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Mirror symmetry is a type of infrared duality in three-dimensional (3D) quantum field theory that
relates the low-energy dynamics of two distinct ultraviolet descriptions. Though first discovered in the
supersymmetric context, it has far-reaching implications for understanding nonperturbative physics in
general 3D quantum field theories. We study mirror symmetry in 3DN ¼ 4 supersymmetric field theories
whose Higgs or Coulomb branches realize D- and E-type Kleinian singularities in the ADE classification,
generalizing previous work on the A-type case. Such theories include the SUð2Þ gauge theory coupled to
fundamental matter in the D-type case and non-Lagrangian generalizations thereof in the E-type case. In
these cases, the mirror description is given by a quiver gauge theory of affine D- or E-type. We investigate
the mirror map at the level of the recently identified 1D protected subsector described by topological
quantum mechanics, which implements a deformation quantization of the corresponding ADE singularity.
We give an explicit dictionary between the monopole operators and their dual mesonic operators in the
D-type case. Along the way, we extract various operator product expansion coefficients for the quantized
Higgs and Coulomb branches. We conclude by offering some perspectives on how the topological
subsectors of the E-type quivers might shed light on their non-Lagrangian duals.
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I. INTRODUCTION

Three-dimensional gauge theories are strongly coupled
at low energies due to the positive mass dimension of the
Yang-Mills coupling. Consequently, they exhibit a wide
range of interesting nonperturbative phenomena, including
monopole operators and confinement/de-confinement tran-
sitions. A powerful tool for elucidating complicated gauge
dynamics is duality, which states that two distinct ultra-
violet (UV) field theory descriptions give rise to the same
theory in the deep infrared (IR) [1–7]. A key merit
of duality is that there often exists a manifestly weakly
coupled dual description. Thus duality provides an efficient
language for tackling the problem of strong coupling.
While duality, by definition, requires a map between all

observables of the dual quantum field theories, most known
dualities are motivated by matching quantities that are
insensitive to dynamical details of the theories, such as

’t Hooft anomalies.1 On the one hand, this is precisely what
makes duality an efficient and elegantway to extract physical
information. On the other hand, this procedure can be
misleading in cases where it fails to pinpoint the fate of
the renormalization group (RG) flow [see [8–10] for exam-
ples in four dimensions (4D)]. Fortunately, for a subclass of
dualities known as mirror symmetry of supersymmetric
gauge theories [11–14], we have increased analytic control
over the dynamics thanks to supersymmetry even while
many features of generic three-dimensional (3D) gauge
dynamics remain.
Supersymmetry (SUSY), especially the localization

method, allows us to extract nontrivial dynamical data from
quantum field theories, such as their protected operator
spectrum, low-energy effective action, and supersymmetric
partition functions, which all play important roles in testing
and refining the duality maps. Once a supersymmetric dual
pair passes such tests, one can consider supersymmetry-
breaking deformations to generate a larger class of dualities.
Indeed, many recently formulated 3D dualities are motivated
by mirror symmetry and supported by SUSY-breaking
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1For a class of large-N Chern-Simons-matter theories, the
relevant dualities have been checked at the level of local
correlation functions [1–4].
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deformations thereof, including the important bosonization
dualities of [15,16].
Much recent progress has been made in better under-

standing 3D gauge theories with N ¼ 4 supersymmetry,
which is the original context in which mirror symmetry was
discovered [11]. These theories are characterized by an
SUð2ÞH × SUð2ÞC R-symmetry, and they have a vacuum
moduli space consisting of (singular) hyperkähler mani-
folds that can be labeled as Coulomb branch MC, Higgs
branch MH, or mixed branches, depending on which
combination of R-symmetries is broken. The Coulomb
and Higgs branches appear very different at first sight: the
Coulomb and mixed branches embody the complicated
dynamics of 3D gauge theories, whereas the Higgs branch
is protected by supersymmetric nonrenormalization theo-
rems and thus has a rigid structure [11]. The nontriviality of
mirror symmetry amounts to the statement that there exist
mirror-dual pairs of 3D N ¼ 4 theories where the roles of
the Coulomb and Higgs branches, as well as classical and
quantum effects, are interchanged. A particularly simple
example is that of 3D N ¼ 4 Uð1Þ super-QED with one
charged hypermultiplet, which is dual to a free hyper-
multiplet. For suitable matter content, a gauge theory can
flow to a superconformal fixed point in the IR whose
operator spectrum naturally has a description in terms of the
elementary degrees of freedom in the UV gauge theory. In
this case, mirror symmetry amounts to interchanging the
descriptions of the conformal field theory (CFT) operators.
Namely, under mirror symmetry, an order-type mesonic
operator written in terms of the fundamental fields in one
UVdescription ismapped to a disorder-type operator such as
a monopole in the dual description. A particular class of
operators in the superconformal field theory (SCFT) is that of
chiral ring operators, which are half-BPS (Bogomol'nyi-
Prasad-Sommerfield) and whose vacuum expectation values
give rise to the Coulomb branch, Higgs branch, and mixed
branches. The matching of the chiral rings (equivalently, the
moduli spaces) [17–22] provides a first check for mirror
duality proposals beyond anomaly matching.
A more refined protected subsector in 3D N ¼ 4

