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We discuss the field quantization of a free massive Dirac fermion in the two causally disconnected static
patches of the de Sitter spacetime, by using mode functions that are normalizable on the cosmological event
horizon. Using this, we compute the entanglement entropy of the vacuum state corresponding to these two
regions, for a given fermionic mode. Further extensions of this result to more general static spherically
symmetric and stationary axisymmetric spacetimes are discussed. For the stationary axisymmetric Kerr-de
Sitter spacetime in particular, the variations of the entanglement entropy with respect to various eigenvalues
and spacetime parameters are depicted numerically. We also comment on such variations when instead we
consider the nonextremal black hole event horizon of the same spacetime.
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I. INTRODUCTION

The de Sitter spacetime is the simplest solution of the
Einstein equation with a positive cosmological constant, Λ.
It is maximally symmetric with isometry group SOð4; 1Þ in
dimension 4. Its physical significance is chiefly twofold.
First, owing to the observed accelerated expansion of the
current Universe, there seems to be a strong possibility that
our current Universe is endowed with a small but positive
Λ, or some alternative form of the dark energy. Second, the
observed high degree of spatial homogeneity and isotropy
in all directions in the sky at large scales indicates that the
very early Universe might also have gone through a phase
of a rapid accelerated expansion, known as the inflation;
see, e.g., Ref. [1] and references therein.
The positive Λ is the simplest and phenomenologically a

very successful model of the dark energy. Even though the
exact nature/form of the dark energy is yet far from being
well understood, it is reasonable to expect that the de Sitter
spacetime would qualitatively model at least some salient
features of any cosmological spacetime undergoing accel-
erated expansion. In particular, the highest degree of
symmetry present in this spacetime makes many compu-
tations doable analytically.
There has been tremendous effort over decades to

explore various aspects of quantum fields living in a de

Sitter universe. A complete review on this topic is far from
the scope of this paper. We refer our reader to Refs. [2–4]
for various aspects of particle creation and vacuum states in
the cosmological de Sitter spacetime. See Ref. [5] and
references therein for a study on the Schwinger effect in de
Sitter. See, e.g., Refs. [6–11] for aspects of particle creation
and thermal effects in the static de Sitter or de Sitter black
hole spacetimes. Further, we refer our reader to, e.g.,
Refs. [12–14] (also references therein) for discussions on
the late time nonperturbative infrared effects in the cos-
mological de Sitter spacetime. See also Refs. [15,16] for
discussions on fermion-driven inflation.
A natural and interesting aspect of the de Sitter space is

the relativistic quantum entanglement of fields, which is the
focus of this paper. If we consider an “in” vacuum state in
the cosmological de Sitter spacetime, due to the accelerated
expansion, the state may evolve in the future to a different
or “out” vacuum state, indicating particle pair production.
Such pairs turn out to be entangled. On the other hand, due
to the accelerated expansion, all parts of the de Sitter space
cannot be causally connected. Quantum fields living in
various causally disconnected parts of de Sitter can show a
very nontrivial aspect of quantum entanglement. We refer
our reader to Refs. [17–33] and references therein for a
study of quantum field theoretic entanglement in the
cosmological and hyperbolic coordinatization of de
Sitter. We further refer our reader to Refs. [34–37] and
references therein for a study of holographic aspects of de
Sitter entanglement entropy.
The static coordinatization of de Sitter is interesting in

the sense that the cosmological event horizon is explicitly
“visible” in it and, second, it is explicitly time translational
invariant (within the cosmological event horizon), e.g.,
Ref. [6]. The maximal analytic extension of the spacetime
across this horizon shows, like that of the nonextremal
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black hole or the Rindler horizon, four causally discon-
nected spacetime regions, two of which are static, Sec. II. A
quantum field living in these two regions possesses local
vacua as well as some global vacuum defined with respect
to the Kruskal null coordinates. It is thus interesting to
address the issue of quantum entanglement between the
quantum fields living in these two static regions, say R
and L. This issue was addressed recently in Ref. [38] for a
scalar field, using the closed form mode functions, and the
behavior of the entanglement entropy was shown to be
similar to that of the Rindler spacetime.
In this work, we wish to do the same for the Dirac

fermions. Precisely, using the closed form mode functions
obtained in Sec. III for the static de Sitter coordinate,
Eq. (1), we derive the R-L entanglement for the vacuum
state of the Dirac field in Sec. IV. The result is found to be
similar to that of the Rindler spacetime, found earlier in
Refs. [39,40]. Such similarity follows from the universal
Rindler-like behavior of the t − r part of any (nonextremal)
near–Killing horizon metric and the subsequent simplifi-
cation of the mode functions. Such universality and
simplification allow us to extend our result further to
(a) the de Sitter horizon of a general static and spherically
symmetric spacetime, such as the Schwarzschild-de Sitter,
Sec. IV, and also to (b) stationary axisymmetric spacetime
such as the Kerr-de Sitter, Sec. V. For the latter in particular,
we numerically investigate the behavior of the entangle-
ment entropy with respect to the variation of the energy, the
angular momentum eigenvalues, and the spacetime mass
and rotation parameters.
We shall work with the mostly negative signature of the

metric in 3þ 1 dimensions and will set c ¼ G ¼ ℏ ¼ 1
throughout.

II. STATIC DE SITTER—A QUICK REVIEW

The metric of the static patch of the de Sitter spacetime
reads

ds2 ¼ ð1 − r2Þdt2 − ð1 − r2Þ−1dr2 − r2ðdθ2 þ sin2 θdϕ2Þ;
ð1Þ

where the radial coordinate is made dimensionless via
scaling by H−1

0 ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
. The coordinate system is not

well defined for r ≥ 1. This corresponds to the fact that the
timelike Killing vector field of Eq. (1) only exists in
0 ≤ r < 1. The r ¼ 1 null hypersurface is the cosmological
event horizon serving as the causal boundary of our
Universe.
The singularity at r ¼ 1 of this metric can be removed by

choosing Kruskal-like coordinates, which analytically con-
tinues the metric into the region r ≥ 1, e.g., Ref. [6]. In
terms of the Kruskal null coordinates (ū; v̄), the metric
reads

ds2 ¼ ð1þ rÞ2dūdv̄ − r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

where r above as a function of ū; v̄ is understood and

ū ≔ −eu; v̄ ≔ e−v

u ¼ t − r⋆; v ¼ tþ r⋆; r⋆ ¼ 1

2
ln

���� 1þ r
1 − r

����: ð3Þ

The tortoise coordinate r⋆ reaches ∞ as r → 1. The metric
Eq. (2) has no singularity at r ¼ 1.
The coordinate system described in Eqs. (2) and (3)

covers the region R ð0 ≤ rR ≤ 1Þ of Fig. 1. C� are, res-
pectively, the future and past segments of the cosmological
event horizon. We have

