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Diffractive photoproduction of J/y and Y using holographic QCD:
Gravitational form factors and GPD of gluons in the proton
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We present a holographic analysis of diffractive photoproducton of charmonium J/y and upsilonium Y
on a proton, considered as a bulk Dirac fermion, for all ranges of /s, i.e., from near threshold to very high
energy. Using the bulk wave functions of the proton and vector mesons, within holographic QCD, and
employing Witten diagrams in the bulk, we compute the diffractive photoproduction amplitude of J/y and
Y. The holographic amplitude shows elements of the strictures of vector meson dominance. It is dominated
by the exchange of a massive graviton or 2** glueball resonances near threshold, and its higher spin-j
counterparts that reggeize at higher energies. Both the differential and total cross sections are controlled by
the gravitational form factor A(f), and compare well to the recent results reported by the GlueX
Collaboration near threshold and the world data at large /s. The holographic gravitational form factors,
including the D-term, which is due to the exchange of massive spin-0 glueballs, are in good agreement with
lattice simulations. We use it to extract the holographic pressure and shear forces inside the proton. Finally,
using a pertinent integral representation of the holographic gravitational form factor A(7) near threshold,
and its Pomeron counterpart way above threshold, we extract the generalized parton distribution of gluons

inside the proton at different resolutions.
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I. INTRODUCTION

Exclusive production of heavy mesons such as charmo-
nia and bottomonia through the use of photo- or electro-
production processes provides the optimal framework for
diffractive physics. In the limit when the coherence length
of the virtual photon is large in comparison to the proton
size, the scattering virtual photon on a hadron is equivalent
to the scattering of a hadron onto a hadron. The process is
mostly dominated by the exchange of gluons with vacuum
quantum numbers, leading to a slowly rising cross section
at high energy. The rise is due to the exchange of a
Pomeron, an effective object lying on the highest Regge
trajectory. First principle perturbative QCD calculations
[1, 2] provide insights to the nature of this exchange,
although the softness of the exchange suggests an alto-
gether nonperturbative approach.

Soft electroproduction on a nucleon is analogous to a
hadron of varying size scattering off a nucleon, with a
virtual photon wave function of squared transverse size
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1/Q?. In the photoproduction limit with Q? — 0, the size is
hadronic and nonperturbative physics applies. The diffrac-
tive and nonperturbative production process whereby the
soft virtual photon turns to a heavy meson is analogous to the
scattering of two dipoles with light-cone wave functions for
the in-out virtual photon states. It is inherently nonpertur-
bative at small Q2. Throughout, we will focus on electro-
production close to the photon point or photoproduction for
heavy mesons such as charmonium and bottomium.

Holographic QCD provides a nonperturbative frame-
work for discussing structure and scattering of hadrons. It
stems from a conjecture that observables in strongly
coupled gauge theories in the limit of a large number of
colors can be determined from classical fields interacting
through gravity in generally an anti—de-Sitter space in
higher dimensions [3]. The original conjecture was put
forth and demonstrated for conformal N = 4 Yang-Mills
theory, and argued by many to hold under some assump-
tions for nonconformal gauge theories such as QCD.
Exclusive production of heavy mesons has been analyzed
in the context of holographic QCD at high energy [4,5],
where the exchange reggeizes [6—13]. Diffractive produc-
tion of vector mesons in the nonholographic context can be
found in [14].

Recently, the GlueX Collaboration has put forth mea-
surements of threshold charmonium production using vir-
tual photons close to the photon point [15]. Additional
measurements at JLab in this channel with higher accuracy
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using the SoLID detector should improve further the
statistics [16]. One purpose of these experiments is the
extraction of the gluonic component entering the composi-
tion of the nucleon mass. In this spirit, a new analysis of
these threshold data was carried in [17,18] using a hybrid
holographic construction combining general QCD argu-
ments and lattice results. One of the purposes of this paper is
to carry an analysis of the new GlueX data near threshold
[15] and the existing world data well above threshold, all
within a holographic QCD model using the bottom-up
approach. This analysis complements the earlier investiga-
tions in [4,5] at high energy, all the way to threshold. For
completeness, we note the earlier suggestion to use the
photoproduction process near threshold to probe the gluon
content of the nucleon [19].

The holographic photoproduction amplitude is domi-
nated by the exchange of a massive 27 graviton at
threshold, and higher spin-j exchanges away from threshold
that rapidly reggeize. The 0"* glueballs are found to
decouple owing to their vanishing coupling to the virtual
photons, while the dilatons are shown to decouple from the
bulk Dirac fermion. At threshold, the holographic photo-
production amplitude directly probes a pertinent gravita-
tional form factor which maps on the gluonic contribution
to the energy-momentum tensor of the nucleon as a Dirac
fermion in the bulk.

This paper consists of several new results: (i) The
derivation of all three holographic gravitational form
factors and their comparison to recent lattice data.
(i) The derivation of the gluonic pressure and shear forces
inside the proton. (iii) The derivation that the holographic
processes yp — Vp and yp — y*p are related in bulk by
vector meson dominance (VMD). (iv) The derivation of the
holographic photoproduction differential and total cross
sections for J /¥ and their comparison to current data for all
energies. (v) The derivation that the threshold cross section
is dominated by only one invariant gravitational form factor
A(1), due to the exchange of a 2" glueball in bulk. (vi) The
extraction of the value of A(0) from the data for different
brane embeddings. (vii) The derivation of the holographic
gluonic generalized parton distribution (GPD) of the
nucleon as a bulk Dirac fermion. (viii) The prediction
for the diffractive photoproduction of Y.

The organization of the paper is as follows: In Sec. I we
review the kinematics for a general 2 — 2 process. In
Sec. III, we detail the general structures of the Witten
diagrams for exclusive process, like the diffractive photo-
production of J/y, by using the bulk wave functions of
hadrons in holographic QCD. In Sec. IV, we introduce in
detail the bottom holographic model we use, and derive the
bulk vertices for the Witten diagrams from the bulk action of
the model. In Sec. V, we derive the holographic gravitational
form factors using Witten diagrams, and campare them to the
recent lattice results. In Sec. VI, we use our holographic
D-term to calculate the pressure distribution and shear forces

inside the proton. In Sec. VII, we show how vector meson
dominance holds in the present holographic construction,
and derive the scattering amplitude for the diffractive
photoproduction by approximating the bulk-to-bulk glue-
ball propagator near the boundary which will enable us to
write down the scattering amplitude explicitly in terms of the
gravitational form factor A(#) of spin-2 glueball exchanges.
In Sec. VIII, the photoproduction differential and total
cross sections close to the photon point are detailed at
threshold in the single graviton exchange limit. In Sec. IX,
we generalize the result beyond threshold through reggeiza-
tion by including the higher spin-j exchanges and their
resummation. In Sec. X, we derive the gluonic GPD from a
pertinent integral representation of the form factor A(z). Our
conclusions are in Sec. X1, and details of the calculations are
given in several appendixes.

II. KINEMATICS OF THE y*p — Vp PROCESS

Throughout, we will refer to real and virtual photo-
production by y* in the general presentation, but we will
specialize to photoproduction in most of the specific
analyses and results. All our arguments extend readily to
diffractive electroproduction of heavy mesons V = J/¥,Y
with minor changes.

We start by briefly reviewing the kinematics for the
process y*p — Vp. We first define the Lorentz scalars as
s=W?=(p1+q) and 1= (p;—p)° = (g1~ q)°
where g, , are the four-vectors of the virtual photon and
vector meson, respectively (note that we occasionally use
the notation ¢ = ¢, and ¢’ = ¢;), and p;, are the four
vector of the proton. Throughout we will work with mostly
negative signature, i.e., M = (+1,—1,-1,—1). Note that
our convention is different from the mostly positive
signature used in most holographic analyses.

We will work in the center-of-mass frame of the pair
composed of the virtual photon y* and the proton. In this
frame, one can derive the mathematical relationships
between the three-momenta of the virtual photon and
vector meson (q,, qy) and Lorentz scalars (s, t, g} =—07,
g3 =M3, p? = p3 =m?) as (see, for example, Eqgs. (11.2-4)
in [20])

1
4= 5 5\ P 2 st (@R (2)

1
vl =55\ - 2(M s + (i) (22)
and
t =—0%*+ M} —2E,Ey +2|q,||qy|cos6. (2.3)

Here E, = (0> + q2)? is the energy of the virtual photon,
and Ey = (M3 + q%,)% is the energy of the vector meson.
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FIG. 1.ty and t,,, vs W = /s for My = M, = 3.10 GeV,

my = 0.94 GeV, and Q = 0. Note that at the threshold energy
W, = /s, =my+ M, =4.04 GeV, we have ., = -

The t-transfer at low /s is bounded by 7, = |]cos =11
and 7. = |#cosg——1| as illustrated in Fig. 1.
We now note that at threshold and for example V = J /¥

with s, = (my + My)? = 4.04 GeV?
M2
_tmin(s = str) = M
my + My
=152 GeV? < 4.04> GeV?> =5,  (2.4)
and away from threshold
M\ 2
—Lin (8 > 5) ~ (M) <s. (2.5)
s

The photoproduction kinematics for charmonium and also
bottomium is dominated by the diffractive process all the
way to threshold.

The differential cross section for the photoproduction
process y*p — V p is given by (see for example, Eq. (11.34)
in [20])

do e?

= Ay (5.0
dr 64ns|qy|2|“4“’ vp(s:1)]

(2.6)

and the total cross section for small /s close to threshold is

max dG
o(s) = [min dt<dt>

We now show how to use Witten diagrams in AdS
with bulk wave functions for the vector mesons, bulk-to-
boundary and bulk-to-bulk propagators within pertinent
holographic models in the bottom-up approach.

(2.7)

III. HOLOGRAPHIC PHOTOPRODUCTION OF
VECTOR MESONS

The diffractive amplitude for the photoproduction of a
vector meson, in a given holographic model of QCD, can

FIG. 2. Witten diagram for the diffractive photoproduction of
vector mesons with a bulk wave function ¢y . The thick lines or
thick wiggles represent the propagators of summed over vector
meson or glueball resonances. The thin lines or thin wiggles
correspond to a single vector meson and proton. For scalar
glueball resonances, due to the dilaton and the trace-full part of

the metric fluctuation, we simply replace the bulk-to-bulk
propagator G, (k, z,z') of spin-2 glueballs by G, ¢(k, z,2').

be computed by using the Witten diagram shown in Fig. 2,
where bulk VMD is manifest as we will detail below. The
structure of the Witten diagram is pretty general, and can be
applied to any holographic model to QCD with a mass gap,
and a discrete mass spectrum of hadrons.

The main elements of the Witten diagrams shown in
Fig. 2 (also in Figs. 2 and 3 for the gravitational form
factor) are composed of the following:

(1) The bulk-to-boundary propagator of the vector

mesons (or virtual photons for spacelike momenta

g’ =-0% as

V(g.z) = V(g =iQ.2) = CVXQSZ "¢” Z
(3.1)

FIG. 3. Witten diagram for the gravitational form factor A(7)
due to the exchange of spin-2 glueball resonances.
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where ¢, (m,,z), m,, f, = —F,/m,, and gs are the
bulk wave function, mass, decay constant, and
hadronic coupling constant of each meson resonan-
ces, respectively. Cy is a normalization constant for
the mesons which can be identified with the value of
the electromagnetic form factor of the proton at zero-

momentum transfer [and Cy = F (P>(Q =0)=1
since the electric charge of the proton is normalized
to one in units of e].

(2) The bulk-to-boundary propagator of the spin-2 glue-
balls (for spacelike momenta k> = —K?)

h(k,z)—H(K,z)—ChX\/EKZII;’;T’(;), (3.2)

where v, (m,,z), m,, f, = —F,/m,, and k are the
bulk wave function, mass, decay constant, and
hadronic coupling constant of each glueball reso-
nances. Cj, is the normalization constant for glue-
balls [which will be identified with the gravitational
form factor of the proton at zero momentum transfer,
ie., C,=A(t=0)].

(3) The bulk-to-bulk propagators of the vector meson
and glueball resonances

¢n $n(2)a(2)
Gy(q.z,7)=Cy , 3.3
v(q'.z.7) X E s (3.3)
and
wa(2ya (7
Gy(k.z.7) = C, ; 3.4
n(k.2,2) X E R a—— (3.4)

and the bulk wave function of the proton (a Dirac
fermion in the bulk) is denoted as ¥(p, z).

More specifically, for the hard-wall and soft-wall
holographic models of QCD, that we focus on in this
paper, all the ingredients of the Witten diagram
Fig. 2 are determined in terms of their bulk wave
functions, the normalization constants Cy ,, the
mass scale parameters z, for the hard wall (Ky y
and cy for the soft wall), and the hadronic coupling
constants gs (for mesons) and x (for glueballs).