SCFTs was discovered in [23,24]. It is described by a
one-dimensional (1D) topological quantum mechanics
(TQM) associated with either the Higgs or Coulomb
branch.2 The relevant operators are twisted translations
of the Higgs (respectively, Coulomb) branch chiral pri-
maries by SUð2ÞH [respectively, SUð2ÞC] R-symmetry
rotations along a line in R3. Their correlation functions
depend only on the ordering of the insertions. The TQM
contains nontrivial information about the operator product
expansion (OPE) data of the full SCFT, which can be

computed systematically from supersymmetric localization
after mapping the TQM to a great S1 on S3 [31–33], and
plays an important role in determining the full OPE data
of the SCFT using the conformal bootstrap technique
[23,34–37]. In recent work [38], these TQMs are formalized
as noncommutative associative algebras equipped with an
even and positive short star product—equivalently, a
(twisted) trace or bilinear form. The latter is essential for
mapping the TQM data to CFT correlators. The action of
mirror symmetry in the TQM sectors has been studied to a
limited extent in [31–33], focusingmainly on the casewhere
the corresponding SCFTs arise from Abelian gauge theories
such as super-quantum electrodynamics (SQED) and
Abelian quivers.3 The bootstrap analysis for the particular
case of SQED2, or equivalently the T½SUð2Þ� theory, was
carried out in [37], where nontrivial evidence for the (self-)
mirror symmetry beyond the TQM sector was found.
In this paper, we initiate the systematic study of non-

Abelian mirror symmetry in the TQM sectors of 3DN ¼ 4
SCFTs. Beautifully, the most well-studied examples of
mirror symmetry fall into an ADE classification [11], with
those of A- and D-type admitting higher-rank generaliza-
tions [12,13]. We focus on the simple class of theories T g

that have rank-one Coulomb branches given by the ADE
singularities

MCðT gÞ ¼ C2=Γg; ð1:1Þ

where g labels an ADE Lie algebra and Γg is the
corresponding discrete subgroup of SUð2Þ under the
McKay correspondence, which can equivalently be repre-
sented as a hypersurface singularity in C3 (see Table I).
The latter description makes explicit the Coulomb branch
chiral ring of the theory T g, which is nothing but the
coordinate ring of the hypersurface singularity.
From the quotient structure of the Coulomb branch, it is

obvious that the free 3DN ¼ 4 theory with a single twisted
hyper in which the discrete symmetry Γg ⊂ SUð2ÞF is
gauged realizes this Coulomb branch as its vacuum moduli
space (similarly for its mirror in terms of a free hyper-
multiplet). A more interesting theory with Coulomb branch
(1.1) in the An−1 case is super-QED with n hypermultiplets
of unit charge, which we denote by SQEDn. Similarly, for
the Dn case, an interacting theory with Coulomb branch
(1.1) is SUð2Þ super-quantum chromodynamics (SQCD)
with n fundamental hypermultiplets. The exceptional cases
of (1.1) do not appear to have gauge theory realizations:
however, there are mirror dual descriptions which instead
realize (1.1) as their Higgs branch

2A variation of the Ω background [25–27] leads to related
deformation quantizations of the Higgs and Coulomb branches
[28–30]. It would be interesting to spell out the explicit relation to
the TQM sector.

3Specifically, the Abelian A-type mirror symmetries were
analyzed in [32], and a simple N ¼ 8 non-Abelian A-type mirror
symmetry was analyzed in [33]. The D3 case was also discussed
in Appendix F. 2 of [33], but this belongs to the A-series
(D3 ≅ A3).
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MHðT mirror
g Þ ¼ C2=Γg: ð1:2Þ

