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Solitons are important nonperturbative excitations in superfluids. For holographic superfluids, we
numerically construct “dark” solitons that have the symmetry-restored phase at their core. A central point is
that we include the gravitational backreaction of the matter fields, which becomes important at low
temperatures. We study in detail the properties of these solitons under variation of the backreaction strength
via tuning the gravitational constant. In particular, the depletion fraction of the particle number density at the
core of the solitons is carefully investigated. In agreementwith the probe-limit analysis, the depletion fraction
shows the same qualitative behavior as inBogoliubov–deGennes theory, even if the backreaction is included.
We find that the depletion decreases with increasing backreaction strength. Moreover, the inclusion of
backreaction enables us to obtain the effective energy density of solitons within holography, which together
with an evaluation of the surface tension leads to a simple physical explanation for the snake instability of
dark solitons.
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I. INTRODUCTION

Gauge/gravity duality [1–3] is a powerful tool to
describe strongly coupled and correlated systems. Many
problems associated with strongly interacting condensed
matter physics are tractable in this setup [4]. One of these
problems is unconventional superfluidity [5,6].
Superfluidity is a collective quantum phenomenon occur-

ring in both bosonic and fermionic systems at low temper-
atures. In particular, fermionic systems can interpolate in a
smooth way between the formation and condensation of
loosely bound Cooper pairs (BCS superconductivity), and
Bose-Einstein condensation (BEC) of preformed bosonic

molecules. This is known as the BCS-BEC crossover (see
Ref. [7] for a review), which has been realized by cooling
fermionic gases to ultra-low temperatures and tuning the
interactions between the fermions with a controllable
external magnetic field in the laboratory. The qualitative
essence of this crossover can be understood from the phase
diagram depicted in Fig. 1: the horizontal axis interpolates
between the BCS regime of a weakly attractive interaction
between fermions and the BEC regime of very strong
attraction. Above the pairing onset temperature T�, the
system is a normal Fermi liquid consisting of the unpaired
fermions on the BCS side. On the BEC side, the strong
attractive interaction binds the fermions together to form
bosonic molecules, which at large enough temperatures
form a Bose liquid. As the temperature on the BCS side
decreases, loosely bound Cooper pairs of fermions start to
form at T < T� and condense below a critical temperature
Tc. On the BEC side, Bose-Einstein condensation of the
bosonic molecules occurs for T < Tc. Between these two
regimes and at T < Tc, there exists a strongly coupled
regime of unconventional superfluidity around the point of
infinite scattering length 1

kFa
¼ 0, which is known as the

unitary Fermi gas.
Superfluids are quantum fluids which can sustain non-

perturbative excitations such as solitons and vortices [8,9].
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One kind of soliton is the so-called dark soliton, which
interpolates between the two phases of the system.1 The
core of dark solitons is in the normal state where the
condensate vanishes, while asymptotically far away from
the core the soliton is in the superfluid state. The core
properties can be used to provide insights into the micro-
scopic structure of the superfluid [11]. It was found that, at
zero temperature, solitons display distinctively different
core properties in the BEC and BCS regimes. For the BEC
superfluid, solitons have vanishing core particle number
density, because bosonic molecules fully condense below
the critical temperature, and there are no noncondensed
states available. But in the core of the BCS dark soliton,
there are still unpaired fermionic atoms or loosely bound
Cooper pairs in excited states, which lead to a nonvanishing
core particle number density. At finite temperature, even in
the BEC superfluid there will be a small number of
uncondensed particles arising from thermal excitation
[12]. In order to quantify these properties, the depletion
fraction of the particle number density at the core is defined
as ρmax−ρmin

ρmax
. Here, ρmin is the density at the core, while ρmax is

the particle number density far away from the core.
The depletion fraction was investigated in Bogoliubov–
de Gennes theory in Ref. [11], where it was found that in
the BEC regime the core contains almost no particles,
i.e., the depletion is almost 100%, while in the BCS regime
the soliton core still contains some particles at very low
temperatures, with a depletion of about 30%. Furthermore,

during the crossover from the BCS regime to the BEC
regime, the depletion correspondingly undergoes a con-
tinuous variation from 30% to 100%.
Holographic methods can be used to describe

unconventional superconductivity and superfluidity [5,6].
Holographic dark solitons in the probe limit, i.e., neglecting
the backreaction on the black-brane space-times forming
the background, have been obtained in Refs. [8,12,13]. The
depletion fraction for the particle number density was
calculated in the two different quantizations possible in
AdS=CFT, i.e., standard and alternative quantization. As
explained in more detail below, both quantizations are
related by a double-trace deformation. By comparing the
holographic results with the depletion characteristics
described above, a condensate with standard (alternative)
quantization was found to show similar characteristics as in
the BCS (BEC) regime in Ref. [12]. For ease of compari-
son, we will refer to the condition of standard (alternative)
quantization as the BCS (BEC) case. Moreover, the authors
of Refs. [8,12] conjectured that one may implement the
BCS-BEC crossover in holographic superfluid systems by
varying the scaling dimension of the condensing operator.
It was also argued in Ref. [14] that by introducing