The mass scale parameters z, or K, y are simultaneously
fixed to the proton’s and the p meson’s mass, Ky and ¢y, for

= (J/w.Y) are fixed by their mass my, = (m,,, my)
and decay constants fy = (f;,,fy). The hadronic cou-
pling constant of glueballs « is fixed by using type II
supergravity action on AdSs x S°, and the hadronic cou-
pling of vector mesons is fixed by using the DBI action for
D7 or D9 flavor branes. Finally, we will extract the
gravitational form factor A(0) = C,/g? by comparing
the holographic scattering amplitude to experimental data
in the low-energy regime.

Note that, in general, the normalized bulk wave function
of one of the vector meson resonances ¢,_g = ¢y takes
the form

By = vl (My2) = T Myzimyz) - (3.9)

14

where J(Myz) is a special function that depends on the
details of the holographic model. And, the decay constant
fv, for a meson at rest, defined as

Oy i[V;)

= fyMyé;; (3.6)

is calculable in a given holographic model to QCD, and can
be extracted experimentally from the leptonic width as
4n

f2
T(V — £767) = = el

3 aQEDeVM (3.7)

where ey is the electric charge of the constituent quarks
of the vector meson. For V = (J/¥,Y): ey, = (2/3,1/3),
My = (3.097,9.460) GeV and ey f, = (270, 238) MeV.

IV. HOLOGRAPHIC MODEL

We consider AdSs with a background metric gyy =
(1,,,—1)/2* and n,, = (1,—1,-1,-1). Confinement will
be described by a background dilaton ¢ = &%z> for
mesons, ¢ = k%z> for protons and ¢ = 2%% 72 for glueballs
in the soft-wall model. In the hard-wall model, ¢ = 0 and
confinement is set at z = z,. The bulk graviton and dilaton
fields will be described by ¢ and h,, respectively, while the
bulk U(1) vector gauge field and a spin-} Dirac fermion by
VM and ¥ respectively.

A. Bulk Dirac fermion and vector meson

The bulk Dirac fermion action in curved AdSs with
minimal coupling to the U(1) vector meson is [21]

/dSX\/_(EF+£V /d4 \/ ‘CUV’ 41

with the fermionic, gauge field and boundary actions

| . L _
Lp=—se ) (pregrA(DN_DN)lP—(MJr V(z))‘I"P),
295 2
1
EV - __e

o ,)gyagﬂ FV FY
95

ap’

Loy=5— (P ¥+ lI’R"I"L) (4.2)

92

We have fixed the potential V(z) = &%z for both the hard-
and soft-wall model. We have denoted by e = z8) the
inverse vielbein, and defined the covariant derivatives
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1
DN—3N+8C0NAB[FA Bl —ivy,

- -1
DN = 8N + ga)NAB[FA,FB] + lVN (43)

The components of the spin connection are ,,,, = —@,,, =

1;7,w, the Dirac gamma matrices satisfy anticommutation
relation {4, T8} =258 thatis, I = (y*,—iy>), and F},, =
Oy Vy—0nV . The equation of motions for the bulk Dirac
fermion and the U(1) gauge field follow by variation

iefT"Dy — (3N¢) — (M +¢(2))|¥ =0,

—8 e~ P FMN) = 0.
7 (V9 )

The coupling gs is inherited from the nature of the brane
embeddings in bulk: 1/¢g2=3N_.N/(12z*) (D7-branes)
and 1/¢g% = (3V2/2°?7)N.N;/(122%) (D9-branes). The
brane embeddings with Ny = 1 are more appropriate for
describing heavy mesons in bulk, as the U(1) field mode
decomposes in an infinite tower of massive vector mesons on
these branes as we discussed above. When ignoring these
embeddings, the standard assignmentis 1 /g2 = N./(127%).

We note that in (4.2), we have excluded a Yukawa-type
coupling between the dilaton and the bulk Dirac fermion,
since neither the fermionic part of the type IIB supergravity
action (see, for example, Eq. (A.20) in [22]) nor the
fermionic part of the DBI action in string theory (see,
for example, Eq. (56) in [23]) support such a coupling.

(4.4)

B. Spectra

The spectrum for the hard-wall model is fixed by the
zeros of the Bessel function J;(m,zq) = 0 and does not
reggeize. It does in the soft-wall model by solving the
equation of motion for V¥ following from (4.1). The results
for the heavy meson masses and decay constants are [24]

m? =42 (n* + 1),
n+1\z
=2y —, 4.5
95fn fkv(n*+1> (4.5)

with n* = n + ¢} /4&5. The additional constant cy is fixed

as ¢} /4k% = M3, /4%3, — 1 for n = 0 for the heavy mesons
= (J/w.Y), and ¢, = O for the light mesons. The mass

spectrum of the bulk Dirac fermions is given by [21]

m2 =483 (n+17-1), (4.6)

with the twist factor 7. For the specific soft-wall applica-
tions to follow we will set ky = ky =k, for simplicity,
unless specified otherwise.

C. Bulk graviton and dilaton

The graviton in bulk is dual to a glueball on the boundary.
It is a rank-2 tensor with reducible parts in general. To

decompose the graviton tensor /,, to its transverse and
traceless part h, and trace-full part f we follow [25] and
define

hy = Xl h+ el f — k ko H + kAF + kAL (4.7)
where
kel = el = 0,
e %”uv (4.8)

with a = k/kz, a dimensionless normalization constant
which can be fixed empirically. Here z; is the hard-wall
scale, and k"A,f = 0. A similar rescaling follows in the soft-
wall model with zy — 1/ky.

In a gauge where A,f = 0, the equation of motion for &
decouples. In contrast, the equations for f, H, and ¢
(denoted as k in [25]) are coupled (see Egs. (7.16)—(20) in
[25]). Diagonalizing the equations, one can show that f
satisfies the same equation of motion as & [25]. Also note
that fy = f(z = 0) couples to T, of the gauge theory, while
H, = H(z =0) couples to k*k*T,, =0 (see Eq. (7.6)
of [25]).

1. Action
The effective action for the graviton (1, — n,, + h,,)
and dilaton fluctuations (¢ — ¢ + ¢) follows from the
Einstein-Hilbert action plus dilaton by expanding to quad-
ratic order, and after adding the background de-Donder
gauge fixing term. The result is

_ / Bx /G (Lysy + L), (4.9)

with

'Ch+f: 4~29M lpnara hﬁo'abhpf—i_ o aﬁnyna haﬁa hym

8~2

L, + g’“’ L 90,0, (4.10)

and 32 = 2> = 162Gy = 87%/N2.

2. Spectrum

In the soft-wall model, the glueball spectrum is deter-
mined by solving the equation of motion for £, following
from (4.9). The results for the spin-2 glueball masses and
decay constants are

m? = 8k3,(n+1), Gsfn = 2Ry. (4.11)

They differ from their vector meson counterparts in (4.5)

by the replacements &y — /2%y and gs — s due to the
difference in the bulk actions. For spin-0 glueballs, we have
for the trace-full part of the metric fluctuation
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my = 8y (n + 1), V2gsf, =2y (4.12)

after replacing s — v/2s in the results for spin-2 glue-
balls. For the dilaton fluctuations we have

m? = 8&%,(n+ 1), Gsfn=2&y.  (4.13)
3. Couplings
For the graviton in the axial gauge h,. = h.. = 0. The

pertinent couplings in Fig. 2, which follow from linearizing

the action (4.1) by replacing 1,, — n,, + h,,, ar

- V2
Ry - 2K &x\/gh,, T,
\V?2 2
hAA: — 2K dxy/Gh,, T, (4.14)
with the energy-momentum tensors

T = et %z‘i’y"a”‘l’ — Ly,
T“‘/’“ = _e—(/;( Z4,7/m,7ﬂﬂ,1w F}}/p F]‘,/,,

— T FFY) = Ly (4.15)

Note that the UV-boundary term in the (4.1) vanishes for

We have canonically normalized the bulk fields through the
substitutions

¥ — g5, Vy = g5V,

2k%, hy = V 2k*h,, (4.17)
which makes the couplings and power counting manifest in
Witten diagrams. Note that after this rescaling, the meson
decay constants in (4.5) and the glueball decay constants in
(4.11)—(4.13) redefine through gsf, — f,. This will be
understood in most of our analysis.

Evaluating the couplings or the vertices (4.14)—(4.16) on
the solutions, Fourier transforming the fields to momentum
space, and integrating by part the trace-full part for the
fermions, we find for the couplings to the fermions (Z/P¥)

and gauge fields (hAA)
W d*prdip d'k
hYY: /W(2”)454(P2_k_p1)( h‘P\Y+S;‘PW)

d*q'd*qd*k
hAA: /W(%z)“é“(q’—k—Q)(SﬁAA+S?AA)-

the normalizable modes of the fermion. For the dilaton the (4.18)
couplings are
The corresponding couplings to the dilatons are
PPY: V212 /dsx\/_ ( Zgo)‘I’yS‘P
= d4p2d4p1d4k
- Yy /7 27)* 6% (py — k= p1) S s
+V/2K? /dsx\/_ <2 Mo)‘l‘y”‘l’, v (27)'? (27)5" (P2 P1) PP
d*q'd*qd*k
AA: ————(27)**(¢' — k- q)S* 4.19
(4.16)  with
|
V2i? -
Shaw=" / dzv/ge "z, h(k.2)P(p2.2)r" p ¥ (p1.2),
Sk_ —ZK d —¢ P T k.22 v Y +0.(eT f(k 2intyS el £k DRk v )P
2 2/ 9P 2P(p2.2) (€ f (k.2)ky" P + 0 (€. f (k.2) ) ko™ y> +-€,, f (k. 2)k“n koy® )P (P12 2).
SI;;AA: \% 2K2/dz\/§6‘¢z4€,{fh(k,z)l("”(q,q’,n,n',z),
V2K? - 1
Shan= > /dz\/ée P74l f(k.2)k? (K’“’(q,q/,n,n',z)—Zr]"”K(q,q/,n,n’,z)>, (4.20)
and
V2i? -
Spaw = 5 | 42V/9¢7" 2 (P2, 2)(0:0(k. 1)1 + gk Dkar*) ¥ (1. 2),
Vi
Skan =~ [ de/Ge e p(k.2)K (q. ' n.n' 2). (4.21)
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We have set g> = —Q?, ¢’> = —Q" for spacelike momenta,
and defined

K"(q,q',n,n',z) = B{*V(Q,2)V(Q',2)
— By'9.V(0.2)0.V(Q'. 2).
By (n,n') = n*n",
B\ (q.q'.n,n')=n-n'q"q" —q-n'n"qn

—q -ng"n" + q-q'n*n" (4.22)
with By g=n,, B}, and K =n,, K*. The non-normalizable
wave function for the virtual photon V(Q, z) is given in
Appendix A.

V. GRAVITATIONAL FORM FACTORS

The graviton coupling to the Dirac fermion in bulk is
through its energy-momentum tensor. In the conformally
broken geometry (hard or soft wall), the corresponding
energy-momentum tensor traces to the normalization of the
bulk Dirac fermion as a nucleon state, modulo the source
field normalization at the boundary (see below). More
importantly, since the holographic construction operates in
the limit of a large number of colors, it follows that the
energy-momentum tensor of the bulk Dirac fermion is dual
|

T(p'; 2)

FIG. 4. Witten diagram for the gravitational form factor C(¢)
due to the exchange of scalar glueball resonances from the trace-
full part of the metric fluctuation f(k,z). Also shown is a form
factor due to the exchange of the dilatonic scalar glueball
resonances ¢(k, z).

to the quenched energy-momentum tensor of the nucleon.
In other words, only the gluonic contribution to the energy-
momentum tensor is picked by the photoproduction ampli-
tude close to threshold in the present holographic analysis.