In general, they are given by 3D N ¼ 4 quiver gauge
theories of affine ADE-type. The associative algebras
associated with the ADE singularities are in general
given by the spherical symplectic reflection algebras of
complex dimension two [38]. This ADE-series of theories
T g (respectively, T mirror

g ) has, in addition, a Higgs branch
(respectively, Coulomb branch) given by

MHðT gÞ ¼ MCðT mirror
g Þ ¼ ŌminðgÞ ð1:3Þ

where OminðgÞ denotes the minimal nilpotent orbit of g.
This Higgs branch has a rigid structure in the TQM sector
thanks to the g flavor symmetry. The g-equivariant defor-
mation quantization of these hyperkähler cones was solved
in [37], where unique star products were obtained except in
the case of A1 ¼ sl2 [24]. Returning to the Coulomb
branches in (1.1), the deformation quantization of the
An−1 case was studied in [24], where the extra Uð1Þ flavor
symmetry played an important role in simplifying the
analysis. The mirror symmetry between SQED and the
cyclic Abelian quiver was then spelled out in [32].
The primary goal of this paper is to carry out the analysis

of mirror symmetry at the level of the TQM for the D- and
E-type cases, where the relevant (mirror) gauge theories are
non-Abelian. In these cases, there are no continuous global
symmetries at our disposal, although there do exist discrete
Z2 symmetries for Dn (enhanced to S3 for D4) and E6,
which still place some constraints on the TQM. We start by
solving the algebraic problem of deformation quantization
for Dn singularities. We then compute the correlators in the
TQM from both the SQCD description and the affine D-
type quiver description. By studying the explicit form of the
matrix models and insertions that are obtained from super-
symmetric localization, we establish the precise mirror map
for the operators in the TQM that preserves the short star
product. For the E-type cases, we solve the deformation
quantization of the E6;7;8 singularities and present some
preliminary observations from the affine quiver side,
leaving a complete analysis to future work. We also include

results for free theories that realize (1.3) via discrete
gauging.
Here is an outline of the rest of the paper. We start by

providing some relevant background on TQM sectors in 3D
N ¼ 4 theories in Sec. II. We then give a brief review of
mirror symmetry for the Abelian A-type theories in Sec. III.
We move on to deformation quantizations of D-type
singularities in Sec. IV and explain how they are realized
in 3D N ¼ 4 gauge theories. In Sec. V, by explicitly
computing TQM correlators, we infer the mirror map
for TQM operators that quantize the Dn singularity: our
results are summarized in (5.30) for n > 4 and (5.40) for
n ¼ 4. We carry out a similar deformation quantization of
E-type singularities in Sec. VI and, in Sec. VII, present
some motivating remarks toward understanding the non-
Lagrangian theories whose Coulomb branches realize (1.1)
with g ¼ En through the lens of the TQM. Some details of
our Higgs branch TQM computations, which tend to be
more convoluted than their Coulomb branch counterparts,
are gathered in Appendix A. In Appendix B, we consider
additional quantizations of the A- and D-type singularities
via field theory (outside the context of mirror symmetry),
generalizing some examples from [32,33]. In Appendix C,
we give a self-contained exposition of the Higgs branch
chiral rings of the affineD- and E-type quivers, filling some
gaps in the literature.

A. Notation

Throughout this paper, we adhere to the following
notational conventions:

(i) Straight O denotes an abstract chiral ring generator.
(ii) Hatted Ô denotes an abstract quantum algebra

generator.
(iii) Curly O denotes the realization of Ô as an SCFT

operator (with suitable mixing).
We also introduce the shorthand

shðxÞ≡ 2 sinhðπxÞ; chðxÞ≡ 2 coshðπxÞ;

thðxÞ≡ shðxÞ
chðxÞ : ð1:4Þ

II. TOPOLOGICAL QUANTUM MECHANICS

In this section, we briefly review the prescriptions of
[31–33] for computing observables within certain protected
operator algebras of 3D N ¼ 4 theories on the sphere.4

Combining these formalisms gives a way to derive precise
maps between half-BPS operators across non-Abelian 3D
mirror symmetry, and to compute previously unknown
quantizations of Higgs and Coulomb branch chiral rings.
We consider 3D N ¼ 4 gauge theories of the cotangent-

type, namely with gauge groupG and matter representation

TABLE I. ADE Lie algebras along with their corresponding
SUð2Þ discrete subgroups and hypersurface singularities. Here,
Q4n and 2T; 2O; 2I are SUð2Þ lifts of the familiar dihedral (D2n),
tetrahedral (A4), octahedral (S4), and icosahedral (A5) subgroups
of SOð3Þ.
g Γg fgðX; Y; ZÞ
An−1 Zn X2 þ Y2 þ Zn

Dnþ1 Q4ðnþ1Þ X2 þ ZY2 þ Zn

E6 2T X2 þ Y3 þ Z4

E7 2O X2 þ Y3 þ YZ3

E8 2I X2 þ Y3 þ Z5

4See [39] for a complementary perspective on these protected
correlation functions.
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R ⊕ R̄. We denote by g the Lie algebra of G, t a fixed
Cartan subalgebra of g, W the Weyl group, Δ the set
of roots, ΛW the weight lattice, and Λ∨