double-trace deformations of the charged scalar, it is
possible to model the interaction between fermionic con-
stituents of the boundary system. By continuously tuning
the coupling constant (denoted as κ below) of the defor-
mation, the salient features of the physics of the BCS-BEC
crossover can be captured. In fact, the two independent
arguments in Refs. [8,12,13] and Ref. [14] are related:
according to Refs. [15–18], perturbing the large N boun-
dary theory by a relevant double-trace deformation corre-
sponds to imposing mixed boundary conditions ψþ ¼ κψ−
for a scalar field in the bulk, where κ is related to the
coupling constant of the double-trace deformation. κ ¼ 0
(κ ¼ −∞) is the boundary condition for alternative (stan-
dard) quantization. Adding the perturbation will trigger a
renormalization group (RG) flow from the original con-
formal field theory (CFT) in the UV to another conformal
fixed point in the IR. Under this flow, the conformal
dimension ofO varies between Δ− in the UVand Δþ in the
IR, i.e., the two inequivalent boundary CFTs Δ ¼ Δ� can
be recovered as two limits of the same deformed theory.
The argument of Refs. [8,12,13] leaves an important

caveat: while the experimental results are obtained at nearly
zero temperature, theholographicprobe limit that ignores the
backreaction of the matter fields onto the metric is known to
break down in the low-temperature regime. In particular, the
condensate in the alternative quantization diverges near zero
temperature [19], which is a sign of the backreaction
becoming important at low temperatures. In this work, we
hence study the behavior of dark solitons in a holographic
superfluid system including backreaction. The dark soliton
configurations are constructed by numerically solving the
Einstein equations coupled to the matter fields. In particular,

FIG. 1. Qualitative phase diagram reproduced from Ref. [7] of
the BCS-BEC crossover as a function of temperature T=EF and
coupling 1=kFa, where kF is the Fermi momentum and a is the
scattering length. T� is the pairing onset temperature, while Tc is
the critical temperature for the superfluidity.

1Dark solitons include gray solitons with definite velocity and
black solitons that are static [10]. We focus on black solitons in
this work.
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we employ the DeTurck method for finding stationary
solutions, first introduced in AdS=CFT in Ref. [20] and
further developed in Ref. [21]. This method can reformulate
the Einstein equations into a manifestly elliptic form by
adding a covariant gauge-fixing term to the Einstein equa-
tions, which gives a well-posed boundary value problem.
Another drawback of the probe limit is that the boundary

stress-energy tensor of the condensate cannot be investi-
gated, which conceals information about important thermo-
dynamic quantities, such as the effective energy (mass) and
entropy of the soliton. Taking into account the backreaction
allows us to extract these quantities. Interestingly, it turns out
that our result for the effective energy (mass) of the dark
soliton, together with the surface tension of our holographic
dark solitons, is consistent with previous expectations
[22,23] for the physicalmechanism of a particular instability
of dark solitons: the so-called snake instability. The snake
instability is an instability of solitons under transverse
perturbations, leading to the spontaneous formation of a
snake-like bending of the solitons. The snake instability was
observed in different physical systems [24–26], and has
attracted much theoretical attention [23,27–30]. In holog-
raphy, the authors of Ref. [31] identified the snake instability
of holographic superfluids in the probe limit via the
appearance of unstable quasinormal modes in the bulk,
and observed the final decay of the “snake” into vortex-
antivortex pairs. The investigation of Ref. [31] was system-
atic but not as intuitive as effective arguments from
mechanics or hydrodynamics (see, e.g., Refs. [22,23]). In
this work we holographically confirm the explanation of the
snake instability of dark solitons [22,23] by calculating the
negative effective mass responsible for the self-acceleration
effect [22], aswell as the positive surface tension responsible
for the spontaneous generation of ripples on the soliton [23].
This paper is organized as follows. In the next section,

we briefly introduce our holographic superfluid model and
analyze the Ansätze and boundary conditions necessary for
solving the equations of motion. In Sec. III, our numerical
scheme and main numerical results are discussed.
Section IV is devoted to the thermodynamics of the
holographic dark soliton and to holographically confirming
the mechanism of the snake instability. A summary and
outlook are included in Sec. V.

II. HOLOGRAPHIC SETUP

Wework with the simplest holographic superfluid model
which requires gravity coupled to a Maxwell field Aμ and a
massive charged scalar field Ψ with charge e. The bulk
action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ24
ðR − 2ΛÞ

−
1

e2

�
1

4
FμνFμν þ jDΨj2 þm2jΨj2

��
; ð1Þ

where we have rescaled the gauge field Aμ and the scalar Ψ
to Aμ

e and Ψ
e compared to the original form [5,6]. L is the

anti–de Sitter (AdS) radius related to the cosmological
constant as Λ ¼ − 3

L2, and m is the mass of the charged
scalar. The covariant derivative is Dμ ¼ ∇μ − iAμ, where
∇μ is the Christoffel covariant derivative with respect
to the background metric gμν. Fμν ¼ ∂μAν − ∂νAμ is
the field strength. In the rest of the paper we set L ¼ 1.
The equations of motion derived from the action take the
following form:

