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In this paper, we holographically study the renormalization group (RG) flow in a three-dimensional
Einstein-dilaton gravity with a specific scalar potential, which permits several different types of the RG
flow with nontrivial beta functions. By using the intrinsic parameter of the potential, we classify the
possible holographic RG flows and examine their physical features. Using the Ryu-Takayanagi
formulation, furthermore, we investigate how the c function of the entanglement entropy behaves along
with the RG flow numerically. We show that the entanglement c function monotonically decreases even in
the cases with a nontrivial beta function. For checking the consistency, we also compare the result of the
entanglement entropy with the c function derived from the holographic renormalization procedure.

DOI: 10.1103/PhysRevD.101.086008

I. INTRODUCTION

Among contemporary theoretical physics, holography
becomes one of the important research areas. Especially
after the AdS=CFT correspondence proposed in [1–4] this
conjecture has provided a new tool to understand quantum
gravity and nonperturbative quantum features of the quan-
tum field theory. Recently, the entanglement entropy has
paid attention to both string theory and condensed matter
theory. The entanglement entropy measures the degrees of
freedom confined in an arbitrarily chosen spacelike sub-
system. In two-dimensional conformal field theories, it has
been shown that the coefficient of the universal term in the
entanglement entropy is proportional to the central charge
representing the degrees of freedom [5–8]. There are many
attempts to generalize the two-dimensional result into the
higher dimensional cases [9–12]. Despite its salient prop-
erty, the field-theoretic computation accompanies with a
very complicated analysis. In this circumstance, the holo-
graphic calculation [13,14] based on AdS=CFT correspon-
dence [1–4,15,16] provides a more tractable tool because it
enables us to interpret the entanglement entropy of strongly
interacting systems as a geodesic in the dual Einstein
gravity. In this work, we investigate the holographic
renormalization group (RG) flow of the entanglement
entropy and the property of the c function along the RG

trajectory when the boundary conformal field theory is
deformed by a relevant operator [17–35].
The AdS=CFT duality has provided the one-to-one map

between nonperturbative conformal field theories (CFT)
and gravity/string theories defined in a one-dimensional
higher anti–de Sitter (AdS) geometry at least in the large N
limit. Surprisingly, it was shown that the holographic
calculation of the entanglement entropy can reproduce
exactly the same results obtained in a two-dimensional
CFT [13,14]. However, when we consider a CFT deformed
by a relevant operator, the usual CFT description cannot be
used anymore at the low energy scale because the relevant
deformation spoils the conformal symmetry. In other
words, the relevant deformation can dramatically change
the UV theory at the IR energy scale. Therefore, a CFT
deformed by a relevant scalar operator gives us a chance to
find a new CFT at an IR fixed point. To understand such a
nontrivial RG flow from the holographic point of view, we
consider an Einstein-dilaton gravity with an appropriate
dilaton potential. The gravity theory, which admits a
smooth interpolation between UV and IR fixed points,
has been known not only in gauged supergravity theories in
AdS3 but also in other higher dimensional theories [36,37].
Recently, the authors of [38] found new solutions that show
exotic behaviors of the RG flow. Related to such exotic RG
solutions, in this work we investigate how the dual field
theory is modified along with the RG flow by using the
holographic renormalization and entanglement entropy
techniques.
One of the interesting and important tasks in physics may

be counting the number of degrees of freedom of quantum
field theories, which decreases monotonically along with
the RG flow. This feature called the c theorem is well
expressed by a c function depending on the energy scale.
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For a suitably chosen entangling surface, the universal
contribution to an entanglement entropy can be matched to
the c function [11,39]. Such a c function naturally reduces
to the central charge at fixed points. Especially, in order to
survey the diverse behaviors of c functions for various RG
flows, we introduce a specific dilaton potential with one
free parameter a. Relying on the value of a, in this work we
show that three different types of the RG flow, for instance,
the standard, staircase, and bouncing RG flows [38], are
possible. For a positive value of a, the standard RG flow
naturally appears. For a small negative value of a, the
staircase RG flow appears and the β function described by
the dilaton field repeatedly changes its magnitude without
changing the sign along the RG trajectory. In a large
negative value of a, interestingly, we obtain a bouncing RG
solution which has a similar feature to the cascading RG
flow studied in Ref. [38]. In general, the cascading RG flow
violates the Breitenlohner-Freedman (BF) bound at the UV
energy scale. However, the bouncing solution we found
does not violate the BF bound but changes the sign of the
β-functional iteratively. Another intriguing point we
observe is that in the bouncing RG solution, the number
of the sign change in the β function increases as the
absolute value of a becomes large. Despite the nontrivial β
functions, we find that the c functions of these RG flows
always decrease monotonically along with the RG flow.
The rest of this paper is organized as follows: In Sec. II,

we discuss the basic setup for computing both the holo-
graphic RG flow and the corresponding c function in the
Einstein-dilaton gravity. To do so, we introduce the first-
order formalism where the superpotential plays a central
role. In Sec. III, we take into account a toy model involving
an appropriate potential with one free parameter. In a
specific range of the parameter, the theory admits diverse
geometric solutions interpolating two AdS spaces that, on
the dual field theory side, represent various nontrivial RG
flows from a UV to an IR fixed point. We classify the
possible RG solutions and investigate their salient features.
Applying the RT formulation, in Sec. IV, we study the RG
flows of the entanglement entropy with several different
parameter values and investigate the corresponding
c theorems. Finally, we close this work with some con-
cluding remarks in Sec. V.