W the coweight
lattice.
The 3D N ¼ 4 SCFTs have two one-dimensional

protected subsectors that each take the form of a TQM
[23,24]. The associative operator algebra of the TQM is a
deformation quantization of either the Higgs or Coulomb
branch chiral ring, and as such, it encodes detailed
information about the geometry of the vacuum manifold.
When the SCFT arises from an RG flow with a Lagrangian
description in the UV, the Higgs branch sector is directly
accessible by supersymmetric localization [31], but the
Coulomb branch sector includes monopole operators,
which are disorder operators that cannot be represented
in terms of the Lagrangian fields [32,33]. For this reason,
the known methods for computing OPE data within these
two sectors look qualitatively different.
Each 1D sector can be described as the equivariant

cohomology of an appropriate supercharge. The corre-
sponding cohomology classes are called twisted Higgs
or Coulomb branch operators (HBOs or CBOs).5 They are
realized as Higgs or Coulomb branch chiral ring operators
which, when translated along a chosen line in R3 or a
chosen great circle S1φ on S3, are simultaneously twisted by
SUð2ÞH or SUð2ÞC rotations. The OPE within each sector
takes the form of a noncommutative star product

Oi ⋆ Oj ¼
X
k

ζΔiþΔj−ΔkcijkOk; ð2:1Þ

where, for theories placed on S3, the quantization parameter
ζ is the inverse radius of the sphere: ζ ¼ 1=r. In addition to
associativity, the star product inherits several conditions
from the physical SCFT, namely [24]: truncation or short-
ness [the sum in (2.1) terminates after the term of order
ζ2 minðΔi;ΔjÞ] due to the SUð2ÞH or SUð2ÞC selection rule,
evenness [swapping Oi and Oj in (2.1) takes ζ → −ζ]
inherited from the symmetry properties of the 3D OPE, and
positivity from unitarity (reflection positivity) of the
3D SCFT.

A. Higgs branch formalism

Assuming a UV Lagrangian, the operators that comprise
the Higgs branch topological sector are gauge-invariant
polynomials in antiperiodic scalars QðφÞ; Q̃ðφÞ on S1φ,
which are twisted versions of the hypermultiplet scalars
qa; q̃a transforming in the fundamental of suð2ÞH and in R,
R̄ of G. The correlation functions of these twisted HBOs
OiðφÞ can be computed within a 1D Gaussian theory [31]
with path integral

Zσ ≡
Z

DQDQ̃ exp

�
4πr

Z
dφQ̃ð∂φ þ σÞQ

�
; ð2:2Þ

in terms of which the S3 partition function is

ZS3 ¼
1

jWj
Z
t
dμðσÞ;

dμðσÞ≡ dσ det0adjðshðσÞÞZσ ¼ dσ
det0adjðshðσÞÞ
detRðchðσÞÞ

: ð2:3Þ

Namely, an n-point correlation function hO1ðφ1Þ � � �
OnðφnÞi on S3 can be written as

hO1ðφ1Þ � � �OnðφnÞi

¼ 1

jWjZS3

Z
t
dμðσÞhO1ðφ1Þ � � �OnðφnÞiσ ð2:4Þ

in terms of an auxiliary correlator hO1ðφ1Þ � � �OnðφnÞiσ at
fixed σ. The latter is computed via Wick contractions with
the 1D propagator

hQðφ1ÞQ̃ðφ2Þiσ ≡Gσðφ12Þ≡ −
sgnφ12 þ thðσÞ

8πr
e−σφ12 ;

φ12 ≡ φ1 − φ2; ð2:5Þ

derived from (2.2).6

B. Coulomb branch formalism

The operators in the Coulomb branch topological sector,
in terms of a UV gauge theory Lagrangian, consist of a
scalar ΦðφÞ [a twisted combination of the vector multiplet
scalars Φ _a _b transforming in the adjoint of suð2ÞC and of
G], bare monopoles MbðφÞ, and dressed monopoles
PðΦÞMbðφÞ. The coweight b breaks the gauge group at
the insertion point to Gb, the centralizer of b, and the
corresponding monopole may be dressed by a Gb-invariant
polynomial PðΦÞ in ΦðφÞ [29].
In [32,33], a method for computing all observables

within the Coulomb branch TQM was obtained for 3D
N ¼ 4 gauge theories of cotangent-type by constructing a
set of “shift operators,” acting on functions of σ ∈ t
and B ∈ Λ∨

W , whose algebra is a representation of the
1D OPE.7 We find that ΦðφÞ is represented by a simple
multiplication operator

5Mixed-branch operators are not in the cohomology of either
supercharge.