ūðCþÞ ¼ 0 ¼ v̄ðC−Þ ð4Þ
and in general

ū ≤ 0; v̄ ≥ 0 ðregion RÞ

Likewise in region L, we define

ū ≔ eu; v̄ ≔ −e−v ð5Þ
so that

ū ≥ 0; v̄ ≤ 0 ðregion LÞ
with Eq. (4) still holding.
Regions I and II, being located at r > 1, are not endowed

with any timelike Killing vector field. We have

ū > 0; v̄ > 0 ðregion IÞ ū < 0; v̄ < 0 ðregion IIÞ
It is manifest from the orientations of C� in Fig. 1 that the
directions of the timelike Killing vector field, ∂t, are
opposite with respect to each other in R and L. We shall

FIG. 1. The Penrose diagram of the de Sitter spacetime, found
after the maximum analytic extension of Eq. (1). Each point of
the above diagram is a 2-sphere. C� denote, respectively, the
future and past cosmological event horizons. The causally
disconnected static patches R and L are the regions of our
concern. Region L is the time reversal of R, and hence the
timelike Killing vector field is taken to be past directed in L.
Regions I and II are nonstatic located in r > 1. The infinities, I�,
are spacelike.
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accordingly take it to be future directed in R, whereas it is
past directed in L. The existence of C�, just like the black
hole, splits the spacetime into four causally disconnected
wedges R, L, I, and II. For example, a particle initially in R
can only cross Cþ to enter region I along a future directed
trajectory, whereas it can only enter R from the contracting
region L via C−.
Similar causally disconnected regions also show up

across the cosmological event horizon of a general static
spherically symmetric spacetime (e.g., the Schwarzschild-
de Sitter) and the stationary axisymmetric spacetime (e.g.,
the Kerr-de Sitter). For all of them, we shall investigate the
quantum entanglement between regions R and L for a free
massive Dirac field.

III. DIRAC EQUATION IN THE STATIC
DE SITTER SPACETIME

We shall solve in this section for the four mode functions
of a free massive Dirac field in a closed form, in the
background of Eq. (1) for both regions R and L in Fig. 1.
The latin indices appearing below will stand for the local
Lorentz frame, whereas the greek indices will denote the
curved spacetime.

The Dirac equation in the static de Sitter coordinates was
previously studied in Refs. [7,41,42] (also references
therein) using the Newman-Penrose formalism for spinors
developed in Ref. [43]. See also Refs. [44,45] for dis-
cussions on choices of spacetime bases and group theoretic
treatment of Dirac operators in static and time-dependent
de Sitter coordinates.
The Dirac equation in a generally covariant form reads

½iγμDμ −m0�Ψ ¼ 0; ð6Þ

where m0 is the rest mass of the field. γμ ≔ eμaγa, where
eμa’s are the tetrad. The spin covariant derivative is defined
as

Dμ ≔ ∂μ þ
1

2
ωμabΣab; ð7Þ

where Σab ¼ ½γa; γb�=4 and the Ricci rotation coefficients
ω’s are given by

ωμ
a
b ¼ −ebνð∂μeaν − Γλ

μνeaλÞ:

Following Ref. [46], we now define for Eq. (1)

eaμ ≡

0
BBBBB@

ð1 − r2Þ−1
2 0 0 0

0 ð1 − r2Þ12 sin θ cosϕ ð1 − r2Þ12 sin θ sinϕ ð1 − r2Þ12 cos θ
0 r−1 cos θ cosϕ r−1 cos θ sinϕ −r−1 sin θ
0 −ðr sin θÞ−1 sinϕ ðr sin θÞ−1 cosϕ 0

1
CCCCCA:

The Dirac equation is expanded to be

�
ð1 − r2Þ−1

2

�
γ0∂t −

r
2
γ⃗:r̂

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
ðγ⃗ · r̂Þ∂r −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p

r

�
γ⃗:r̂þ 1

r

�
γ⃗:θ̂∂θ þ

γ⃗:ϕ̂
sin θ

∂ϕ

��
Ψþ im0Ψ ¼ 0; ð8Þ

where r̂; θ̂; ϕ̂ refer to the usual unit vectors in spherical polar coordinates and the gamma matrices are defined as

γ0 ¼
�
I 0

0 −I

�
; γi ¼

�
0 σi

−σi 0

�
; i ¼ 1; 2; 3:

Decomposing Ψ as

Ψ ¼
�Ψ1

Ψ2

�
;

where Ψ1 and Ψ2 are each two component spinors, and using

�
σ⃗:θ̂∂θ þ

σ⃗:ϕ̂
sin θ

∂ϕ

�
¼ −ðσ⃗:r̂ÞðK̂2 − 1Þ;

where K̂2 ¼ σ⃗:L̂þ 1 is an eigenoperator of the spherical spinors, we find that Eq. (8) splits into two coupled equations,
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�
ð1 − r2Þ−1

2∂t þ im0

�
Ψ1 þ ðσ⃗ · r̂Þ

�
−
rð1 − r2Þ−1

2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
∂r þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p

r
−
K̂2

r

�
Ψ2 ¼ 0

�
ð1 − r2Þ−1

2∂t − im0

�
Ψ2 þ ðσ⃗ · r̂Þ

�
−
rð1 − r2Þ−1

2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
∂r þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p

r
−
K̂2

r

�
Ψ1 ¼ 0: ð9Þ

We recall that the spherical spin-1=2 harmonics, Ωjlm, are simultaneous eigenfunctions of L2; S2; J2; Jz, given by [47]

Ωlþ1=2;l;mðθ;ϕÞ ¼
�
Cþ
lmYl;m−1=2ðθ;ϕÞ

C−
lmYl;mþ1=2ðθ;ϕÞ

�
; Ωl−1=2;l;mðθ;ϕÞ ¼

�−C−
lmYl;m−1=2ðθ;ϕÞ

Cþ
lmYl;mþ1=2ðθ;ϕÞ

�
;

where

C�
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mþ 1=2

2lþ 1

r
:

They satisfy the orthonormality relations (with j ¼ l� 1=2)