Rμν−Λgμν−
2κ24
e2

�
1

2
½DμΨðDνΨÞ†þDνΨðDμΨÞ†þgμνm2jΨj2�

þ
�
1

2
FμσFν

σ−
gμν
8
FρσFρσ

��
¼0; ð2Þ

DμDμΨ −m2Ψ ¼ 0; ð3Þ

∇μFμν ¼ igμν½Ψ†ðDμΨÞ − ΨðDμΨÞ†�: ð4Þ

In the probe limit 2κ2
4

e2 ≪ 1, the backreaction of the terms
involving the gauge field and the charged scalar on
the background geometry in Eq. (2) can be neglected.
In this limit, one can first solve the Einstein equations
Rμν − Λgμν ¼ 0 for the fixed background metric gμν, and
then solve the matter equations (3) and (4) on top of that

fixed background. Once 2κ2
4

e2 is not small this is no longer
possible, and the full coupled set of equations (2)–(4) have
to be solved. In this work we are interested in the effect of
backreaction. In the following we will set the charge of the
scalar e ¼ 1 and define the backreaction parameter ϵ≡ 2κ24
as a measure of the strength of backreaction.
In the absence of the charged scalar in Eq. (1), the

solution of the Einstein equations is the Reissner-
Nordström-AdS black brane

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dz2 þ dy2
�
; ð5Þ

fðzÞ¼ 1−
�
1þ ϵμ2z2þ

4

��
z
zþ

�
3

þ ϵμ2z2þ
4

�
z
zþ

�
4

; ð6Þ

A ¼ μ

�
1 −

�
z
zþ

��
dt; ð7Þ

where μ is the chemical potential and zþ parametrizes the
black-brane temperature via

T ¼ 1

4πzþ

�
3 −

ϵμ2z2þ
4

�
: ð8Þ

For numerical convenience [32], we make the following
radical coordinate transformation with zh ≡ 1

zþ
:
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z ¼ 1 − r2

zh
: ð9Þ

In order to construct the backreacted geometries, we use
the following Ansatz compatible with staticity and trans-
lation invariance in the second boundary direction y:

ds2 ¼ z2h
ð1 − r2Þ2

�
−Q1fðrÞdt2 þ

4r2Q2dr2

z2hfðrÞ

þQ4

�
dx −

2r
zh

Q3dr

�
2

þQ5dy2
�
; ð10Þ

Ψ ¼
�
1 − r2

zh

�
Q6; ð11Þ

A ¼ μr2Q7dt: ð12Þ

Here fQiji ¼ 1; 2;…; 7g are functions of r and x to be
determined by solving Eqs. (2)–(4). In the coordinate (9),
the conformal boundary is located at r ¼ 1, while the
horizon is at r ¼ 0 where the regularity of Qi must be
imposed. Expanding the equations of motion near the
horizon as a power series in r and requiring the leading
order to vanish yields the boundary conditions

Q1jr¼0¼Q2jr¼0; ð∂rQjÞjr¼0¼ 0; j¼ 2;3;…7: ð13Þ

In particular, the Dirichlet condition for Q1 in Eq. (13)
ensures that the temperature of the black brane is still given
by Eq. (8). At the conformal boundary, we demand that the
metric approaches AdS4, i.e.,

Q1jr¼1¼Q2jr¼1¼Q4jr¼1¼Q5jr¼1¼ 1;Q3jr¼1¼ 0: ð14Þ

In the asymptotically AdS regime, the scalar field Ψ
behaves in the z coordinate as

Ψ ¼ ψ−zΔ− þ ψþzΔþ þ… ð15Þ

Here Δ� ¼ 3=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þm2L2

p
is the conformal dimen-

sion of the operator O dual to ψ . We choose m2L2 ¼ −2.
According to the AdS=CFT correspondence, in the standard
quantization, one identifiesψ−with the source of the operator
O2 having the conformal dimension Δþ ¼ 2, while ψþ is
regarded as the response (expectation value). Alternatively,
one can exchange the roles of ψ− and ψþ in the dual field
theory, i.e., ψ is dual to the operatorO1 having the conformal
dimensionΔ− ¼ 1with sourceψþ and expectationvalueψ−.
Since we want to investigate a spontaneously generated
condensate in the absence of sources, we will set ψ− ¼ 0
(standard case) or ψþ ¼ 0 (alternative case) on the
conformal boundary. Generally, the mixed boundary con-
ditionψþ ¼ κψ− can also be imposed, which is known as the
double-trace boundary condition since it corresponds to a

deformation of the dual theory by adding a term∼
R
d3xO†O

to its boundary action Sbdry [15–17]. Finally, the gauge field
admits the usual UV expansion

At ¼ μ − ρzþ… ð16Þ
μ is interpreted as the chemical potential, and ρ is the charge
(or particle number) density. Since the ground state of the
system is conformal, we can scale out one dimensionful
quantity. Throughout this paper, we do so by normalizing all
dimensionful quantities with the chemical potential, which
we set to the fixed value μ ¼ 5.6.2