II. HOLOGRAPHIC RG FLOW IN
EINSTEIN-DILATON GRAVITY

In this section, we investigate how an asymptotic AdS
geometry deformed by a scalar field is connected to the RG
flow and what kind of the RG flow can occur depending on
the value of an intrinsic parameter. To do so, let us start by
briefly reviewing the holographic RG flow.
Let us consider a Euclidean version of a minimally

coupled Einstein-dilaton gravity with an arbitrary scalar
potential

S ¼ −
1

2κ2

Z
ddþ1X

ffiffiffi
g

p �
R −

1

2
gMN∂Mϕ∂Nϕ − VðϕÞ

�

þ 1

κ2

Z
∂M

ddx
ffiffiffi
γ

p
K; ð2:1Þ

where gMN and γμν indicate a bulk metric and an induced
metric on the boundary, respectively. Since the variation of
the gravity action usually contains a radial derivative of the
metric at the boundary, the Gibbons-Hawking term is
usually required to get rid of such a radial derivative term.
An extrinsic curvature, K ¼ gMNKMN , is given by a
covariant derivative of a unit normal vector. Assuming
that the dilaton field depends only on the radial coordinate
and that the boundary space is flat, the most general metric
ansatz preserving the boundary’s planar symmetry in the
normal coordinate can be represented as

ds2 ¼ e2AðyÞδμνdxμdxν þ dy2; ð2:2Þ

where the scale factor eAðyÞ measures the energy scale of
dual field theory and the dilaton field ϕðyÞ is interpreted as
a running coupling of the RG flow. Here, the geometric
solution is entirely determined by the scale factor AðyÞ. At a
conformal fixed point where the geometry becomes an AdS
space, the scale factor is simply AðyÞ ¼ −y=R where R is
the AdS curvature radius. In this description, we implicitly
assumed that the asymptotic UV boundary is located at
y ¼ −∞, while the IR boundary appears at y ¼ ∞. Hence,
two fixed points of an RG flow are matched to two
boundaries of the above metric ansatz (2.2). The details
of the geometry are governed by the equations of motion of
ϕðyÞ and AðyÞ

0 ¼ 2dðd − 1Þ _A2 − _ϕ2 þ 2VðϕÞ; ð2:3Þ

0 ¼ 2ðd − 1ÞÄþ _ϕ2; ð2:4Þ

0 ¼ ϕ̈þ d _A _ϕ−
∂VðϕÞ
∂ϕ ; ð2:5Þ

where the dot indicates a derivative with respect to y.
Above the first equation is a constraint, and the second and
third are dynamical equations of A and ϕ. Note that only
two of them are independent because combining the first
and second equations automatically leads to the third one.
As a consequence, Eqs. (2.3) and (2.4) can be regarded as
two independent equations determining the geometry up to
boundary conditions. It is worth noting that _A never
increases because of Ä ≤ 0 in (2.4). From the viewpoint
of the holographic RG flow, a holographic c function for
d ¼ 2 is defined as

c ¼ −
3

2G _A
; ð2:6Þ
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where the Newton constant is given by G ¼ 8πκ2. Using
this relation, the monotonically decreasing behavior of the
c function becomes manifest due to (2.4).
In the AdS=CFT, the radial coordinate of the bulk

geometry is usually identified with the energy scale of the
dual quantum field theory (QFT). This implies that there
exists a close relation between the radial motion of the bulk
fields and the RGequation of the dualQFT. This holographic
relation becomesmanifest whenwe introduce an appropriate
superpotential [40–43]. Under the following superpotential:

WðϕÞ ¼ −2ðd − 1Þ _A; ð2:7Þ

the previous second order Einstein equations in (2.3) and
(2.4) can be decomposed into two first order differential
equations,

_ϕðyÞ ¼ W0ðϕÞ; ð2:8Þ

V ¼ 1

2

�∂W
∂ϕ

�
2

−
d

4ðd − 1ÞW
2; ð2:9Þ

where the prime indicates a derivative with respect to ϕ.
One can easily check that these two first order equations
together with the superpotential in (2.7) are exactly the
same as the previous Einstein equations in (2.3) and (2.4).
If the boundary position moves from y ¼ −∞ to a finite
distance of y, this change of the boundary position is
associated with the change of the energy scale on the dual
field theory side. Since the value of ϕ at the boundary is
dual to the coupling constant of the dual field theory,
Eq. (2.8) represents the energy dependence of the coupling
constant on the dual field theory side, which is related to the
β function representing the RG flow of a coupling constant
(see [38,41] for more details),

βðϕÞ≡ dϕ
dA

¼
_ϕ
_A
¼ −2ðd − 1ÞW

0

W
: ð2:10Þ

Noting that the superpotential is proportional to the inverse
of the c function (W ∼ 1=c), we can easily check that the
superpotential does not decrease along the RG flow

dW
dy

≥ 0; ð2:11Þ

which is consistent with the c theorem.