Z
sin θdθdϕΩ†

j;l;mΩj0;l0;m0 ¼ δjj0δll0δmm0 : ð10Þ

Further, we shall make use of the following easily verifiable properties:

ðσ⃗ · r̂ÞΩlþ1=2;l;m ¼ −Ωðlþ1Þ−1=2;lþ1;m; K̂2Ωlþ1=2;l;m ¼ ðlþ 1ÞΩlþ1=2;l;m

ðσ⃗ · r̂ÞΩðlþ1Þ−1=2;lþ1;m ¼ −Ωlþ1=2;l;m; K̂2Ωðlþ1Þ−1=2;lþ1;m ¼ −ðlþ 1ÞΩðlþ1Þ−1=2;lþ1;m: ð11Þ

A. Mode functions in R and L

We now make the ansatz of variable separation,

Ψ ¼
�Ψ1

Ψ2

�
¼ e−ipt

ð1 − r2Þ−1
4

r

� igðrÞΩlþ1=2;l;m

fðrÞΩðlþ1Þ−1=2;lþ1;m

�
; ð12Þ

with p > 0. Note that the future directedness of the timelike Killing vector field in R guarantees the above mode to be
positive frequency. However, since that vector field is past directed in L, the above mode will be negative frequency in L.
We insert Eq. (12) into Eq. (9) and use Eq. (11) to obtain

ð1 − r2Þf0 þ ðlþ 1Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
f ¼ ðp −m0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Þg

ð1 − r2Þg0 − ðlþ 1Þ
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
g ¼ −ðpþm0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Þf; ð13Þ

where a prime denotes differentiation once with respect to r. Following Ref. [41], we now write

f ¼ R1 − R2

2
; g ¼ iðR1 þ R2Þ

2
: ð14Þ

Further defining

R1ðrÞ ¼ ð1 − r2Þ−1
4

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
ðf1ðrÞ − f2ðrÞÞ; R2ðrÞ ¼ ð1 − r2Þ−1

4

ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p ðf1ðrÞ þ f2ðrÞÞ; ð15Þ

Eq. (13) can be expressed as
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ð1 − r2Þf01 −
�
lþ 1

r
− im0r

�
f1 ¼ −

�
1

2
þ ip − ðlþ 1Þ þ im0

�
f2

ð1 − r2Þf02 þ
�
lþ 1

r
− im0r

�
f2 ¼ −

�
1

2
þ ipþ ðlþ 1Þ − im0

�
f1: ð16Þ

Form the above equation, we get an uncoupled equation for f1,

ð1− r2Þ2f001 − 2rð1− r2Þf01þ
�
ð1− r2Þ

�
lþ 1

r2
þ im0

�
−
�
lþ 1

r
− im0r

�
2

þðl− im0þ 1Þ2 −
�
1

2
þ ip

�
2
�
f1 ¼ 0: ð17Þ

The solution that is regular as r → 1 is given by

f1ðrÞ ¼ rlþ1ð1 − r2Þ14þip
2F

�ð2lþ 2im0 þ 2ipþ 5Þ
4

;
ð2l − 2im0 þ 2ipþ 3Þ

4
;
3

2
þ ip; 1 − r2

�
: ð18Þ

We next plug f1 into Eq. (16) to determine f2. Using the identities 15.2.15, 15.2.24, and 15.2.17 of Ref. [48], we find

Fða; bþ 1; c; zÞ − az
c
Fðaþ 1; bþ 1; cþ 1; zÞ − Fða; b; c; zÞ ¼ 0;

which yields

f2ðrÞ¼−
ð2l−2im0þ2ipþ3Þ
ð2l−2im0−2ipþ1Þr

lþ2ð1−r2Þ14þip
2F

�ð2lþ2im0þ2ipþ5Þ
4

;
ð2l−2im0þ2ipþ7Þ

4
;
3

2
þ ip;1−r2

�
: ð19Þ

Denoting now the mode function Eq. (12) by ΨR1þ
plm , in terms of f1ðrÞ and f2ðrÞ, we have

ΨR1þ
plm ¼ e−ipt

ð1 − r2Þ−1
2

2r

� −½ ffiffiffiffiffiffiffiffiffiffi
1 − r

p ðf1ðrÞ − f2ðrÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p ðf1ðrÞ þ f2ðrÞÞ�Ωlþ1=2;l;m

½ ffiffiffiffiffiffiffiffiffiffi
1 − r

p ðf1ðrÞ − f2ðrÞÞ −
ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p ðf1ðrÞ þ f2ðrÞÞ�Ωðlþ1Þ−1=2;lþ1;m

�
: ð20Þ

A few comments on the normalizability of the mode
functions are in order here. In Refs. [7,41,42], the Dirac
mode found is bounded at the origin, r → 0, whereas they
are seemingly not well defined at the cosmological horizon,
r ¼ 1. Accordingly, the normalization integral for those
modes must exclude the horizon. This problem is present
for a massive scalar and a vector field as well, as pointed
out in Ref. [8]. Our mode function, Eq. (20), on the other
hand, is not well behaved as r → 0, follows from the
properties of the hypergeometric function [48].
Accordingly, its normalization integral must exclude
r ¼ 0, which can be realized by considering modes which
are localized near the horizon. To the best of our knowl-
edge, a Dirac mode in the static de Sitter coordinate that is
regular everywhere in 0 ≤ r ≤ 1 is unknown. Such a
problem may just be a coordinate artifact. The mode
function we have taken will be appropriate to make the
analytic continuation across the horizon in order to form the
global modes, for our current purpose.
To find out the second positive frequency mode, we

make the ansatz by “flipping” the angular part of the
previous ansatz, Eq. (12),

ΨR2þ
plm ¼ e−ipt

ð1 − r2Þ−1
4

r

� iζ1ðrÞΩðlþ1Þ−1=2;lþ1;m

ζ2ðrÞΩlþ1=2;l;m

�
; ð21Þ

for which Eq. (9) takes the form

ð1 − r2Þζ01 þ
ðlþ 1Þ

r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
ζ1 ¼ −ðpþm0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Þζ2

ð1 − r2Þζ02 −
ðlþ 1Þ

r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
ζ2 ¼ ðp −m0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
Þζ1:
ð22Þ

Comparing the abovewithEq. (13),we find that the equations
become identical ifwe let f → −ζ1; g → ζ2, andm0 → −m0.
Thus ζ1ðrÞ and ζ2ðrÞ are respectively determined by in
Eq. (18) and Eq. (19), with m0 replaced with −m0.
Having thus determined the two positive frequency

modes, we can obtain the negative frequency ones, simply
found via the charge conjugation. Given a positive fre-
quency mode up, its charge conjugation vp is defined as

vp ¼ CðūpÞT ¼ iγ2u⋆p: ð23Þ
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Using the explicit expressions of the spherical spinors appearing below Eq. (9), it is easy to check that