More specifically, the energy-momentum tensor to the
bulk Dirac fermion involves both the 27 tensor glueball
field /2 and the 0™ scalar glueball field f; see Figs. 3 and 4,

. v . v(TT . v(T
i{pa|T(0) 1) = (=) Vii (p1. p2. K) + (=0)Vis) (1. pa. K), (5.1)
with the explicit vertices
V’pr(;” (P1, P2 K) = — 27 dz/ge 2P (pa. 2)y" p*¥(py1. 2)H(K . 2)
1 _
— 5z [ VA VDMK x alpa ) pulp),
5
v 1 —¢ 7.2, uv ~
Vi (P12 K) = =5 5 / dzy/Ge 2y (D (2) = wi (2w (2)0F (K, 2) x B X a(pa)u(py)
5
" 1642 dz\/ge 2 (wi(z) + wi(2))F (K, 2) x K x @(py) (yap® + 4kar®)u(py).  (5.2)
5
|
They follow by substituting the normalizable mode ) ~ ) i p(llab)a k,
Ju(my,,z) and J;(m,,z) by the non-normalizable mode (P2 T*(0)p1) = i(p2) { ALK}y ¥ p” + B(K) 2my
H(K, z) (given in (A31) and F (K, z) (given in (A49) in the W — 2
second vertices of (B6) and (B7) for spacelike momenta + C(k) _’7> u(py), (5.3)
k* = —K?, with the boundary value for the source set my
generically to H(K,0) = 1. Below, we show that this
boundary condition is tied to the normalization of the  yields
(gluonic) trace of the energy-momentum tensor in the bulk
Dirac fermion state as a nucleon and will relax it, since it is C(K)
arbitrary in holography. A(K) = —m
With this in mind, a comparison of (5.1)-(5.3) to the 0N
standard decomposition of the energy-momentum form = % / dz\/ge ™ z(wx(z) + w2 (2))H(K,2). (5.4)
factor 295
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For the soft-wall model,

A(K) = A(0)(ag + 1)(=(1 + ag + 2a%)
+2(ag + 2a3)®(~1,1, ax)),

or equivalently

A(K)=A(0) ((l —2ag)(1+a%)

+ag(1+ag)(1+2ag) <‘l’(1 ZQK> _l”(%()))

with ax = K?/8%%. Here ®(—1,1,a') refers to the
LerchPhi function, and y(x) refers to the digamma function
or harmonic number H, = y(x) + y. Modulo A(0), (5.5) is
in agreement with the result in [21]. The gravitational form
factor C(K) is proportional to A(K) modulo a negative
overall constant —(azomy/2)* < 0 which is left undeter-
mined since a is arbitrary in the tensor decomposition (4.7).
We note that (5.1) gives (p|Th|p) = 2A(0)m3,. Since the
boundary value H(K,0) = H(0, z) is arbitrary as we just
noted above, it follows that A(0) is not fixed in holography.
This will be understood from here on.

The invariant form factors A(k), B(k), C(k) (for k> > 0)
measure the gluonic content of the energy-momentum
tensor in the nucleon state, as the holographic dual of
the energy-momentum tensor of the dilation in bulk in the
double limit of large N, A. This limit maps the bulk fields
in a soft- or hard-wall metric, to a pure Yang-Mills theory at
the boundary in the confining regime. More specifically,
the form factor A(k) through H (K, z) in bulk resums the
27" or tensor glueball Regge trajectory as given in (A31).
For the soft-wall model, the result is in agreement with the
one reported in [21]. The form factor C(k) through F (K, z)
in bulk resums the 0™ or scalar glueball Regge trajectory
as shown in (A49). In holography, the scalar and tensor
glueball spectra are degenerate as we noted earlier (same
bulk equations for &, f), so H(K,z) and F(K, z) are tied,
i.e., F = —2H. The factor of 2 reflects on the % difference
in the normalization of the kinetic energies in (4.10).
Finally, the Pauli-like form factor B(k) = 0 as the coupling
of the graviton to the bulk Dirac fermion through the spin
connection in (4.2) vanishes,

L -
ngAB‘PelgFC% A, 8] — éhZ‘PF” 0, D% =0. (5.7)

The soft-walll results for the gravitational form factor
A(k) compares well with the recently reported lattice
results, as shown in Fig. 5. The solid blue curve is our
result for the soft-wall model, and the red squares are the
recent lattice data [26]. The resummed A (k) (for k> > 0) in

Ak
0.7(* )

0.6
[
0.5
0.4
0.3}
0.2}

011

L L L L 2
0.0 05 1.0 15 20 K (GeV))

FIG. 5. Holographic gravitational form factor A(k) (for k> > 0)
shown in solid blue curve versus the lattice data in red
squares [26].

the soft-wall model is well reproduced by the dipole form
factor

(5.8)

with my = 1.124 GeV in comparison to the reported lattice
value my juice = 1.13 GeV. The arbitrary normalization
A(0) = 0.58 was adjusted to the lattice data [26]. Recall
that the gravitational form factor A(k) is saturated by the
2** glueball trajectory without any quark mixing, essen-
tially a quenched result. In Fig. 6 we show in the solid blue
curve the holographic gravitational form factor D(k) =
4C(k) = —4A(k) with a =2/(zgmy) in the soft-wall
model, versus the reported lattice results in red squares
[26]. In holography C(k) is saturated by the 0"+ massive
glueballs which are degenerate with the 2™ ones, hence
my = 1.124 GeV in comparison to m, = 0.48 GeV from
the lattice. The difference is likely due to the strong scalar-
isoscalar quark mixing to the O*" gueball channel in the
unquenched lattice simulations, in particular to the light
sigma meson with a mass of about 0.5 GeV. In Fig. 7 we

D(K=4C(K)

0 0k2 (GeV?)
-1t
-2

3}

—af

5l

FIG. 6. Holographic gravitational form factor D(k) = 4C(k)
(for k2 > 0) shown in solid blue curve versus the lattice data in
red squares [26].

086003-8



DIFFRACTIVE PHOTOPRODUCTION OF J/y AND ...

PHYS. REV. D 101, 086003 (2020)

B(k)
1.0
0.5
{éi*ié ‘§10§§§§35 “‘Z.Okz(GeVZ)
-05
-1.0
FIG. 7. Holographic gravitational form factor B(k) =0 (for

k* > 0) shown in solid blue curve versus the lattice data in red
squares [26].

show the lattice results in red squares for B(k) which are
consistent with B(k) = 0 in holography shown as a solid
blue curve.

VI. HOLOGRAPHIC PRESSURE AND SHEAR
INSIDE THE PROTON

Using the dipole representation for A(K) (5.8) which is a
good parametrization of our holographic results, the D-term
as D(K) = —4A(K) can be written as

_ —4A(0)
D(K) = ey

with my = 1.124 GeV. The Fourier transform (6.1) of the
three-dimensional coordinate space gives (E = my)

(6.1)

5 d3K —iK-r 3
D(r)——4A(0)/ = —A(0) A g,
2E(27) (14552 drmy
A
(6.2)
0.010
s
= § I
Sle ooost
< L
X I
E L
DY 0.000' \/
_0'005:1“‘1“‘1“‘1“‘1“‘1
0 2 4 6 8 10
IXmy

(a) The pressure distribution inside the proton (VI1.47) for soft-wall

holographic QCD with my = 1.124 GeV.

FIG. 8.

The holographic shear s(r) and pressure p(r) distribu-
tions in the proton can be expressed in terms of D(r) as [27]

2drrdr

11d ,d .
P =35 4P

In Figs. 8(a) and 8(b) we show the holographic gluon
contribution to the pressure p(r) distribution and shear force
s(r), respectively. The results are in agreement with the
lattice QCD result [28] for the gluon contribution. They are
also comparable to the experimentally extracted quark
contributions in [29]. Below, we will argue that the holo-
graphic relationship D(K) = —4A(K) will allow the extrac-
tion of the pressure and shear of the proton from the
threshold photoproduction data of heavy vector mes-
ons V=J/¥ Y.

(6.3)

VII. HOLOGRAPHIC VECTOR MESON
DOMINANCE

The diffractive scattering amplitude with a single grav-
iton and dilaton exchanges is detailed in Appendix B. For
photoproduction or electroproduction close to the photon
point Q> = 0, and we may set V(Q = 0,z) = 1 in V44 in
(B9). This will be indicated by the relabeling of the entry
photon A — y. This will be understood in the remainder of
our analysis. With this in mind, the combined amplitudes
(B4) read

_AypﬁAp(S’ t) :Afp—nfﬂp(s t) +Ayp—>Ap<s [) +'A£p—>Ap<s’t)

aff(TT)

VhAAB o th/lv

+ vaAB Vo

1
gt Vo

(7.1)

0.035F
0.030F

0.025F

my
A (0) mA3

0.020 F

0.015F

r2s(r)x

0.010 F

0.005 F

0.000 |

™Xmy

(b) The shear force inside the proton (VI1.47) for soft-wall
holographic QCD with m 4 = 1.124 GeV.

Holographic pressure and shear inside the proton.

086003-9



KIMINAD A. MAMO and ISMAIL ZAHED

PHYS. REV. D 101, 086003 (2020)

The effective vertices for the hard-wall model are

\/ﬁ

4
Viaa = dz\/_ V(0 )%,
VfAA = nﬂUV A = 0 (72)
~ V2 2 Z 4
V(pAA = TK/ ! dZ\/§Z4V(Q/, Z)ZZ,
0
V(/,\pq; - (73)

The corresponding vertices for the soft-wall model follows
through the substitution /g — \/ge—'?vzzz with &y, the soft-
wall scale. B}, and B' = y**B,, are defined in (4.22).
The TT-part of the transverse and traceles 2" glueball
contribution corresponds to a, f = x, y. The T-coupling of
the transverse and trace-full O™ glueball to the virtual
photons involves the full photon energy-momentum tensor

Dirac fermion is null as we noted earlier. As a result, the
scattering amplitude (7.1) is solely due to the exchange of
the 27" glueball.

The result (7.1)—(7.3) is for a general bulk-to-boundary
current V(Q', z) which sums over a tower of vector meson
resonances. The production of a specific meson at the
boundary, say charmonium or upsilonium, amounts to the
substitution

f

V(Ql’ Z) —’Q’JH(Z) = CnZJl (ng) :_n(ng)J] (ng) (74)
in (7.2)—~(7.2) with ¢,, = % and f, the decay constant

of a heavy meson of mass m,,, with the identification n = 0
for J/W. As a result, the total amplitude for the photo-
production of J/¥ can be written in the block form

. . . T . TT
gnd vanishes after contraction with €,,. The TT-coupling Aypgwp(sit) = Vh " Baﬂv;l’{”{, v - (7.5)
involves only the nontrace part of the photon energy-
momentum tensor and does not vanish after contraction
with e . The Yukawa coupling of the dilaton to the bulk  with the vertices for a hard wall
|
v 21< _
View (P1: P2 K) = dz/Ge 2w (2) + W () H(K.2) X il pa)r* pu(p),
" V2 [z 2
Vias = f— x " e/ X (m, )y (ma2) %
m, 2 0 4
V22w
~ & X K4/ ! \’V"V5 = fV \/IZAA’ (76)
m,, 16m; Jo My,

with w = m,,z, wg = m,,zo. The wave function for the emitted meson near the boundary is J, (w) ~ w/2. In comparison, the

same arguments for the soft-wall model give

2
Viaa = (}J;n) V2

Q

with & = &z and &y the soft-wall parameter, and n = 0.

Equations (7.6) and (7.7) embody the general strictures
of VMD with the emergence of f,/m, = fy /My, the ratio
of the leptonic decay constant to the mass of the heavy
meson emitted, as illustrated in Fig. 2. This result shows
that in holographic QCD, the photoproduction amplitude
yp — Vp follows from the inverse of the diffractive part of
the deeply virtual Compton scattering amplitude y*p — yp
through VMD with y* =~ (efy/My)V

The triple coupling V44 is the coupling of the bulk
graviton with wave function near the boundary i =
22J5(m,z) = z* (heavy 2+ glueball), to a virtual photon

dz\/ge‘zzf‘zv 7t x (2&%,2%)L)

(- (T ) (o

4

2-2\ o %

(7.7)

I
near mass shell with V(Q ~ 0,z) — 1, and a virtual photon
off mass shell with V(Q',z) = (f,/m,) x (m,z)J,(m, z)
(hard wall) or V(Q',z) — (f./m,) x (2&3z%)LL (&%)
(soft wall). The masses and decay constant for the soft
wall are given in (4.5) with the proviso that gsf, — f,
following the canonical rescaling (4.17).