III. VARIOUS RENORMALIZATION
GROUP FLOWS

To study several different kinds of the RG flow, we take
into account a toy model having a specific scalar potential

VðϕÞ ¼ −
dðd − 1Þ

R2
uv

þm2

2
ϕ2 þ aϕ2sin2ϕ; ð3:1Þ

where m2 ¼ −Δðd − ΔÞ=R2
uv and a is a free parameter. In

Fig. 1, we plot the potential with several different parameter
values. Above, the first and second terms indicate a
negative cosmological constant and a mass of the bulk
scalar field, respectively. The last term describes a non-
trivial interaction of the bulk scalar field. Notice that, when
expanding the potential (3.1) around the UV fixed point
ϕuv1 ¼ 0, the potential gives rise to infinitely many extrema
satisfying V 0ðϕ�Þ ¼ 0. Since the potential (3.1) is invariant
under ϕ → −ϕ, the expansion of the potential is given by

V 0ðϕÞ ¼ ðϕ− ϕuv1Þðϕ2 − ϕ2
ir1
Þðϕ2 − ϕ2

uv2Þðϕ2 − ϕ2
ir2
Þ � � � ;
ð3:2Þ

where we assume ϕuv1 <ϕir1 <ϕuv2 <ϕir2 < � � �. Hereafter,
we focus only on the RG flow interpolating the first two
fixed points, ϕuv1 and ϕir1 .
Assuming that ϕ approaches zero at the boundary, the

asymptotic geometry near the boundary is given by a
slightly deformed AdS geometry. In this case, ϕ and its
derivative correspond to a coupling constant (or source) and
a vacuum expectation value (VEV) of the dual scalar
operator in the dual field theory. Note that the asymptotic
AdS geometry can appear only for −d2=4 < m2R2

uv < 0. In
this case, the dual scalar operator becomes a relevant
operator. If m2 is not in this parameter region, the dual
scalar operator is irrelevant. On the gravity side, the
corresponding bulk field ϕ diverges at the boundary and
its gravitational backreaction modifies the asymptotic AdS
geometry seriously. For the massless case with m2 ¼ 0, the
bulk scalar field is dual to a marginal operator [44–46].
When we focus on the parameter region satisfying
−d2=4 < m2R2

uv < 0, the leading behavior of the asymp-
totic AdS space is described by

FIG. 1. The potential depending on the parameter a.
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AðyÞ ¼ −
y
Ruv

; ð3:3Þ

where the AdS radius Ruv is associated with the degrees of
freedom of the dual UV CFT.
Note that in the asymptotic region, the mass of the bulk

scalar field is associated with the conformal dimension, Δ,
of the dual scalar operator. The effect of the interaction term
of the potential in (3.1) is negligible at least in the
asymptotic region because we consider the relevant defor-
mation. Even in this case, in the intermediate and IR
regimes the effect of the interaction term becomes impor-
tant and modifies the AdS geometry seriously into another
geometry. In the asymptotic region, anyway, the gravita-
tional backreaction of ϕ slightly modifies the asymptotic
AdS geometry. In this case, the profile of the scalar field is
governed by the following equation of motion:

0 ¼ ϕ̈ −
d
Ruv

_ϕ −m2ϕ; ð3:4Þ

and its solution is given by

ϕ ¼ c1eðd−ΔÞy=Ruv þ c2eΔy=Ruv ; ð3:5Þ

where two integral constants, c1 and c2, are reinterpreted as
a coupling constant (or source) and a VEVof the dual scalar
operator, as mentioned before. Substituting the ϕ solution
(3.5) into Eq. (2.3), the deformed geometry up to higher
order corrections reduces to

A¼−
y
Ruv

−
c21

8ðd−1Þe
2ðd−ΔÞy=Ruv −

c22
8ðd−1Þe

2Δy=Ruv : ð3:6Þ

Near the UV fixed point with ϕ ¼ 0, we depict the
qualitative behavior of the potential relying on a in Fig. 2,
which shows that the UV fixed point is unstable regardless
of the value of a. This means that ϕ must roll down to
another stable vacuum. Recalling that the value of ϕ can be
reinterpreted as the coupling constant, the rolling of ϕ is

related to the β function discussed before. As shown in
Fig. 2, there exist two local minima near ϕ ¼ 0 that
correspond to the IR vacuum. The nearest two local minima
are always degenerate due to the invariance of the potential
under ϕ → −ϕ. From now on, we concentrate on the case
with ϕ ¼ ϕir and investigate the RG flow from the UV
fixed point with ϕ ¼ 0 to the IR fixed point with ϕ ¼ ϕir.
The IR fixed point is stable and has a different vacuum
energy VðϕirÞ from Vð0Þ at the UV fixed point. On the dual
field theory side, the different vacuum energy means that
another conformal field theory appears with a different
central charge at the IR fixed point. As a result, a geometric
solution interpolating two extrema with the rolling ϕ
describes the RG flow of the dual field theory from the
UV to IR fixed points with a nontrivial β function. In Fig. 3,
we plot numerical solutions satisfying all equations of
motion with several different parameter values. Relying on
the value of a, these numerical solutions can show several
different types of RG flow including an exotic RG flow
studied in Ref. [38]. Now, we discuss more details about the
possible RG flows.