ðiσ2ÞΩ�
lþ1=2;l;m ¼ ð−1Þmþ1

2Ωlþ1=2;l;−m; and ðiσ2ÞΩ�
l−1=2;l;m ¼ ð−1Þmþ3

2Ωl−1=2;l;−m:

Using this, from Eq. (20) and Eq. (21), we can at once find out the two negative frequency modes, Ψð1−Þ
ωlm and Ψð2−Þ

ωlm .
For our purpose, we shall now demonstrate the near cosmological horizon limit of these mode functions. We first recall

that

2F1ða; b; c; 0Þ ¼ 1:

Thus, Eq. (18) and Eq. (19) behave near the horizon as

f1ðr → 1Þ ≈ ð1 − r2Þ14þip
2 ; f2ðr → 1Þ ≈ −

ð2l − 2im0 þ 2ipþ 3Þ
ð2l − 2im0 − 2ipþ 1Þ ð1 − r2Þ14þip

2 :

Also in terms of the tortoise coordinates Eq. (3), we have as r → 1

ð1 − r2Þip2 ¼ 2
ip
2 e−ipr⋆ :

Using these, and after normalizing, we find from Eq. (20), Eq. (21), Eq. (22), and Eq. (23) the expected plane wave solutions
near the horizon in the R region,

ΨR1þ
plm ¼ e−ipvRffiffiffiffiffiffi

4π
p

rð1 − r2Þ14
� Ωlþ1=2;l;m

Ωðlþ1Þ−1=2;lþ1;m

�
; ΨR2þ

plm ¼ e−ipvRffiffiffiffiffiffi
4π

p
rð1 − r2Þ14

�Ωðlþ1Þ−1=2;lþ1;m

Ωlþ1=2;l;m

�

ΨR1−
plm ¼ eipvRffiffiffiffiffiffi

4π
p

rð1 − r2Þ14
�Ωðlþ1Þ−1=2;lþ1;−m

Ωlþ1=2;l;−m

�
; ΨR2−

plm ¼ eipvRffiffiffiffiffiffi
4π

p
rð1 − r2Þ14

� Ωlþ1=2;l;−m

Ωðlþ1Þ−1=2;lþ1;−m

�
; ð24Þ

where in order to distinguish the region we have explicitly
put the level R and vR ¼ tR þ r⋆R. The massless plane
wave behavior of the modes in the near-horizon limit is
consistent with the universal property of spacetimes en-
dowed with a Killing horizon, e.g., Ref. [43]. The overall
factor

ffiffiffiffiffiffi
4π

p
in the denominators appearing above is neces-

sary to ensure the normalization, as described below.
The inner product between any two modes Ψi and Ψj in

the background of Eq. (1) is defined as

ðΨi;ΨjÞ ¼
Z

r2dr

ð1 − r2Þ12 sin θdθdϕΨ
†
iΨj:

Since the mode functions we have found are assumed to be
localized near C�, and the inner product is independent of
time, we may take the constant time hypersurface of the
above integration to be infinitesimally close to either C� in
Fig. 1, where the modes take the simple form, Eq. (24). We
choose our surface to be close to Cþ. We have, for example,

ðΨR1þ
plm ;ΨR1þ

p0l0m0 Þ ¼
Z
r→1

r2dr

ð1 − r2Þ12 sin θdθdϕðΨ
R1þ
plm Þ†ΨR1þ

p0l0m0

¼ δjj0δll0δmm0

Z
∞

−∞

dvR
2π

e−iðp−p0ÞvR

¼ δðp − p0Þδjj0δll0δmm0 ;

where we have used Eq. (3) and also Eq. (10).
Likewise, we can prove that the rest of the mode

functions appearing in Eq. (24) are normalizable and the
inner product between any two different modes is vanish-
ing. Thus, Eq. (24) forms a complete orthonormal set in R.
The orthonormal modes in L can be found in exactly

the same manner as described above. However, since the
timelike Killing vector field is past directed there, the
function eipt should behave as a positive frequency. We
shall write down the near-horizon forms only,

ΨL1þ
plm ¼ eipvLffiffiffiffiffiffi

4π
p

rð1 − r2Þ14
� Ωlþ1=2;l;m

Ωðlþ1Þ−1=2;lþ1;m

�
; ΨL2þ

plm ¼ eipvLffiffiffiffiffiffi
4π

p
rð1 − r2Þ14

�Ωðlþ1Þ−1=2;lþ1;m

Ωlþ1=2;l;m

�

ΨL1−
plm ¼ e−ipvLffiffiffiffiffiffi

4π
p

rð1 − r2Þ14
�Ωðlþ1Þ−1=2;lþ1;−m

Ωlþ1=2;l;−m

�
; ΨL2−

plm ¼ e−ipvLffiffiffiffiffiffi
4π

p
rð1 − r2Þ14

� Ωlþ1=2;l;−m

Ωðlþ1Þ−1=2;lþ1;−m

�
: ð25Þ
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We can likewise find out the complete orthonormal set of
R-L modes characterized by the retarded coordinate u.
In the following, we shall use the causally disconnected

near-horizon local mode functions, Eq. (24) and
Eq. (25), to construct the global modes and will compute
the Bogoliubov coefficients.

IV. GLOBAL MODES AND THE BOGOLIUBOV
COEFFICIENTS

We can construct the global modes having support in
R ∪ L in a manner similar to that of the Rindler spacetime,
e.g., Refs. [49,50]. We shall analytically continue an R
mode to L and vice versa along a complex path, by using
the Kruskal coordinates, well defined on C� as discussed in
Sec. II. Let us take the pair ðΨR1þ

plm ;ΨL2−
plm Þ from Eq. (24) and

Eq. (25). Since both of these modes behave as e−ipv near
the horizon with p > 0, we shall choose our complex path
through the lower half-plane. The angular parts remain
intact during this analytic continuation procedure.
In terms of the Kruskal coordinates, Sec. II, we have