III. NUMERICAL SCHEME AND RESULTS

We employ the DeTurck method to numerically solve
the Einstein equations; for a recent review, see Ref. [33].
This method consists of adding the gauge-fixing term
1
2
Lξgμν ¼ ∇ðμξνÞ to the Einstein equations (2), which

breaks all diffeomorphisms and yields elliptic Einstein-
DeTurck equations,

Rμν−Λgμν−ϵ

�
1

2
½DμΨðDνΨÞ†þDνΨðDμΨÞ†þgμνm2jΨj2�

þ
�
1

2
FμσFν

σ−
gμν
8
FρσFρσ

��
−∇ðμξνÞ ¼0: ð17Þ

Here the DeTurck vector ξν ≡ gρσ½Γν
ρσðgÞ − Γ̄ν

ρσðḡÞ� is
constructed from the difference of the Christoffel symbols
of the metric gμν (which we aim to solve for) and a
reference metric ḡμν. The reference metric has to have the
same asymptotics and symmetries as the metric gμν we are
trying to solve for. In our scheme, we take the standard
AdS Reissner-Nordström metric (5), corresponding to
Q1 ¼ Q2 ¼ Q4 ¼ Q5 ¼ 1 and Q3 ¼ 0 in Eq. (10). We
then find solutions to the Einstein-DeTurck equation with the
constraint condition ξμ ¼ 0, which ensures that our solution
coincides with a solution to the Einstein equations (2).3

The nonlinear partial differential equations (PDEs) (3),
(4), and (17), together with the boundary conditions
(13)–(14) are then solved via the Newton-Kantorovich
method. To be specific, we first linearize the PDEs and
then discretize the linear partial differential equations into
algebraic equations via the standard pseudospectral pro-
cedure, where we represent unknown functions as linear
combinations of Chebyshev polynomials in the z coordinate
and a Fourier series in the x coordinate.4 Our integration

2This value turns out to be numerically convenient in terms of
the convergence speed of our code.

3We have checked that jξ2j < 10−10 when the size of the grids
reaches 30 × 150.

4Since a single soliton has no periodicity in the x direction, for
the simplicity of the spatial boundary conditions and efficiency of
the numerics we follow Ref. [34] and instead construct the double
soliton (kink-antikink) configuration, and then analyze a single
soliton.
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domains lives on a rectangular grid, ðr; xÞ ∈ ð0; 1Þ×
ð− Lx

2
; Lx
2
Þ. The resulting linear system is solved by lower-

upper decomposition or other iterative techniques.
At a critical temperature T ¼ Tc, an instability of the

black brane to form charged scalar hair occurs. This
instability corresponds to a phase transition in the boundary
theory. We begin with a discussion of the critical temper-
ature Tc and its dependence on the backreaction as given by
the backreaction parameter ϵ ¼ 2κ24. To determine where
our solutions become unstable, we have to determine the
critical temperature for a given ϵ. We do this by perturbing
the Reissner-Nordström background (5) with the scalar
field ψ ¼ ϕðrÞe−iωpt. At the onset of the instability, the
frequency of the unstable mode crosses zero, ωp ¼ 0. The
critical temperature Tc itself is therefore found by looking
for a static normalizable solution to the scalar equation of
motion with ωp ¼ 0. The results are shown in Fig. 2. We
find that in the alternative quantization Tc=μ is always
higher than in the standard case, since the alternative
boundary conditions allow for more modes to become
unstable in the IR, i.e., in the deep interior of the space, in
the sense that they violate the Breitenlohner-Freedman
bound there [35]. Furthermore, in AdS=CFT the mass of
the scalar field in the bulk determines the dimension of the
operator in standard (Δþ)/alternative (Δ−) quantization via

Δ� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þm2L2

q
. From the field-theoretic point of

view, the dimension of the operator in the alternative
quantization is always smaller than that in the standard
case, Δ− < Δþ.

5 The operator with the smaller scaling
dimension is more relevant in the RG sense, and its effects
will be more pronounced already at larger values of the
renormalization scale. Hence, this operator will condense at
higher temperatures, explaining the larger Tc in the alter-
native case.

In relation to this, we find that for a value of the
backreaction parameter in the range ϵ ∈ ½0; 1�, the critical
temperature for the alternative (BEC) case has only a milder
dependence on ϵ compared to that in the standard (BCS)
case. Within this range, the backreaction is relatively
weak, and we can expand the blackening factor fðzÞ in a
power series in ϵ near the probe limit ϵ ¼ 0 [6,19],6 with the
first correction being

fðzÞ¼1−
�

z
zþ

�
3

þϵ

�
3μ

8πT

�
2
�

z
zþ

�
3
�

z
zþ

−1

�
þ… ð18Þ

Since ϵ is multiplied by ðμ=TÞ2, just below the critical
temperature the effect of backreaction is suppressed for
higher Tc=μ. Since Tc=μ is at least a factor of 4 larger in the
alternative case, the backreaction-induced change in fðzÞ in
the alternative quantization is reduced by a factor of 16
compared to the standard case. This implies that in the
alternative case, the equations of motions are far less
sensitive to changes in the backreaction parameter. In
particular, the change in Tc=μ to order ϵ is also suppressed
compared to the standard case. In summary, the insensi-
tivity of Tc=μ to the backreaction parameter in the alter-
native case is due to the enhancement of Tc=μ in the probe
limit as compared to the standard case.
The previous argument is corroborated by the change in

the scalar field profile Ψ as shown for the scalar in Fig. 3,
which is also found to be much weaker in the alternative
quantization compared to the standard case. Also, the
boundary condition of Ψ on the horizon,