6Wick contractions between elementary operators at coinci-
dent points are performed using

hQðφÞQ̃ðφÞiσ ≡ Gσð0Þ ¼ −
thðσÞ
8πr

ð2:6Þ

to resolve normal-ordering ambiguities.
7All expressions are given in the “North” picture. See [32,33]

for details.
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Φ ¼ 1

r

�
σ þ i

2
B

�
∈ tC ¼ t ⊗ C: ð2:7Þ

The shift operator describing a dressed monopole has a
more intricate definition: it is constructed as

PðΦÞMb ¼ 1

jWbj
X
w∈W

Pðw−1 ·ΦÞM̃w·b; ð2:8Þ

where Wb is the stabilizer of b in W, with the Weyl sum
reflecting the fact that a physical magnetic charge is labeled
by the Weyl orbit of a coweight b. For a given coweight b,
we define the Abelianized (non-Weyl-averaged) monopole
shift operator

M̃b ¼ Mb þ
X
jvj<jbj

Zab
b→vðΦÞMv; ð2:9Þ

where the sum is taken over all coweights shorter than b
and the rational functions Zab

b→vðΦÞ, dubbed Abelianized
bubbling coefficients in [33], account for nonperturbative
effects in non-Abelian gauge theories in which the
Goddard-Nuyts-Olive (GNO) charge of a singular monop-
ole is screened away from the insertion point by smooth
monopoles of vanishing size [40].8 Finally, Mb is an
Abelianized monopole shift operator that represents a bare
monopole singularity in the absence of monopole bubbling:

Mb¼
Q

ρ∈R½ð−1Þ
ðρ·bÞþ

rjρ·bj=2 ð1
2
þ irρ ·ΦÞðρ·bÞþ �Q

α∈Δ½ð−1Þ
ðα·bÞþ

rjα·bj=2 ðirα ·ΦÞðα·bÞþ �
e−b·ði2∂σþ∂BÞ; ð2:10Þ

where ðxÞþ ≡maxðx; 0Þ, ðxÞn ≡ Γðxþ nÞ=ΓðxÞ, and
powers of r encode scaling dimensions.
With the above shift operators in hand, the S3 correlator

of twisted CBOsOiðφiÞ, inserted at points φi along S1φ with
0 < φ1 < � � � < φn < π, can be computed as

hO1ðφ1Þ � � �OnðφnÞiS3

¼ 1

jWjZS3

X
B

Z
dσμðσ; BÞΨ0ðσ; BÞO1 � � �OnΨ0ðσ; BÞ;

ð2:11Þ

where the operators on the right are understood to be the
shift operators corresponding to Oi and h1iS3 ¼ 1. Above,
we have introduced the empty hemisphere wave function

Ψ0ðσ; BÞ≡ δB;0

Q
ρ∈R

1ffiffiffiffi
2π

p Γð1
2
− iρ · σÞQ

α∈Δ
1ffiffiffiffi
2π

p Γð1 − iα · σÞ ð2:12Þ

as well as the gluing measure

μðσ; BÞ ¼
Y
α∈Δþ

ð−1Þα·B
��

α · σ
r

�
2

þ
�
α · B
2r

�
2
�

×
Y
ρ∈R

ð−1Þjρ·Bj−ρ·B2

Γð1
2
þ iρ · σ þ jρ·Bj

2
Þ

Γð1
2
− iρ · σ þ jρ·Bj

2
Þ
: ð2:13Þ

While the matrix model (2.11) converges only for theories
with a sufficiently large matter representation (i.e., “good”
and “ugly” theories [41]), the shift operators can always
be used to compute star products in the Coulomb
branch TQM.
Finally, in the commutative limit r → ∞, the algebra

of shift operators reduces to the Coulomb branch chiral
ring, and we recover the Abelianization description of
the Coulomb branch proposed in [29]. In this limit, the
operators e−b·ði2∂σþ∂BÞ turn into generators e½b� of the group
ring C½Λ∨

W �, which act trivially on functions ofΦ but satisfy
the relations

e½b1�e½b2� ¼ e½b1 þ b2�: ð2:14Þ

We find that Mb itself has a well-defined r → ∞ limit,9

lim
r→∞

Mb ≡Mb
∞ ¼

Q
ρ∈Rð−iρ ·ΦÞðρ·bÞþQ
α∈Δð−iα ·ΦÞðα·bÞþ e½b�; ð2:15Þ

as do the Abelianized bubbling coefficients Zab
b→vðΦÞ.

III. REVIEW: A-SERIES

A. Deformation quantization of C2=ΓAn

We begin by reviewing the deformation quantization of
An−1 singularities, independently of quantum field theory
realizations. See [24] for discussions of A1;2;3 and [32] for
discussions of An.
For general An−1 singularities defined as

MAn−1
∶ fðX; Y; ZÞ ¼ X2 þ Y2 þ Zn ¼ 0; ð3:1Þ

the coordinate ring together with the holomorphic sym-
plectic two-form

ω ¼ dX ∧ dY ∧ dZ
df

ð3:2Þ

gives rise to a Z≥0-graded Poisson algebra where the
generators have degrees

8It was proposed in [33] that the abelianized bubbling
coefficients are fixed by algebraic consistency of the OPE within
the Coulomb branch topological sector.