ΨR1þ
plm ∼ ðv̄Þ−ip and ΨL2−

plm ∼ ð−v̄Þ−ip. Thus, while continu-
ing the latter mode through the lower half-plane onto the
region R, we must write −v̄ ¼ e−iπv̄. Accordingly, we have
ΨL2−

plm ∼ e−πpðv̄Þ−ip. Thus, the linear combination,

ΨR1þ
plm þ e−πpΨL2−

plm ;

is analytic across the horizon, has support in R ∪ L, and
behaves as a global mode function. Normalizing, we denote
this mode function as

GΨ
ð1Þ
plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 coshpπ
p

�
e
πp
2 ΨR1þ

plm þ e−
πp
2 ΨL2−

plm

�
: ð26Þ

Likewise, we find three other global mode functions to
form an orthonormal set,

GΨ
ð2Þ
plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 coshpπ
p ðeπp

2 ΨR2þ
plm þ e−

πp
2 ΨL1−

plm Þ

GΨ
ð3Þ
plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 coshpπ
p ðeπp

2 ΨR1−
plm − e−

πp
2 ΨL2þ

plm Þ

GΨ
ð4Þ
plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 coshpπ
p ðeπp

2 ΨR2−
plm − e−

πp
2 ΨL1þ

plm Þ: ð27Þ

Clearly, there exists another set of global modes, GΨ
ð5Þ
plm,

GΨ
ð6Þ
plm, GΨ

ð7Þ
plm, GΨ

ð8Þ
plm, found via the interchange R ↔ L on

the right-hand side of Eq. (26) and Eq. (27).
We quantize the Dirac field Ψ now in R ∪ L in terms of

the local modes, Eq. (24) and Eq. (25), as well as the global
modes found above. In terms of the local modes, we have

Ψ ¼
X
lms

Z
∞

0

dpðcRsplmΨRsþ
plm þ dR†splmΨRs−

plm þ cLsplmΨ
Lsþ
plm þ dL†splmΨLs−

plmÞ; ð28Þ

where s ¼ 1, 2. The operators satisfy the usual anticommutation relations

½cRsplm ; cR†s0p0 l0m0 �þ ¼ ½dRsplm ; dR†s0p0 l0m0 �þ ¼ δðp − p0Þδss0δll0δmm0

½cLsplm ; cL†s0p0 l0m0 �þ ¼ ½dLsplm ; dL†s0p0 l0m0 �þ ¼ δðp − p0Þδss0δll0δmm0 ; ð29Þ

and all the other anticommutators vanish.
Likewise, in terms of the global modes, we have

Ψ ¼
X
lm

Z
∞

0

dpða1plmGΨ
ð1Þ
plm þ a2plmGΨ

ð2Þ
plm þ b†1plmGΨ

ð3Þ
plm þ b†2plmGΨ

ð4Þ
plm

þ a3plmGΨ
ð5Þ
plm þ a4plmGΨ

ð6Þ
plm þ b†3plmGΨ

ð7Þ
plm þ b†4plmGΨ

ð8Þ
plmÞ: ð30Þ

Comparing Eq. (28) and Eq. (30) via Eq. (26) and Eq. (27), we obtain the Bogoliubov relations,

a1plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh πp

p ðeπp
2 cL1plm − e−

πp
2 dR†2pl−mÞ; a2plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh πp
p ðeπp

2 cL2plm þ e−
πp
2 dR†1pl−mÞ

b†1plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosh πp

p ðeπp
2 dL†1pl−m − e−

πp
2 cR2plmÞ; b†2plm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh πp
p ðeπp

2 dL†2pl−m þ e−
πp
2 cR1plmÞ: ð31Þ
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Another similar set is obtained by making the R ↔ L
interchange on the right-hand side of the above equations,
for the operators a3, a4, b3, b4 appearing in Eq. (30). It is
easy to check using Eq. (29) that the global operators
satisfy the canonical anticommutation relations.
Since the above Bogoliubov coefficients are spacetime

independent, the Bogoliubov relations are valid away from
the horizons as well, even though we used the near-horizon
forms of the modes to derive it. In other words, Eq. (27)
will hold even if we are away from the horizon, with the
local modes taking their nontrivial forms, e.g., Eq. (20).
Being equipped with these, we are now ready to compute

the particle creation and the R-L entanglement for Eq. (1)
for a free massive Dirac field.

A. Entanglement entropy

The local vacua j0iR; j0iL are defined as

cRsplm j0iR ¼ dRsplm j0iR ¼ 0;

cLsplm j0iL ¼ dLsplm j0iL ¼ 0 ðs ¼ 1; 2Þ; ð32Þ

whereas the global vacuum is defined as

aσplmj0i ¼ bσplmj0i ¼ 0; ð33Þ

where σ ¼ 1, 2, 3, 4. Hereafter, we shall drop the indices
ðp; l; mÞ on the operators for the sake of brevity.
From the Bogoliubov relations of the preceding section,

it is clear that the operators ða1; a2; b3; b4Þ and
ða3; a4; b1; b2Þ can be grouped into two sectors, anticom-
muting trivially. The global vacuum can therefore be
decomposed as j0i ¼ j0ið1Þ ⊗ j0ið2Þ, where j0ið1Þ is anni-
hilated by the first set of operators and j0ið2Þ is annihilated
by the second. Accordingly, we shall work with j0ið1Þ only,
for j0ið2Þ will yield identical results.
The Bogoliubov relations imply a squeezed state relation

of j0ið1Þ with the local R-L vacua,

j0ið1Þ ¼ N exp

� X
s;s0¼1;2

ξss0c
L†
s dR†s0

�
j0ið1ÞR ⊗ j0ið1ÞL ; ð34Þ

where ξss0’s are four complex numbers, dR1 j0ið1ÞR ¼
dR2 j0ið1ÞR ¼ 0 and cL1 j0ið1ÞL ¼ cL2 j0ið1ÞL ¼ 0 and N is the
normalization. Thus, we may further write

j0ið1ÞR ¼ j0d1iR ⊗ j0d2iR ≡ j0d1 ; 0d2iR;
j0ið1ÞL ¼ j0c1iL ⊗ j0c2iL ≡ j0c1 ; 0c2iL; ð35Þ

where j0c1iL, j0c2iL are annihilated by cL1 and cL2 , respec-
tively. Likewise, j0d1iR, j0d2iR are annihilated by dR1 and
dR2 , respectively.