∂ξΨ
Ψ

				
ξ¼1

¼ −
8

ϵð3μ=4πTÞ2 − 12
þ…; ξ ¼ z

zþ
; ð19Þ

FIG. 2. Absolute (a) and normalized (b) critical temperature for varying backreaction parameter ϵ. T0 is the critical temperature in the
probe limit ϵ ¼ 0. The critical temperature drops with increasing backreaction for both the standard and alternative quantization,
indicating a suppression of the condensate mechanism.

5Equality is reached at the Breitenlohner-Freedman bound
m2L2 ¼ −d2=4.

6A possible hyperscaling-violating factor has been ruled out by
the construction of the IR fixed point in Ref. [35].
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depends more mildly on ϵ in the alternative quantization.
Thus, we see that in all cases Tc=μ in the probe limit
controls the first correction in the backreaction parameter ϵ,
and hence in the alternative quantization it depends more
weakly on the backreaction. However, in a wider range of ϵ,

the dependence on ϵ can only be found numerically, as
shown in Fig. 4.
Based on the above results for the critical temperature,

we now construct the solution with backreaction for
T < Tc. These are hairy charged black holes dual to the
superfluid phase. The seed configurations of the matter
field can be chosen as ψ�∼tanhðx−Lx=4Þtanhð−x−Lx=4Þ.
As a result, the components of the metric and the
configuration of the matter fields are shown in Figs. 5

FIG. 3. Profiles of Ψ=Ψh just below the critical temperature,
where Ψh is the value of Ψ on the horizon. We show the cases of
ϵ ¼ 0 (solid line), ϵ ¼ 1 (dashed line), and ϵ ¼ 10 (dot-dashed
line). The blue (red) line refers to the profile in the standard
(alternative) quantization.

FIG. 4. Tc=μ in the standard quantization (blue) and alternative
quantization (red).

FIG. 5. The profile of (a) the function Q1 setting the tt metric component, (b) the function Q3 setting, together with Q4, the rr metric
component, (c) the function Q6 setting the charged scalar profile, and (d) the function Q7 setting the t component of the gauge field, at
ϵ ¼ 0.25, T=Tc ¼ 0.5 in the standard quantization.
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and 6. We can see that larger fluctuations of the spacetime
metric appear only near the core of the soliton.
From the asymptotic form of the matter fields, we then

read off the expectation value of the charged condensate
and the particle number density in the dual field theory.
These are shown in Fig. 7. As found in Refs. [8,12], in
the probe limit for the BEC superfluid the soliton shows
a larger depletion fraction which is, however, smaller
than 100%.7 We expect that the depletion will be close
to 100% at lower temperature, where backreaction has to be
included. The dependence of the depletion factor on
temperature for different ϵ is plotted in Fig. 8. Contrary
to expectations, for the BEC soliton the depletion in
the core is considerably smaller than 100%, and even
lower than that in the probe limit at low temperature. As
Fig. 9 shows, the depletion decreases as the backreaction
increases. This behavior is observed in both the BCS and
BEC regime of our holographic model. We give a

qualitative interpretation of this behavior in terms of the
balance between uncondensed and condensed charge in the
boundary theory as the homogeneous and normal state is
reached under the limit of large backreaction in the
Appendix B. We think that the underlying reason for this
behavior is the nature of the condensate zero-temperature
IR fixed point, which may be uncharged. In the near future
we plan to analyze this fixed point using analytic methods
along the lines of Ref. [36], and also construct other fixed
points which show increasing depletion with decreasing
temperature.

IV. A SIMPLE MECHANISM FOR THE SNAKE
INSTABILITY

In this section we turn to the discussion of the thermo-
dynamics of our holographic dark soliton solution, as well
as its instabilities. Since the boundary chemical potential
and temperature are fixed, our system is in the grand
canonical ensemble characterized by the grand potential

Ω ¼ E − TS − μN: ð20Þ

FIG. 6. The profile of (a) the function Q1 setting the tt metric component, (b) the function Q3 setting, together with Q4, the rr metric
component, (c) the function Q6 setting the charged scalar profile, and (d) the function Q7 setting the t component of the gauge field, at
ϵ ¼ 0.25, T=Tc ¼ 0.5 in the alternative quantization.

7One possible explanation for this finding is that the temper-
ature here is not low enough. In fact, the solution with back-
reaction at lower temperature is still very unreliable and difficult
to obtain using numerical methods.
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FIG. 7. The condensate (a) and the particle number density (b) as a function of x at ϵ ¼ 0.25; T=Tc ¼ 0.5. ϱþ and ϱ− are the particle
number densities normalized with their equilibrium values at x → �∞. Red solid lines correspond to the alternative (BEC) case, while
blue dashed lines correspond to the standard (BCS) case. The charge depletion is considerably larger in the BEC case compared to the
BCS case.