VIII. DIFFERENTIAL CROSS SECTION FOR
PHOTOPRODUCTION

Although our analysis for vector meson production applies
equally well to both photoproduction and electroproduction,
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we now specialize to the photoproduction of heavy mesons
given the recent experimental interest in extracting the gluon
contribution to the proton state from threshold data at current
electron machine facilities. With this in mind, the differential
cross section for photoproduction of V = J/¥ can now be
constructed from leading spin j = 0, 2 glueball exchanges
near threshold. The contribution of higher spin-j exchanges
and their reggeization will follow. The pertinent differential
cross section is of the form

do
() =t A Al

pol ~ spin

(8.1)

which is dominated by the TT-part of the graviton or
2T+ glueball exchange as we noted earlier. The first sum
over the photon and J /¥ polarizations is carried out using the
identities

E n{;n}w — _],];w’

s=1,2

/v

Tn
Z n,n’f”z—n"”—&-qMZ .
§'=123 14

(8.2)

The second sum is over the initial and final bulk Dirac
fermion as a proton spin

1
STl )+ my)) = 2K7 + 8% (8.3)

1
Fls.t.M.m) = 056012

Carrying explicitly these summations yield the differential
cross section for photoproduction of a heavy meson in the
spin j = 2 exchange approximation as

dt) " 6dn(s—mi)? \M,) ha* 268

g5A%(K)
my
x (2K? +8m3%),
e’ A?%(K)
X X
64n(s—m%)* " 4m3,A%(0)
X F(s,t=—K*My,my)x (2K*>+8m3,)

XF(S,t:—KZ,Mv,mN>

)
(8.4)

with all vertex insertions following the rescaling (4.17) are
shown explicitly and, in the last line, we have defined the
normalization factor N as

fv 2K2
N?Z= (—) AV 1A2(0), 8.5
M, haa X —g S x gsA=(0) (8.5)

5

where A(K) is the gravitational form factor (5.4), which
reduces to (5.5) for the soft-wall model. The kinematical
function F(s,t, My, my) follows from the contractions of
the various spins emanating from the photon and graviton
vertices, and reads

[—OM10 + M3 (=32 +68m? + 285 +371) + 2M®(256m* -+ 8m> (325 — 31) + 1(56 — 40s — 29¢))

+2M*(—136m° + 645> —565° +8m* (8 + 275 — 641) + 31> (=24 +71) + 4st(—4 +91) — 4m> (652 +32s(1 +41)

+1(—=4+251))) + M?(144m3 + 1445*

— 19252t +965%t—165(—4+1)1> +

(80—131)1> +96m®(—6s+71)

+32m* (275 — 6t — 395t + 81%) + 16m>(—=36s> + 3052t +24st(1+21) + 2 (=4 + 171)))

—t(2m* -
—25(12m* 4312 + m? (64 +44t)))],

with My, =M, m=my, and V = J/¥, Y. In the double
limit of large N, A, the differential cross section (8.4)
scales as

do » K
a~! V<g§>

1
~ (2°: soft wall; A°: D7 brane; 1> : D9 brane;)

c

(8.7)

since fy ~ NY after the rescaling (4.17). It differs from the
scaling of the surface exchange in [5], where their bulk
Dirac fermion action is not normalized with 1/ gg. For large

25 —1)(64m* 4+ 8m® —8s3 +76m*t — 161> —90m>1> + > + 45> (16 + 6m> + 31)

(8.6)

|
s, we note that F(s, t) ~ s* and the differential cross section
is seen to grow like s as expected from a 27F glueball
exchange as a graviton. The corresponding amplitude is
purely real in this limit. These features reflect on the
shortcomings of the j =2 exchange and its lack of
reggeization at large /s. They will be addressed below.
This notwithstanding, the differential cross section for
photoproduction of a heavy meson is proportional to the
gravitational form factor A(K) with A(0) the sought after
gluonic contribution to the trace of the energy-momentum
tensor. However, it is folded with various couplings and
kinematical factors that makes its extraction at threshold
challenging. For the numerical analysis to follow, we will
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2.01 ]

—
]

da/dt, nb/GeV?
5

0.0F 1

S S S T S E S S S S S S |

0.0 0.5 1.0 1.5 2.0 2.5 3.0
_(t_tmin)r GeVz

FIG.9. Differential cross section for V = J /¥ photoproduction
for £, = 10.72 GeV. The solid blue curve is our result for the
soft-wall model. The data near threshold are from GlueX [15].

use the soft-wall model with a fixed scale &y = 0.350 GeV,
k*> = 47> /N? as fixed by the normalization of the kinetic
part of the gravitational action in (4.10), and set 1/g2

|

A= 20VINGAO) _ |fapmapy
(10%y)* fymy

202527 x N;A(0)

x 7.768 GeV~*

(10ky)*

In Fig. 10 we show how changing the overall normali-
zation (8.9) affects the result in Fig. 9. The blue band
corresponds to 7.768 — 7.768 +-0.732 in (8.9) which
would amount to about a £10% change in A(0) for fixed
hologaphic parameters, and vice versa.

In Fig. 11 we show the same differential cross section for
other photon energies in dashed red in comparison to £, =
10.72 GeV in solid blue and the GlueX recent data [15].
The large red dashed curve is for E, = 11 GeV, the
medium red dashed curve is for £, = 10.6 GeV, the small
red dashed curve is for £, = 10.3 GeV and the dotted red
curve is for E, = 10 GeV.

In Fig. 12 we show the empirical ratio of the differential
cross sections as a proposal for the ratio of the gravitational
form factors A(A7)/A(Aty) With Af = (—(f — ty))? and
At = V/0.0075 versus Af* in GeV?,

A(At) _ F(s.0=trin. My, my) (=21, +8my) (%)
A(Atyin)  \ F(s,t=—K>My,my)(2K>+8m%) ) (

%)min
(8.10)

through the D7 or D9 brane embeddings. The coupling
Va4 is fixed by setting V = J/¥ in bulk.

In Fig. 9, we show the behavior of the differential cross
section (8.4) for V = J/¥ photoproduction for a photon
energy E, = 10.72 GeV in comparison to the GlueX recent
data near threshold [15]. The solid blue curve is our
result for the soft-wall model. The data near threshold
are from GlueX [15]. The mesonic parameters were fixed
using (4.5) with my = M, = 3.10 GeV and f = f,/, =
0.405 GeV for the soft-wall model, and

AR
Ky = WT (D9 model),
B SFomy
Ry =1 221 (D7 model),
38,34 ST
Ry =" Jymy (original).  (8.8)

31/4 (25/271./3)1/4

Here the label “original” refers to the original soft-wall
model. The value of the form factor A(0) is model
dependent and follows from fitting the normalization factor
N, defined in (8.5), to data as

(D9 model),

_ Sl ™t g 768 Gev (D7 model),
Sfvmy

N 202727 x N;A©) _ [Frpymapy

3(10%y)* Sfvmy

X
x 7.768 GeV™*  (original). (8.9)
|

The blue solid line is our holographic result (8.4), the red
dashed line is the fitted lattice gluonic contribution from the
recent simulations in [26], and the data are the ratio of the
data from GlueX [15]. The empirical errors for the ratio

dordt, nb/GeV?

~(t=tmin), GEV?

FIG. 10. Same differential cross section for V = J/¥ photo-
production with the normalization (8.9) changed by +10%.
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20
~ 1.5}
>
(O] [
R [
5 I
€ 1.0
5 I
S
©
0.5[
0'0:1““1““1““1““1““1““1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
~(t~tmin), GeV?
FIG. 11. Same differential cross section for V = J/¥ photo-

production but different photon energies: E, = 11 GeV large red
dashed line, E, = 10.72 GeV solid blue curve, E, = 10.6 GeV
medium red dashed line, E, =10.3 GeV small red dashed
line, and E, = 10 GeV dotted red curve. The data are from
GlueX [15].

have been added in quadrature. Equation (8.10) provides
for a model independent extraction of the gravitational form
factor, under two generic assumptions: (i) The Yukawa
coupling of the dilaton to the bulk Dirac fermion vanishes
in holography; and (ii) the tensor 2" glueball couplings
map on the graviton couplings in bulk.

In Fig. 13 we show the differential cross section for
V =Y production close to threshold for different photon
energies which is a prediction, for the same parameter set as
the one used for J/W¥ production. The photon energies are
E, =589 GeV large red dashed line, E, = 58.6 GeV
medium red dashed line, E, = 58.45 GeV solid blue curve,
E, = 58.3 GeV small red dashed line, and E, = 58 GeV
dotted red curve. We have used my = My = 9.460 GeV,

—(— tmin) )
A(V0.075)

S S S S S S S S S S S E S S |

1.5 2.0 2.5 3.0
—(t—tmin), GeV?2

FIG. 12. The gravitational form factor A(\/—(t — t,)) [nor-
malized by A(+/0.075)] for &, = 0.350 GeV, my = 0.94 GeV,
and m; Iy = 3.10 GeV. Blue solid line is our result, and dashed
red line is from lattice QCD. We used the data from GlueX [15]
with the errors added in quadrature.

0.0 0.5 1.0

0.04F
L 003
> [
O L
3 [
5 oo2f
) [
N [
kel L
0.01:

0.00f ]

EL n n n 1 n n n 1 n n n 1 n n n 1 n n n 14

0 2 4 6 8 10

_(t_tmin )7 GSVZ
FIG. 13. Differential cross section for V =Y and different

photon energies: E, = 58.9 GeV large red dashed line, E, =
58.6 GeV medium red dashed line, E, = 58.45 GeV solid blue
curve, E, = 58.3 GeV small red dashed line, and E, = 58 GeV
dotted red curve.

fo=fy =0.714 GeV and «y as in (8.8) for the models
with a soft wall. Note that in this case, A(0) is fixed by
the same ratios as in (8.9) with the numbers rescaled
by the factor (f,,,m,,/fymy) to correct for the V =Y
parameters.

In Fig. 14 (solid blue line), we show the total cross
section for photoproduction of V = J/¥ versus the photon
energy close to threshold. The total cross section follows by
integrating the differential cross section in (8.4) using the
dipole parametrization (10.2) with k> — —¢. The compari-
son is to GlueX data [15] (black ones). All other holo-
graphic parameters are kept unchanged.

IX. REGGEIZED PHOTOPRODUCTION

The differential cross section (8.4) grows rapidly as s? at
large s as expected from the exchange of a graviton as a
tensor glueball exchange with spin-2. The physical cross

100}

10}

yp — J/yp), nb

al

T 0.10

0.01F

10 20 50 100

E, GeV

FIG. 14. The total cross section for J/¥ photoproduction with
the same parameters as in Fig. 15, but zoomed in near threshold.
The data points are from GlueX [15] (black), [30] (magneta), [31]
(green), [32] (purple), and [33] (pink).
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section grows much slower due to the exchange of a
Pomeron instead. The transmutation from a graviton to a
Pomeron was originally discussed in [8]. With increasing
/s, higher spin-j exchanges contribute leading to a
reggeized amplitude with the emergence of a Pomeron.
In this section and in supportive material given in the
appendixes, we detail the spin-j contribution to (8.4) and
then resum these exchanges to extend the photoproduction
results to all /s.

A. Spin-j amplitude

The spin-j exchange amplitude follows from the same
considerations as the spin-2 exchange given earlier. Here
we summarize the results for the soft-wall model with more
details given in Appendix C together with the results for the

|

2

hard-wall model. With this in mind, the spin-j glueball
contribution to the TT-part of the photoproduction ampli-
tude yp — Ap with an arbitrary virtual photon A, reads

(TT) i
Ap—»Ap(-]’S’ 1) ~ (—i) ﬁl;m (J 91> 92, k;) x (E']}m']vﬂ)

x (=i (G, py panks). (9.1)

The explicit form of the tensor TT-vertices V7 depend
on the model used. For the soft-wall model, the normalized
wave functions and bulk-to-bulk propagator are detailed in
Appendix B. The result for the spin-j contribution to the
vertices is

. V2 |
VZAATT (. 4192, k;) = . /dz\/§6'¢z4+2 DK™ (q,q' .1, z) x C(j) x 720772,

2

“ \/27

thl;‘T)(.] pl,vak - dZ\/§€_¢ 142(j
\/27

dz\/ge 71202

2 (py, 2y pP¥(py.2) U2

JH(j.K.z)

“2H(j. K. 2) x w(p2)r*pPu(py)

= =V 2% X GA(J, K) x a(p2)r*pPu(p), (9.2)
with the parameters
A(j)  T(A()-2)
. / o a K? , 2
A(_]) =2 + 2\/1(] —]0) and ag = 5 = @ and Jo = 2 — 71 (93)
For completeness, the analog vertex V), AT ") for the hard-wall model is
V2i? . 2780 o gAG) i AUH2-(-2)
VMV (TT) ., k d - 4+2(]—2)K/w , /’ , /7 P _ , 94
hAA (J q1. 92 k;) = 3 2/g9e7 "z (¢.q',n.n',2) AG)+2 (9.4)
Using (C26) in (9.2), we can write the spin-j form factor A(j, K) of the proton as a bulk Dirac fermion in the soft-wall
model as
1 22-A()R=280) » -
A(j,K) = ~N/ dxx®D=1(1 = x) PO (IR (x) + 1L (x)), (9.5)
22 T@l) Jo )
with
iy L. = .
a(j) = ax +2-5A(j) and  b(j) =3 = A()). (9.6)
The integrals (¢ = k% z°)
_ - U2 5 80) 2x¢
18 (x) = / dz\/ge™ " Py ()6 87 exp (—1 = x>, 9.7)
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are over the wave functions of the proton as a Dirac fermion in bulk in the soft-wall model. Specifically, we have

fig 52 (o
wr(z) = 5 2ETLY (),
Ky

it Lo (o
o (z) = =27 LY (), (9.8)
Ky

with the twist parameter 7 = 7/2 — 1/2 = 3. Here L£,“>(§) are the generalized Laguerre polynomials, and

fig = Ry VT — 1, iy = K5/ 2/T(7). (9.9)