9An important caveat is that the expression (2.15) holds
for semisimple G. Otherwise, it would have some residual
r-dependence.
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degðX; Y; ZÞ ¼ ðn; n; 2Þ ð3:3Þ

and the Poisson bracket (equivalently, ω) has degree

degðωÞ ¼ 2: ð3:4Þ

The (filtered) deformation quantization of this graded
Poisson algebra is easy to work out (see [42]). The quantum
algebra is given by the central quotient

AAn−1
¼ C½X̂; Ŷ; Ẑ�

hΩAn−1
i ; ð3:5Þ

where the noncommutative algebra C½X̂; Ŷ; Ẑ� is defined by
the commutators

½X̂; Ŷ� ¼ iζPðẐÞ;
½X̂; Ẑ� ¼ 2iζŶ;

½Ŷ; Ẑ� ¼ −2iζX̂; ð3:6Þ

the deformation parameter ζ has degree

degðζÞ ¼ 2; ð3:7Þ

and the center is generated by

ΩAn−1
¼ QðẐ þ 2ζÞ þQðẐÞ − 2ðX̂2 þ Ŷ2Þ: ð3:8Þ

Physically, ΩAn−1
ðX̂; Ŷ; ẐÞ ¼ 0 is the quantum chiral ring

relation in the TQM.
Here, PðtÞ andQðtÞ are polynomials of degree n − 1 and

nwith leading terms ntn−1 and tn, respectively. They satisfy

QðẐ þ 2ζÞ −QðẐÞ ¼ 2ζPðẐÞ: ð3:9Þ

Thus QðtÞ is fixed by PðtÞ except for the constant term.
Expanding PðtÞ as

PðtÞ ¼ ntn−1 þ
Xn−1
i¼1

αiζ
n−iti−1 ð3:10Þ

and denoting the constant term of QðtÞ by α0, we see
that the space of quantizations of the An−1 singularity is
n-dimensional and parametrized by fα0; α1;…; αn−1g.
Imposing the evenness condition amounts to picking out

terms in PðtÞ that have an even degree in ζ. Thus we end up
with a space of even quantizations AAn−1

of dimension bn
2
c.

B. A-type mirror symmetry

A detailed TQM analysis of the Abelian mirror duality
between the affine AN−1 quiver gauge theory and SQEDN
was given in [32]. Here, we summarize the results for the
“rank-one” side of this duality, namely that between the

Higgs branch of the former theory and the Coulomb branch
of the latter.
We denote by SUð2ÞR the relevant SUð2Þ R-symmetry

(for either the Higgs or the Coulomb branch) of the
TQM sector. The degree of an element O in the quantum
algebra is related to the R-symmetry spin (taking values in
half-integers) by

RðOÞ ¼ 1

2
degðOÞ; ð3:11Þ

since the holomorphic symplectic formωmust transform as
an SUð2ÞR triplet (corresponding to the three independent
complex structures of the hyperkähler cone). Moreover,
superconformal representation theory requires that the
scaling dimensions of the corresponding operators satisfy

ΔðOÞ ¼ RðOÞ: ð3:12Þ

From this, we conclude that X̂; Ŷ; Ẑmust be associated with
chiral ring operators of dimension n

2
; n
2
; 1, respectively, in

the physical theory. Below, we give their explicit realiza-
tions in terms of mesonic and monopole operators in 3D
N ¼ 4 theories.
The necklace quiver gauge theory has gauge group

Uð1ÞN=Uð1Þ, bifundamental hypermultiplets ðQI; Q̃IÞ for
I ¼ 1;…; N, and Higgs branch C2=ZN . The Higgs branch
chiral ring generators are

X ¼ Q1Q2 � � �QN; Y ¼ Q̃1Q̃2 � � � Q̃N;

Z ¼ Q̃1Q1 ¼ � � � ¼ Q̃NQN: ð3:13Þ

On the other hand, the Coulomb branch TQM operators of
SQEDN are products of the twisted vector multiplet scalar
Φ and monopole operators of charge b ∈ Z. The corre-
sponding shift operators act on functions of σ ∈ R
and B ∈ Z.10 The Coulomb branch of this theory is also
isomorphic to C2=ZN , and its chiral ring is generated by

X ¼ 1

ð4πÞN=2M
−1; Y ¼ 1

ð4πÞN=2M
1; Z ¼ −

i
4π

Φ:

ð3:14Þ

On either side of the duality, the above operators obey
X ⋆Y¼ZNþOð1=rÞ, have identical correlation functions,
and generate all other gauge-invariant operators in the
corresponding TQM. Correlation functions of composite
operators can also be matched using the OPE.
In this example, the Uð1Þtop symmetry prohibits operator

mixing, and thus we have unambiguous identifications

X ¼ X̂; Y ¼ Ŷ; Z ¼ Ẑ ð3:15Þ

10See Appendix B 1 for details and generalizations.
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in both mirror-dual descriptions. This simplifying feature
will no longer be present in the D case.