FIG. 8. The depletion of the particle number density as a function of T=Tc for different ϵ in the (a) standard (BCS) and (b) alternative
(BEC) case. In both cases, the depletion factor decreases with increasing backreaction, i.e., more charge is present at the soliton core.

FIG. 9. The depletion of the particle number density as a function of ϵ at T=Tc ¼ 0.5. The inset panel shows the change in the particle
number density far away from the core of the soliton and at the core. In both cases, increasing backreaction reduces the charge depletion.
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Here N is the total particle number obtained by integrating
the charge density ρ over space. The internal energy is
found to be

E ¼
Z
Σt

d2x
ffiffiffi
η

p ½Tμνð∂tÞμ�tν: ð21Þ

Here ημν is the induced metric on the surface Σt at z ¼ 0

and t ¼ const, with unit normal vector tν, and Tμν is the
holographic stress-energy tensor; see Appendix A for a
detailed calculation. S is the usual black hole entropy,
given by

S ¼ Ah

4G
¼ 4πz2h

ϵ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4ð0; xÞQ5ð0; xÞ

p
d2x: ð22Þ

Since the soliton extends in a noncompact spatial direction,
in what follows we will consider densities of the above
thermodynamic quantities. In particular, the grand potential
Ω and the energy E are replaced by their respective
densities ω and ε. Far away from the soliton center, these
local quantities will approach their homogeneous equilib-
rium values. Therefore, the soliton core is characterized by

the difference between these local densities and their
equilibrium values.
The energy density difference is displayed in Fig. 10(b),

where we see an obvious energy depletion around the
soliton core.8 Upon integration along x, this depletion
yields a negative effective energy difference ΔE ¼ −7.220
(in units of the chemical potential μ). This energy differ-
ence ΔE can be seen to set the effective mass of the soliton,
which is negative, as expected for a dark soliton [22].
The grand potential density difference is plotted in

Fig. 11(b), from which we see that there is a grand potential
cost for the soliton with respect to the homogeneous
background. Upon integration along x, the grand potential
cost of the soliton yields the surface tension coefficient of
the soliton. The surface tension coefficient σ of a domain
wall such as the soliton is defined as the external work W
necessary to enlarge the surface by a unit area while
keeping temperature and chemical potential fixed. Under

FIG. 10. Total (a) and subtracted (b) energy density at ϵ ¼ 0.25, T ¼ 0.5Tc. The subtracted energy density, which can be interpreted as
the effective mass density of the soliton in the condensate phase, is found to be negative.

FIG. 11. Total (a) and subtracted (b) grand potential density at ϵ ¼ 0.25, T ¼ 0.5Tc. After integration over the width of the soliton, the
latter becomes the surface tension of the soliton, which is found to be positive.

8In this section, we only show the explicit results for the soliton
in the BCS superfluid, while the results for the BEC case are
similar.
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these conditions, the external work is just the increase of
the grand potential due to the enlargement of the domain
wall surface, W ¼ Ω −Ω0, with Ω0 being the grand
potential of the corresponding homogeneous system with-
out the domain wall. For the case displayed in Fig. 11(b),
we numerically determine the surface tension in units of the
chemical potential to be σ ¼ 6.615. As a consistency check
for our numerics, we also plot the pressure anisotropy
B≡ px − p in Fig. 12(a) and check the thermodynamic
relation ω ¼ −p, where p is the average pressure, which
should hold far away from the soliton center.
With the results for these thermodynamic variables, we

can confirm the following explanation for the so-called
snake instability of the dark soliton [23]. The soliton moves
through the condensate as a heavy, i.e., nonrelativistic
particle [22]. Since it has a negative effective mass
Meff ¼ ΔE < 0, its energy Es ¼ Meff

2
_q2 decreases with

increasing velocity _q. As shown in Ref. [22], for a
homogeneous solitonic configuration, the velocity grows
exponentially. This is the so-called self-acceleration insta-
bility [22] of the dark soliton. The self-acceleration
originates from the dissipative interaction of the soliton
with the surrounding condensate. As discussed in Ref. [22],
for a homogeneous soliton configuration the self-
acceleration terminates once the soliton velocity reaches
the speed of sound, at which point the soliton decays into
sound waves that dissipate away in the condensate.
On the other hand, the soliton has a positive surface

tension coefficient σ. As shown in the hydrodynamic
approximation in Ref. [23], the combined effect of the
negative effective mass together with the positive surface
tension leads to a growing transverse bending mode with a
finite wave vector. The same instability was also found in
the holographic quasinormal mode spectrum in Ref. [31].
Once this transverse bending mode starts to grow, the self-
acceleration instability enhances the local bending, leading
to the formation of a snake-like structure.

V. CONCLUSIONS AND DISCUSSIONS

We investigated the implications of including the gravi-
tational backreaction onto solitons in holographic super-
fluid systems. We numerically solved the Einstein
equations coupled with the relevant matter fields. As
compared to the probe limit, and contrary to our original
expectations, increasing the backreaction decreases the
depletion of the particle number density in the soliton
core. We gave a qualitative interpretation of this in terms of
the balance of the ratios of condensate and noncondensate
over total charge in the dual field theory as a homogeneous
state is reached at strong backreaction. Finally, we com-
puted the holographic stress-energy tensor of the system
and confirmed a simple holographic explanation for the
snake instability of the dark soliton.
In this work, we restricted ourselves to the asymptotic

regimes of BEC and BCS superfluidity. In particular, we
did not investigate the Robin boundary conditions neces-
sary to model the actual unitary regime, in which the
strongly coupled unitary fermion system is expected to live.
We plan to investigate the behavior of the soliton in the
crossover regime in future work. Such an investigation may
in particular provide a better description of the intermediate
unitary fermion regime, for which the Bogoliubov–de
Gennes theory provides only a broad approximation
[23]. Furthermore, our qualitative interpretation of the
reduction of the depletion factor implicitly relies on the
assumption of a noncondensate homogeneous infrared
fixed point at strong backreaction or low temperatures.
In our holographic superfluid strong backreaction implies a
smaller critical temperature, and hence the limit of strong
backreaction is equivalent to the limit of low temperatures.
Only if the homogeneous infrared fixed point is non-
condensate, i.e., the condensing operator is irrelevant at
the infrared fixed point, can the system return to the
noncondensate state in the low-temperature limit. We will
investigate the possible infrared fixed points in our system

FIG. 12. Pressure anisotropy (a) and thermodynamical relation (b) at ϵ ¼ 0.25, T ¼ 0.5Tc. Panel (b) in particular shows that the
system is in a thermalized state away from the soliton core.
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along the lines of Ref. [36] to support our qualitative
interpretation in future work. In the thin-domain-wall
limit of the soliton, an analytic treatment of the domain
wall in terms of a brane with junction conditions is also
conceivable.
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APPENDIX A: HOLOGRAPHIC
STRESS-ENERGY TENSOR

In order to compute the holographic stress-energy tensor,
following the process of Refs. [37,38], we need to find the
asymptotic expansion of the metric at the conformal
boundary. The expansion is obtained by solving Eq. (17)
with boundary conditions order by order in (1 − r) and in
addition imposing ξμ ¼ 0,

Qiðr; xÞ ¼ 1 −
ϵQð0Þ

6 ðxÞ
z2h

ð1 − rÞ2 þ qiðxÞð1 − rÞ3

þO½ð1 − rÞ4�; i ¼ 1; 4; 5; ðA1aÞ

Q2ðr; xÞ ¼ 1þ 8ϵQð0Þ
6 ðxÞQð1Þ

6 ðxÞ
3z2h

ð1 − rÞ3 þO½ð1 − rÞ4�;

ðA1bÞ

Q3ðr; xÞ ¼
2ϵQð0Þ

6 ðxÞ∂xQ
ð0Þ
6 ðxÞ

z3h
ð1 − rÞ3 þO½ð1 − rÞ4�;

ðA1cÞ

Q6ðr; xÞ ¼ Qð0Þ
6 ðxÞ þQð1Þ

6 ðxÞð1 − rÞ þ � � � ; ðA1dÞ

Q7ðr; xÞ ¼ Qð0Þ
7 ðxÞ þQð1Þ

7 ðxÞð1 − rÞ þ � � � : ðA1eÞ

Here q1ðxÞ, q4ðxÞ, and q5ðxÞ satisfy Eqs. (A3a)–(A3b)
related to the tracelessness and conservation of the boun-
dary stress-energy tensor,

Ti
i ¼ 0; ∂iTij ¼ 0: ðA2Þ

Using these relations, one can explicitly show the following
conditions:

q1ðxÞ þ q4ðxÞ þ q5ðxÞ

¼ −
ϵQð0Þ

6 ðxÞð−3Qð0Þ
6 ðxÞ þ 8Qð1Þ

6 ðxÞÞ
z2h

; ðA3aÞ

∂xq4ðr; xÞ ¼ −
2ϵ½ð−3Qð0Þ

6 ðxÞ þ 8Qð1Þ
6 ðxÞÞ∂xQ

ð0Þ
6 ðxÞ þ 2Qð0Þ

6 ðxÞ∂xQ
ð1Þ
6 ðxÞ�

3z2h
: ðA3bÞ

Having obtained the asymptotic behavior of the metric
functions, one then changes to Fefferman-Graham coor-
dinates ðz; vÞ by an expansion of the series (A4a) and
demands gzz ¼ 1

z2 and gzv ¼ 0 to determine the two func-
tions fakðvÞ; bkðvÞg order by order in z. Here we provide
the first few terms necessary for the computation of the
holographic stress-energy tensor:

