμM3 ∧ DμM4 ∧ DμM5 ;

ðB5Þ

DμM¼dμMþ ĝÃMN
ð1Þ μ

N; FMN
ð2Þ ¼dÃMN

ð1Þ þ ĝÃMP
ð1Þ ∧ ÃPN

ð1Þ ;

ðB6Þ

DTMN ¼ dTMN þ ĝÃMP
ð1Þ TPN þ ĝÃNP

ð1ÞTMP: ðB7Þ
We have denoted the vector and massive three-form fields
by ÃMN

ð1Þ and S̃Mð3Þ to avoid confusion with those appearing
in (22).
To find the identification between the seven-dimensional

fields and parameters obtained from the S4 truncation and
those in seven-dimensional gauged supergravity of [23],
we consider the kinetic terms of various fields and the
scalar potential. After being multiplied by 1

2
, the relevant

terms in the seven-dimensional Lagrangian of [31] can be
written as
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e−1LS4 ¼
1

2
Rþ 1

8
DμT−1

MND
μTMN −

1

4
ĝ2½2TMNTMN − ðTMMÞ2�

−
1

16
T−1
MPT

−1
NQF

MN
μν FPQμν −

1

24
TMNS̃

M
μνρS̃

Nμνρ: ðB8Þ

Comparing (22) with YMN ¼ δMN , ZMN;P ¼ 0, we find the following identification:

TMN ¼ MMN; S̃Mð3Þ ¼ 2Hð3Þ
M ; FMN

ð2Þ ¼ 4HMN
ð2Þ ; ĝ ¼ 1

4
g: ðB9Þ

2. Type IIA supergravity on S3

The consistent truncation of type IIA supergravity on S3

has been obtained in [31] by taking a degenerate limit of the
S4 truncation of 11-dimensional supergravity. To write
down this truncation ansatz, we first split the index M
as M ¼ ði; 5Þ, i ¼ 1, 2, 3, 4. The scalar matrix of
SLð5Þ=SOð5Þ coset is then given by

T−1
MN ¼

�
Φ−1

4M−1
ij þΦχiχj Φχi

Φχj Φ

�
; ðB10Þ

whereMij is a unimodular 4 × 4 symmetric matrix describ-
ing the SLð4Þ=SOð4Þ coset.
The ten-dimensional metric, dilaton, and field strength

tensors of various form fields are given by

dŝ210 ¼ Φ 3
16Δ1

4ds27 þ
1

ĝ2
Φ− 5

16Δ−3
4M−1

ij DμiDμj; ðB11Þ

e2φ̂ ¼ Δ−1Φ5
4; ðB12Þ

F̂ð2Þ ¼ Gi
ð1Þ ∧ Dμi þ ĝμiGi

ð2Þ;

Ĥð3Þ ¼
1

ĝ3
Δ−2

�
−Uϵð3Þ þ

1

2
ϵi1i2i3i4Mi1jμ

jμkDMi2k ∧ Dμi3 ∧ Dμi4
�

þ 1

2ĝ2
Δ−1ϵijklMimμ

mFjk
ð2Þ ∧ Dμl þ 1

ĝ
S̃ð3Þ; ðB13Þ

F̂ð4Þ ¼
1

ĝ3
Δ−1Mijμ

jGi
ð1Þ ∧ ϵð3Þ þ

1

2ĝ2
Δ−1ϵi1i2i3i4Mi4jμ

jGi1
ð2Þ ∧ Dμi2 ∧ Dμi3

þMijΦ
1
4μj � Gi

ð3Þ þ
1

ĝ
Gi

ð3Þ ∧ Dμi ðB14Þ

with

ϵð3Þ ¼
1

3!
ϵijklμ

iDμj ∧ Dμk ∧ Dμl; Dμi ¼ dμi þ ĝÃij
ð1Þμ

j; ðB15Þ

U ¼ 2MijMjkμ
iμk − ΔMii; Δ ¼ Mijμ

iμj; ðB16Þ

Gi
ð1Þ ¼ Dχi þ ĝÃi5

ð1Þ; Gi
ð2Þ ¼ DÃ5i

ð1Þ þ χjF
ji
ð2Þ; ðB17Þ

Gi
ð3Þ ¼ S̃ið3Þ − χiS̃ð3Þ; Fij

ð2Þ ¼ dÃij
ð1Þ þ ĝÃik

ð1Þ ∧ Ãkj
ð1Þ; ðB18Þ

S̃ð3Þ ¼ dBð2Þ þ
1

8
ϵijkl

�
Fij
ð2Þ ∧ Ãkl

ð1Þ −
1

3
ĝÃij

ð1Þ ∧ Ãkm
ð1Þ ∧ Ãml

ð1Þ

�
: ðB19Þ

By comparing the truncated Lagrangian and the seven-dimensional gauged Lagrangian given in (22) with Yij ¼ δij and
Y55 ¼ 0, we find the following relations:
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Φ ¼ e8ϕ0 ; χi ¼ bi; M−1
ij ¼ fMij;

ĝ ¼ 1

4
g; S̃ið3Þ ¼ 2Hð3Þ

i ; Fij
ð2Þ ¼ 4Hij

ð2Þ; F̃i
ð2Þ ¼ 4Hi5

ð2Þ: ðB20Þ

In this case, μi are coordinates on S3 satisfying μiμi ¼ 1.
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