A. Standard and IR incomplete RG flows for a ≥ 0

Here, we briefly summarize the standard and IR incom-
plete RG flows that usually appear in many holographic
models.

1. Standard RG flow

For a > 0, the local extremum at ϕ ¼ 0 becomes an
unstable local maximum. In this case, a stable local
minimum always exists near the local maximum.
Therefore, the scalar field ϕ naturally rolls down from
the local maximum to the other local minimum. On the dual
field theory side, this behavior corresponds to the RG flow
from the UV to IR fixed points. Moreover, the rolling of ϕ
is related to the β function of the dual field theory. Recalling
that the c function monotonically decreases with c > 0

along the RG flow, we can easily see that _A always has a
negative value, _A ¼ −3=ð2GcÞ < 0. This feature is also

FIG. 2. Qualitative behavior of the potential for d ¼ 2 and Δ ¼ 1.
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manifest in Fig. 3(b). Using this fact, the β function in
(2.10) can be reexpressed by β ∼ −c _ϕ. If the β function is
not oscillating during the RG flow, we call it the standard
RG flow. The solution for the standard RG flow was
constructed by using a variety of potentials (see Ref. [34]
and references therein for more details).

2. Incomplete IR RG flow

For a ¼ 0 unlike the case with a > 0, there is no local
minimum near the local maximum at ϕ ¼ 0. In this case,
the scalar field rolls down forever and finally diverges in the
IR limit. This fact indicates that there is no stable IR fixed
point which stops the rolling of the scalar field. From the
dual field theory viewpoint, the absence of the local
minimum corresponding to the IR fixed point implies
the incompleteness of the dual field theory. As a result,
the rolling of the scalar field for a ¼ 0 describes an IR
incomplete RG flow of the dual field theory.

B. Exotic (or novel) RG flow for a < 0

For a < 0, a new local minimum near the local maxi-
mum again appears. This fact, on the dual field theory side,
indicates that there exists a new stable IR fixed point. For
a < 0, however, the RG flow can show a different behavior
from the above standard RG flow, which was known as the
exotic (or novel) RG flow [38]. Relying on the behavior of
the β function, the exotic RG flow can be further classified
to staircase and bouncing RG flows.

1. Staircase RG flow

When a has a small negative value (a ¼ −0.55), the
numerical solution in Fig. 3 leads to a staircase RG flow
which, at first glance, seems to have several plateaux
satisfying _ϕ ¼ 0. Recalling that _ϕ ∼W0ðϕÞ is related to
the β function in (2.10), the existence of _ϕ ¼ 0 implies that
additional fixed points except the UV and IR fixed points
can exist in the staircase RG flow. In Fig. 4, we depict

W0ðϕÞ and V 0ðϕÞ for the standard and staircase RG flows.
In the standard RG flow in Fig. 4(a), the UV and IR fixed
points corresponding to the ends of the RG flow satisfy
W0ðϕÞ¼V 0ðϕÞ¼0 simultaneously. In this case, W0ðϕÞ ¼ 0
means that the β function vanishes and V 0ðϕÞ ¼ 0 indicates
that the corresponding dual theory is in a stable or unstable
equilibrium state. These two conditions are natural require-
ments to obtain the geometry dual to the ground state
of conformal field theories at UV and IR fixed points. In
Fig. 4(b), however, the staircase RG flow, as mentioned
before, looks to allow an additional fixed point satisfying
W0ðϕÞ ¼ V 0ðϕÞ ¼ 0 in the intermediate region of the RG
flow. To check whether such an additional fixed point really
exists, we zoom in the region around the origin of Fig. 4(b)
and plot the result in Fig. 4(c). Figure 4(c) shows that there
is no point satisfying W0ðϕÞ ¼ V 0ðϕÞ ¼ 0 simultaneously
except for the UV and IR fixed points.
The absence of an additional fixed point discussed above

becomes more manifest when we consider the β function
proportional to W0. We depict the β function as a function
of ϕ in Fig. 5, where there is no fixed point with a vanishing
β function except two UV and IR fixed points. In other
words, the β function does not change its sign during the
RG flow. It is worth noting that the β function appearing in
Fig. 5 always has a negative value except for the two fixed
points. This fact means that the coupling constant of
the dual field theory monotonically increases along with
the RG flow. Even in this case, since the magnitude of the
β function oscillates, the coupling constant repeats the fast
and slow increasing during the RG flow. We called this type
of the RG flow the staircase RG flow.

