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We perform the Hamiltonian analysis of unimodular gravity in terms of the connection representation.
The unimodular condition is imposed straightforwardly into the action with a Lagrange multiplier.
After classifying constraints into first class and second class, the canonical quantization is carried out.
We consider the difference of the corresponding physical states between unimodular gravity and
general relativity.
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I. INTRODUCTION

Unimodular gravity is a theory of gravity that has a fixed
determinant of the four-metric. In this theory, the cosmo-
logical constant appears just as an integration constant [1].
As far as the field equations are concerned, unimodular
gravity describes the same physics as general relativity (GR)
at least at the classical level. However, it is not clear whether
this equivalence holds at the quantum level [2]. In the path
integral formalism, some positive results for this equiva-
lence have been reported. For example, it has been shown
that both GR and unimodular gravity provide the same
divergent contribution within the effective field theory
framework [3–6]. Unimodular gravity has been investigated
to solve the cosmological constant problem and problem of
time in quantum gravity [1,7,8]. On the other hand, there are
also arguments that unimodular gravity does not contribute
to these problems [3,9].
The connection representation theory is one of the

approaches to canonical quantum gravity. This is a
Yang-Mills-like formulation for GR. The fundamental
variables of this theory are the Ashtekar-Barbero connec-
tion with the Immirzi parameter β and the densitized
triad [10,11]. In this framework, GR is described as
three constraints, i.e., the Gauss, diffeomorphism, and
Hamiltonian constraints. This theory is characterized by
whether the Immirzi parameter β is taken to be i (the
imaginary unit) or to be real values.
In the case of β ¼ i, the configuration variable becomes

the complex valued self-dual connection. The advantage of
this choice is that the Hamiltonian constraint has a simple
form compared to the case of real values of β and the
standard Arnowitt-Deser-Misner (ADM) formalism. This
facilitates finding physical states that satisfy quantized

first-class constraints. In fact, the Kodama state is known
as an exact solution of all constraints with a nonvanishing
cosmological constant for β ¼ i [12]. This state is written as
the exponential of theChern-Simons functional. TheKodama
state is also seen as the Wentzel-Kramers-Brillouin (WKB)
state corresponding to de Sitter spacetime. In spite of having
these desired properties, this state has several problems. One
of the major difficulties is that the Kodama state is not
normalizable under the naive inner product [13].
In loop quantum gravity (LQG), which has been

developed via the connection representation theory, the
Immirzi parameter often takes real values for several
technical reasons. The real value of β gives the real valued
connection, and it facilitates to construct a well-defined
Hilbert space for quantum theory. However, it makes the
Hamiltonian constraint more complicated [11,14].
In this paper, we study unimodular gravity in terms of the

connection representation. Especially, we perform the
Hamiltonian analysis in the case of β ¼ i. The reasons
why we take β ¼ i are that the constraint algebra becomes
simple and we can expect to find the classical and quantum
solutions of constraints as in the case of GR. While there
are several ways to treat unimodular gravity (e.g., the
Henneaux-Teitelboim model [15]), we focus on the sim-
plest model in which the unimodular condition is imposed
straightforwardly into the action with a Lagrange multi-
plier. The classical Hamiltonian analysis of this type of
unimodular gravity with the ADM variables has been
investigated in Ref. [16]. Additionally, the connection
representation theory and LQG based on the Henneaux-
Teitelboim model have also been studied in Refs. [8,17].
We classify the constraints of unimodular gravity into

first class and second class. Then, we proceed to quantize
this theory by implementing the Dirac quantization pro-
cedure [18,19]. One of the aims of this paper is to see how
the difference of the constraint algebra between GR and*shinji0yamashita@gmail.com
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unimodular gravity yields the difference of the correspond-
ing physical states.
The organization of this paper is as follows. In Sec. II, we

perform the Hamiltonian analysis of unimodular gravity in
the connection representation. Constraints are classified
into first class and second class. In Sec. III, canonical
quantization of unimodular gravity is carried out. We
propose a state that satisfies the quantum first-class con-
straints. This state is constructed from a product of the
group delta functions. In addition, we confirm whether the
Kodama state is the physical state of unimodular gravity. In
Sec. IV, we summarize and discuss our results.
We adopt the following notation. Capital latin letters

I; J;… ∈ f0; 1; 2; 3g denote Lorentz indices. Greek letters
μ; ν;… ∈ fτ; 1; 2; 3g are used as four-dimensional space-
time indices where τ is the time flow component. Letters
i; j;… and a; b;… ∈ f1; 2; 3g denote three-dimensional
internal and spatial indices, respectively. The four-metric
signature is ð−;þ;þ;þÞ. We use a unit system in
which c ¼ 1.