IV. DEFORMATION QUANTIZATION OF C2=ΓDn

For general Dnþ1 singularities defined as

MDnþ1
∶ fðX; Y; ZÞ ¼ X2 þ ZY2 þ Zn ¼ 0; ð4:1Þ

the degrees of the generators are given by

degðX; Y; ZÞ ¼ ð2n; 2n − 2; 4Þ: ð4:2Þ

The deformation quantization is again easy to work out (see
[43]). The quantum algebra is given by the central quotient

ADnþ1
¼ C½X̂; Ŷ; Ẑ�

hΩDnþ1
i ; ð4:3Þ

where the algebra C½X̂; Ŷ; Ẑ� is defined by the commutators

½X̂; Ŷ� ¼ ζŶ2 þ ζPðẐÞ;
½X̂; Ẑ� ¼ −2ζẐ Ŷ −2ζ2X̂ þ ð−1Þnþ1γζnþ2;

½Ŷ; Ẑ� ¼ 2ζX̂; ð4:4Þ

and the center is generated by

ΩDnþ1
¼QðẐÞþ X̂2þ ẐŶ2þ2ζX̂ Ŷþð−1Þnγζnþ1Ŷ: ð4:5Þ

Here, PðtÞ and QðtÞ are polynomials of degree n − 1 and n
with leading terms ntn−1 and tn, respectively. They satisfy

Qð−tðt=ζ2 − 1ÞÞ −Qð−tðt=ζ2 þ 1ÞÞ
¼ ðt − ζ2ÞPð−tðt=ζ2 − 1ÞÞ þ ðtþ ζ2ÞPð−tðt=ζ2 þ 1ÞÞ:

ð4:6Þ

Thus QðtÞ is fixed by PðtÞ except for the constant term.
Expanding PðtÞ as

PðtÞ ¼ ntn−1 þ
Xn−1
i¼1

αiζ
2ðn−iÞti−1 ð4:7Þ

and denoting the constant term ofQðtÞ by α0, we see that the
space of quantizations of the Dnþ1 singularity is (nþ 1)-
dimensional and parametrized by fα0; α1;…; αn−1; γg.
Imposing the evenness condition, we see that γ ¼ 0 for n
even and is unconstrained for n odd. Thus we conclude that
the space of even quantizations for Dnþ1 singularities is
n-dimensional for n even and (nþ 1)-dimensional for n odd.
To pin down the TQM, one needs to further specify

the short product structure (which is equivalent to speci-
fying a trace) of the associative algebra ADnþ1

. We will
analyze how combining discrete symmetry and physical

input from 3D N ¼ 4 SCFTs allows us to determine the
short product and to provide the deformed mirror map for
dual observables.

A. n= 4

1. Periods and associativity

We would like to quantize the D4 singularity

MD4
∶ fðX; Y; ZÞ ¼ X2 þ ZY2 þ Z3 ¼ 0; ð4:8Þ

which merits special attention due to its extra symmetry.
We start by writing down the most general deformed
commutators compatible with the Jacobi identity (4.4):

½X̂; Ŷ� ¼ ζðŶ2 þ 3Ẑ2 þ ζ2ð2Aþ 8ÞẐ þ ζ4ð2Aþ Bþ 8ÞÞ;
½X̂; Ẑ� ¼ −2ζẐ Ŷ −2ζ2X̂ þ γζ5;

½Ŷ; Ẑ� ¼ 2ζX̂; ð4:9Þ

as well as the central element

ΩD4
¼ Ẑ3 þ Aζ2Ẑ2 þ Bζ4Ẑ þ Cζ6 þ X̂2

þ ẐŶ2 þ 2ζX̂ Ŷ −γζ4Ŷ: ð4:10Þ

Notice that in (4.9), the leading-order terms in ζ are simply
the Poisson bracket associated with the singularity, coming
from the symplectic two-form ω. The deformation quan-
tization of theD4 singularity falls into isomorphism classes
[44] (see also [38]) that are parametrized by so-called
“periods” taking values in