2. Bouncing RG flow

For a negatively large value of a (a ¼ −20 in Fig. 3), the
profile of ϕ in Fig. 3(a) shows totally different behavior
from the above staircase RG flow. ϕ is monotonically
increasing in the staircase RG flow, whereas it oscillates in
the case with a negatively large a. Since _ϕ is proportional to

FIG. 3. The profiles of (a) the scalar field ϕðyÞ and (b) the metric factor A, which represent the standard (a ¼ 1), staircase
ða ¼ −0.55Þ, and bouncing ða ¼ −20Þ RG flows, respectively.
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the β function, the oscillation of ϕ indicates that there exists
a point with a vanishing β function at which the β function
changes the sign unlike the staircase RG flow. This type of
RG flow was known as the bouncing RG flow [38].

To understand more details of the bouncing RG flow, we
introduce a new function by

BðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
4ðd − 1Þ

d
VðϕÞ

r
: ð3:7Þ

This new function is well defined only for V ≤ 0. In the
present work, we consider the RG flows represented by ϕ in
the range of ϕuv ≤ ϕ ≤ ϕir, so that the value of V during
the RG flow always has a negative value satisfying
VðϕirÞ < VðϕuvÞ < 0. Therefore, the BðϕÞ we introduced
is a well-defined positive function in the entire range of the
RG flow. Rewriting W0ðϕÞ in terms of the new positive
function BðϕÞ allows two possible branches

W0ðϕÞ≡ dW
dϕ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d

d − 1
ðW2 − B2Þ

r
: ð3:8Þ

At this stage, there are several remarkable points we
should note. First, the relation we obtained restricts the
range of W to the case of W ≥ B because the inside of the

FIG. 4. Phase diagram with (a) a ¼ 1 and (b) a ¼ −0.55, respectively. The two curves (a) and (b) flow counterclockwise starting from
the origin and terminate their flowing at the same origin. Notice that we distinguish the original point as the UVand the IR fixed points
by mapping it into the field or holographic coordinate space. One can easily find that except for the origin there are no intersection points
(W0 ¼ 0; V 0 ≠ 0) in the phase space.

FIG. 5. The β function of the staircase RG flow where two ends
of the RG flow denote the UV and IR fixed points.
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square root must be non-negative. Second, W0 vanishes at
W ¼ B and two possible branches are smoothly connected
at least up to the first order derivative. Suppose that the
gravity solution has a point satisfying W ¼ B in the
intermediate range of y. Then, one branch’s solution must
smoothly change into the other branch’s solution because
the region satisfying W2 < B2 is forbidden. This feature
makes the RG flow bounce back at W ¼ B and leads to a
vanishing β function. Because of these reasons, the RG
flow showing this feature is called the bouncing RG flow.
In Refs. [32, 38, 47], the authors explored the exotic RG
flows in different models and showed that bouncing
solutions can have vanishing β functions unlike the
standard and staircase RG flows, as explained before.
Last, although W0 ¼ 0 at the bouncing point leads to a
vanishing β function, it does not guarantee V0 ¼ 0. In
general, the point with W0 ¼ 0 is not coincident with the
point satisfying V 0 ¼ 0 except for the UV and IR fixed
points. In Fig. 6, we depict the curves of W0 and V 0 for
a ¼ −10 where two bouncing points with W0 ¼ 0 exist.
However, these bouncing points do not satisfy V 0 ¼ 0 in the
intermediate region, ϕuv < ϕ < ϕir. In summary, the
bouncing RG flow is the RG flow having the bouncing
points, where the β function vanishes, but it generally does
not lead to additional conformal fixed points due to V 0 ≠ 0.
Then, what is the meaning of β ¼ 0 in the bouncing RG
flow? A vanishing β function in the bouncing RG flow is
directly related to the change of the β function’s sign. This
fact implies that the energy dependence of the coupling
constant dramatically changes at the bouncing points. To
understand this point more precisely, we need to remember
that the positive or negative β function usually means that
the coupling constant decreases or increases along with the
RG flow, respectively. Therefore, the existence of a
bouncing point at an intermediate energy scale indicates

that a coupling constant increasing along the RG flow starts
to decrease after passing through the bouncing point, or
vice versa. In other words, the interaction strength of the
bouncing RG flow does not monotonically increase along
with the RG flow.
So far, we discussed several different types of the RG

flow relying on the value of a. Especially, the staircase RG
flow appears as shown in Fig. 3 for a ¼ −0.55. On the other
hand, we showed that the bouncing RG flows occur for
a ¼ −20 in Fig. 3 and for a ¼ −10 in Fig. 6. Now, we ask
how many bouncing points exist in the bouncing RG flow.
Although this question is very interesting, unfortunately
answering this question looks very difficult because finding
the number of bouncing points requires highly nontrivial
nonperturbative analysis. We leave this issue to future
work. In this work, instead, we discuss the qualitative
relation between the bouncing number and the intrinsic
parameter a by using the numerical analysis. In Fig. 7, we
depict the numerical behaviors of ϕ and ϕ0 in the parameter
region of the bouncing flow. For the bouncing RG flow in
Fig. 7, a starting point (ϕ ≠ 0 and ϕ0 ¼ 0) and an ending
point (ϕ ¼ 0 and ϕ0 ¼ 0) correspond to the UV and IR
fixed points, respectively. Except for these two conformal
fixed points, Fig. 7 shows that there exist several points
satisfying ϕ0 ¼ 0 in the course of the RG flow. Those
additional points exactly correspond to the bouncing points
of the bouncing RG flow. Intriguingly, the numerical result
in Fig. 7 indicates that the number of the bouncing points
increases when the absolute value of the parameter a
increases in the bouncing RG flow region.
Before closing this section, there are some remarks on