II. HAMILTONIAN AND CONSTRAINTS

We first consider the Holst action with the Immirzi
parameter β as [20]

SH ¼ −
1

2βk

Z
eI ∧ eJ ∧

�
RIJ −

β

2
ϵIJKLRKL

�
; ð1Þ

where k is Newton’s constant times 8π, eI is a cotetrad, and
RIJ is a curvature of the spin connection ωIJ

μ . To construct
the simplest unimodular theory of gravity, we take β to be i
(the imaginary unit) and add the unimodular constraint with
a Lagrange multiplier Λ to the action,

S ¼ −
1

2ik

Z
eI ∧ eJ ∧

�
RIJ −

i
2
ϵIJKLRKL

�

−
1

48k

Z
ΛϵIJKLeI ∧ eJ ∧ eK ∧ eL

þ 1

2k

Z
d4xΛα; ð2Þ

where α is a fixed scalar density. The variation with respect
to Λ gives det eIμ þ α ¼ 0.
The 3þ 1 form of the action under the time gauge

e0a ¼ 0 becomes

S ¼ 1

ik

Z
d4x

�
Ea
i
_Ai
a − Ai

τGi − NaVa − NC

−
iΛ
2
ðN det e − αÞ

�
; ð3Þ

where Ai
a ¼ − 1

2
ϵijkω

jk
a − iω0i

a is a self-dual connection,

Ai
τ ¼ − 1

2
ϵijkω

jk
τ − iω0i

τ , det e is a determinant of eia,

Ea
i ¼ ðdet eÞeai is a densitized triad, Na is a shift vector,

and N is a lapse function. Furthermore,

Gi ¼ −ðDaEaÞi ¼ −ð∂aEa
i þ ϵij

kAj
aEa

kÞ; ð4Þ

Va ¼ −Eb
i F

i
ba; ð5Þ

C ¼ i
2 det e

ϵijkEa
i E

b
jFabk; ð6Þ

where Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b is a curvature
of Ai

a. The conjugate momentum of Ai
a is ðikÞ−1Ea

i . We
define conjugate momenta (times ik) of Ai

τ; Na; N;Λ as
πi; πa; πN; πΛ, respectively. These momenta vanish and
yield primary constraints

πi ≈ 0; πa ≈ 0; πN ≈ 0; πΛ ≈ 0; ð7Þ

where “≈” means weak equality, i.e., equality modulo
constraints. The total Hamiltonian is defined as a combi-
nation of the ordinary Hamiltonian and the primary con-
straints with Lagrange multipliers vi, va, vN , and vΛ:

HTðAi
a; Ea

i ; A
i
τ; πi; Na; πa; N; πN;Λ; πΛÞ

¼ 1

ik

Z
d3x

�
Ai
τGi þ NaVa þ NCþ iΛ

2
ðN det e − αÞ

þ viπi þ vaπa þ vNπN þ vΛπΛ

�
: ð8Þ

In a constrained system, the time evolution of a generic
function f of the canonical variables is given by the Poisson
bracket between f andHT, namely, ff;HTg. Constraints in
a theory should hold under the time evolution. Therefore,
every constraint has to satisfy the stability condition
fC; HTg ≈ 0, where C is a generic constraint. The stability
conditions for the primary constraints (7) require the
following secondary constraints:

fπi; HTg ¼ −GiðxÞ ≈ 0; ð9Þ

fπa; HTg ¼ −VaðxÞ ≈ 0; ð10Þ

fπN;HTg¼−ΦðxÞ

¼−
i
2

�
1

dete
ϵijkEa

i E
b
jFabkþΛdete

�
≈0; ð11Þ

fπΛ; HTg ¼ −ΘðxÞ ¼ −
i
2
ðN det e − αÞ ≈ 0: ð12Þ

The first three constraints GiðxÞ; VaðxÞ, and ΦðxÞ are the
Gauss, vector, and Hamiltonian constraints, respectively.
These three constraints are in common with the connection
representation theory of GR. The constraint ΘðxÞ is the
unimodular constraint. Let us define the smeared forms of
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these secondary constraints with test functions Xi, Xa,
and X as

G½Xi� ¼ 1

ik

Z
d3xXiGiðxÞ; ð13Þ

V½Xa� ¼ 1

ik

Z
d3xXaVaðxÞ; ð14Þ

Φ½X� ¼ 1

ik

Z
d3xXΦðxÞ; ð15Þ

Θ½X� ¼ 1

ik

Z
d3xXΘðxÞ: ð16Þ

Useful Poisson bracket relations are given by

fG½Xi�; G½Yj�g ¼ −G½ϵijkXjYk�; ð17Þ

fG½Xi�; V½Ya�g ¼ 0; ð18Þ

fG½Xi�; C½Y�g ¼ 0; ð19Þ

fV½Xa�; V½Yb�g ¼ V½LX⃗Y
a� þG½XaYbFi

ab�; ð20Þ

fC½X�; C½Y�g ¼ V

�
X∂bY − Y∂bX

ðdet eÞ2 Ea
i E

bi

�
; ð21Þ

where C½X� ¼ ðikÞ−1 R d3xXCðxÞ and LX⃗ is a Lie deriva-
tive with respect to Xa. Using the above relations, we can
check the stability of the secondary constraints as

fG½Xi�; HTg ≈ 0; ð22Þ

fV½Xa�; HTg ≈
1

2k

Z
d3xXað∂aΛÞN det e ≈ 0; ð23Þ

fΦ½X�; HTg ≈
1

2k

Z
d3xXvΛ det e ≈ 0; ð24Þ

fΘ½X�; HTg ≈
1

2k

Z
d3xX

�
Nð3∇aNaÞ det e

−
i
2
N2E þ vN det e

�
≈ 0: ð25Þ

Here, 3∇aNa ¼ ∂aNa þ 3Γa
abðEÞNb, and 3Γa

abðEÞ is a three-
dimensional Christoffel symbol that is constructed from Ea

i .
Furthermore,

E ¼ 1

ðdet eÞ2 ðDaEbÞiϵbcdEa
jE

ciEdj: ð26Þ

Condition (23) yields a new secondary constraint:

Σ½Xa� ¼ 1

2k

Z
d3xXað∂aΛÞN det e ≈ 0: ð27Þ

This constraint implies that Λ is a constant over a three-
dimensional space. The stability condition for Σ½Xa�
becomes

fΣ½Xa�; HTg ≈ 0: ð28Þ

Thus, we need no more constraints. Conditions (24) and
(25) fix the Lagrange multipliers vΛ and vN as

vΛ ¼ 0; ð29Þ

vN ¼ −Nð3∇aNaÞ þ i
2 det e

N2E; ð30Þ

whereas vi and va remain unspecified.
Before checking the constraint algebra, we introduce a

spatial diffeomorphism constraint:

D½Xa� ¼ V½Xa� þG½XaAi
a�

þ 1

ik

Z
d3xXaðπN∂aN þ πΛ∂aΛÞ ≈ 0: ð31Þ

This constraint generates spatial diffeomorphism of all
dynamical variables, i.e.,

fAi
a;D½Xb�g ¼ LX⃗A

i
a; fEa

i ;D½Xb�g ¼ LX⃗E
a
i ; ð32Þ

fN;D½Xa�g ¼ LX⃗N; fπN;D½Xa�g ¼ LX⃗πN; ð33Þ

fΛ;D½Xa�g ¼ LX⃗Λ; fπΛ;D½Xa�g ¼ LX⃗πΛ: ð34Þ

The stability condition for D½Xa� becomes

fD½Xa�; HTg ¼ σ½Xa� ¼ 1

2k

Z
d3xXað∂aΛÞα ≈ 0; ð35Þ

where σ½Xa� is expressed as a combination of constraints:

σ½Xa� ¼ Σ½Xa� − Θ½Xa∂aΛ� ≈ 0: ð36Þ

We adopt D½Xa� as an element of the constraints instead
of V½Xa�.
Now, we consider the classification of the constraints

into first class and second class. In general, the first-class
constraint CF ≈ 0 satisfies fCF; Cg ≈ 0 for every constraint C.
On the other hand, the second-class constraint CS ≈ 0 has at
least oneweakly nonvanishing Poisson bracket fCS; Cg ≉ 0.
We classify primary constraints ðπi; πa; πN; πΛÞ and secon-
dary constraints ðG½Xi�;D½Xa�;Φ½X�;Θ½X�;Σ½Xa�Þ into first
class and second class. The weakly nonvanishing Poisson
brackets are
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fπN;Θ½X�g ≈ −
i
2
X det e; ð37Þ