Since j0ið1Þ is annihilated by a1, a2, b3, b4, it turns out
that

ξ11 ¼ ξ22 ¼ 0; ξ12 ¼ −ξ21 ¼ e−πp: ð36Þ

We now write Eq. (34) as

j0ið1Þ ¼ N½1þ e−πpð−j0; 1iRj1; 0iL þ j1; 0iRj0; 1iLÞ
− e−2πpj1; 1iRj1; 1iL�; ð37Þ

where the normalization N is given by

N ¼ 1

ð1þ e−2πpÞ :

As a check of consistency, we may compute the expect-
ation value of the local number operator in the global
vacuum. We find from Eq. (31), for example,

ð1Þh0jcL†1 cL1 j0ið1Þ ¼ N2ðe−2πp þ e−4πpÞ ¼ 1

e2πp þ 1
;

showing fermionic “blackbody” distribution with temper-
ature 1=2π.
The density operator corresponding to the global vacuum

state, Eq. (37), is given by ρ ¼ j0ið1Þð1Þh0j. Tracing out now
the states of the region inaccessible to us (say L), we find
the reduced density operator ρR ¼ TrLðj0ið1Þð1Þh0jÞ. Its
matrix representation is given by

ρR ≡ N2

0
BBBBB@

1 0 0 0

0 e−2πp 0 0

0 0 e−2πp 0

0 0 0 e−4πp

1
CCCCCA: ð38Þ

Finally, we obtain the entanglement entropy for a single
mode characterized by p,

SðpÞ ¼ −TrðρR ln ρRÞ ¼ 2 ln ð1þ e−2πpÞ þ 4πp
1þ e2πp

:

ð39Þ

Note that the above result is identical to that of the
Rindler spacetime [39,40]. This is not surprising, as the
entanglement we are obtaining here is due to the existence
of the R-L regions created by the bifurcation surface C� in
Fig. 1. Now, it is well known that the t − r part of any
nonextremal near-horizon geometry is similar to that of the
Rindler. Thus, we expect a universality of the Bogoliubov
coefficients, Eq. (31), for all nonextremal Killing horizons,
be they black hole or cosmological, at least at the
qualitative level.
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We shall further extend below the above result for both
static spherically symmetric and stationary axisymmetric
spacetimes.

B. General static spherically symmetric spacetimes

We take the ansatz,

ds2 ¼ fðrÞdt2 − hðrÞdr2 − r2dΩ2: ð40Þ

We assume that the above metric admits a cosmological
event horizon, located (in a dimensionless unit as earlier) at
r ¼ 1,

fðr → 1Þ → 0; h−1ðr → 1Þ → 0;

with fhðr → 1Þ being neither vanishing nor divergent.
Equation (40) can represent, e.g., the Schwarzschild-de
Sitter spacetime [i.e., fðrÞ¼ð1−2M=r−H2

0r
2Þ¼h−1ðrÞ]

or its charged variants.
The existence of the Killing horizon guarantees the

existence of causally disconnected regions like R and L
similar to Fig. 1. The tortoise coordinate is defined in this
case as

r⋆ ≔
Z

dr

ffiffiffi
h
f

s
; ð41Þ

whereas the Kruskal null coordinates at the cosmological
event horizon will similar to that of Sec. II. Thus, as of
Sec. III A, due to the spherical symmetry, we can look for a
solution of the form

Ψ ¼
�Ψ1

Ψ2

�
¼ e−ipt

rf
1
4

� iΨ̃1ðrÞΩlþ1=2;l;m

Ψ̃2ðrÞΩðlþ1Þ−1=2;lþ1;m

�

so that we obtain

�
−

pffiffiffi
f

p þm0

�
Ψ̃1 þ

�
1ffiffiffi
h

p ∂r þ
h−

1
2

r
þ ðlþ 1Þ

r

�
Ψ̃2 ¼ 0

�
pffiffiffi
f

p þm0

�
Ψ̃2 þ

�
1ffiffiffi
h

p ∂r þ
h−

1
2

r
−
ðlþ 1Þ

r

�
Ψ̃1 ¼ 0:

ð42Þ

To the best of our knowledge, unlike the static de Sitter,
the Dirac equation cannot be solved in a closed form, even
in the Schwarzschild-de Sitter background. However, we
recall from the preceding section that in order to study the
entanglement we need the Bogoliubov relations between
the local R-L modes and the global ones. To find the global
modes, on the other hand, we must analytically continue
the local modes across the horizon. Thus, we need to be
concerned only about the near-horizon forms of the modes.

The near-horizon limit of Eq. (42) after using Eq. (41) is
given by

∂r⋆Ψ̃2 ¼ pΨ̃1; ∂r⋆Ψ̃1 ¼ −pΨ̃2; ð43Þ
which yield modes similar to Eq. (24) and Eq. (25). By
defining the Kruskal null coordinates analogously as the
static de Sitter, we can find out the global modes similar to
Eq. (26) and Eq. (27). Hence, we shall obtain identical
Bogoliubov relations as Eq. (31) and the entanglement
entropy, Eq. (39).
Note also that Eq. (40) in addition can also possess a

black hole event horizon, located inside the cosmological
event horizon. As long as the black hole horizon is
nonextremal, the computation of the entanglement entropy
for the black hole will be similar to that of the cosmological
horizon. One needs two different sets of Kruskal coordi-
nates to analyse the near-horizon modes.
We shall end this section with comment on the

Nariai limit of the Schwarzschild-de Sitter spacetime
(3

ffiffiffi
3

p
MH0 → 1), for which the radial values of the cos-

mological and black hole event horizons are nearly coinci-
dent. This makes the proper separation between them large.
Utilizing this proper separation as a coordinate, the metric
can be written as, e.g., [10],

ds2 ¼ 1

9H4
0

�
1

cosh2x
ðdt2 − dx2Þ − dΩ2

�
: ð44Þ

The above metric is dS2 × S2 and is endowed with a black
hole and cosmological event horizon, located, respectively,
at x →∓∞. Result similar to Eq. (39) follows for this case
as well.