H2ðMreg
D4
;CÞ

WðD4Þ
; ð4:11Þ

which is simply the root lattice of D4 modulo the Weyl
group. Here, the periods that label the quantizations
are fA; B;C; γg.
The D4 singularity has an S3 symmetry (preserving the

holomorphic symplectic two-form ω) that becomes mani-
fest in the coordinates

U¼1

2

�
Zþ Yffiffiffi

3
p

�
; V¼1

2

�
Z−

Yffiffiffi
3

p
�
; W¼1

2
X; ð4:12Þ

in terms of which the singularity becomes

MD4
∶ fðU;V;WÞ ¼ U3 þ V3 þW2 ¼ 0: ð4:13Þ

This is invariant under

Z2∶ ðU;V;WÞ ↦ ðV;U;−WÞ;
Z3∶ ðU;V;WÞ ↦ ðUe

4πi
3 ; Ve

2πi
3 ;WÞ; ð4:14Þ
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generating an S3 symmetry that preserves the hyperkähler
structure.
If we insist on having an S3 symmetry upon deformation

quantization,11 then the periods are constrained. Up to a
redefinition, the most general S3-preserving (deformed)
commutators are

½Û; V̂� ¼ 2ffiffiffi
3

p ζŴ; ½Û; Ŵ� ¼ −
ffiffiffi
3

p
ζV̂2 −

4þ A

2
ffiffiffi
3

p ζ3Û;

½V̂; Ŵ� ¼
ffiffiffi
3

p
ζÛ2 þ 4þ A

2
ffiffiffi
3

p ζ3V̂: ð4:15Þ

From here, we can work out the most general even short
star product structures

Û ⋆ Û ¼ cU2 þ α1ζ
2V̂;

V̂ ⋆ V̂ ¼ cV2 þ α1ζ
2Û;

Û ⋆ V̂ ¼ dUV þ ζffiffiffi
3

p Ŵ þ α2ζ
4;

Û ⋆ Ŵ ¼ dUW −
ffiffiffi
3

p
ζ

2
cV2 −

ð6α1 þ Aþ 4Þ
4

ffiffiffi
3

p Ûζ3;

V̂ ⋆ Ŵ ¼ dVW þ
ffiffiffi
3

p
ζ

2
cU2 þ ð6α1 þ Aþ 4Þ

4
ffiffiffi
3

p V̂ζ3;

Ŵ ⋆ Ŵ ¼ −cU3 − cV3 −
Aþ 4ðα1 þ α4Þ

2
ζ2dUV

þ ð6α1 þ Aþ 4Þα2
4

ζ6;

Û ⋆ cU2 ¼ cU3 þ α4ζ
2dUV −

α1ffiffiffi
3

p ζ3Ŵ;

V̂ ⋆ cV2 ¼ cV3 þ α4ζ
2dUV þ α1ffiffiffi

3
p ζ3Ŵ;

Û ⋆ cV2 ¼ dUV2 − B1
dVWζ þ ζ2B2

cU2 þ B3ζ
4V̂;

V̂ ⋆ cU2 ¼ dVU2 þ B1
dUWζ þ ζ2B2

cV2 þ B3ζ
4Û;

Û ⋆ dUV ¼ dVU2 − A1
dUWζ þ ζ2A2V̂2 þ A3ζ

4Û;

V̂ ⋆ dUV ¼ dUV2 þ A1
dVWζ þ ζ2A2

cU2 þ A3ζ
4V̂; ð4:16Þ

where all of the operators dUαVβWδ are normal-ordered
products that are assumed (with suitable shifts) to have
vanishing one-point functions, and nonvanishing two-point
functions only with their conjugates [conjugation being
defined by the Z2 generator in (4.14)].
The parameters that appear above in the star product are

further constrained by associativity as follows:

A1 ¼ −
1ffiffiffi
3

p ; A2 ¼
Að2α1 − 1Þ þ 2ðα1 þ 6α2 − 2Þα4

2α1ð4þ Aþ 6α1Þ
;

A3 ¼
Að1 − 2α1Þ − 2ðα1 þ 6α2 − 2Þ

12
;

B1 ¼ −
2ffiffiffi
3

p ; B2 ¼ −
1

2
− A1 þ A2;

B3 ¼ −
1

6
α1ð4þ Aþ 6α1Þ: ð4:17Þ

Consequently, the only free parameters are α1, α2, α4,
and A.
We can determine these parameters for specific defor-

mation quantizations. One nontrivial example comes from
the Coulomb branch of N ¼ 4 SUð2Þ SQCD with four
fundamental hypermultiplets, or by mirror symmetry, the
Higgs branch of the affine D4 quiver theory. In either case,
by explicit computation, we find

α1 ¼
32π4 − 2835

42π4 − 2835
; α2 ¼

2π4 − 135

180π4
;

A ¼ −6; l ¼ 3
1
4ζ−1; ð4:18Þ

as well as

α4¼
20π4ð1376π8−178185π4þ4365900Þ

231ð2π4−135Þð128π8−12180π4−14175Þ; ð4:19Þ

where

l ¼ −4πr ð4:20Þ

is the natural deformation parameter that arises in the
derivation of the 1D TQM from the 3DN ