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Scale invariance (SI) can in principle be realized in the elastic response of solid materials.
There are two basic options: that SI is a manifest symmetry or that it is spontaneously broken. The
manifest case corresponds physically to the existence of a nontrivial infrared fixed point with
phonons among its degrees of freedom. We use simple bottom-up AdS=CFT constructions to model
this case. We characterize the types of possible elastic response and discuss how the sound speeds
can be realistic, that is, sufficiently small compared to the speed of light. We also study the
spontaneously broken case using effective field theory (EFT) methods. We present a new one-
parameter family of nontrivial EFTs that includes the previously known “conformal solid” as a
particular case as well as others which display small sound speeds. We also point out that an
emergent Lorentz invariance at low energies could affect by order-one factors the relation between
sound speeds and elastic moduli.
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I. INTRODUCTION

The mechanical response of matter under small applied
stresses is a well-known subject [1,2]. At sufficiently low
energies, it can be described in a continuum limit by the so-
called elasticity theory. Just like in hydrodynamics, the
main assumption is that the displacements in the solid are
described by an effective set of fields ϕiðt; xjÞ that represent
the deformations of the material from its equilibrium
position at each point. The effective Lagrangian for
ϕiðt; xjÞ is then automatically fixed by symmetries. It
was shown in [3] (see also [4]) that the form of the
nonlinearities in the effective Lagrangian is greatly con-
strained by the fact that the phonon field ϕiðt; xjÞ can be
viewed as the Goldstone boson arising from the sponta-
neous breaking of translation invariance. More recently, it
has been shown how to derive the effective Lagrangian

applying the Coset construction to the spontaneous break-
ing of Poincaré symmetry [5,6].
These developments taught us how to promote elasticity

theory into a fully nonlinear effective field theory (EFT).
We shall refer to this EFT simply as solid EFT and give
more details on it below. As it happens with other known
EFTs, one expects that this provides for an efficient way to
re-sum certain low-energy observables that are difficult to
compute directly from the microscopic theory. It is natural,
then, to ask what are the phenomenological consequences
that can be extracted and how the procedure works.
Given that the EFT methods mainly provide nontrivial
information concerning the nonlinear part of the theory, one
expects that the solid EFT provides interesting constraints/
information about the phonon interactions (e.g., phonon
2 → 2 scattering), but more generally also regarding the
nonlinear elastic response. Reference [7], initiated a
study in this direction, showing that nontrivial relations
among several nonlinear observables can indeed be iden-
tified. This motivates us to continue the analysis to more
sophisticated cases.
The purpose of this work is to focus on the special case

where the solid exhibits scale invariance (SI), in addition to
the broken symmetries of a regular solid. Aside from being
interesting per se, this case seems to be quite close to real
world of materials that exhibit criticality in the form of a
quantum critical point. In order to possibly make contact
with these especially interesting materials, it is desirable to
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understand well how SI is compatible with solid EFT or
similar techniques.1

It is worth spending some words on what are the possible
ways how SI can be realized generically. Conceptually, the
main division arises from whether or not the low energy
dynamics is governed by a nontrivial infrared fixed point
(IRFP). To some extent, in the presence of an IRFP one can
say that SI is an unbroken symmetry. By the same logic, in
the absence of an IRFP, then, SI can only be spontaneously
broken—a nonlinearly realized symmetry. This criterion
allows to separate possible realizations of SI in solids in
two basic groups:

(i) solids with spontaneously broken SI. In this case one
expects a gapped spectrum and that the phonons are
isolated degrees of freedom at low energies. In this
case EFT methods are applicable in order to describe
the lightest excitations (the phonons) in the mechani-
cal sector as the Goldstone bosons of the sponta-
neously broken spacetime symmetries. We discuss
this case in Sec. III.

(ii) solids with manifest SI, where by assumption there is
a dynamical IRFP. In this case the phonons are not
isolated degrees of freedom and one expects that
the dispersion relation develops an imaginary part.
Will use bottom-up AdS=CFT methods, which are
well suited to construct simple models with these
properties, in Sec. IV.

These options can be better visualized using the renorm-
alization group (RG) language, that is, in terms of the beta
function β ¼ μ dλ

dμ of a certain coupling λ. The main two
options are depicted in Fig. 1. The spontaneously broken SI
case can be viewed as a departure (an RG-flow) from a
UVFP induced by the vacuum expectation value of some
operator. The manifest SI case corresponds to the presence
of an infrared or emergent fixed point.
The pictures in Fig. 1 also immediately suggest that

one can construct more options by “combining” the two
possibilities, that is by having both an IR and a UV fixed
points. For instance, one can break spontaneously the UV
SI but then “land” on an IRFP which realizes an emergent
SI. This case would combine both spontaneously broken
and manifest realizations.
These possibilities seem to apply both to Lorentz

invariant and noninvarant situations, and one can easily
construct examples in bottom-up holographic models. For
instance, Lorentz-invariant examples of the SB case can
be found in [8] (see also [9]) and of the emergentþ SB
case in [10,11].
An important qualitative distinction in the Lorentz

invariant case is that SB of scale (and conformal) invariance

is accompanied with the appearance of a massless dilaton.
It is well known that this requires fine-tuning of the theory,
however assuming the tuning, the dilaton pole must appear
and has indeed been found in both SB [8,9] and emergentþ
SB cases [10,11]. In condensed matter setups, however,
Lorentz boosts are broken and the dilaton does not appear
even if SI is broken spontaneously [12,13]—in a sense it is
replaced by other Goldstone bosons, the phonons. This
motivates a deeper study of the possible realizations of SI
in solid materials from the low energies effective point of
view, with the main focus in whether SI is a spontaneously
broken or a manifest symmetry.
The second main motivation for our work is, perhaps,

more down-to-earth: a sine qua non condition for the
theories that aim to describe realistic solids (SI or not) is
that the sound speeds (both transverse and longitudinal) are
tiny compared with the speed of light c—indeed, the fastest
sound speeds in known materials are around 10−4 in units
of c. To the best of our knowledge, the only know previous
example of a SI solid effective theory is the so-called
conformal solid [13], and it displays inevitably relativistic
longitudinal sound waves. Any effective description of
realistic SI solids must overcome this difficulty. Below, we
will show how SI is compatible with “slow sound” both for
spontaneously broken and manifest SI.
The mechanical response in critical materials is also the

subject of recent research from a more condensed matter
perspective [14–16]. They are also of interest since it is in
this class of material that deviations from the KSS viscosity
bound [17] have been identified [18–21].
The rest of this work is organized as follows. In Sec. II A

we review the text-book elasticity theory, and in Sec. II B
we review how it is reformulated in the EFT of solids.
In Sec. III we discuss the special case of solid EFTs that
incorporate SI (which corresponds to the spontaneous
breaking case). In Sec. IV we discuss case with manifest
SI, and we conclude in Sec. V.

FIG. 1. Sketch of the two basic options on how scale invariance
(SI) can be realized, in terms of the beta function β ¼ μ dλ

dμ of a
certain coupling λ. The arrows indicate the flow toward low
energies. The left plot represents the spontaneous breaking case,
which we discuss in Sec. III. The right cartoon represents the case
with manifest SI, which we discuss in Sec. IV.

1In this work, SI is meant to be realized in the mechanical
sector—by the phonons. It is not our goal to identify what kind of
physical system accomplishes this, but the idea is very well posed
so we just take it as an assumption.
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II. LINEAR ELASTICITY

In this section we review a few basic notions on the
elasticity theory for general (isotropic and homogeneous)
solids. The main focus will be to introduce the shear and
bulk (or compressibility) moduli, and their relation with the
sound/phonon properties.

A. Elastic response

The elastic response describes the produced stress in a
material with respect to an external mechanical deforma-
tion, i.e., the strain [2]. The state of mechanical deforma-
tion of the solid can be described by the mapping

Φi ¼ xi þ ϕiðt; xÞ ð1Þ

which gives the position of every given solid element.
The deviations from equilibrium are directly encoded in ϕi,
which act in all respects like a set of dynamical scalar
fields. Their (small) wave excitations are the phonons. And
the time-constant configurations of the form ϕi ∝ xi encode
small shear or bulk strain deformations. The useful way
to parametrize them is the tensorial object known as
strain tensor:

εij ¼
1

2
ð∂iϕj þ ∂jϕiÞ ð2Þ

where ϕi ≡ r0i − ri is the displacement vector, i.e., the
deformation from equilibrium (see Fig. 2). The bulk strain
is defined as the trace of the strain tensor,

εii ¼ ∂⃗ · ϕ⃗ ð3Þ

and it can be either positive or negative. It physically
corresponds to an external compression/traction on the
system which changes the volume of the sample. The shear
strain ε is on the contrary the traceless part, which can be
reduced to the off-diagonal component of the strain tensor,

ε≡ 2εxy ð4Þ

and it encodes the angular deflection of a point from its
original position (see Fig. 2). Obviously a generic mechani-
cal deformation contains a superposition of a bulk and
shear strain.
For homogeneous and isotropic solids, the response to

small external strain is described at linear level by two
elastic moduli. In the linear response approximation, i.e.,
for small deformations, the deviation of the stress tensor
from equilibrium

σij ≡ Tij − pδij

for an isotropic solid (see textbooks [1,2]), in d space
dimensions, takes the simple form:

σij ¼ Kδijεkk þ 2G
�
εij −

1

d − 1
δijεkk

�
ð5Þ

where G, K are referred to as the linear shear and bulk
elastic moduli respectively.
The shear elastic modulus can be obtained in linear

response theory from the shear component of the stress
tensor as:

Txy ¼ GεþOðε2Þ; G ¼ ℜ½GR
Txy;Txy

ðω ¼ k ¼ 0Þ� ð6Þ

withGR
Txy;Txy

the retarded Green function of the stress tensor

operator. Let us notice that the shear modulus G pertains
just the static or zero frequency response to a shear strain
and it is purely nondissipative.
The same can be done for the bulk modulus K from

the correlator of the trace part of the Tij, that is, as
σii ¼ K∂ · ϕþOðð∂ · ϕÞ2Þ. This is compatible with the

FIG. 2. The description of the mechanical deformations in
terms of the displacement vector Φi ¼ xi þ ϕi. Top: The equi-
librium configuration is simplyΦI

eq ¼ xI. Bottom: An example of
a shear deformation and the geometrical interpretation of the
strain tensor εij. The configuration changes from Φi

eq to Φi such
that Φi −Φi

eq ¼ ðεxxdxþ εxydy; εyydyþ εxydxÞ.
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another notion of the bulk modulus, as simply the inverse of
the compressibility, which applies to more general systems,

K ¼ −V
dp
dV

ð7Þ

where V is the volume of the system and p≡ Txx the
mechanical pressure.
Another simple and important parameter in order to

characterize different kind of materials is the so-called
Poisson’s ratio. It parametrizes how much a material
compresses (or dilates) in the transverse direction when
under an applied axial tensile strain,

R ¼ −
εtrans
εaxial

: ð8Þ

It is possible to express this ratio in terms of the elastic
moduli [22], by rewriting the elastic response as
εij ¼ 1

E ½ð1þRÞσij −Rσkkδij�, with E the Young modulus.
It follows that

R ¼ ðd − 1ÞK − 2G
ðd − 1Þðd − 2ÞKþ 2G

: ð9Þ

This allows us to classify models accordingly to their linear
elastic properties. By construction, in two spatial dimen-
sion the Poisson ratio is bounded −1 < R < 1

d−2, and the
most auxetic behaviour corresponds to K ≪ G.
Notice that R can be negative, giving a rather exotic

type of response where the material actually dilates in the
transverse directions. Materials of this type are called
auxetic and have a number of applications. Let us advance
one of the results of Sec. IV is that we will construct planar
black hole solutions that are auxetic in exactly the same
sense as this.
As we review in Sec. II B, the elastic moduli determine

completely the speed of propagation of transverse and
longitudinal phonons in homogeneous and isotropic solids.

B. Phonons and solid EFTs

Let us now review how the two elastic moduli determine
the speed of propagation of transverse and longitudinal
phonons, cT;L, with no additional microscopic information
on the solid characteristics required. The relations are
long known but we find illustrative to derive them using
effective field theory (EFT) methods, by treating the
phonons as the Goldstone bosons associated to the sponta-
neous symmetry breaking pattern which takes place in
solids. The resulting solid EFT are discussed at lowest
order in derivatives for the phonon fields in [3–6], see
also [7]. Let us emphasize that the EFT description below
corresponds to the spontaneous breaking of spacetime
symmetries.

We want to work with dynamical degrees of freedom that
are in a sense responsible for the spontaneous breaking
of the translations that take place in solids. In fact in the
language of the previous subsection, the spontaneous
breaking of the translations can be ascribed to the scalar
fields ΦI , taking the vacuum expectation value (vev) Φi ¼
xi in equilibrium. Looking at (1), then one identifies
the phonons as ϕi, the perturbations around this vev (or
“background”).
The EFT can be formalized more sharply by labeling the

set of scalar fields with an “internal” index, so from now on
we switch to the notation ΦIðxÞ. In d spacetime dimen-
sions, we need d − 1 scalars, so the internal index runs over
I ¼ 1;…; d − 1. The theory can be then viewed as having
an internal symmetry group given by the two-dimensional
Euclidean group, ISOðd − 1Þ, acting on ΦI like standard
translations and rotations in the internal space. The equi-
librium configuration of an homogeneous and isotropic
material is identified with the vev

ΦI
eq ¼ δIjx

j: ð10Þ

which breaks the symmetry group ISOðd − 1Þ × ISO
(d − 1, 1) down to the diagonal subgroup preserved
by (10).
At lowest order in derivatives, the effective Lagrangian is

a free function of the scalar field strength

I IJ ¼ gμν∂μΦI∂νΦJ ð11Þ

traced with the internal ISOðd − 1Þ symmetry group
metric δIJ. We denote by gμν the spacetime metric, which
it is assumed to be Minkowski. Since I IJ is a rank d − 1
matrix, there are d − 1 invariants that can be split into
Z ¼ detðI IJÞ, and d − 2 traces Xn ¼ trfðIIJÞng. Then, the
most general effective action at lowest order in derivatives
can be written as [3–6]

S ¼ −
Z

ddx
ffiffiffiffiffiffi
−g

p
VðZ; fXngÞ: ð12Þ

The function VðZ; fXngÞ is arbitrary (up to stability
constraints) and its form depends on the solid material
in question.
The phonons fields are identified as the small excitations

around the equilibrium configuration, ϕI ¼ ΦI −ΦI
eq.

In order to see that the effective action (12) encodes a
mechanical response, it is illustrative to show how the elastic
moduli are determined by the form of V. One can find these
moduli by introducing a small strain as the configuration

ΦI ¼ ðδIj þ εIjÞxj

with a small matrix εIj and working how the stress tensor
depends at linear order on εIj. The details of the computation
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are deferred to Appendix. Let us note, however, that the
expressions simplify remarkably once one uses the variable
xn ≡ Xn=Zn=ðd−1Þ instead of Xn—that is we view V to be a
generic function of Z and xn. For the bulk modulus we
obtain

K ¼ 4Z2VZZ þ 2ZVZ ð13Þ

and for the shear modulus

G ¼ 2
Xd−2
n¼1

n2
∂V
∂xn : ð14Þ

The energy density and pressure for the background
configuration read

ρ ¼ V and p ¼ 2ZVZ − V;

and as a result the standard link between the sound speeds
and the moduli follows,

c2T ¼ G
ρþ p

c2; c2L ¼ Kþ 2 d−2
d−1G

ρþ p
c2: ð15Þ

Note that in the nonrelativistic limit where the mass density
ρm dominates so that ρþ p ≃ ρmc2 þOðc0Þ, and one
recovers the classic expressions [1,2]

c2T ≃
G
ρm

; c2L ≃
Kþ 2 d−2

d−1G

ρm
ð16Þ

which do not involve the speed of light.
Equation (15), together with the definition of the bulk

modulus (7), implies a general relation between the
longitudinal and transverse sound speeds,

c2L ¼ dp
dρ

����
□

c2 þ 2
d − 2

d − 1
c2T ð17Þ

where the j□ subscript here is to remind that the derivative
is taken while keeping zero shear strain, that is, with no
shape deformation. In particular in the fluid limit (G → 0),
this expression recovers the usual relation between the
sound speed and the equation of state in fluids.
The relation between the sound speeds (15) supersedes

the one that was found for the particular case of a conformal
solid in [13],

c2L ¼ 1

d − 1
c2 þ 2

d − 2

d − 1
c2T: ð18Þ

In Sec. III we will see how the formula (15) (valid for a
general solid EFT) simplifies when one imposes scale
invariance, and how it reduces to the one found in [13] for
the conformal subcase.

Lastly, we remark that the Poisson ratio (9) depends
only on G=K and therefore it can be expressed entirely in
function of the ratio of the two speeds, cT=cL. Using (15),
one finds

R ¼
1 − 2

c2T
c2L

d − 2 − ðd − 3Þ c2Tc2L
: ð19Þ

The auxetic limit (R ¼ −1) corresponds transverse
sound as close as possible to longitudinal sound, specifi-
cally c2L ¼ 2 d−2

d−1 c
2
T [which follows also by setting K ¼ 0

in (15)].

III. SOLIDS WITH SPONTANEOUSLY
BROKEN SCALE INVARIANCE

Spontaneously broken scale invariance (SI) is easy to
be implemented in the solid EFT framework. We simply
require the Lagrangian to be invariant under scale trans-
formations, which however are not a symmetry of the
ground state. Physically, scale transformations are just a
rescaling of the coordinates. However, in this theory there
are two objects that play the role of coordinates: the
external coordinates xμ and the internal space coordinates
(solid element positions) ϕI. Therefore, it is conceivable
that a rescaling of coordinates acts (perhaps differently) on
each of them. This leads us to consider the scale trans-
formation as

xμ → λ−1xμ

ΦI → λΔΦI ð20Þ

with some “weight” Δ for the fields ϕI.
To proceed, we construct SI combinations of IIJ. Out of

the invariants Z, Xn, the combinations of the form xn ≡
Xn=Zn=ðd−1Þ are manifestly SI (for arbitrary values of Δ).
The the most general action invariant under (20) must have
V which transforms homogeneously. This leads to
VðZ; fxmgÞ of the form

VwðX; ZÞ ¼ Z
1þw
2 FðfxngÞ ð21Þ

for some constant w and with an arbitrary function FðfxngÞ
of only d − 2 arguments.
The important restriction is that there is a power of,

say, Z which factors out, with some exponent. Invariance
under (20) uniquely fixes w in terms of Δ, by
ð1þ wÞðd − 1Þð1þ ΔÞ ¼ d, giving

Δ ¼ 1 − ðd − 1Þw
ðd − 1Þðwþ 1Þ ; or w ¼ 1 − ðd − 1ÞΔ

ðd − 1ÞðΔþ 1Þ ; ð22Þ

which is shown in Fig. 3 for d ¼ 4.

SCALE INVARIANT SOLIDS PHYS. REV. D 101, 086005 (2020)

086005-5



Several comments are in order:
(1) The physical meaning of the parameter w in (21) is

readily found by computing the energy density ρ and
pressure p for the background configuration (10)
(that is, of the solid in its state of mechanical
equilibrium). One finds that w is none other than
the equation of state parameter,

w ¼ p
ρ
; ð23Þ

which in turn gives Tμ
μ ¼ ð1 − ðd − 1ÞwÞρ. Note that

SI fixes the equation of state to be constant for
arbitrary values of the energy density/pressure, that
is, that the equation of state is linear,

p ¼ pðρÞ ¼ wρ; ð24Þ

to all orders. As usual, w must comply with the
usual The null energy condition (NEC), w > −1, as
a necessary condition order to ensure the absence of
ghosts. See below for further constraints from other
consistency conditions.

(2) The weight Δ introduced in (20) plays the same role
as the scaling dimension forΦI, formally in the same
way as for scalar operators in conformal field
theories CFTs.

(3) The previous point immediately raises the question:
can one apply standard logic and results from CFTs?
In fact, the fields ΦI play the role of some scalar
operators, and (21) is formally relativistic (it is built
out of ΦI and the Minkowski metric) so one might

even wonder: does (21) actually define a relativistic
CFT? From our perspective, the answer to both
questions is no. Despite appearances, the theories
(21) are not really relativistic for an essential reason:
they lack a well defined Poincaré invariant ground
state. Indeed, the onlyPoincaré invariant configuration
would beΦI ¼ 0 (orΦI ¼ const, which is equivalent
by the shift symmetry). However, around this vacuum
the kinetic terms for ΦI are not even analytic, so the
theory does not admit a well-defined vacuum. Only
around configurations with nonzero gradients ∂μΦI

the theory can be quantized perturbatively.
The scale invariance of the theory implies that once

∂μΦI ¼ αδIμ then all the values of α are equivalent
up to rescalings. Hence, there are only two distinct
configurations in principle:α ¼ 1,which is breaks part
of the Poincaré group but admits a perturbative
quantization; or 0, which would be relativistic but is
not really well defined. In other words, there is no
continuous controllableway to approach the unbroken
symmetry case—the theory is bound to describe only
nonrelativistic states. Therefore the theory is not really
relativistic, even if we used a relativistic-looking
language in (20) and (21).
Amore heuristic reason to see that theEFTs (21) are

essentially nonrelativistic is to realize that the fieldsΦI

themselves play the role of spatial coordinates. There-
fore, in some sense, the scale transformation (20) acts
on time and space differently (for Δ ≠ 0). This has
important consequences at the level of reconciling
the features that the SI theories (21) with standard
CFT results.

(4) The Δ ¼ 0 case is special: it is invariant under local
Weyl (or conformal) transformations of the metric

gμν → Λ2ðxρÞgμν ð25Þ

with an arbitrary function ΛðxρÞ and no action on
the scalars. The symmetry group is bigger than just
global SI because ΛðxÞ is a free function, and this
ensures vanishing trace of the stress tensor Tμ

μ ¼ 0.
This is the ‘conformal solid’ EFT considered in [13],
which leads to the relativistic sound speeds (18) and
therefore does not seem appropriate for real world
(i.e., with nonrelativistic sound speeds) SI solids.
This point is marked in Fig. 3 with a red dot.
Let us also remark that in the examples of Sec. IV

of solids with manifest SI the scaling dimension of
the operators that are naturally identified as the
phonons also have Δ ¼ 0.

(5) The case Δ ¼ d−2
2
(corresponding to w ¼ − d−3

d−1) with
FðfxngÞ ¼ x1 is also special: it is the free theory,
which is known to admit an improved stress tensor
that is also traceless, see e.g., [23–25]. This case is
marked with a blue circle in Figs. 3, 4.

FIG. 3. Relation between the equation of state parameter w and
the scaling dimension of the scalars ΦI for SI solids in 3þ 1
dimensions. The gray shaded area is where the naive unitarity
bound Δ > 1 holds. The red shaded area (w ≥ 1) should be
excluded, as the longitudinal sound speed cL is superluminal. The
red disk corresponds to the Weyl-invariant case, with Tμ

μ ¼ 0 and
Δ ¼ 0. The blue circle includes the free theory, which is known to
admit an improved the stress tensor that is traceless too. The blue
shaded region suffers from longitudinal gradient instability
(c2L < 0) in the limit cT ≪ c.
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(6) In the generic case (Δ ≠ 0 or d−2
2
) the stress tensor

isn’t traceless. It is not obvious whether one can
construct an “improved” traceless stress tensor
[24–28], but it seems highly unlikely in the full
nonlinear theory.2 See [24,29] for discussions on this
point in similar theories. Therefore these cases are
scale but not conformal invariant (i.e., with Tμ

μ ≠ 0).
One might find this surprising, however let us
remind that the theories (21) are intrinsically non-
relativistic (see point 3) because they can be quan-
tized only around Lorentz-breaking backgrounds.
The scale but non-conformal invariant elasticity

theories (21) might remind the reader the well-known
previous example given in [30]. Despite naive simi-
larities, however, the constructions are very different.
For instance, the example in [30] is a theory in
Euclidean signature, and it manages to be scale- but
not conformal-invariant because it lacks reflection-
positivity [30] (see [23–25] for reviews on this point).
The SI solid EFTs instead escape conformal invari-
ance by breaking Lorentz invariance.

(7) An intriguing feature of the relation (22) is that the
range compatible with the NEC and with gradient
(in)stability, corresponds to a surprising range in Δ
that includes even negative values, as seen in Fig. 3.
It is inevitable to compare with true CFTs, where the
scaling dimension of scalar operator must obey the
so-called unitarity bound Δ > d−2

2
. Even the con-

formal solid case (Δ ¼ 0, w ¼ 1=ðd − 1Þ) evades
this bound. Again, in our view this is not a signal of
violating unitarity, but simply the consequence that
without full Lorentz invariance the unitarity bound is
expected to be more permissive.

(8) The natural question, then, is what are the bounds
on Δ that apply for the theories (21). Stability and
consistency arguments give rise to 3 types of
bounds: (i) absence of ghosts (which amounts to
the NEC, w>−1) and which translates intoΔ > −1;
(ii) absence of gradient instabilities; and (iii) sub-
luminality cL;T < c. We postpone this discussion to
Sec. III A, once the values for the sound speeds are
presented.

A. Sound speeds

Let us now return to the main point—how SI constrains
the phonon speeds. As mentioned in point (1), SI demands
that the equation of state is linear p ¼ wρ to all orders in ρ.
In particular, this implies that the linear bulk modulus is
fixed in terms of the background pressure as3

K ¼ ð1þ wÞp ¼ wðρþ pÞ: ð26Þ
The general formulas for the sound speeds in any (SI or not)
solid EFT are

c2T ¼ G
ρþ p

c2; c2L ¼ Kþ 2 d−2
d−1G

ρþ p
c2: ð27Þ

Plugging (26) into those, one obtains

c2L ¼ wc2 þ 2
d − 2

d − 1
c2T: ð28Þ

The first evident remark is that, once w ≪ 1, this equation
allows that the two sound speeds are small, while the solid
being SI.
Next, we discuss the stability/consistency constraints.

Absence of gradient instability and subluminality in the
transverse sector only places a constraint on the shear
modulus

0 < G ≤ ρþ p ð29Þ
Once this is ensured, the analogous bounds on cL then

constrain w. The absence of gradient instability, c2L > 0,
places a stronger constraint on w than the NEC. From (28),
we find4

w > −2
d − 2

d − 1

c2T
c2

: ð30Þ

Since in most solids cT=c ∼ 10−4 at most, we represent this
constraint in Figs. 3 and 4 as basically excluding the region

FIG. 4. The same as in Fig. 3 for a SI superfluid.

2Even ignoring interactions, the theory consists two types of
“free” scalars fields, the longitudinal and transverse modes, with
generically different sound speeds. In this case, one can see that
the standard improvement method [23] eliminates only the
contribution from one of the scalars to the trace. This already
hints that there is no possible improvement and the trace is
generically nonzero.

3This also restricts the nonlinear response for bulk strain
deformations. We postpone this discussion to a forthcoming
work [31].

4In the exceptional case of the free theory (with V ¼ X and
cL;T ¼ c), leads to w ¼ − d−3

d−1 so (30) is automatically satisfied for
any d.
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w < 0. From (22), this translates into an upper bound on
the scaling dimension Δ for SI solids Δ < 1=ðd − 1Þ.
On the other hand, the subluminality condition on (28)

requires that w < 1, which translates into Δ > − d−2
2ðd−1Þ. All

in all, then, we are left with allowed scaling dimensions in
the window

−
d − 2

2ðd − 1Þ < Δ <
1

d − 1
: ð31Þ

Finally, using (28) into (9), one can relate the Poisson
ratio in a SI solid in terms of one sound speed and w,

c2L
c2

¼ ðd − 1Þð1 − ðd − 3ÞRÞ
Rþ 1

w ð32Þ

or

R ¼ ðd − 1Þw − c2L
c2

ðd − 3Þðd − 1Þwþ c2L
c2

: ð33Þ

Notice that small w and cL (i.e., more nonrelativistic the
solid) allows for more auxetic behavior—more negative
R is allowed. Conversely, in the conformal solid limit
(w ¼ 1=ðd − 1Þ), one finds at most R > 0 (from cL < c).

B. Scale invariant superfluids

It is easy to extend the above analysis of solids that
realize SI to a simpler case, namely a SI relativistic
superfluid, which consists in a single scalar field that
has a temporal vev for the gradient, Ψ ¼ tþ ψ . This case
has also been studied in [29]. The most general action at
leading order in derivatives is S ¼ R

ddxPðXðΨÞÞ where
XðΨÞ ≡ ∂μΨgμν∂νΨ. Scale invariance also allows for a
nontrivial scaling dimension for Ψ, ΔðΨÞ, defined similarly
to (20) and it restricts the Lagrangian to be power law in
XðΨÞ. The only difference with respect to the SI solid case is
how the exponent relates to w. One can easily find that

PwðXðΨÞÞ ¼ X
wþ1
2

ðΨÞ, and thus the Δ − w relation is now

Δ ¼ ðd − 1Þw − 1

wþ 1
; or w ¼ 1 − ðd − 1ÞΔ

ðd − 1ÞðΔþ 1Þ ; ð34Þ

which is shown in Fig. 4 for d ¼ 4. Interestingly, the
Weyl/conformal-invariant case also requires Δ ¼ 0. In this
case, there is only one speed of sound c2s ¼ wc2 so the
constraints from (no) gradient instability and subluminality
are 0 < w < 1, which gives

−1 < Δ <
d − 2

2
-for SI superfluids ð35Þ

IV. SOLIDS WITH MANIFEST
SCALE INVARIANCE

Let us focus now on the other possibility mentioned
in the introduction: that scale invariance (SI) is in fact
manifest in the low energy theory, namely as a nontrivial
infrared fixed point of the renormalization group. The main
physical effect of having the phonons as part of nontrivial
IRFP is that the phonons are not isolated degrees of
freedom, so one expects that they inevitably have diffusive
behavior. This translates in their dispersion relation as
acquiring an imaginary part, w ¼ cT;Lk − iΓðkÞ. Given that
the diffusive part ΓðkÞ scales as k2, at low enough energy
the dispersion relation is still basically real, linear and
propagating.5 Under this condition, it is justified to focus
mainly on the real part of the dispersion relation (i.e., on
their the speeds), as we shall assume henceforth.6

Our goal is to study this case using holography, that is,
modeling the CFT as an effective theory in AdS space
and using the AdS=CFT dictionary and keeping in mind
that we need an elastic sector which allows for a
well-defined elastic response. The simplest holographic
model is to consider a nondynamical AdSdþ1 space
with d − 1 scalar fields ΦI propagating in it (with no
backreaction on the metric). In Poincaré coordinates7

ds2 ¼ gabdxadxb ¼ ðl2=z2Þðdz2 þ dxμdxμÞ, one can take
the scalar Lagrangian as in the previous section, VðZ; xnÞ
with some function V and the invariants constructed from
I IJ
AdS ¼ ∂aΦI∂bΦJgab. These theories admit solutions with

spatial gradients of the form ΦI ¼ δIμxμ, which break both
Lorentz and SI. For a certain type of the potential V, the
holographic interpretation [36] of the solutions is that the
breaking of both Lorentz and SI is spontaneous.
Given that the stress tensor plays a prominent role in

elasticity, and that a model with nondynamical metric is
interpreted holographically as a theory with no stress tensor
operator (see e.g., [25]), we shall not discuss the limit of no
backreaction below.
Nevertheless, this simple model allows us to highlight

an important point. The holographic CFT constructed as an
AdS dual is meant to represent the infrared fixed point
(IRFP) which controls the quantum critical material at low
energies. Therefore it is clear that it only stands for the
effective field theory description that in a sense emerges at
low energies—SI itself is an emergent symmetry for IRFPs.

5More precisely, the phonon propagates until the so-called
Ioffe-Regel crossover, whose momentum depends on how strong
is dissipation (the diffusion constant) compared to speed of
propagation—the elastic modulus. For more details see [32]
and in particular fig.4 therein.

6The complete study of the low energy dynamics (including
the dissipative terms) can be obtained using hydrodynamic
techniques. See [33–35].

7To make the distinction with the previous section clearer,
lowercase latin indices a; b;… will refer to dþ 1 dimensional
coordinates, so that schematically xa ¼ fz; xμg.
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It is conceivable, then, that other symmetries might be
emergent as well.
In the present context, it is particularly relevant to

include the possibility that the IRFP exhibits an emergent
Lorentz invariance. Besides the fact that this allows us
to treat the IRFP as a true CFT (invariant under emergent
boost invariance, SI and special conformal transforma-
tions), what this means in practice is that the field theory
is characterized by a well defined light cone speed ce,
generically different from the speed of light c. In order
to comply with the fundamental principles of special
relativity one needs to have ce < c and (in fact the limit
of interest will be ce ≪ c). The possibility that Lorentz
invariance arises as an emergent symmetry has been
studied e.g., in [37–45]. For the present work, we shall
only take this as an assumption in order to construct a
simple model.
The emergence of LI can be formulated a bit more

precisely by saying that in addition to the standard
(fundamental) Minkowski metric ημν the theory contains
(or produces dynamically) a spin-2 object in addition to the
standard Minkowski metric, and that the all the CFT
operators couple to this emergent metric. To distinguish
it from the fundamental Minkowski metric, we will denote
it as ηeμν. By definition, it allows us to define an emergent
line-cone structure

ds2e ¼ −c2edt2 þ dxidxi:

In terms of the usual spacetime coordinates with homo-
geneous dimensionality xμ ¼ fct; xig, the fundamental
metric reads simply ημν ¼ diagð−1; 1;…; 1Þ, and the emer-
gent one

ηeμν ¼ diag

�
−
c2e
c2

; 1;…; 1

�
: ð36Þ

The statement that the CFT exhibits emergent Lorentz
invariance then amounts to saying that all the correlators
are constructed for instance from the emergent covariant
distance ΔxμΔxνηeμν.
Another clear consequence is that two different notions

of trace, which is especially relevant for the stress tensor
operator Tμν. Particularizing to the perfect fluid form Tμν ¼
diagðρ; p;…pÞ that describes the solid in the homogeneous
background, the two traces yield

Tμνημν ¼ −ρþ ðd − 1Þp; and

Tμνηeμν ¼ −
c2e
c2

ρþ ðd − 1Þp: ð37Þ

This shows that the notion of an emergent conformal theory

Tμνηeμν ¼ 0 ð38Þ

is perfectly compatible with the usual nonrelativistic limit
(in the sense that p=ρ ≪ 1) which is required for real-world
materials, so long as ce ≪ c.
Another important lesson from (37) is that the emergent

light cone speed is related to the equation of state parameter
(w ¼ p=ρ) of the background,

ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þw

p
c: ð39Þ

Snooping for a moment at Eq. (40) this will match with
Eq. (28) found in Sec. III for the spontaneous breaking
case. Let us remark, however, that the symmetries are very
different in the two cases.
In retrospect, assuming that the IRFP has emergent

Lorentz invariance with ce ≪ c use the standard
AdS=CFT dictionary in a setup that is nonrelativistic in
the sense that the speeds are small compared to the speed of
light. The only conceptually important point is that the
light-cone structure of the AdS space is also characterized
by the emergent speed ce. Since it is convenient to use
natural units where the speed parameter does not appear
explicitly, the only point to keep in mind is that natural
units are those where ce ¼ 1. Alternatively, one can keep
track of the factors of ce=c by simple dimensional analysis
as above.
In the rest of this section, we will consider this precise

setup (we model the IRFP as an emergent CFT with
small ce light-cone speed parameter) and study the elastic
response. In order to do this, we introduces an elastic sector
as a set of scalars with nonzero spatial gradients ∂aϕ

I as
before, but we allow it to couple to the stress tensor (in
order to extract the elastic response in the usual fashion).
In the AdS picture this means that the scalars backreact on
the metric, which will be AdS4 only asymptotically.
This analysis follows very closely the steps of

[19,36,46–50] (see also [13,51–60] for other treatments
of the elastic response), with the only main difference that
now we keep in mind that the light-cone speed is emergent
and therefore we treat it basically as a new parameter.
As we shall see, in this case what happens is that

transverse and longitudinal sound speeds satisfy8

c2L ¼ 1

d − 1
c2e þ 2

d − 2

d − 1
c2T: ð40Þ

This is structurally the same as derived for the conformal
solid EFT—it is the same as (18) but replacing c → ce.
However, the quantitative difference is huge in the ce ≪ c
limit. The longitudinal sound speeds is now bounded by

8Strictly speaking, we show this relation below for d ¼ 3 and
the d-dependence is only an educated guess here. However the
main point in the present discussion how the emergent speed ce
enters.
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1
d−1 c

2
e, and so taking ce of order 10−4c brings us to realistic

sound speed values.
Another interesting aspect of the holographic models

such as the one presented here is that they allow to
characterize rather systematically the elastic properties of
the different models. In particular we will see that these
models allow for one can have a significant auxetic
behavior. Lastly, these models also incorporate finite
temperature effects in a straightforward way. These effects
are important because it is possible to capture the melting
transition that happens at sufficiently large temperature.9

Needless to say, the mechanical response changes drasti-
cally above or below the melting crossover.

A. Holographic models

As mentioned above, we shall model the low energy
“critical” behaviour using the standard holographic dic-
tionary that maps CFT to gravitational physics in asymp-
totically AdS spacetime. For simplicity, from now on we
assume that the CFT lives in 2þ 1 spacetime dimensions,
so that the gravitational dual is AdS4.
By assumption, the CFT contains operators that can be

identified with the displacement vectors. Their dual
incarnation in the AdS4, are an identical a set of fields,
ΦI , which propagate into the holographic dimension too.
The equilibrium configuration for the scalars is ΦI ¼ xI

and it defines the equilibrium configuration which breaks
the 2þ 1 Poincaré group and more precisely translations
and rotations. The perturbations of those scalars around
equilibrium encode the mechanical deformations of the
system and directly the strain tensor as:

ΦI ¼ xI þ ϕI; εij ¼
1

2
ð∂iϕj þ ∂jϕiÞ: ð41Þ

The above identification permits to rewrite the full elastic
response in terms of the dynamics of the scalar fields ΦI .
For example an external shear deformation would simply
correspond to a perturbation for which ∂xϕy ≠ 0.
We consider the generic holographic massive gravity

models introduced in [46,47], and studied in several
directions in [19,36,48,61–63]. The models are defined
as a gravitational theory with negative cosmological
constant Λ. The metric is locally Minkowskian, gμν ∼
diagð−c2e=c2; 1; 1; 1Þ þ…, with an input speed parameter
ce that is unrelated to the speed of light because the 4D
space is only holographic. We can thus take ce ≪ cwithout
affecting at all the consistency of the theory, and which
gives the important benefit of realizing conformal material
with slow sound speeds as described in the introduction.

In the following, we will work in the units ce ¼ 1 unless
otherwise stated.
The model is then defined by the following action in the

4D bulk space,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− Λ −m2VðX; ZÞ

�
ð42Þ

with I IJ
AdS ¼ ∂aΦI∂bΦJgab and X ≡ 1

2
TrðI IJ

AdSÞ and Z ¼
detðI IJ

AdSÞ. For simplicity, we focus on d ¼ 3 but we will
comment on generic and universal features.
For specific choices of the potential VðX; ZÞ, the model

(42) represents the gravity dual of a CFT at finite temper-
ature and zero charge density where translational invariance
is broken spontaneously. Using the standard AdS=CFT
dictionary, this defines for us a CFT that will have nonzero
elastic moduli and so it can be interpreted as a model for a
solid in a quantum critical regime. More precisely, a well-
defined elastic response can be defined for potentials which
decay at the boundary as V ∼ u3 or faster [48]. Moreover,
for potentials whose fall-off at the boundary is V ∼ u5 or
faster, this elastic response is associated to the presence of
massless propagating phonons [36].
This field configuration admits an AdS black brane

geometry

ds2 ¼ 1

u2

�
−fðuÞdt2 þ du2

fðuÞ þ dxidxj
�
;

fðuÞ ¼ u3
Z

uh

u

�
3

v4
−
m2

v4
Vðv2; v4Þ

�
dv: ð43Þ

We fix the cosmological constant to Λ ¼ −3. We assume
the presence of an event horizon at u ¼ uh defined by
fðuhÞ ¼ 0. The associated entropy density is s ¼ 2π=u2h
and the corresponding temperature reads T ¼ − f0ðuhÞ

4π .
The shear elastic modulus for these models can be

obtained solving numerically the equation:

h00 þ
�
f0

f
−
2

u

�
h0 −

2m2VXðu2; u4Þ
f

h ¼ 0 ð44Þ

for the metric perturbation h≡ δgxy. The perturbation is
assumed to be static, ω ¼ 0, and the subscript X indicates
the derivative with respect to X. In order to extract the
retarded correlator we have to impose ingoing boundary
conditions at the horizon, see [19] for more details. The UV
expansion of the shear perturbation reads

hðuÞ ¼ h0ð1þ…Þ þ h3u3 þ… ð45Þ

where h0 represents a source for the Txy operator and h3
encodes the VEVof the stress tensor hTxyi [64]. Following
Eq. (6), which defines the shear modulus (as used in
previous works [19,36,47–49]), we simply find

9To be precise, this transition is totally continuous and different
from the first order typical melting phase transition—ice to water.
There are some models [49] where this transition can be
discontinuous, but second order.
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G ¼ 3

2

h3
h0

ð46Þ

At this stage, it is important to make a stop to discuss this
result. To be more precise, here we are considering the
response of the stress tensor to a geometrical shear
deformation h0. A more physical approach is to consider
the response of the stress tensor h3 in terms of a mechanical
shear deformation ∂xϕy ≠ ϕs. At linear level, it does not
make much difference. It is straightforward to check that:

h3
h0

¼ −
h3
ϕs

: ð47Þ

The previous result can be understood noticing that the
gauge invariant perturbation encoding a “gauge invariant
shear strain” is indeed a combination of ϕs and h0 [46].
Therefore it is clear the two will produce the same result.
Once the framework will be extended at the nonlinear level,
the interpretation in terms of the scalars perturbations is
much more direct and simpler and it will be convenient to
fix h0 ¼ 0 once and forever.
The solution for the shear modulus can be found

analytically in the limit m ≪ T [19,36]

G ¼ m2

Z
uh

0

VXðζ2; ζ4Þ
ζ2

dζ þOðm4Þ: ð48Þ

On the other hand, the bulk modulus is defined in
Eq. (7). Due to conformal symmetry, the stress energy
tensor is traceless, thus

p ¼ Tii ¼ Ttt=2≡ ρ=2: ð49Þ

We can guess the volume dependence of the energy density
ρ quite easily. Consider a homogeneous system with
equation of state γ ¼ p=ρ in a box of volume V. In an
adiabatic process that changes volume, the energy density
scales with volume as ρ ∝ V−1−γ. Therefore in our case

ρ ∝ V−3=2 ð50Þ

and the total bulk modulus is just

K ¼ 3

4
ρ: ð51Þ

B. Sound speeds

In the current setup, the phonons can be found as the
poles in the TijTkl correlator at finite wave number k. In the
gravitational dual this is done by finding the spectrum of
quasinormal modes. We shall not repeat this exercise
here, since it has already been done in [35,36,48,65].

The conclusion of these works is that for b < 5=2 the
spectrum of QNMs in our benchmark of models con-
tains gapless modes with a gapless dispersion relation of
the form

w ¼ csk − iDk2 þ… ð52Þ

both for transverse [36] and longitudinal [35,65] waves.
Since the diffusive part scales as a higher power of k it is
still possible to preserve a clear notion of propagating
sound modes and sound speeds—at low enough k.
Moreover, the sound speeds of the QNMs can be found

numerically by following the motion of the pole as k
changes [35,36,65,66]. The numerical result thus obtained
for the sound speed agree formally with what one expects
from elasticity theory, that is Eq. (15),

c2T ¼ G
ρþ p

; c2L ¼ GþK
ρþ p

ð53Þ

with ρ, P, G and K the energy density, pressure, and elastic
the moduli respectively, for d ¼ 3 space-time dimensions.
This agreement justifies the physical identification of these
modes as physical phonons.
The speeds in Eq. (53) are expressed in the units of the

light-cone speed present in the AdS theory. In a truly
relativistic CFT (with light cone speed identical to the
speed of light), the units are restored in Eq. (53) trivially: by
a multiplicative c2 factor.
However, it is interesting to take the AdS theory merely

as a model for a low energy CFT with emergent light-cone
speed ce ≪ c (in order that sound can be slow compared
to light). With this in mind, let us now restore the factors of
ce-dependence in (53). At the technical level, this can be
done by performing a rescaling of the time coordinate,

∂t →
c
ce

∂t; ω →
c
ce

ω: ð54Þ

From this we can immediately derive10 that:

cT;L →
ce
c
cT;L ð56Þ

This has two immediate consequences. First, it follows that
the speeds satisfy

10A similar conclusion can be reached by noticing that under
restoring ce:

G → G; χPP →

�
c
ce

�
2

χPP ð55Þ
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c2L ¼ 1

2
c2e þ c2T; ð57Þ

which is the same as (40) for d ¼ 3.
Second, since the rescaling (54) affects the energy

density ρ but not the pressures Tij, the full expression
for the sound speeds is

c2T ¼ G
ðce=cÞ2ρþ p

c2e; c2L ¼ GþK
ðce=cÞ2ρþ p

c2e: ð58Þ

It is interesting to rewrite these in terms of the physical
mass density, which relates to the energy density in the
usual form

ρm ≡ ρ=c2:

One then finds that Eq. (58) reduces to

c2T ¼ G
ρm þ p=c2e

; c2L ¼ GþK
ρm þ p=c2e

: ð59Þ

Recall that the spontaneous breaking case (Sec. III) leads
to expressions of the form

c2T ¼ G
ρm þ p=c2

ð60Þ

where the pressure contribution in the denominator is much
more suppressed. Therefore, one can say that the effect of
having manifest SI with a “slow” emergent cone (ce ≪ c)
ends up enhancing the pressure contribution in the denom-
inator of the sound speed formulas, thereby reducing the
sound speeds.
Upgrading the discussion to d dimensions, and using

the tracelessness condition (p ¼ ðce=cÞ2ρ=ðd − 1Þ in d
dimensions) Eq. (59) further simplifies to

c2T ¼ d − 1

d
G
ρm

ðmanifest SIÞ: ð61Þ

This is to be contrasted with the conventional expression (16)

c2T ¼ G
ρm

ðspontaneous breakingÞ ð62Þ

(up to tiny Oð p
ρmc2

Þ corrections), which holds in the EFT

picture (spontaneous breaking) but is not granted to apply in
the presence of an emergent CFT-like fixed point.
Note that the difference between (60) and (61) is

independent of ce. This deserves two comments. First,
the discrepancy looks surprising but actually it is due to the
fact that the low energy theories are very different—SI is
realized in a completely different way in the two cases.
Second, this implies that the discrepancy persists even in
the limit ce ≪ c. In particular, taking ce=c in the range

10−5 − 10−4 brings the sound speeds into the range of real-
world materials so from this point of view this has a chance
to correspond to a realistic material at a critical point. It is
tempting to say that the relation between cT , G and ρm can
provide a signature of whether a material is controlled by
such peculiar IR dynamics. (A similar discrepancy arises
also in the longitudinal sector.)
Let us remark that the case of spontaneous breaking

of SI with emergent Lorentz symmetry at low energy
represents another well defined option. A proper discussion
of it is beyond the scope of this paper, but let us offer one
comment. In this case, one wonders whether the EFT
should be obtained from coset construction referred to
the breaking of the “fundamental” Poincare group (with
speed c) or from the emergent one (with speed ce), which is
also spontaneously broken in the ground state. If the latter
option is the relevant one, then we would expect Eq. (59) to
apply. In this case, however, the pressure is not constrained
by the emergent-tracelessness condition so one would not
obtain (61). Still, one would also expect order-one devia-
tions from (62), basically due to the enhancement of the
pressure term in the denominator.

C. Elastic response in a benchmark model

After defining the linear response in abstract terms,
we restrict ourselves to a specific and quite generic form
of the potential V to make more quantitative statements.
In particular, for the rest of the paper we consider the
benchmark potential:

VðX; ZÞ ¼ XaZ
b−a
2 ð63Þ

In order to ensure the consistency of this choice (63), and of
the model (42) in general, one must impose a number of
requirements. First, absence of ghosts, absence of gradient
instabilities locally in the 4D theory leads us to limit the
parameters a, b in the range [7]:

a ≥ 0 ∧ b ≥ 1: ð64Þ
Demanding the positivity of the linear elastic moduli,
and of the energy density at low temperatures (see Eqs. (67)
and (68) below) restricts b further as

b ≥
3

2
: ð65Þ

Finally, in order to restrict to the theories where the
phonons are gapless we need to further impose [36,48]:

b ≥
5

2
: ð66Þ

Below 5=2 the phonons acquire a mass gap. This can
be translated as having additional (‘explicit’) sources that
break translational invariance, suggesting that the phonon
speeds might depart from the expressions (53).
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Notice that the constraints considered are purely bulk
requirements and they represent just necessary but not
sufficient conditions for the full consistency of our boun-
dary field theory. In order to have a final verdict, a detailed
QNMs computation would be needed.
Restricting ourselves to our benchmark model (63), we

can write the expressions for the energy density and
pressure of the background as

ρ ¼ 1

u3h
þm2

u2b−3h

2b − 3
; p ¼ 1

2
ρ ð67Þ

as well as for the elastic moduli

G ¼ a
2b − 3

m2u2b−3h þOðm4Þ; K ¼ 3

4
ρ ð68Þ

and noticing immediately that the parameter a is what
distinguish in the static response a solid with respect to a
fluid. For a ¼ 0, the static shear modulus is zero and the
system does behave like a fluid. From (68) we can
immediately obtain the Poisson ratio R (9) for our holo-
graphic models. We show how R depends on a, b at low
temperature in Fig. 5.
At large T=m ≫ 1, the Poisson ratio always goes to the

fluid valueR ¼ 1. This indicates that within our model, no
matter the choice of the potential VðX; ZÞ, the limit of large
temperature correspond to a fluid phase with a maximum
Poisson ratio. We can easily understand this phenomenon
by noticing that at T=m ≫ 1 the graviton mass and there-
fore the additional structure induced by the scalars ΦI are
completely negligible and the phenomenology is simply the
one of a relativistic strongly coupled fluid. On the contrary,
at small temperature, the effects of the scalars are dominant
and the phenomenology depends crucially on the choice of
the potential VðX; ZÞ and the Poisson ratio differs con-
sistently from the fluid value. More precisely we can
provide a rough classification of benchmark model (63)
as follows (see related Fig. 5):

(i) For small a and large b the Poisson ratio is large and
close to its upper limit R ¼ 1. This class of models
refers therefore to incompressible and elastic mate-
rials such as rubber.

(ii) For a ∼ b the Poisson ratio is in the range
−0.5 < R < 0.5, similarly to the typical values
for most steels and rigid polymers.

(iii) For large a and small b the Poisson ratio is negative
(i.e., it exhibits auxetic behavior) and close to its
lower limit R ¼ −1. As we will see later this is
correlated with the presence of superluminal speeds
of sound hinting toward a possible instability.

An even better way of classifying our theories consists
in plotting their Poisson artio R in function of the dimens-
ionless quantity K=G as for example presented in [67]. The
similarities with the realistic results are presented in Fig. 6.

As already hinted in Fig. 5, small a corresponds to foamlike
material whether large a to rubberlike materials.
As another important feature, we can analyze the

behaviour of the linear elastic moduli which are shown

FIG. 5. Poisson Ratio −1 < R < 1 for the benchmark model
(63) within the consistency region at low temperatures T=m ≪ 1.
From orange to blue the material becomes more and more
auxetic, i.e., with a negative Poisson ratio. In the region above
the purple dashed line, the phonons are gapless. The red dashed
line marks the simple choice of potential VðX; ZÞ ¼ Xa. The
black dashed line shows the region where all local speeds are
subluminal in the bulk (see Fig. 8 for the boundary values of the
phonon speeds).

FIG. 6. Poisson ratio as a function of K=G for the model (63).
The colors represent specific points in the parameter space, which
are shown in the inset, within the region of consistency. The
various colored lines are produced changing the dimensionless
parameter T=m at fixed a, b.
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in Fig. 7. It is evident from the figure that both the moduli
goes to zero in the limit of T=m ≫ 1 in a continuous
fashion which typical of viscoelastic and glassy materials
[68]. Additionally, their ratio G=K goes to zero at large
temperatures indicating again that at T=m ≫ 1 we are
always in a fluid phase. Moreover, we can compute the
behavior of the Poisson ratio in function of the temperature
(Fig. 7). Our results suggest that as a generic property such
a ratio decreases with increasing the dimensionless ratio
T=m. We can think of the previous properties as the
“melting” in our holographic system, which is very similar
indeed to the phenomenology of amorphous solids and
glasses as already hinted in previous literature [36,69,70].
As already introduced in the previous sections, the linear

elastic response directly defines the speed of propagation of
transverse and longitudinal sounds in terms of the elastic
moduli via Eq. (15). Notice that formulas (15) are strictly
speaking valid only in presence of massless phonons
ωT;L ¼ cT;Lk and therefore only for b > 5=2. The latter

disagreement for b < 5=2 has been explicitly checked for
in [48]. The validity of formula (15) has been ascertained
directly by a direct comparison with the QNMs spectrum
for transverse [36] and longitudinal [35,65] waves. Two
important results follow:

(i) For a ¼ 0 the speed of transverse sound is zero. In
addition the speed of longitudinal sound is constant
c2L ¼ 1=2 and independent of the power b. The
phase dual to a ¼ 0 is a fluid.

(ii) At any value of T=m the relation c2L ¼ 1
2
þ c2T holds.

This is ensured by conformal symmetry [13] and it is
proven by direct computation.

The results for the speeds are shown in Fig. 8. The
left panel of Fig. 8 shows a typical behavior of the
speeds in function of the dimensionless temperature T=m.

FIG. 7. Top: The elastic moduli for the potential VðX; ZÞ ¼ X3

in function of T=m. Bottom: Poisson Ratio R in function of the
dimensionless temperature T=m for various choices of potential.
The specific ða; bÞ are indicated with the same colors of Fig. 6.
Notice that at large temperature the Poisson ratio always goes
toward the fluid limit R ¼ 1.

FIG. 8. Top: The longitudinal (thick) and transverse (dashed)
speeds in function of T=m. The specific ða; bÞ are (3,3),(3,4),(4,4)
for red, blue and green. Bottom: Values of c2L at T ¼ 0 as
extracted from the formula (53). The dashed purple line indicates
the region where the phonons are gapless, which happens for
b > 5=2 [36]. Below this line, the formulas in (53) (and
consequently this plot) need not apply. The dashed red line is
the potential VðX; ZÞ ¼ Xa. More importantly the white region
signals the appearance of superluminal longitudinal phonons.
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The speeds exhibit a continuous transition toward the large T
values cT ¼ 0, c2L ¼ 1=2. The right panel shows the value
of the longitudinal speed at zero T, the maximal speed in
the system, inside the parameter space. The white region
highlights the region where the longitudinal speed is super-
luminal cL > 1. Curiously, the speed becomes superluminal
in the direction where the dual CFT becomes more and more
exotic (auxetic).
Restoring the units in the previous equation is simply

done by noticing that cL;T are expressed in the units of the
universal light-cone speed present in AdS gravity side, ce.
Therefore, restoring the units we recover readily (40).
As emphasized in the introduction, this has an important
physical consequence: taking ce ≪ c, we obtain a model
for a scale invariant material whose sound speeds can be as
slow as necessary. For real world applications, notice that
ce=c should be at most of the order 10−4.
This also makes manifest another important point: in

the present construction, the AdS gravity model also
shares this small universal speed ce. Therefore, it is clear
that our framework has no knowledge of the underlying
ultraviolet completion (where eventually the speed of
light c plays a key role), including any relation to string
compactifications. This is in tune with the view that
holography can be used as an effective method as argued
before e.g., in [71,72].

Let us finish by showing the relation between the
Poisson ratio R and the longitudinal sound speed in the
holographic CFT model,

c2L ¼ c2e
Rþ 1

: ð69Þ

This makes manifest that in this theory R can be negative
(auxetic) if ce < c, and the how much auxetic the solid can
be depends on how small the ratio ce=c ie. We show this in
Fig. 9. A similar plot can be obtained for the generic EFTs
with spontaneously broken scale invariance presented in
Sec. III, with the equation of state parameter w playing the
role of c2e=c2.

V. CONCLUSIONS

We have studied the possible realization of scale invari-
ance (SI) in the mechanical response of solid materials,
considering both the cases for which SI is a spontaneously
broken or a manifest symmetry. The latter case takes the
form of a nontrivial infrared fixed point (IRFP), and we
have studied it using AdS=CFT methods.
For the spontaneously broken case, it is consistent to

assume that the mass-spectrum is gapped and then use
effective field theory (EFT) methods to study the gapless
phonons as Goldstone bosons of the spontaneously broken
spacetime symmetries. We have presented a new one-
parameter family of EFTs of sponteneously broken SI,
which is basically parametrized by the equation of state
parameter of the material in the background, w ¼ p=ρ. This
family includes the previously studied case of the so-called
conformal solid EFT [13] as a special point, however for
the generic values it nonlinearly realizes SI, but not the full
conformal group.
We have shown that for both types of realization of SI it

is possible to have slow speeds of sound compared to the
speed of light, once w is small. More specifically, we found
that the longitudinal and transverse sound speeds are
related as

c2L ¼ wc2 þ 2ðd − 2Þ
d − 1

c2T ð70Þ

with w the equation of state parameter of the material
and c the speed of light. For small w the two speeds are
small compared to c, as needed for potentially realistic
applications.
We have constructed manifest SI theories as holographic

duals of AdS models. In these cases, we also found that
(70) applies. We have argued that our models can be
interpreted as IRFP where in addition to having manifest
SI, the theory is also Lorentz invariant with respect to a
small “emergent” light-cone speed ce (so that the theory is
actually a full conformal field theory). The symmetries
then relate

FIG. 9. The longitudinal speed c2L in function of the Poisson
ratioR, for various values of ce=c. The orange line is for ce=c ¼
1 and it coincides with the plot obtained for the conformal solid
EFT (shown as green bullets). The other lines correspond to CFTs
the representative values ce=c ¼ 1=

ffiffiffi
2

p
and 1=

ffiffiffiffiffi
10

p
. Notice that

the auxetic behaviour (corresponding to R < 0) can be achieved
in the CFT case with ce=c < 1, thus the conformal solid EFTs
must have R > 0 and cannot be much auxetic. Similar plots are
obtained for the family of solids with spontaneously broken SI
introduced in Sec. III, by decreasing the equation of state
parameter w, which plays a role analogous to c2e=c2.
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w ¼ 1

d − 1

c2e
c2

:

Importantly, note that assuming ce=c ≪ 1 is a consistent
possibility, and it immediately leads to slow phonons also
in this CFT-like case. Another interesting consequence of
having a full emergent CFTwith is that the relation between
the speeds and the elastic moduli change by Oð1Þ factor.
For instance the transverse sound speed becomes c2T ¼
d−1
d

G
ρm

instead of the usual form G
ρm
, with G the shear

modulus and ρm the mass density. Thus, a deviation from
the usual formula G

ρm
could be used as a smoking gun of the

emergent SI and Lorentz in the material. The measurement
of elastic properties in some cuprates has been recently
done in Ref. [16]. Our work motivates further investigation
in this direction.
In our models with manifest SI, we have used standard

holographic methods to compute several elastic response
parameters: the elastic moduli, the Poisson ratio, the
propagation speed of the phonons in function of the various
parameters of the model. We find that the maximally
auxetic solids (most negative Poisson ratio) can arise only
for w ≪ 1, that is, for slow sound speeds. Also, the
temperature dependence of the different features suggest
once more that these holographic models seem to inter-
polate between a fluid phase to a solid phase by decreasing
temperature. The crossover is continuous and very analo-
gous to what happens to certain extent in glasses and
amorphous materials. The behavior of the vibrational
modes in these holographic systems has already produced
important developments in the study of the latter [69,70].
An obvious extension of this work, which is currently

under investigation, amounts to generalize these results to
the nonlinear regime up to arbitrarily large deformations.
An EFT description has been recently introduced in [7]. We
plan to report in a forthcoming work [31] the analysis of
nonlinear elasticity in scale invariant system, comparing
also the spontaneously broken vs. manifest cases.
Finally we hope that this and related works stimulate

further experimental investigation toward the mechanical
properties and the phonons dynamics in quantum critical
situations and scale invariant systems. Preliminary inter-
esting studies have been presented in [14,15]; more is
definitely to come.
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APPENDIX: MORE ON SOLID EFT
IN d DIMENSIONS

In order to compute the speeds of the phonon modes we
need to calculate the quadratic action on the perturbations
around the background of the fieldsΦI ¼ αðxI þ πIÞwhich
give us

I IJ ¼ α2ðδIJ þ ∂IπJ þ ∂JπI þ ∂μπI∂μπJÞ: ðA1Þ

The most relevant expressions up to quadratic order are
summarized below

TrðInÞ ¼ α2nððd − 1Þ − n _πi
2 þ 2n∂iπ

L
i

þ nð2n − 1Þð∂iπ
L
i Þ2 þ n2ð∂iπ

T
j Þ2Þ; ðA2Þ

Z ¼ α2ðd−1Þð1þ 2∂iπ
L
i − _πi

2 þ ð∂iπ
L
i Þ2Þ; ðA3Þ

xn ≡ TrðInÞ
Z

n
d−1

¼ d − 1þ n2ð∂iπ
T
j Þ2 þ

2ðd − 2Þ
d − 1

n2ð∂iπ
L
i Þ2;
ðA4Þ

where we have split the perturbation into longitudinal and
transverse modes

∂iπ
T
i ¼ 0; ∂ ½iπLj� ¼ 0: ðA5Þ

The action at second order is then

δSð2Þ ¼−
Z

ddxð−N _πi
2þc2Lð∂iπ

L
i Þ2þc2Tð∂iπ

T
j Þ2Þ ðA6Þ

where

N ¼ ZVZ; ðA7Þ

c2L ¼ 1þ 2VZZZ
VZ

þ 2ðd − 2Þ
d − 1

c2T; ðA8Þ

c2T ¼
Xd−2
n¼1

n2Vxn

ZVZ
: ðA9Þ

We would like to relate this to the bulk and shear moduli.
The stress-energy tensor is

Tμν ¼ −
2ffiffiffiffiffiffi−gp δS

δgμν
¼ −ημνV þ 2

∂V
∂I IJ ∂μΦI∂νΦJ: ðA10Þ
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Our potential is a function of Z and xn, so

∂V
∂I IJ ¼

∂Z
∂I IJ

∂V
∂Z

þ
Xd−2
n¼1

�∂TrðInÞ
∂I IJ

1

Zn=d−1 −
∂Z
∂I IJ

n
d − 1

xn
Z

� ∂V
∂xn :

ðA11Þ
Let us start computing the shear modulus. The shear strain
changes our background to

ΦI ¼ xI þ εIkx
k ðA12Þ

where we can take εIJ ¼ εJI with no loss of generality. We
assume that εji ≠ 0 for i ≠ j and look at the component Tij

at first order in εji , and extract the shear modulus comparing
with Eq. (5). Notice that the term ∂Z

∂I IJ cancels with
∂iΦI∂jΦJ. To check this, first we make the derivative of
Z with respect to I IJ using Jacobi’s formula

∂Z
∂I IJ ¼ adjTðIÞIJ: ðA13Þ

Contracting this with

∂iΦI∂jΦJ ¼ ðδIiδJj þ δIiε
J
j þ δJjε

I
iÞα2 þOðε2Þ: ðA14Þ

At linear order we find that adjTðIÞij ¼ −2εijα2d−4 (with
i ≠ j) and adjTðIÞii ¼ α2d−4ð1þOðεÞÞ. Therefore

∂Z
∂I IJ ðδIiδJj þ δIiε

J
j þ δJjε

I
iÞα2

¼ adjTðIÞijα2 þ 2α2ðd−1Þεij ¼ 0: ðA15Þ
The only nonzero term is then

Tij ¼ 2
Xd−2
n¼1

∂V
∂xn

∂TrððIKLÞnÞ
∂I IJ

1

Zn=d−1 ∂iΦI∂jΦJ: ðA16Þ

For the derivative of the traces,
TrðInÞ ¼ I I1I2I I2I3…I In−1InI InI1 , one finds

∂TrðIÞ
∂I IJ ¼ δIJ;

∂TrðI2Þ
∂I IJ ¼ 2I IJ;

and

∂TrðInÞ
∂I IJ ¼ nI II3I I3I4…I In−1InI InJ ðA17Þ

for n > 2, where we have used the cyclic property of the
trace. Since I IJ ¼ α2ðδIJ þ εIJ þ εJI Þ, finally we can find
that at linear order

Tij ¼ 4εij
Xd−2
n¼1

n2
∂V
∂xn ¼ 2εijG: ðA18Þ

For the bulk modulus we consider a purely volume
deformation (zero shear), which can be parametrized as

α ¼ 1þ κ

d − 1
ðA19Þ

where κ is the bulk strain, and we look at Tii.
Notice that Vxn does not appear here as we can easily

check using ∂iΦI∂iΦJ ¼ α2δIiδ
J
i

�∂TrðInÞ
∂I ii

1

Zn=d−1 −
∂Z
∂I ii

n
d − 1

xn
Z

�
α2 ¼ 0: ðA20Þ

Therefore we arrive to

Tii ¼ −V þ 2ZVZ ðA21Þ

and from the equation above we can already find the
important result

ρþ p ¼ 2ZVZ: ðA22Þ

Finally, using the definition of the bulk modulus (7)
together with V ∝ α1−d and (A19), one arrives at

K≡ −V
dp
dV

¼ dp
dκ

¼ dTii

dκ
ðA23Þ

From (A21), then, one finds

K ¼ 2ZVZ þ 4Z2VZZ ¼ 4Z3=2∂Zð
ffiffiffiffi
Z

p
VZÞ: ðA24Þ

It is also possible to rewrite, the bulk modulus in terms
of the equation of state of the solid, understood as the
functional dependence of the pressure on the energy
density, that is PðρÞj□, by changing only the density—
that is at zero shear strain. Note that

K ¼ dp
dρ

dρ
dZ

dZ
dκ

¼ dp
dρ

2ZVZ; ðA25Þ

where we use ρ ¼ V. Therefore we find

K
ρþ p

¼ dp
dρ

����
□

; ðA26Þ

which leads to (17). The subscript j
□
stands to recall that

the derivative is at vanishing shear deformation.
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