fπΛ;Φ½X�g ≈ −
i
2
X det e; ð38Þ

fπΛ;Σ½Xa�g ≈ i
2
∂aðXaN det eÞ; ð39Þ

fD½Xa�;Θ½Y�g ≈ 1

2k

Z
d3xXað∂aYÞN det e; ð40Þ

fΦ½X�;Θ½Y�g ≈ i
4k

Z
d3xXYNE: ð41Þ

Then, πi, πa, and G½Xi� are first class, and the others
are second-class constraints. To reduce the number of
the second-class constraints, we modify D½Xa�;Φ½X�, and
Σ½Xa� as

D0½Xa� ¼ D½Xa� þ 1

ik

Z
d3xXaN∂aπN; ð42Þ

Φ0½X� ¼ Φ½X� þ 1

2k

Z
d3x

XN
det e

EπN; ð43Þ

Σ0½Xa� ¼ σ½Xa�þΦ0½N∂aXa�

¼−
1

2k

Z
d3xXc∂c

�
N

dete
ϵijkEa

i E
b
jFabk

�

þΘ½Λð∂aXaÞ�þ 1

2k

Z
d3x

ð∂aXaÞN2

dete
EπN; ð44Þ

respectively. Constraints D0½Xa� and Σ0½Xa� hold stability
conditions fD0½Xa�; HTg ≈ 0 and fΣ0½Xa�; HTg ≈ 0. The
stability condition for Φ0½X� gives

fΦ0½X�; HTg ≈
1

2k

Z
d3xXvΛ det e ≈ 0; ð45Þ

which again leads to vΛ ¼ 0. Note that Σ0½Xa� is locally one
constraint rather than three, because this constraint is para-
metrized by ∂aXa. Specifically, the Poisson bracket between
Σ0½Xa� and an arbitrary function fðAi

a; Ea
i ; N; πN;Λ; πΛÞ has

the form

fΣ0½Xa�; fg ¼ ð∂aXaÞgðAi
a; Ea

i ; N; πN;Λ; πΛÞ; ð46Þ

where gðAi
a; Ea

i ; N; πN;Λ; πΛÞ is an appropriate function.
We again classify primary constraints ðπi; πa; πN; πΛÞ and

secondary constraints ðG½Xi�;D0½Xa�;Φ0½X�;Θ½X�;Σ0½Xa�Þ
into first class and second class. The weakly nonvanishing
Poisson brackets are

fπN;Θ½X�g ≈ −
i
2
X det e; ð47Þ

fπΛ;Φ0½X�g ≈ −
i
2
X det e: ð48Þ

Hence, ðπi; πa; G½Xi�; D0½Xa�;Σ0½Xa�Þ are first-class and
ðπN; πΛ;Φ0½X�;Θ½X�Þ are second-class constraints.
Let us count the local degrees of freedom in configu-

ration space. The variables ðAi
a; Ai

τ; Na; N;ΛÞ have 9þ 3þ
3þ 1þ 1 ¼ 17 components. The first-class constraints
ðπi;πa;G½Xi�;D0½Xa�;Σ0½Xa�Þ constrain 3þ3þ3þ3þ1¼13
components. The second-class constraints ðπN; πΛ;Φ½X�;
Θ½X�Þ constrain ð1þ 1þ 1þ 1Þ=2 ¼ 2 components. Then,
the physical degrees of freedom are 17−13−2¼ 2, which
is the number of degrees of freedom of GR. This result is
consistent with previous studies of unimodular gravity
within the ADM and the path integral formalism [2,5].
Using the four second-class constraints ðπN; πΛ;Φ0½X�;

Θ½X�Þ, we can eliminate four variables πN; πΛ;Λ; N as

πN ¼ 0;

πΛ ¼ 0;

Λ ¼ −
1

ðdet eÞ2 ϵ
ijkEa

i E
b
jFabk;

N ¼ α

det e
: ð49Þ

After these reductions, the first-class constrains D0½Xa� and
Σ0½Xa� are reduced to

D0½Xa� ¼ V½Xa� þ G½XaAi
a� ≈ 0; ð50Þ

Σ0½Xa�¼−
1

2k

Z
d3xXc∂c

�
α

detE
ϵijkEa

i E
b
jFabk

�
≈0; ð51Þ

where detE ¼ ðdet eÞ2 is a determinant of Ea
i . The con-

straint D0½Xa� is the same as the spatial diffeomorphism
constraint in GR. The constraint (51) implies

α

detE
ϵijkEa

i E
b
jFabk ¼ −αλ; ð52Þ

where λ is an arbitrary spatial constant. Additionally, the
evolution equation indicates that λ is a spacetime constant.
The nontrivial solutions of the constraintsG½Xi� (13),D0½Xa�
(50) and Σ0½Xa� (51) are self-dual solutions that satisfy

Fabi ¼ −
λ

6
ϵabcEc

i : ð53Þ

These solutions are the same as in GR [13] except that λ is
unspecified. The total Hamiltonian (8) is also reduced to

HTðAi
a; Ea

i ; A
i
τ; πi; Na; πaÞ

¼ 1

2k

Z
d3x

α

detE
ϵijkEa

i E
b
jFabk

þ 1

ik

Z
d3x ½Ai

τGi þ NaVa þ viπi þ vaπa�: ð54Þ
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Unlike GR, the Hamiltonian does not vanish on the con-
straint surface.

III. QUANTUM THEORY

Quantization of a theory that has second-class con-
straints is carried out by replacing classical Dirac brackets
with quantum commutators [18,19]. Nevertheless, when all
dependent variables are eliminated, such as (49), Dirac
brackets become equal to Poisson ones. In this case, the
quantization is carried out via replacement of Poisson
brackets with commutators. From nonvanishing Poisson
bracket relations�

Ai
τðxÞ;

1

ik
πjðyÞ

�
¼ δijδ

3ðx − yÞ; ð55Þ
�
NaðxÞ; 1

ik
πbðyÞ

�
¼ δabδ

3ðx − yÞ; ð56Þ
�
Ai
aðxÞ;

1

ik
Eb
j ðyÞ

�
¼ δbaδ

i
jδ

3ðx − yÞ; ð57Þ

variables are replaced by quantum operators

Âi
τ ¼ Ai

τ; π̂i ¼ ℏk
δ

δAi
τ
; ð58Þ

N̂a ¼ Na; π̂a ¼ ℏk
δ

δNa ; ð59Þ

Âi
a ¼ Ai

a; Êa
i ¼ ℏk

δ

δAi
a
: ð60Þ

A physical state Ψ has to satisfy

π̂iΨ ¼ π̂aΨ ¼ 0; ð61Þ

Ĝ½Xi�Ψ ¼ D̂0½Xa�Ψ ¼ Σ̂0½Xa�Ψ ¼ 0; ð62Þ

where π̂i; π̂a; Ĝ½Xi�; D̂0½Xa�, and Σ̂0½Xa� are quantized first-
class constraints. Conditions (61) imply that Ψ is indepen-
dent from Ai

τ and Na, namely,

Ψ ¼ Ψ½Ai
a�: ð63Þ

Let us consider the state that is associated with FabðxÞ ¼ 0,

ΨG ¼
Y
x

Y
a;b

δðeFabðxÞÞ; ð64Þ

where δð•Þ is a group delta function. We would like to
emphasize that this state was originally proposed in
Ref. [21] as a physical state of GR without a cosmological
constant. This state is gauge invariant since

δðgeFabðxÞg−1Þ ¼ δðeFabðxÞÞ; ð65Þ

where g is an element of the internal gauge group.
Furthermore, since FabðxÞδðeFabðxÞÞ ¼ 0, the remaining
two constraints are also satisfied:

D̂0½Xa�ΨG¼ V̂½Xa�ΨG ¼−
1

ik

Z
d3xXaÊb

i F̂
i
baΨG¼ 0; ð66Þ

Σ̂0½Xa�ΨG ¼ −
1

2k

Z
d3xXc∂c

α

det Ê
ϵijkÊa

i Ê
b
j F̂abkΨG:

¼ 0: ð67Þ
Then, ΨG satisfies quantized first-class constraints (61) and
(62). From (54), the Hamiltonian on the constraint surface
has the form

Ĥ ≈
1

2k

Z
d3x

α

det Ê
ϵijkÊa

i Ê
b
j F̂abk: ð68Þ

Then, we have

ĤΨG ¼ 0: ð69Þ

Hence, if Ĥ does not have negative eigenvalues, this state
can be seen as a vacuum state in a sense. Note thatΨG is not
a solution of the constraints in ordinary GR with a non-
vanishing cosmological constant. The first-class constraints
of GR are G½Xi� (13), D0½Xa� (50) and Φ½X� (15), while ΨG

does not satisfy Φ̂½X�ΨG ¼ 0.
Finally, we confirm whether the Kodama state is a

physical state of unimodular gravity. The Kodama state
is known as the wave functional that satisfies all constraints
of GR with a cosmological constant [12]. The state is
expressed as

ΨK ¼ exp

�
6

ℏkΛGR
YCS

�
; ð70Þ

where ΛGR is the cosmological constant (times 2) in
GR and

YCS ¼ −
1

2

Z
d3xϵabc

�
Ai
aδij∂bA

j
c þ 1

3
ϵijkAi

aA
j
bA

k
c

�
ð71Þ

is the Chern-Simons functional. This state is gauge and
spatial diffeomorphism invariant. Moreover, it solves the
Hamiltonian constraint of GR as

Φ̂½X�ΨK¼ 1

2k

Z
d3x

Xffiffiffiffiffiffiffiffiffiffi
det Ê

p ϵijkÊa
i Ê

b
j

×

�
F̂abkþ

ΛGR

6
ϵabcÊ

c
k

�
ΨK;

¼ 0; ð72Þ
where we use Êa

iΨK ¼ −ð3=ΛGRÞϵabcFbciΨK. On the other
hand, the Kodama state for unimodular gravity can be
described as
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ΨðUGÞ
K ¼ exp

�
6

ℏkλ
YCS

�
; ð73Þ

where ΛGR in (70) is replaced with an unspecified constant
λ. In unimodular gravity, the Hamiltonian constraint Φ0½X�
is second class; therefore, the physical state is not required
to satisfy Φ̂0½X�Ψ ¼ 0. Furthermore, the Kodama state does

not satisfy Σ̂0½Xa�ΨðUGÞ
K ¼ 0. Thus, at least in the schemewe

discussed here, the Kodama state is not a physical state in
unimodular gravity.

IV. CONCLUSIONS

In this paper, we have investigated the full theory of
unimodular gravity in terms of the connection representa-
tion. The major differences from GR are that the
Hamiltonian constraint (43) belongs to the second class
and the total Hamiltonian (8) does not vanish on the
constraint surface. Although unimodular gravity and GR
have different constraints, both theories share the same
classical solutions, namely, the self-dual solutions. The
only difference is that λ in the self-dual solutions (53) of
unimodular gravity is an unspecified constant.
Owing to the simplicity of the constraints for β ¼ i, we

have found the state ΨG (64) that satisfies quantized first-
class constraints (61) and (62). Note that if we take β to be
real, the Hamiltonian constraint and Σ0½Xa� become more
complicated. In this case, ΨG would not be regarded as a
solution of the constraints.
Unlike GR, the Kodama state ΨðUGÞ

K (73) in unimodular
gravity is not a solution of the constraints. The Kodama
state in GR is associated with self-dual solutions that satisfy
Fabi¼−ðΛGR=6ÞϵabcEc

i with a nonvanishing cosmological
constant ΛGR [13], while the state ΨG is associated with
Fab ¼ 0 or λ ¼ 0 on the self-dual solutions (53). Therefore,

ΨG in unimodular gravity does not correspond to the
Kodama state in GR. If one wants to find a physical state
corresponding to the Kodama state in GR, it is necessary to
find a state associated with self-dual solutions with a
nonvanishing constant λ. This is left for future investigation.
The important question is whether unimodular gravity

discussed here describes the same physics as GR at the
quantum level. It is not immediately obvious whether the
difference of the physical states between unimodular gravity
andGR implies the quantum inequivalence.However, if these
two theories are equivalent at the quantum level, they would
give the same physical observables. Within the canonical
quantization framework, physical observables shouldweakly
commute with the first-class constraints [19], while unim-
odular gravity and GR provide different first-class con-
straints. This difference may give rise to the difference of
the corresponding physical observables. Thus, in contrast to
the results of previous works such as Refs. [3–6], we cannot
exclude the possibility of the quantum inequivalence.
It is worthwhile to study the path integral quantization of

this type of unimodular gravity. We expect that we can
obtain similar results to previous analysis such as
Refs. [2,8]. It would also be interesting to extend unim-
odular gravity to the spin foam model that is the discrete
path integral based on loop quantum gravity [22]. Although
this extension has been studied on the symmetry reduced
cosmological model [23], the construction of a full theory
has not been done yet.
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