V. STATIONARY AXISYMMETRIC SPACETIMES

We finally come to the case of the stationary axisym-
metric spacetimes endowed with a positive Λ. For example,
the Kerr-de Sitter spacetime in the Boyer-Lindquist coor-
dinates reads

ds2¼Δr−a2sin2θΔθ

ρ2
dt2þ2asin2θ

ρ2Ξ
ððr2þa2ÞΔθ−ΔrÞdtdϕ

−
sin2θ
ρ2Ξ2

ððr2þa2Þ2Δθ−Δra2sin2θÞdϕ2

−
ρ2

Δr
dr2−

ρ2

Δθ
dθ2; ð45Þ

where

Δr¼ðr2þa2Þð1−H2
0r

2Þ−2Mr; Δθ¼1þH2
0a

2cos2θ;

Ξ¼1þH2
0a

2; ρ2¼ r2þa2cos2θ; ð46Þ

with H2
0 ¼ Λ=3 as earlier. The parameter a is related

to the spacetime rotation. For a ¼ 0, we recover
the Schwarzschild-de Sitter spacetime, whereas setting
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M ¼ 0, we obtain the de Sitter spacetime written in the
static patch.
Unlike the previous cases, we shall keep the parameters

intact, for the purpose of some numerical analyses we wish
to perform. The cosmological event horizon is given by the
largest root of Δr ¼ 0. Its surface gravity is given by

−κC ¼ Δ0
r

2ðr2 þ a2Þ
����
r¼rC

with κC > 0. Finally, the horizon Killing field is given by
χC ¼ ∂t þΩC∂ϕ, with

ΩC ¼ aΞ
r2C þ a2

being the angular speed on the cosmological event horizon.
There can be a black hole horizon at r ¼ rH (rH ≤ rC),
as well.
Aspects of quantum entanglement in the Kerr spacetime

for a scalar field with its various vacuum states can be seen
in Ref. [51]. Because of the existence of the ergosphere, the
timelike Killing vector field in rotating spacetimes like
Eq. (45) becomes spacelike on or in the neighborhood of
the horizon. To tackle this difficulty, usually one needs to
consider the horizon Killing vector field, future directed
and null on the horizon. This vector field describes a family
of observers corotating with the same angular speed

on the horizon. Aspects of quantization of fermions in
rotating backgrounds with the vacuum state defined with
respect to such rigidly rotating observers can be seen in
Refs. [52–55].
Now, the Dirac equation in Eq. (45) can be studied using

the usual Newman-Penrose basis, e.g., Ref. [56] and
references therein. However, to define the aforementioned
rigidly rotating states near the horizon, it is a bit convenient
to go to a diagonal basis as follows. Let us define a vector
field,

χμ ¼ ð∂tÞμ −
ð∂t · ∂ϕÞ
ð∂ϕ · ∂ϕÞ

ð∂ϕÞμ ¼ ð∂tÞμ −
gtϕ
gϕϕ

ð∂ϕÞμ:

It satisfies χ · ∂ϕ ¼ 0 and also trivially χ · ∂r ¼ 0 ¼ χ · ∂θ.
We have

χμχμ¼
gttgϕϕ−g2tϕ

gϕϕ
¼ ρ2ΔrΔθ

ðr2þa2Þ2Δθ−Δra2 sin2θ
¼β2ðsayÞ;

which, with Δr > 0, is easily seen to be positive. In other
words, χμ is a timelike vector field, and it is null on the
horizon(s), Δr ¼ 0. It can be also seen that a) χμ satisfies
the Frobenius condition of hypersurface orthogonality and,
b) even though χμ is not in general Killing, it smoothly
coincides with the horizon Killing field(s) [57]. Thus, we
can define the following orthonormal basis for Eq. (45):

eμ0 ¼ β−1χμ; eμ1 ¼
1ffiffiffiffiffiffiffiffiffi−grr

p ð∂rÞμ; eμ2 ¼
1ffiffiffiffiffiffiffiffiffiffi−gθθ

p ð∂θÞμ; eμ3 ¼
1ffiffiffiffiffiffiffiffiffiffi−gϕϕ

p ð∂ϕÞμ:

With this choice and the representation of the γ-matrices mentioned in Sec. III, we expand Eq. (6). For the positive
frequency modes, we take the ansatz Ψ ¼ e−iptþimϕΨ̃ðr; θÞ. As earlier, we focus only on the near-horizon limit, Δr → 0, to
obtain

ðr2 þ a2Þ
ρ

ffiffiffiffiffiffi
Δr

p γ0ðp −mΩCÞΨ̃þ i
ffiffiffiffiffiffi
Δr

p
ρ

γ1∂rΨ̃þ i
ffiffiffiffiffiffi
Δθ

p
ρ

γ2∂θΨ̃þ iρΞ
ðr2 þ a2Þ sin θ ffiffiffiffiffiffi

Δθ

p γ3∂ϕΨ̃

þ i
4

�
Δ0

r

ρ
ffiffiffiffiffiffi
Δr

p γ1γ2 þ ρ∂θðΔθsin2θ=ρ2Þ
sin2θ

ffiffiffiffiffiffi
Δθ

p
�
γ2Ψ̃ −mΨ̃þOðΔ2

rÞ ¼ 0; ð47Þ

We multiply both sides with ρ
ffiffiffiffiffiffi
Δr

p
=ðr2 þ a2Þ and rewrite it using the tortoise coordinate defined as

dr⋆ ¼
Z ðr2 þ a2Þ

Δr
:

Note that as r → rC or Δr → 0 various terms, including the mass term, drop. We find for the two positive frequency near-
horizon modes in the region R

ΨR1þ
pλm ¼

ffiffiffiffi
Ξ

p
ffiffiffiffiffiffiffiffi
2πρ

p
Δ

1
4
r

e−iðp−mΩCÞvRþimϕC

0
BBB@

Sþðλ; θÞ
S−ðλ; θÞ
−S−ðλ; θÞ
Sþðλ; θÞ

1
CCCA; ΨR2þ

pλm ¼
ffiffiffiffi
Ξ

p
ffiffiffiffiffiffiffiffi
2πρ

p
Δ

1
4
r

e−iðp−mΩCÞvRþimϕC

0
BBB@

Sþðλ; θÞ
S−ðλ; θÞ
S−ðλ; θÞ
−Sþðλ; θÞ

1
CCCA; ð48Þ
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where the untwisted azimuthal coordinate ϕC ≔ ϕ −ΩCt
defines a rigidly rotating observer on the horizon and v ¼
tþ r⋆ as earlier. The negative frequency modes are found
via the charge conjugation of Eq. (48). The modes in the L
region are also found by making the time past directed, as
in Eq. (25). Note that in order to have any sensible field
quantization we must have p −mΩC ≥ 0.
The angular functions S�ðλ; θÞ are spin-1=2 weighted

spheroidal harmonics with eigenvalues λ, e.g., Ref. [56]
and references therein. They are normalized as

Z
π

0

dθ sin θ½S⋆þðλ; θÞSþðλ0; θÞ þ S⋆−ðλ; θÞS−ðλ0; θÞ� ¼ δλλ0 :