Using the wave functions, the integrals in (9.7) can be carried out explicitly, with the results

() = 5 x 70 x () x [ @zt e Peny (— (11 fjj)s ,
N

1L (x) = % x Ry U7 x (:_L> “x / degT =1 (LD (&) exp (— G fi) 5) , (9.10)
N

where we used ¢ = e~¢. Evaluating the integrals in (9.10) we obtain

| fig \2 j=2 A(j) 1+ x\ et
If(x):EXK'N(j )X<1%7_1 xT T—l—r—T—i—l X ,

N 1 —x
1 ag- i\ 2 -2 A(j 1 L)
1) = 5% & ”(‘) XFCT“—%#)XCD S (0.11)
N

Using (9.11) in (9.5), the spin-j glueball form factor of the proton becomes

~—(j=2)-A()) 7 —c(j
1 L - 2 1 <)
A(j.K) = 2KNA dxx@)-1 (1- x)—b(J) ((;ﬁ) x T(c())) < i x)

495 T(a(j)) N I—x
i, \2 _ 1+ x\ ~(ci)+1)
+ (g> XF(c(])+1)<1_x> > (9.12)
with A(j) given in (9.3), a(j), b(j) given in (9.6) and
c(j):(r—l—l)—l-j%z—#. (9.13)

A(j, K) generalizes the gravitational form factor for all j > 2. Evaluating the integral in (9.12), we obtain (9.17). Inserting
(9.17) in (9.2), (9.1) becomes

. . 1 aff — .
Appesip(o5.1) = Viaa ) (—531”u<p2>yapﬂu<p1>) Vi) (9.14)
The spin-j vertices are

TT . .
V() = —RA (. K).

, V22 [ o -
Viaa(j) = (f—> x ( ZK /O dz\/ge "Rz 5 (2222 (22R) % C(j) X zA(”‘“‘”)

my

(&) « (ﬁg LO) o) x < / v d«:e—ff%%“)) = (%)WW(J) (9.15)

m, 2 A(RG 0

Q
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with B?ﬂ (¢,¢',n,n') defined in (4.22). The heavy mesons with n = J/W¥, Y are subsumed. Equation (9.14) shows how
VMD extends to general spin-j exchange in holography, with V, 44 () reflecting on its coupling to the pair vector-meson-
photon in bulk.

B. Reggeized amplitude

After summing over all contributions from the spin-j glueballs, the photoproduction amplitude ;‘;_} 1/¥p (s,1) is

dj ($72+ (=s)7 :
;(;;eJ/‘Pp(s’[) = —/C— <— Ayp_,]/\yp(‘],s,t),

27i sin 7 j
. 1 . aff 2K2 ) . —
Ayppep (s 8:1) = 5Viaa(j) x By x 7 gsA(J. K) X i(p2)yappu(p1)- (9.16)
5

The contour C is at the rightmost of the branch point of A(j, K). The spin-j glueball form factor A(j, K) of the proton as a
bulk Dirac fermion is given in (9.12) for the soft-wall model. The integrals can be carried explicitly, with the result

AGLK) BRI —b+c)
o 42 T(-btcta)

=\ 2 . i \2c(l1=b -
x((n—R> zFl(&,c+1,1—b+c+a,—1)+("—L> C(i—’_czzFl(ﬁ—F1,C+1,2—b+€+6~l,—1>>. (9.17)

R k) 1-b+c+a

The parameters are fixed in (9.3) as

. J=2  AG)
l—bte=(@-14+ =242V
+ec=(z=-1)+ 5 + 5
i i -2
1—b+c—|—a:(r+1)+T+aK. (9.18)

Note thatat j = 2, (9.17) is exactly equal to the spin-2 gravitational form factor (5.5) (times 1/&{, to compensate for the new
normalization we used for the higher spin case).

From (9.19)—(9.17), we determine the single Pomeron amplitude (total amplitude) in momentum space, after wrapping
the j-plane contour C to the left,

o fiodj (1 4+e7 ™ .. .
ypipp(8:1) = =57 2/_00; <W> s/7IIm[ A, g pwp (7,8 1)] (9.19)

The imaginary part follows from the discontinuity of the I'-function

R U=2D=80) e N4-A()+H-2 /22

. K Ky K

Im[A,,;w,(j, 5, 1)] % w X ( ) T
Kn %

1 ~A=A(j)+j— . . a ~j— j . —
(30 - 2Vaaa ) x B x50 ZAG. K rappe(p)

Ky

J=Jo-A(j)=2

m{r@l(m] 520)

with the complex argument

A(j) = A() =2 =i\ 2VAljo—j) = iy (9.21)

and j, = 2 — 2/+/A. For y — 0, we may approximate 1/ [(iy) ~ iye”, with the Euler-Mascheroni constant y = 0.55772....
The single Pomeron amplitude (total amplitude) in momentum space (9.19) can now be cast in block form
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ty(;;_u/\yp(sv 1) = 1;(jo. s) X Gs(jo. s, 1) (9.22)

with

. - Jo dj 14 eim IR . .
1ins) == [ (L )srhsin e 2V - )

. Ry \ 42072 1 (1 4 a(j)sjo2 : . a 2K°
Gs(]o, S, l) = <%> X —= <2Kv S T(A(J) = 2)Vhaa(J) x Blﬂ X g4
5

x & AU gA(, K)ﬁ(pz)yapﬂu(p1)> (9.23)

J=Jo-A()—2

We have set § = s5/&3,, and defined &=y + z/2. We note that the apparent pole in the Gamma function at the Pomeron
intercept cancels out in the combination T'(A(jo) — 2)Vyaa (Jo)-

In the block form (9.22), the spin-j integral /;(jo. s) is similar to the spin-j integral in [8] [see Eq. (4.19)], with the
identifications KC(s, b+, z,2') < A, (5. 1), (22 /R*)G3(jo, v) <> Gs(jo, 5,1), &(v) < &, and § < 5. We then follow
[8] to evaluate the spin-j integral by closing the j-contour appropriately. In the high-energy limit v/4/7 — 0 (7 = log 3), the
single Pomeron contribution to the photoproduction amplitude is

VB2 Vv
08 pepo00) = (V) + 1320 P (14.0(%2) ) x Gt (9.24)
As expected, the amplitude develops both a real and imaginary part with a p-ratio about constant
ReASS (5.1 = 0)] _

tot

Im| ])—»J/‘Pp( t=0)]

|5

p= (9.25)

The single Pomeron contribution to the total differential cross section is

do .
<E)tot 16ﬂs—mN22Z Z| 73)—»1/‘1'17 ol

pol spin
2

7
e S X <ezjo%[(,1/n2)+1](\/I/zﬂ)§2e = ) 22 Z|G5 Jors. 1) (9.26)

o
1671’(8 - mN) pol " spin

with the polarization-spin average

R\ 800 )2 (22 e UK
> (6stins.0P = () (L) (ooresorr a2 i )< o 0K

pol,spin M |4 95 iy

J=Jo-A(j)=2

F(s,t=—K*M,,
(s . VmN)x(2K2+8m,2V) (9.27)
A

and j, = 2 — 2/+/A. Note that the resummed spin-j contribution to the gravitational form factor is now fixed by the Pomeron
exchange with the form factor A(K, j,) at large /s. Remarkably, the emerging Pomeron exchange in the soft-wall model in
(9.26) which is a new result, bears much in common with the original conformal Pomeron kernel in [8].

The differential cross section rises with twice the conformal Pomeron intercept or 2 x (1 —2/ \/Z), and asymptotes

do g_d p VA3 VA
— ] ~sV 14— — of [—)* 9.28
<df>m ' AX( +ﬂ><<10g5 " 10g§) (5:28)
in the high-energy limit with log 3 = log(s /&%) > /4. Using the optical theorem one can determine the total cross section

oy(s) for yp — Vp with V.=J/¥, Y to be
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FIG. 15. Total cross section for photoproduction of charmo-
nium with V = J /¥, from close to threshold to very high energy.
The solid (blue) curve is the low-energy regime compared to the
data from GlueX [15] (black). The red (tiny dashed line) is the
high-energy regime. The green line (medium dashed line) is
found after fixing a normalization constant with one high-energy
data point but with the same high-energy ’t Hooft coupling
constant A = 11.243 as the red (tiny dashed) one. The data points
are from [30] (magneta), [31] (green), [32] (purple), [34]
(orange), [33] (pink), [35] (yellow), [36] (brown), [37] (orange),
and [38] (gray).

(s) ( 16z (da) )%
oy(s)=|——(—
! 1+ p?* \dt tot/ 1=0

with the Pomeron rise oy (s) ~ s'=2/V% at large /5 [8].
Recall that close to threshold, the t-exchange is kinemat-
ically bounded as shown in Fig. 1, and the total cross
section follows from the differential cross section (8.4) by
integration using (2.7).

In Fig. 15, we show the total cross section for photo-
production of charmonium with V = J/¥ from threshold
to very high energy. The same soft-wall parameters (8.8)
and the same fitting condition on A(0) as in (8.9) are used
in the threshold region for the solid blue curve. In this
region, the parameter set is insensitive to the expansion of
the vector meson wave function L} (z) near the holographic
boundary. At very high energy, we used the parameter set
(8.8) for the D9 model and adjusted A(0, j;) to

K\ Jo
- X
Ky

with 4 = 11.243. The fit value (9.30) is sensitive to the
expansion of L}(z) near the holographic boundary. The
value of the coupling 4 is not. Similar fits are found for
the other two holographic models. The solid (blue) curve is
the low-energy regime. The data are from GlueX [15]
(black). The red (tiny dashed line) is the high-energy regime.
The green line (medium dashed) is found after fixing a

(9.29)

10N (A(0, jiy)

_ —4
ViR 3.631 GeV™* (D9model)

(9.30)

100 -7 3
E 7 3

r ”

i _-

E s -
g o7
= F - 1
(=1 r I/ 4
>f 1k }I}E
S . {%1 ]
E’ 010 _ P i
P ]
i P ]
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:/ 7 E|

10 10* 107 1010
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FIG. 16. Total cross section for photoproduction of upsilonium
with V =Y from close to threshold to the very high-energy
regime. The solid (blue) curve is the low-energy regime (near
threshold). The green line (medium dashed) is found after fixing a
normalization constant with one high-energy data point but with
the same ’t Hooft coupling constant A = 11.243 as J /. The data
points are from [39] (green), [40] (purple), [41] (blue), [42]
(orange), and [43] (black).

normalization constant with one high-energy data point but
with the same high-energy 't Hooft coupling constant 1 =
11.243 as the red (tiny dashed) one. In Fig. 14, we zoomed in
the total cross section for J/¥ photoproduction near the
threshold with the same parametrs as in Fig. 15, and
compared to data from GlueX [15] in this regime.

In Fig. 16, we show the total cross section for V =71
photoproduction from close to threshold to very high-
energy regime, with the same parameter set. The solid
(blue) curve is the low-energy regime. The green line
(medium dashed) is found after fixing a normalization
constant with one high-energy data point but with the same
’t Hooft coupling constant 4 = 11.243 as J/y. In Fig. 17,
we show the total cross section for Y photoproduction
zoomed in close to the threshold with the same parameters
as in Fig. 16.

= —_

5] S

=) n
T

o(yp — Yp), nb
=

0.1

100 500 1000 5000  10*

E,, GeV

FIG. 17. Total cross section for Y photoproduction with the
same parameters as in Fig. 16 but zoomed in near the threshold.
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X. GENERALIZED PARTON DISTRIBUTION OF
GLUONS INSIDE THE PROTON

The generalized parton distribution can be viewed as the
amplitude for removing a parton with momentum fraction-x
and then reinserting it, while the nucleon is receiving a
momentum kick K all the while traveling on the light cone. It
is related to the form factor of the energy-momentum tensor
by a sum rule as we now detail. The fact that the gluon GPD
can be picked in the diffractive photoproduction of heavy
mesons is not surprising. Indeed, as we noted earlier, the
Witten diagram for the holographic photoproduction ampli-
tude is related to the amplitude for the inverse deeply virtual
Compton scattering amplitude through VMD.

A. Gluon GPD: j=2

The tensor coupling of the glueball to the nucleon as a
Dirac fermion is through its gravitational invariant form
factors (5.3). For j = 2 the exchange is dominated by the
graviton at threshold, with the contribution (r =3 and
ax = K*/8%%

A(K) = A(0) x D{ag +2) x GRYA(j = 2.K)

1 aK(aK + 1) 1 e A
=A(0 d
( )A X xa(;(t) 1+x

with the graviton Regge trajectory ag(t) = 1 +t/m} and
—t = K? < 5. Here my, is fixed by the 2** glueball mass in
(4.11). For a spin-2 and twist-2 exchange, the A(K) form
factor obeys the sum rule [27] (see also Eq. (3.154) in [44],
and reference therein)

(10.1)

A(K) = / l dxx’'g(x, K) (10.2)

0

with xg(x, K) the gluon GPD, at the renormalization scale
set by the nucleon mass.

The representation (10.1) suggests that 0 < x < 1 maybe
interpreted as the x-momentum fraction of the gluons in the
proton probed by the graviton. At small-x, the exchange is
dominated by the graviton Regge trajectory which is
manifest in the integral representation (10.1)

aglag +1) (1 =x\*
x9<(x. K) ~ A0) =2 <1+x>'

(10.3)

For zero skewness (£ = 0), the momentum transfer is
purely transverse and the spatial and transverse Fourier
transform of (10.3) samples the distribution of an x-parton
at a given transverse spatial distance in the light cone,

dK .
xg-(x,b) = /—Le_’Ki'beg<(x, K,) (10.4)

(2m)?

with

2%2 b2

2R2b% (1 —x\Te
a0 BB (12

zx \l+x/ In°x
X (—4R}b% + In x(—8&% b7
+Inx(=2 + 28,63 + Inx))). (10.5)

Equation (10.5) is seen to spread or diffuse (Gribov
diffusion) in the transverse plane over a length scale fixed
by I, ~ (21n(1/x))2/&y, with

%2 p2
ZKNhL

8(kyb)° <1 —x)f e

X 1+x) In’l

Pixg-(x.b,) ~ A(0) (10.6)

which is enhanced at low-x as 1/(xIn’1). The diffusion
ceases to be semipositive for b, </, or K| > 1/1,. In
Fig. 18 we show the behavior of the transverse gluon
density (10.6) as probed by the graviton at small-x and
small K | or large b . The central hole in Fig. 18(b) occurs
atsmall b| < [, and falls outside the range of the diffusive
approximation in (10.6).

To probe large-x and small b, through (10.1), it is best to
remove the large K-factors in the integrand through two
integrations by parts without modifying the sum rule for
A(K). The result is

xgo (x, K) ~ A(0)xéx+1 <(1 - x>> " 07)

1+x

with the primes referring to x-derivatives. The correspond-
ing transverse density at large-x is semipositive throughout,
and reads

1- x) 7) "2(kb ) e

b% ,b)~A(0
0. (n0) ~ a0 (155) ) 2T

In Fig. 19(a) we show the large-x behavior of the gluon
GPD (10.8) as probed by the graviton, as a function of
parton-x and the rescaled transverse size Kyb, for 7 = 3.
The GPD distribution for large-x and fixed x = 0.5 in the
transverse plane is shown in Fig. 19(b). For comparison,
one can look at the GPD of valence quarks in the proton
extracted from holographic QCD models in [45].

B. Gluon GPD: j=j,

Higher spin-j exchanges once resummed yield Pomeron
exchange at higher energies. The emerging Pomeron form
factor follows from (9.12) for j = j, in the form
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xgx, b.) 0.05
BIAO 000,
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by RN
4
(a) The small-x gluon distribution zg< (x,b, ) inside the proton (b) The small-x gluon zg<(z,b, ) distribution inside the proton
(X.100) as probed by the graviton. (X.100) as probed by the graviton with 7 = 3, x = 0.1 and

b = (b2 +b2)3.

FIG. 18. Small-x gluon GPD as probed by graviton exchange in photoproduction of a heavy meson close to threshold.
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xg(x, b.) 0.4
R AO0) 02
1.0 0.0

0.5
xg(x, b,)
0.0°¢

kA0 00

b, Ky
10
(a) The large-x gluon distribution zg~ (z,b, ) inside the proton (b) The large-x gluon distribution xg> (x,b, ) inside the proton
(X.102) as probed by the graviton with 7 = 3. (X.102) as probed by the graviton with 7 = 3, x = 0.5 and

by = (b2 +82)7.

FIG. 19. Large-x gluon GPD as probed by graviton exchange in photoproduction of a heavy meson close to threshold.

Ap(K) = A(jo, 0T (ag + A(jo)/2) x G2& W A(jo, K)

:A(jO,O)F(’;(i%\/Dﬂdxxfo—l xdim G:;)"ﬁl_lxz ((1—1)(1+x)+ (T—%)(l—x)) (10.9)

with the Pomeron trajectory ap(f) = 1-2/+/4 + t/m3, and with my fixed by the 2* glueball mass in (4.11). By analogy
with the j =2 exchange, we suggest that the gluon content of the proton as probed by the Pomeron for small K is
concentrated at small-x, and follows from the dominant Pomeron exchange which is manifest in (10.9) as

xg(x, K) ~ A(jo. 0) I'(z ;(i;x/i)xai(t) G J-rz)f-%zl _1x2 ((T_ (1 +x)+ (1—%)(1 —x)). (10.10)

The corresponding transverse gluon density is
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1000
(a) The small-x gluon density inside the proton (X.105) as probed
by the Pomeron with A = 11.243, and 7 = 3.

xg(x, b,)
—_— 2

in’ Ao, 0)

(b) The small-x gluon distribution inside the proton (X.105) as
probed by the Pomeron with A = 11.243, 7 = 3, x = 0.01 and

1
bJ_:(bi—i-b%)Q.

FIG. 20. Gluon GPD as probed by Pomeron exchange in photoproduction of a heavy meson at high energy.

b% xg(x.by)~A(jo.0)

M (1 L

In Fig. 20(a) we show the behavior of the transverse
gluon density probed by the Pomeron in (10.11), for A=
11.243, 7=3. The same density is shown in Fig. 20(b) for
fixed x = 0.01. We note that the low-x contribution probed
by the Pomeron at high energy or equivalently large
rapidity y = In(s/s,) > 1 far from threshold, is substan-
tially larger than the one probed by the graviton close to
threshold at small rapidity y = In(s/s,) ~ 1. Also, we note
that at high energy, the transverse gluon density probed by
the Pomeron is diffusivelike throughout.

C. Skewed Gluon GPD

The gluonic skewed GPD for the energy-momentum

tensor with finite skewness &= K_/2\/m3 + K*/4 are
related to the invariant form factors in (5.3) through (see

Egs. (3.127) and (3.151) in [44], and references therein)

Al dxHI(x, &, K) = A(K) + ED(K) - (1 —48)A(K),

/ 1 dxE9(x,E K) = B(K) — &D(K) — 482A(K)
0

(10.12)

with the rightmost results following from our holographic
results for the invariant form factors, B(K) =0 and
D(K) =4C(K) = —4A(K). In terms of (10.6)—(10.8)
(graviton) or (10.10) (Pomeron), we have for the skewed
gluonic distributions

R
((T—l)(l—i—x)—l—(r—\%)(l—x))% (o)
H(x,£.K) = (1 - 48)xg(x. K),
EI(x,& K) = 4Exg(x, K), (10.13)

which amounts to the gluonic contribution to Ji’s sum rule
[46] as

Jon () — %Al dx(H(x,£,0) + E9(x,£,0)) =%A(0).
(10.14)

As we noted in (8.9), the extraction of A(0) from the
threshold photoproduction data is model dependent.

XI. CONCLUSIONS

We have analyzed heavy meson photoproduction for all
\/s, using a bottom-up approach holographic construction.
We have used the Witten diagrams in AdSs for diffractive
photoproduction of J/y, shown in Fig. 2, and explicitly
computed the differential cross section for the heavy meson
production, first near threshold, where it is dominated by
the exchange of massive 2" glueballs as spin-2 gravitons
in bulk, and second away from threshold, where the
exchange involves a tower of spin-j states that transmute
to the Pomeron. Our construction is general, and carries
readily to heavier meson production such as Y. We have
presented direct predictions for this production near and
away from threshold.
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Our analysis allowed for the explicit derivation of all
three holographic gravitational form factors A(k), B(k),
C(k). In the double limit of a large number of colors and
strong coupling, the holographic approach is dual to
quenched QCD, so the form factors are mostly gluonic.
Indeed, we have found that the form factors A(k) and
D(k) = 4C(k) compare well to the gluonic gravitational
form factors from the recent lattice QCD simulations [26].
The exception is the form factor C(k) where a strong
mixing on the lattice with the low-lying scalar-isoscalar
was noted. We have used the D(k) form factor to
determined the distribution of the pressure and shear inside
the proton. The results are comparable to those extracted
recently from the lattice [28], and empirical data in [29].

We have found that the differential cross section for the
photoproduction of heavy meson production is solely
dependent on the invariant form factor A(k) in our holo-
graphic analysis. The agreement of the differential and total
cross sections with the recently reported GlueX data for J /¥
production near threshold [15] suggests that the heavy
meson production is controlled by the tensor 27+ glueball
as a graviton exchange in bulk. Indeed, it is the graviton
Regge trajectory at low /s that transmutes to the Pomeron
Regge trajectory at large /s in holography, thereby provid-
ing a unified description of the photoproduction process of
heavy mesons at all energies. These results complement
those presented originally in [4,5] away from threshold, and
are overall consistent with some of the general observations
presented recently in [17,18] close to threshold.

From a pertinent integral representation of A(k) in the
soft-wall model, we have determined the GPD of the gluons
in the proton as probed by the spin-2 glueball or graviton
near threshold, and the Pomeron way above threshold in the
photoproduction process. The holographic construction
clearly shows that the GlueX experiment [15] directly
probes the tensor gluonic contribution of the energy form
factor in the nucleon state as a bulk Dirac fermion.
Conversely, we have used the GlueX data in combination
with our holographic cross section result to extract in an
almost model independent way the gravitational form
factor A(k) modulo A(0), and consequently the gluon
GPD of the proton. The value of A(0) as it relates to the
gluonic contribution to the proton spin is model dependent,
and cannot be reliably extracted from the threshold data in
the photoproduction process. Our observations are overall
consistent with the original arguments presented in [19]
using short distance QCD methods.

The forthcoming high statistics measurements from
SoLID [16] will provide further insights and checks on
the present holographic analysis.
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APPENDIX A: WAVE FUNCTIONS AND
PROPAGATORS IN HOLOGRAPHIC QCD

1. Dirac fermion/proton

The normalized wave functions for the bulk Dirac
fermion are [21]

¥(p,z) = wr(2)¥r(p) +vL(2)¥] (p),

W(p.2) = wr(2)¥R(p) +w ()W) (p). (A1)
where for the hard-wall
W (Z) _ \/§Z5/2JT—2(mNZ)
K 20d -1 (myzo)
222 _
wi(z) = V2z 1(myz2) (A2)

20J -1 (myz0)
with the Bessel functions J,(myz), and for the soft-wall
fig

wr(d) = 5 7ETLT @),
N

By s (o
v (2) = 5 3ETLYV (e,
Ky

(A3)

with the generalized Laguerre polynomials Lg,a)(:f), fig =

i ky'VT—1, and 7, =&5/2/T(z). The bulk wave

functions are normalized for the hard-wall as

20
[ axvaetni ) = 2 (A4
and for the soft-wall as
|7 dvietei o (a3)
0

with ¢p = k%72, and the inverse vielbein e, = /|¢"#|5 (no
summation intended in pu).

For both the hard-wall and soft-wall models, we have
the twist parameter =3, W9, , (p)=P.u(p), ¥}, (p)=
it(p)P+, and P, = (1/2)(1 £°). We also work with the
normalizations of the boundary constant spinors for both
the hard-wall and soft-wall models as

i(p)u(p) = 2my,

2my < u(p')y'u(p) = u(p')(p' + p)lu(p).  (A6)

2. Photon/spin-1 mesons
a. Hard wall

For timelike momenta (g> > 0), the non-normalizable
wave function for the virtual photon is generally given by
A, = V(q.z)n,e™"* where [47,48]
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ncbn z

= —gsz

(A7)

with V(0,z) = V(q,0) = 1, the decay constant of the vector
mesons F,, = (1/gs5)(=%8,¢,(z'))|.—.. and the normalized
wave functions of the vector mesons A, = ¢, (z)n,e™4*

i

d)n (Z) = CnZJI (ng) = JA (mm Z)9 (A8)
with ¢, = = le/rz o which satisfy the normalization
condition

/m@wwmmm:%r (A9)

In the hard-wall model, the summation in (A7) can be
carried out analytically and is given by

-l

1(g2) — Yl(CIZ)>- (A10)

For spacelike momenta (¢*> = —Q?), the non-normal-
izable wave function for the virtual photon is generally
given by A, = V(Q, z)n,e™?* where

Fn¢n
Q < 7QSZQ2+m

(A11)
For example, in the hard-wall model, the summation in
(A11) can be carried out analytically and is given by

Ky(0z
W09 = 0:(142% 100+ Kif@a)). (A1)
1y(Qz0)
with the normalization V(0,z) = V(Q,0) = 1.
The bulk-to-bulk propagator for the massive mesons, for
timelike momenta (¢> > 0), can be written as

k,k,
Gl =T G(a) = (- + 25 )G, (13

n

with

G(z.7) = Z% (A14)

; m;
For spacelike momenta g = —Q? in (A14). Also recall that
V(g.z) =%$9.G(z.7)|,—,. Note that for z — 0, we can
write (A14) as

¢n(z - 0) _gSFn¢n(Z/)
G 0,
(2=0.2)= —gsF, Z: q* —m;,
2 / 2
Z _QSFn(l)n(Z) < /
== e Al
Zzn: Ao =3 V(@) (Al5)
where we used
1 !
= (1/95> __/81’¢n(z) = ——Cymy,, (A16)
Z 7=¢ gs

and ¢, (z — 0)
decay constant as f, = _51_’ we have

1 c,m,z* for the hard-wall. Defining the

@) =10 gomyadi(mz), (A1)

n
as required by vector meson dominance. For spacelike
momenta (¢> = —Q?), we have

Z gSFn¢n (Z Z2

G 0,
(z—>0,7) 0"+ m?

V(Q.7).  (Al8)

b. Soft wall

Similar relationships hold for the soft-wall model
where the normalized wave function for vector mesons
is given by [49]

$u(z) = e, kY27 Ly (K3 2%) =

with ¢, = y/2/n + 1 which is determined from the nor-
malization condition (for the soft-wall model with back-
ground dilaton ¢ = k3,z°)

Jalmy, ), (A19)

/&@M@Wmmwmww (A20)

Therefore, we have

1 1 2
F,=—|—-e?=0,¢,(7 > =——c,(n+ 13
95< Z/ : ( ) 7'=e gs ( ) v

(A21)

with ¢,(z = 0) = ¢, &3 z%(n + 1). If we define the decay
constant as f, = —F,/m,, we have

Ja 5 ,
b(e) =18 2B 2LED). (A2)

n

as required by vector meson dominance.
Note that for z —» 0, we can write the bulk-to-bulk
propagator (Al4) as
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¢n(z - 0) _QSFn¢n(Z/)
G(z— 0,z
( Ry 2 q* —m;
2 / 2
< _QSFn¢n (Z ) < /
==Y —————=—V(q,7). (A23
For spacelike momenta (¢g> = —Q?), we have the bulk-
to-bulk propagator near the boundary
gSF ¢n( ) 22
G 0, = ==V(0,7), A24
(z=0,)~ 0"+ ni? (0.7),  (A24)
where [49]

X

U
V(Q’Z)_szz% (1—);)2)6%“’[‘1_
V(0,0) = 1.

2221, A25
vz } (A25)
with the normalization V(0, z) =

3. Tansverse-traceless graviton/spin-2 glueballs
a. Hard wall

For timelike momenta (k> > 0), the non-normalizable
wave function for the virtual tansverse-traceless graviton is
generally given by h,, = h(k,z)e), e~k where [50]

\/_ Z nl//n )

(A26)

with the normalization 4(0, z) = h(k, 0) = 1, which could
be relaxed. The decay constant of the spin-2 glueball with
mass m,, is

1 1
Fy=—— (=0, (¢
\/ch< A (z )>Z,=€

and the normalized wave functions of the spin-2 glueballs

I = wa(2)en e

(A27)

wa(2) = ¢, 2o (myz) = Jy(my.2).  (A28)

V2

20J2(m,20)°

with ¢, = which satisfy the normalization

condition

/ e /30 W @Y (@) = S (A29)

In the hard-wall model, the summation in (A26) can be
carried out analytically and is given by [21,48,50]

Y, (kzo)

T
h(k, = k272
k2 =3 Z(Jl(kz(»

For spacelike momenta (k* = —K?), the non-normalizable
wave function for the virtual transverse-traceless graviton is
generally given by 1, = H(K, z)e,, T e=ikx where

sz Kgy—/:m

(A31)
In the hard-wall model, the summation in (A31) can be
carried out analytically and is given by [21,48,50]

1
H(K,Z) = §K2Z2<

K (Kzo)

Rl Kz) + K> (Kz A32

e (K + KoK ). (A%2)
For timelike momenta (¢g> > 0), the bulk-to-bulk propa-

gator for the massive spin-2 glueballs, can be written as

[21,48,50]

1 2
G,fg;,p( /) = 5 (T;mTuﬂ + TﬂﬂTl/(Z - gT;u/Taﬂ> G(Z, Z/) s
(A33)
with 7, = —n,, + k,k,/m3 and
l//n (Z)l//n (ZI)
G(Z, Z/) = e W (A34)
For spacelike momenta, we simply replace k> = —K? in
(A34). Also remember that
1 /
h(k,z) = ?@/G(z, Z) (A35)
=€
Note that for z — 0, we can write (A34) as
- Fn n 4
G(z—0.7)~> Z\f’(—l’”’l()—%h(k,z’), (A36)
where we used
F 1( P (/)) Loem2  (a37)
n—"= | T r07¥,Z = C,my,
\/EK 73 ¥ J=e 2\/51(

m2z* for the hard wall. Hence, for
—K?), we have

and y,(z > 0) &3¢
spacelike momenta (k> =

V2kyF, ¢n( n_

H(K,Z).

G(z—0, z)~4z (A38)

b. Soft wall

Similar relationships hold for the soft-wall model where
the normalized wave function for spin-2 glueballs is given
by [51] (note that the discussion in [51] is for general
massive bulk scalar fluctuation but can be used for the
spin-2 glueball which has an effective bulk action similar to
massless bulk scalar fluctuation)
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va(z) = e, 2LV (28), (A39)
with
_ (2R (n+ 1))z
Cn = <W> , (A40)

which is determined from the normalization condition (for
soft-wall model with background dilaton ¢ = &%z?)

[ i g () = (24D
Therefore we have
O ( Lo (/)) 1 L2(0), (A42)
n= "= | T 397¥VnZ =——=CuLy s
VB ) T T

with y,(z —» 0) ~ ¢,z*L2(0). For spacelike momenta
(¢*> = —0?%), we have the bulk-to-bulk propagator near
the boundary

V2kF, ¢n( N

G(z—0.7)~ 42 =THKZ),  (A43)

K? +m?
where, for the soft-wall model [21,48,51]

H(K,z) =47*T (ax +2)U(ag +2,3;2¢)

=T(ag +2)U(ag,~1;2¢)

:%Kmarlu—x)exp<—%(2z;)>,

(A44)

with ax =a/2=K?/8k%, and we have used the transforma-
tion U(m,n;y)=y'""U(1+m—n,2—n,y). Equation (A44)
satisfies the normalization condition H(0,z)=H(K,0)=1.

4. Trace-full graviton/spin-0 glueballs
a. Hard wall

For timelike momenta (k* > 0), the non-normalizable
wave function for the virtual trace-full graviton is generally
given by h,, = k*f(k,z)el, e”** where

£k, 2) _2WZ 21

n

(Ad5)

with f(0,z) = f (k 0) = 1, the decay constant of the spin-0
glueballs F,, = \/- ( 0,y,(7'))|.—c, and the normalized

wave functions of the spin-0 glueballs &, = v, (z)el, e~

which satisfy the normalization condition

/ A3l WD) = e (A46)

with the normalized wave functions for the spin-0 glueballs

wa(2) = ¢, 2205 (muz) = Jp(my.2),  (A47)

where ¢, = 5 In the hard-wall model, the summa-

= S
20
tion in (A45) can be carried out analytically and is given by

Flk,2) = k22<§1((]l§ ))Jz(k) Yz(kz)) (A48)

For spacelike momenta (k> = —K?), the non-normal-
izable wave function for the virtual trace-full graviton is
generally given by h,, = F(K,z)e}, e where

F(K,7) = —2v/2¢ Z ”"’” (A49)

The summation in (A49) can be carried out analytically and
is given by
1 K (KZ())

F(K.z) = —K2z2(171 Kz) + Ky(Kz) ). (AS0
(K.2) = 32 J s nK) + Ka(K2) ). (AS0)
For timelike momenta (g> > 0), the bulk-to-bulk propa-

gator for the massive spin-0 glueballs, can be written as

Gl op(2:2) = MGz, 7') where
Wi (Qya(2)
G(z.7) = P (A51)
with
1 /
flk,z) = Z—,35Z/G(z,z) x (A52)
=€
Note that for z — 0, we can write (A51) as
2V2kF,y, () ,
G(z—0.2)~7 ZW (kD). (AS3)
where we used
(3066 =, (ash)
n == | 5307U(%<Z =—0C,my,
2V2k \Z? ¢ Jee M2k

c,m2z* for the hard wall. Hence, for
—K?), we have

and y,(z —> 0) &3
spacelike momenta (k> =

_2\/_KFn¢n( )_i

K.,7).
K>+ m? 4F( 7)

G(z=0.2)~7 Z (A55)

n
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b. Soft wall

Note that similar relationships hold for the trace-full
graviton/spin-0 glueball in the soft-wall model. We do not
detail them here as they are similar to the ones given for the
spin-2 glueballs modilo normalization constants.

5. Dilaton/spin-0 glueballs
a. Hard wall

For timelike momenta (k* > 0), the non-normalizable
wave function for the virtual dilaton is generally given by

\/_ Z nl//n i ( A5 6)
with ¢(0, z) = ¢(k,0) = 1, the decay constant of the spin-
0 glueballs F,, = ﬁ (35994 (2')]—» and the normalized
wave functions of the spin-0 glueballs v, (z) which satisfy
the normalization condition

/ Ao /AT W (m(e) = e (AST)

with the normalized wave functions for the spin-0 glueballs

l//n(z) = CI1Z2J2(ng) = ‘](/J(mn’ Z)’ (A58)

where ¢, = For example, in the hard-wall model,

20J2(myz20)"
the summation in (A56) can be carried out analytically and
is given by

Yy (kzo)
Jy(kzo)

For spacelike momenta (k> = —K?), the non-normalizable
wave function for the virtual dilaton is generally given by

\/_KZ nl//n

qo(k’z):ZkZzZ( Jz<kz>—Y2<kz>). (A59)

(A60)

For example, in the hard-wall model, the summation in
(A60) can be carried out analytically and is given by

D(K,z) = lKzzz (M I,(Kz) + Kz(Kz)) (A61)

2 11(Kz)

iAﬁp—)Ap (S, t)

n

iAfﬁp—»Ap(mn’ S, t) =

with the bulk vertices (k = p, — p; = q; — q»)

= DALy (5. 1),

(—i)V(pAA(CIb 42, k, mn)

For timelike momenta (g> > 0), the bulk-to-bulk propa-
gator for the massive spin-0 glueballs, can be written as

l//n (Z)l//n (Z/)
G(Z, Z/) = W . (A62)
We recall that ¢(q, z) = 5 0,G(z,2) -
Note that for z — 0, we can write (A62) as
V2KkF,y ( &
n¥n _ < A
G(z—0.2)~ 4; o =okd). (A63)
where we used
F ! < 0,G( )> ! 2 (A64)
n Z,2 =——c,mj,
T 2V2x e A2k

c m2z* for the hard wall. Hence, for
—K?), we have

and y,(z - 0) =
spacelike momenta (k> =

_2\/_KFn¢n( )_Z4

e =" D(K.2). (A65)

G(z—0,7 )~ 42

b. Soft wall

Note again, that similar relationships hold for the dilaton/
spin-0 glueballs in the soft-wall model, but we do not go
into details here as it is very similar to the spin-2 glueballs
up to normalization constants.

APPENDIX B: CONTRIBUTIONS TO
HOLOGRAPHIC PHOTOPRODUCTION

Here most of the results will be given for the soft-wall
model explicitly. The results for the hard-wall model follow
by setting ¢ = 0.

1. Dilaton contribution

The dilaton contribution to the holographic photopro-
duction amplitude can be determined from Fig. 2 by
replacing the spin-2 glueball propagator by spin-0 glueball
propagator of a dilaton as

X Glﬂ(mn’t) X (_i)V(/)‘f"P(p]’pbk’ mn)? (Bl)
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58K 1
Voan(q.q' k,m,) = (5{/)((,’; Z)>J (my.z) = 2K2X1/d2\/§e“”z41((q, q.n.n'.2)J,(m,.z),

_ 552@11 5S2lm,
Vow(p1. P2 kom,) = <W)8zf¢(mmz) + <m>1¢(’"mz)

V2K? -
== dz\/9e 2% (py. 2) (Y0, ,(myy. 2) + kgy®J ,(m,. 2))¥(p1. 2). (B2)

and the bulk-to-bulk propagator
G(p<mn7 L, z, ZI) = J(/z(mnv )G (mn’ )J(/)(mnv Z/)7

~ i

G )= B3
o 1) t—m2 + ie (B3)
For 77 — 0, and r = —K? in (B3), we can use (A65), which simplifies (B1) as
iAfﬁp—»Ap(*Y t) ~ (_i)vlpAA(q]? q2, k) X (l) X (_i)vq)‘P‘Y(phpZ’ k)7
Voaa(q1. 42 k) = V22 x f/dZﬁe ’2*K(q.q,n.n' Z)ZZ
1 _
Vow(P1: p2sk) = V22 x5 / dze™\/gz2¥(p2, 2)(r°0.D(K, 2) + koy*D(K, 2))¥(p1. 2). (B4)

2. Graviton contribution

The graviton contribution in Fig. 2 in the diffractive part of the holographic photoproduction amplitude was analyzed in
[52] for the Pomeron kinematics in the hard-wall model. Here we will give the results for all kinematics for both the CFT
case in AdS, and the conformally broken case in walled AdS.

In AdS space, for the tansverse-traceless part, Witten’s diagrammatic rules give formally

iAZp—»Ap(S’ t) = Zi;lil\p—nﬁlp(mnv S, t),

n

iAo (my.s.0) = (=) (g, g komy) x GIT (my. 1) x (=)VEED (py. paskomy),

lAgp—»Ap( 1) = ZZAAP—)A[? (my, s, 1),

Ry v BT
2y (5. 1) = (VD (0o K ) X Gy 1) % (=YD (. s ), (B3)

with the bulk vertices (k= p, — p; =g —¢')

) 58k
Vil (q.q' kom,) = 5 TT];'AA )Jh(mmz)_ 2K X /dzx/?le K" (q,q 1, 2)Jy(m,,, 2),
Vigw (pr.pak.m,)= (5 TT,’;W )Jh(mn,Z) 2¢? Xz/de/ﬁe P29 (p2.2)7" pP¥(p1.2) T3 (my.2).
aﬂ
58k
VMD(T)(q,q/,k,mn) = %)J (m,, z)
o 8 f(k.2)) )"

1
2«? x4/dz\/§e (ar's <K"”(q q.,n.n' z)—Zn””K(q q.n.n' Z))Jf(mn,z),

Ve ()( k,m,) = (&)8J(m z)+<5sji¢)1'(m z)
1oy P1sP2, 582( aﬁf(k Z)) 2/ f\U s 5(€a/}f(k’z)) AN

=—V 2Kk X /dz\/ﬁe P22 (pr.2) (P20, s (my. 2) + 7o pPT (. 2) + 0k, T 1 (m,. 2)) (1. 2),

(B6)
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with p = (p; + p,)/2. The bulk-to-bulk graviton propagator is G,,us = G5 + G/,,5. The transverse and traceless TT-

uvap:
part describes massive 27" glueballs [53,54]

(mn’ Z)Gﬂyaﬂ( )Jh(mn’ ZI)

(T T+ TuTva— T T, ) :

3w t—m2+ie’

GZLﬂ(mnat’Zyz) J

1

Gumxﬁ( ) = 5
with G the boundary propagator,

T,uu = Nw + kﬂkl//m%l (B7)

The trace-full T-part G’ . describes massive 0"+ glueballs [54]

pvaf
G/fvaﬁ(mnv 1,2z, ZI) = ‘]f(mn’ Z)G};vaﬂ(mn’ t)‘]f(mn’ ZI)’ (Bg)
with the boundary propagator

i
Gﬂl/aﬂ( ) = ’Yﬂmaﬂm-

For 7/ — 0, and t = —K?, and t = —K? in (B7) and (B8). We can use (A38) and (A55), and simplify (B5) as
. W(TT) [ N~ B(TT
iAfyap(s ) 2 (SOVIL" (41, 42 k) X (Enﬂaw) x (=i)Vigy (p1. P2 ko).
. . v(T .
iAoy (5.0 & (<D)Vi (a1, 2 ) X (inuniag) X (=) Vi (p1 P2, K), (B9)

with
4

Vi (q1.q2. k) = V262 x /dz\/g_)e YK (g.q n.n z)4

VD (p1.pank,) ==V 2K x /dz\/ée P2¥(pr.2)r* p*¥(p1.2)H(K. 2),
v 1 !
Ve (q1.42.0) = V2x2 ><4/d1x/§e gl (K"”(q q'n.n'.2) =" K(q.q'.n.n’ Z)> T
o 1
Vf{;f,)(pppz,k) 2x? x2x2/dz\/‘e VIO (py,2) 10, F (K. 2) + 1° PP F (K, 2) + 1P k" F (K, 2))¥(py.2).

(B10)

APPENDIX C: ELEMENTS OF THE REGGEIZATION

1. Hard wall

The reggeization of the graviton exchange is obtained through the substitution [55]

In(my(j).2) = W, (. 2) = V2, (7. 2) (C1)

followed by the summation over all spin-j exchanges using the Sommerfeld-Watson formula

dj (s + (-s)/72
- j -z 2 rATr
Z s+ ~ 2/ 27i ( sinzj (€2)

/>2
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for a pertinent choice of the contour C. This requires the
analytical continuation of the exchanged amplitudes to the
complex j-plane. For the hard-wall model, the normalized
wave function is given by

Yn (]v Z) =Cy (])Zz‘lﬁ(])(mn(])z)
L 1
) = \@ZOJA(j)(mn(j)Zo) )
for 0.y, (j,z9) =0 and
A()=A) =2 = (4+2VA(j = 2)) = \/2VA(j - jo)
(C4)

with j, :2_\/% and j > 2.
For timelike momenta k2 > 0, we can also determine the

non-normalizable wave function for the virtual tansverse-
traceless spin-j glueball, as

3k Z . wngfj,)Z)

h(j k,z) = T

(C5)

which satisfies the boundary conditions 0,h(j=2,k,zo)=
0. We define a decay constant function (not exactly the
decay constant) of the spin-j glueballs as

C(j, k,¢€)
V2K

The normalized wave functions of the spin-j glueballs
w,(j,z) satisfy the normalization condition

Fu(j) = (Co)

(_\/§6_¢|gxx|az’l//n (.]’ ZI)) |z’=e'

/ dzy/Ge 0 n (G (o 2) = Some (CT)

For example, in the hard-wall model, the summation over n
in (C5) can be carried out analytically and is given by

h(j.k,2) = fz - W”(.>)
_ 7 (% i) = Vi (k2) ). (C)
with
A(j. k, z9) = 9(22Y 55y (k2)) .,
Bl kozo) = 0.5y kDl (C9)

We also define

C(j. k.€) = h(j, k,e) % —€Y5;(ke).  (C10)

For spacelike momenta k> = —K?, the non-normalizable
wave function for the virtual transverse-traceless graviton is
generally given by

. Nyali.2)
H(j.K.z) = fz K2 prrpa G
which satisfies the IR boundary conditions 0, H (j=2,K ,z)=

0. We have defined a decay constant function (for spacelike
momenta) of the spin-j glueballs as

. C(j.k,e - :
Foli) == (et 10,5, .2 (C12)
\/EK
In the hard-wall model, the summation in (CI1)
reduces to

HU. K. 2) = Vi Z#

2 ()
=7z’ (%150) (Kz) + KA(;)(KZ)> ,
(C13)

with

A(j, K, 20) = 0.(22 K5 (K2))| .y,

B(j, K, z0) = 9.(215(;(K2))| - (C14)
We also define

C(j.K.€) = H(j.K.€) ~ €Kz ;) (Ke).  (CL5)

For timelike momenta k*> > 0, the bulk-to-bulk propa-
gator for the massive spin-j glueballs, can be written as

G;Y;ya/}(]» 2, Z,) = % (Tua(J)Tbﬁ(]) + Tﬂ/}‘(j)Tua(j)

——Tﬂ,,umﬁ(j))é(j, )
0.5 2) = 00605 5 220

(C16)

and 7 ,,(j) = —n,, + k,k,/m%(j). For spacelike momenta,
we simply replace k> = —K? in (C16). Also remember that
h(j. k. z) =

C(j. k.€)v/ge1g%|0:G(j. 2.2 )|z (C17)

Note that for z — 0, we can approximately write the bulk-
M in (C16) in

noK2—m?
terms of the unnormalized bulk-to- boundary propagator
h(j, k,7') as

to-bulk propagator G(j, z,7') =
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. w,(z—0) Fu(jyan(2) 2780 x kA0 x ZA+2
G(j,z—0,7)m—"2 " (=2 : h(j.k,2'), Cl18
( ) (—V2K)F,,(j) ( )zn: k* —mg () A(j)+2 ( ) (C18)
where we used
. Clj.ke) . . 1 280) (m (j))ﬁm < TA®G)
F, _ _ ¢ xazl .. 7 Jee = — cp n 24+ A —_— C19
(/) NP (=v9e™?1g™0w, (J, )] = NP e = ( (J))F(1+A(j)) (C19)
with w,(z — 0) » F[IZ%A(]()/)] n(j)(m,) 2D A2 and C(j, k,€) = L (k )2‘5(1)@1"(&0) for the hard wall.
For spacelike momenta k* > 0, we also have
. va(z = 0) Faliya(d) _ 252 x KBO 5 202
G(j.z—=0.7)m—2" 2 x (V2x L= H(j. K. 7). (C20
( ) (V2x)F,(j) ( )Z: K? + m3(j) A(j) +2 ( ) )
where we used
. C(j.K.e) _ . . (m (j)>5(f) = T(A()))
Fo(j)=—-22 (- 210y, (7, 2))].— :—2A<JJ1,, L 24+ A()) =——=F—, (C21
()= =S5 Va2 = 528010 (7 ) T CHAD e Ry (€Y
|
with ’H(j,K,z):zAU<aK+(]) A(j )—1;25)
(oo O) 2o YRR — 20220 U a(j). b(j):28)
e F[1+A()] " ’ AQ) 2-A() 1 1 ()1 50)
_ =z8U)(2&)772V) ——— dxx®)=H 1 —x)~"V
C(j.K.,e) = 2(Ke) —AN280D-1T(A())) (C22) 2 r'@a(j)) Jo (=)
for the hard-wall model. Also remember that X exp <_—1 x( ¢ |, (C206)
H(j.K.2) = =C(j. K.€) /g |g°(0,G(j.2.7)].,— where e
(C23) ak =5 = e
. A(j
() = ax +2- )
2. Soft wall - )
b(j) =3 - A(j), (C27)

The same relationships hold for the soft-wall model,
where the spin-j glueballs’ normalized wave functions are
given in terms of the generalized Laguerre polynomials as
[51] (note that the discussion in [51] is for general massive
bulk scalar fluctuations but can be used for spin-j glueballs
which have an effective bulk action (or bulk equation of
motion) similar to massive bulk scalar fluctuations [55])

wa(j.2) = ()AL (28), (C24)

where & = k%22, and the normalization coefficients are

2A() A0~ D\ 2
cu(j) = < By Tlnt )> . (C25)
F(n+A()-1)
The non-normalized bulk-to-boundary propagators for
spin-j glueballs are given in terms of Kummer’s (confluent

hypergeometric) function of the second kind and its integral
representation as (for spacelike momenta k> = —K?)

and we have used the transformation U (m,n;y) =y~ U(1+
m—n,2—n,y). The bulk-to-bulk propagator can also be

approximated as (for spacelike momenta k> = —K?)
: wu(2—0) Fu(wa(2)
G(j,z—=0,7) R0 x (V2K)y I
(V26)F,,(j) Z,: K2 +m; (j)
28021 (g +22) < A4 _Ax)
T(A()-2 Ky Xz .
_ (A()-2) A(J) H(J,K,Z/),
(C28)
where we used
. C(j.K.e€) T .
Foli) = =L (= et 0.0 ) e
C(j.K.€) = H(j. K, €) (C29)

and the substitution y,(z = 0) ~ ¢, (j)zAL,?(j)_2 (0) for the
soft-wall model.
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