the relation between the bouncing RG flow and the
cascading RG flow, which is another possible RG flow
solution [38]. In general, the cascading RG flow shows a
very similar flowing behavior to the bouncing RG flow,

FIG. 6. Phase diagram with a ¼ −10. The two curves (a) and (b) represent two bouncing points. The phase curve starts at the UV fixed
point (the originW0 ¼ V 0 ¼ 0) and flows counterclockwise and regresses into the origin (the IR fixed point). In the course of a flowing,
the phase curve intersects the horizontal lineW0 ¼ 0 twice (the orange circles). The functionW0 at the intersection point changes its sign:
þ ⇒ − in (b), − ⇒ þ in (a), which implies that at the critical ϕB [W0ðϕBÞ ¼ 0; V 0ðϕBÞ ≠ 0] the RG flow is bounced and inverts its
direction. The dotted curve in (b) represents an ingoing flow to the origin.
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though the cascading RG flow usually has an infinite
number of the bouncing points. Despite the similar flowing
behavior, the cascading and bouncing RG flows have a big
difference, which is the reason why a cascading RG flow
does not appear in the present model. To understand this
important difference between the two RG flows, let us
discuss the cascading RG flow more. For the cascading RG
flow, it has been well known that there is no well-defined
AdS space at a UV energy scale because the cascading RG
flow does not allow a unitary CFT at a UV fixed point. On
the dual gravity side, the scalar field representing the
cascading RG flow usually violates the BF bound and
then exhibits an oscillating behavior (tachyonic instabilities
[38,48]) in the asymptotic region

ΦðyÞ ≃ αedy=2 cos

�jνj
2
yþ γ

�
; y → −∞; ð3:9Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2R2

uv þ d2
p

and α and γ are integration
constants. This is the typical feature usually appearing in an
irrelevant deformation. The similar phenomenon without a
bouncing behavior was studied in the N ¼ 1 supergravity
in type IIB string theory [49]. For the bouncing RG flow
described by a relevant deformation, the corresponding
scalar field is rapidly suppressed in the asymptotic region,
so that its gravitational backreaction is usually negligible.
However, the scalar field corresponding to the cascading
RG flow is not suppressed in the asymptotic region, so that
its gravitational backreaction inevitably modifies the
asymptotic geometry. Therefore, the asymptotic geometry
appearing in the cascading RG flow is not an AdS space. In
other words, the cascading RG flow is UV incomplete
similar to the TT̄ deformation of a two-dimensional IR CFT
[50–53]. On the other hand, since the bouncing RG flow is

described by a relevant deformation, the dual field theory
usually has a well-defined CFT at a UV fixed point.

IV. RG FLOW OF THE
ENTANGLEMENT ENTROPY

The c theorem, as mentioned before, claims that the
c function representing the degrees of freedom of a system
monotonically decreases along with the RG flow. More
accurately, there are three distinguished versions of the
c-theorem conjecture [54]. (1) The weakest version con-
cerns the degrees of freedom only at the two end points of
the RG flow such that cuv > cir. (2) A stronger version
asserts that c is a monotonically decreasing function along
with the entire RG flow. (3) The strongest one claims that
the RG flow is a gradient flow of the c function. The last
one remains to be proven. Now, we focus on the first and
second versions.
In the previous sections, we discussed several different

types of the RG flow that allows a nontrivial β function. For
the bouncing RG flow, in particular, the sign of the β
function can have both positive and negative values. This
fact implies that the interaction strength of the dual field
theory repeats increasing and decreasing successively. In
this case, it would be interesting to ask how the c function is
affected by the change of the interaction strength and how
the c function evolves along with the RG flow. In this
section, we investigate the change of the c function by
using the holographic entanglement entropy.
Except for the free theories with a small perturbation, in

general, it is a very difficult task to calculate the entanglement
entropy of an interacting field theory analytically. Even in
this case, the holographic technique based on the AdS=CFT
correspondence provides a very prominent tool that is
useful to understand nonperturbative features of strongly
interacting systems. According to the Ryu-Takayanagi (RT)

FIG. 7. Phase diagrams with respect to various negative values of a. Each curve has a different number of critical field points ϕB
(intersection point, ϕ ≠ 0 and ϕ0 ¼ 0): one (a ¼ −3), two (a ¼ −10), and three (a ¼ −50). From a numerical analysis, we find some
regularity in which the number of the critical point increases when growing the negative value of a. The phase curve starts at the UV
fixed point (the origin ϕ ¼ 0) and, after clockwise flowing, it stops at the IR fixed value of ϕ.
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proposition [13], the entanglement entropy of the dual field
theory has a one-to-one map to the area of the minimal
surface extended to the bulk geometry. Now, we investigate
the evolution of the entanglement entropy along with the RG
flow by using the RT formula. To do so, we assume that the
entangling points are located at x ¼ �l=2. Then, a system is
divided into a subsystem with −l=2 ≤ x ≤ l=2 and its
complement. In this case, if the dual geometry is described
by (2.2), the area of the minimal surface is determined by

SE ¼ 1

4G

Z
l=2

−l=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2AðyÞ þ y02

q
; ð4:1Þ

where y is given by a function of x. Because of the invariance
of the action under x → −x, the minimal surface must have a
turning point denoted by y� where y0 vanishes. After solving
the equation of motion, the size of the subsystem can be
reexpressed in terms of the turning point

l ¼ 2

Z
∞

y�
dy

eA�

eA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2A − e2A�

p ; ð4:2Þ

where A� is the value of A at y ¼ y�. In addition, the
entanglement entropy can also be rewritten as an integral
form with the turning point

SE ¼ c
3R

Z
ϵuv

y�
dy

eAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2A − e2A�

p ; ð4:3Þ

wherewe introduce an appropriateUVcutoff ϵuv to regulate a
UVdivergence andc ¼ 3R=2Gmeans the central charge of a
UV CFT. The UV central charge, as shown in the above
formula, appears as an overall multiplication factor, so that
the exact value of c has nothing to do with the qualitative
behavior of the RG flow. Because of this reason, from now
on, we take c ¼ 1 and focus on the qualitative feature of the
entanglement entropy RG flow.
After performing the above two integrals and rewriting

the entanglement entropy in terms of the subsystem size l,
we finally obtain the entanglement entropy in the UV
region

SA ¼ c
3
log

l
ϵuv

þ δðlÞ; ð4:4Þ

where δðlÞ is a function depending on the subsystem size.
This is exactly the form expected from a two-dimensional
CFT [6]. Here, the first term is crucially relying on the UV
theory from the RG flow viewpoint. If we consider a
relevant deformation of a UV CFT such as the various RG
flows studied in this work, the first term always appears
because the relevant deformation does not affect the UV
theory. However, the second term above is not universal but
crucially depends on the deformation.

To understand the IR physics beyond the UV regime, a
nonperturbative method is required. If we are interested in
the degrees of freedom of the IR physics, it can be
represented as a holographic c function based on the
gauge/gravity duality. Using the holographic entanglement
entropy, the c function of a two-dimensional QFT is
defined by [17,18]

c ¼ 3
dSEðlÞ
d log l

¼ 3l
dSEðlÞ
dl

; ð4:5Þ

where SEðlÞ denotes the entanglement entropy evaluated
with the subsystem size l. In this case, the subsystem size is
reinterpreted as the inverse of the energy scale observing
the system so that the system’s energy scale moves from the
UV to the IR region when the subsystem size increases.
This is exactly the same feature of the RG flow not in the
momentum space but in real configuration space. One
important thing we need to note is that the c function must
reduce to the central charge of a CFT at a conformal
fixed point.
In a deformed AdS3 space, in general, the c function can

be formally rewritten as [55]

c ¼ 3dSE
d log l

¼ 3

4G
l

γðlÞ ; ð4:6Þ

where γðlÞ is related to a conserved quantity appearing in
(4.1). Since the holographic entanglement entropy in (4.1)
does not explicitly depend on x, there is one conserved
quantity which at the turning point is given by

γðy�Þ ¼ e−A� : ð4:7Þ

In this case, since the position of the turning point
crucially relies on the subsystem size, γðy�Þ can be
represented as a function of l instead of y� by using
(4.2). In Fig. 8, we plot several exact c functions appearing
in the standard, staircase, and bouncing RG flows with
different values of a. The result shows that the c function
always monotonically decreases independent of the type
of the RG flow. For the bouncing RG flow with both
positive and negative β functions, the numerical result
shows that the c function always decreases monotonically
along with the RG flow regardless of the strength of the
interaction.
For a consistency check, in Fig. 9 we also compare the

c function in (4.6), which was derived from the holographic
entanglement entropy, with (2.6) obtained in the holo-
graphic renormalization procedure. The result in Fig. 9
shows that two c functions determined by two different
ways have a small discrepancy in the intermediate energy
scale. Nevertheless, these two c functions shows the
qualitatively same flowing behavior in the entire energy
scale and exactly reduces to the central charges of the UV
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and IR CFTat the fixed points. As a consequence, although
two c functions calculated here have a small quantitative
difference, they are qualitatively almost equivalent and
represent the RG flow expected by the c theorem.

V. DISCUSSION

We investigated several different types of RG flow that
can appear in a two-dimensional deformed CFT. To realize
such RG flows holographically, we took into account a
three-dimensional dual gravity theory with a specific scalar
potential that allows many local extrema. Because of the
invariance under ϕ → −ϕ, the potential usually allows a
local extremum at ϕ ¼ 0 which was identified with the UV
fixed point of the dual field theory. Near this UV fixed
point, if we restrict for the scalar field to have a mass only
in the range of −1 < m2R2

uv < 0, the local extremum at
ϕ ¼ 0 becomes a local maximum or an unstable equilib-
rium point and, on the dual field theory side, the corre-
sponding dual scalar operator becomes a relevant operator.
Although the effect of a relevant operator is negligible in
the UV regime, it causes a nontrivial RG flow and seriously
modifies the IR physics. On the dual gravity side, the RG
flow caused by a relevant scalar operator can be matched to
the rolling of the bulk scalar field. Since the potential
considered here allows a local minimum near the local
maximum defined only except for a ¼ 0, the scalar field
naturally rolls down to a local minimum that corresponds to

FIG. 8. The entropic c theorems (4.6) evaluated in the AdSuv3 ⇒
AdSir3 RG flows with different values of a. The reference central
charge at the UV fixed point, cuv ¼ 1. The values of cir are 0.9833
(standard RG), 0.2708 (staircase RG), and 0.2319 (bouncing RG),
respectively.

FIG. 9. Comparing holographic c functions: (a) standard RG, (b) staircase RG, and (c) bouncing RG,where the red dotted line represents
the result of (2.6) and the black line represents the entanglement c function (4.6). Herewe fix the central charge to be 1 at theUV fixed point.
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a new IR fixed point of the deformed field theory. As a
consequence, the rolling of the scalar field from the
unstable to a new stable equilibrium point describes the
RG flow of the dual field theory from the UV to IR fixed
points. From the field theory point of view, since this RG
flow is highly nonperturbative, it is usually a very difficult
task to understand the details of the RG flow in the entire
region of the energy scale. However, there is still a chance
to investigate the nonperturbative feature of the RG flow by
using the holography. In the present work, we have studied
the possible RG flows of the quantum field theory
deformed by a relevant scalar operator. Interestingly, we
showed that the toy model we considered leads to several
different types of the RG flow relying on the value of the
intrinsic parameter. The resulting RG flows can be sum-
marized as follows:

(i) For a > 0, the RG flow of the dual field theory is
described by the standard RG flow, in which
the β function is always negative and does not
oscillate at the intermediate energy scale. From
this result, we can see that the coupling constant
of the dual field theory increases monotonically
along with the RG flow, while the c function
corresponding to the degrees of freedom monoton-
ically decreases.

(ii) For a ¼ 0, we showed that there is no local mini-
mum near the local maximum corresponding to the
UV fixed point. This implies that the RG flow is not
terminated due to the absence of the IR fixed point.
Therefore, the RG flow for a ¼ 0 becomes an IR
incomplete RG flow.

(iii) For a < 0, a new IR fixed point appears again so that
the corresponding RG flow is IR complete. In this
parameter region, the resulting RG flow shows two
different flowing behaviors from the previous stan-
dard RG flow. When the absolute value of a is very
small, the staircase RG flow appears. The β function
of the staircase RG flow is always negative except
for two fixed points, which is similar to the previous
standard RG flow. Unlike the standard RG flow,
however, the β function of the staircase RG flow
oscillates. Therefore, the coupling constant of the
staircase RG flow increases monotonically along
with the RG flow but repeats the fast and slow
increasing due to the oscillation of the β function.
For a large absolute value of a, the bouncing RG
flow occurs. In general, the bouncing RG flow has

two branching solutions. One has a positive β
function, while the other branch has a negative
value. At the bouncing points, the RG flow changes
the branch with changing the sign of the β function.
On the dual field theory side, this feature shows that
the coupling constant increasing in one branch
becomes decreasing in the other branch after passing
through the bouncing point. As a result, the inter-
action strength of the bouncing RG flow does not
increase monotonically along with the RG flow. We
finally showed that the number of the bouncing
points in the bouncing RG flow increases as the
absolute value of a increases.

We also studied the c function relying on the energy
scale by using the holographic entanglement entropy
technique. In a variety of the RG flows we have found a
nontrivial β function that determines the strength of the
coupling constant. For the bouncing RG flow, since the
β function has a positive value at an intermediate energy
scale, the interaction strength can decrease in the course of
the RG flow. At this energy scale, it would be interesting to
ask how the c function behaves. By applying the holo-
graphic entanglement entropy technique, we studied the
change of the c function for various RG flows we found.
Intriguingly, we numerically showed that the c function
always decreases along with the RG flow regardless of the
type of the RG flow. Even in the bouncing RG flow that
allows the decreasing coupling constant, for example,
the c function monotonically decreases with satisfying
the c theorem. In the present work, we focused on only the
two-dimensional deformed CFT. However, it would be
more interesting to understand the possible RG flows that
can appear in higher dimensional deformed CFTs by
applying the methods used in this work. We hope to report
more interesting results in future works.
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