(
r ¼ 1 − zh

2
zþP∞

k¼2 akðvÞzk;
x ¼ vþP∞

k¼1 bkðvÞzk;
ðA4aÞ

a2ðvÞ ¼ −
z2h
8
; a3ðvÞ ¼ −

z3h
16

; ðA4bÞ

a4ðvÞ ¼
z2hð24ϵμ2 þ 51z2h þ 32ϵQð0Þ

6 ðvÞQð1Þ
6 ðvÞÞ

1152
; ðA4cÞ

b1ðvÞ ¼ b2ðvÞ ¼ b3ðvÞ ¼ 0; ðA4dÞ

b4ðvÞ ¼ −
ϵQð0Þ

6 ðvÞ∂vQ
ð0Þ
6 ðvÞ

16
: ðA4eÞ

Finally, the holographic stress-energy tensor is computed
by using Eq. (A5a) in the standard quantization and
Eq. (A5b) in the alternative quantization [39,40],

Tμν ¼
1

κ24
lim
z→0

1

z

�
Kμν − γμνK − 2γμν −

ϵ

2
jΨj2γμν

�
; ðA5aÞ
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Tμν ¼
1

κ24
lim
z→0

1

z

�
Kμν − γμνK − 2γμν

þ ϵ

2
ð−Ψ†nσDσΨ − C:C:þ jΨj2Þγμν

�
: ðA5bÞ

Here Kμν is the extrinsic curvature associated with an
inward-pointing unit normal vector nσ on the constant
z ¼ ϵ surface near the boundary. γμν is the induced metric
on the cutoff surface. The last term in Eq. (A5) cancels the
divergences due to the presence of the scalar field [41].

APPENDIX B: PARTICLE NUMBER (CHARGE)
CHANGE WITH BACKREACTION

Here we give a qualitative interpretation of the depletion
that decreases with increasing backreaction, in terms of the
balance between uncondensed and condensed charge in the

boundary theory as the homogeneous and normal state is
reached under the limit of large backreaction. For our static
but inhomogeneous charged scalar and gauge field con-
figuration, by integrating the t component of the Maxwell
equations (4) over the holographic r coordinate one obtains
the total particle number density in terms of three con-
tributions,

ffiffiffiffiffiffi
−g

p
Ftrjr¼1 ¼

ffiffiffiffiffiffi
−g

p
Ftrjr¼0 þ

Z
1

0

ð− ffiffiffiffiffiffi
−g

p
JtÞdr

þ
Z

1

0

∂x
ffiffiffiffiffiffi
−g

p
Fxtdr; ðB1Þ

Jν ¼ igμν½Ψ†ðDμΨÞ −ΨðDμΨÞ†�: ðB2Þ

On the right-hand side of Eq. (B1) the first term yields the
uncondensed particle number density, given by the electric
flux evaluated at the horizon. The second term is the

FIG. 13. Change of the total charge density (a), condensed charge density (b), uncondensed charge density (c), and soliton
contribution (d) with backreaction at T ¼ 0.5Tc in the standard (BCS) case.
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condensed particle number density. The third term is a
contribution arising from the inhomogeneous configuration
of the soliton,

Z
d2x

ffiffiffiffiffiffi
−g

p
Ftrjr¼1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

¼
Z

d2x
ffiffiffiffiffiffi
−g

p
Ftrjr¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nb

þ
Z

d2x
Z

1

0

ð− ffiffiffiffiffiffi
−g

p
JtÞdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nψ

: ðB3Þ

A relation between the total charge N, uncondensed
charge Nb, and condensed charge Nψ can be obtained by
integrating Eq. (B1) over the spatial part.9 After integration,

the soliton contribution in Eq. (B1) becomes a total
derivative and hence vanishes if we integrate over a
symmetric interval around x ¼ 0. The remaining terms
in Eq. (B1) yield the relation (B3), in which we denote the
three terms in order as N, Nb, and Nψ . The ratios of the
uncondensed and condensed charge over the total charge
then have to add up to one,

Nb

N
þ Nψ

N
¼ 1: ðB4Þ

As can be seen from Figs. 13 and 14, the backreaction
suppresses the condensed particle density and promotes the
uncondensed particle number density. On the other hand,
from Fig. 15 the condensate (order parameter) far away
from the soliton core also decreases strongly with increas-
ing backreaction. It seems that the system returns to a
homogeneous noncondensate state in the limit of large
backreaction. This is, in particular, obvious for the BEC
case [Fig. 15(b)], but the trend is also obvious for the BCS

FIG. 14. Change of the total charge density (a), condensed charge density (b), uncondensed charge density (c), and soliton
contribution (d) with backreaction at T ¼ 0.5Tc in the alternative (BEC) case.

9The spatial domain of all integrations above is ð− Lx
2
; Lx
2
Þ×

ð− Ly

2
; Ly

2
Þ. Due to the translation symmetry along the y direction,

we normalize these charges with regard to Ly.
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case [Fig. 15(a)]. Furthermore, this interpretation of the
data is consistent with the general expectation that back-
reaction inhibits the formation of the condensate in a
holographic superconductor [42]. The suppression of the
condensate implies that the ratio of condensate to total
charge monotonically decreases with increasing backreac-
tion. This can be seen from Fig. 16. Since the ratios of the

condensate and noncondensate charge over the total charge
are bound to add up to one by charge conservation, the ratio
of noncondensate to total charge hence must increase with
increasing backreaction. Taking these two facts together,
we deduce that the depletion at the soliton core must
decrease and vanish as the system approaches a homo-
geneous and normal state.
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