We shall not require their explicit forms for our current
purpose.
Choosing our integration hypersurface to be orthogonal

to the vector field χμ, it can be easily checked as earlier that
the modes of Eq. (48) (along with the negative frequency

modes) are δ-function normalizable and they form an
orthonormal set. With this, we now perform the same
analysis as described in Sec. IVA to obtain a generalization
of Eq. (39),

Sðp;mÞ¼2ln

�
1þe−

2πðp−mΩCÞ
κC

�
þ 4πðp−mΩCÞ
κCð1þe

2πðp−mΩCÞ
κC

:Þ
ð49Þ

Formally, a similar expression corresponding to the black
hole event horizon is obtained simply by replacing κC by κH
and ΩC by ΩH, respectively the surface gravity and the
angular speed of the black hole horizon. Setting ΩC ¼ 0 in
the above equation yields the result for the Schwarzschild-
de Sitter spacetime. Setting further M ¼ 0 recovers
Eq. (39), with the dimensionless scaling p → p=κC.
We now wish to numerically investigate the variation of

Sðp;mÞ in Eq. (49), with respect to p,m, and the spacetime
parameters. If we assume a Kerr-de Sitter black hole

FIG. 2. The variation of the entanglement entropy, Eq. (49), with respect to the dimensionless energy p=H0, with different angular
eigenvalues.

FIG. 3. The variation of the entanglement entropy, Eq. (49), with respect to the dimensionless rotation parameter, aH0. The qualitative
difference of the m > 0 and m < 0 states is manifest here.
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spacetime, we have the bounds on the dimensionless
parameters, MH0 ≲ 0.2435 and a=M ≲ 1, e.g., Ref. [58].
Figure 2 shows the monotonic decrease of Sðp;mÞ with
respect to the increase of the dimensionless energy, p=H0.
Figures 3 and 4 show the variation of Sðp;mÞ, respectively,
with respect to the dimensionless rotation and mass
parameters. In Fig. 3, the distinction of the positive and
negativem values are manifest, following from the increase
of both ΩC and κC with the increase of aH0. This
distinction is a quantum analog of the distinction of the
classical pro- and retrograde orbits [43]. The decrease of
Sðp;mÞ with respect to increasingMH0 corresponds to the
fact that κC decreases, whereas ΩC increases with the
increase of the same.

Finally, we note that, even though for the black hole
event horizon Eq. (49) is formally similar, its horizon
parameters, κH, ΩH show some qualitatively different
variations with respect to aH0 and MH0. Thus, in this
case, while Fig. 2 will remain similar, a priori, one might
expect Fig. 3 and Fig. 4 to show different behavior.
However, this is not the case, as can be checked numeri-
cally. In fact the variation of the term ðp −mΩHÞ=κH is
such that the entanglement entropy for the black hole
horizon behaves qualitatively similarly to that of the
cosmological horizon.
The above result can be extended to more general

stationary axisymmetric spacetimes, for example, the gen-
eral Plebanski-Demianski-de Sitter class [59],

ds2 ¼ 1

Ω2

�
−
Δr

ρ2

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dϕ

�
2

þ ρ2

Δr
dr2 þ P

ρ2
ðadt − ðr2 þ ðaþ lÞ2ÞdϕÞ2 þ ρ2

P
sin2θdθ2

�
; ð50Þ

where

Ω ¼ 1 −
α

ω
ðlþ a cos θÞr; ρ2 ¼ r2 þ ðlþ a cos θÞ2; P ¼ sin2θð1 − a3 cos θ − a4cos2θÞ

Δr ¼ ðω2kþ q2 þ q2mÞ − 2Mrþ ϵr2 −
2αn
ω

r3 − ðα2kþH2
0Þr4:

The parameters α, ω, q, qm, ϵ, and k are independent, and a3 and a4 are determined from them via a couple of constraints.
The physical meaning of these parameters could be asserted for only certain special subclasses of Eq. (50). For example, for
α ¼ 0, the above metric reduces to the Kerr-Newman-NUT-de Sitter solution [59],

ds2 ¼ −
Δr

ρ2

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dϕ

�
2

þ ρ2

Δr
dr2 þ P

ρ2
½adt − ðr2 þ ðaþ lÞ2Þdϕ�2 þ ρ2

P
sin2θdθ2; ð51Þ

where

ρ2 ¼ r2 þ ðlþ a cos θÞ2; P ¼ sin2θð1þ 4alH2
0 cos θ þH2

0a
2cos2θÞ

Δr ¼ ða2 − l2 þ q2 þ q2mÞ − 2Mrþ r2 − 3H2
0

�
ða2 − l2Þl2 þ

�
a2

3
þ 2l2

�
r2 þ r4

3

�
;

FIG. 4. The variation of the entanglement entropy, Eq. (49), with respect to the dimensionless mass parameter, MH0.
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where q and qm are, respectively, the electric and magnetic
charge and l is the NUT parameter. We shall consider below
the most general form of Eq. (50), assuming implicitly it
indeed represents a well-behaved spacetime possessing a
cosmological event horizon at Δr ¼ 0. We shall not be
concerned with the explicit parameter values corresponding
to this assertion.
The choice of the hypersurface orthogonal timelike

vector field χμ and the orthogonal basis for this case is
exactly formally similar to the Kerr-de Sitter spacetime
described above. Likewise, the R-L entanglement entropy
turns out to be formally similar to Eq. (49) in this case, with
the horizon parameters

ΩC ¼ a
r2C þ ðaþ lÞ2 − κC ¼ Δ0

r

2ðr2 þ a2Þ
����
r¼rC

:

VI. CONCLUSIONS

In this work, we have addressed the issue of the quantum
entanglement for the Dirac fermions between the causally
disconnected R-L regions of a static de Sitter spacetime. We
have discussed the case of the simple de Sitter spacetime
using the closed form mode functions. The behavior of the

fermionic entanglement entropy, like that of a scalar field
[38], was shown to be similar to that of the Rindler
spacetime [39,40]. We further extended our result to the
case of general static and spherically symmetric spacetime
as well as to the stationary axisymmetric spacetimes. For
the Kerr-de Sitter spacetime, in particular, we have numeri-
cally investigated the variation of the entanglement entropy
with respect to the energy and angular momentum eigen-
values as well as the (dimensionless) spacetime parameters.
The entanglement entropy for the nonextremal black hole
horizon also shows similar variations with respect to these
parameters.
An interesting direction in which this work can be

extended seems to be the consideration of charged fields
in the presence of background electromagnetic fields
associated with a Killing horizon. We hope to come back
to this issue in the near future.
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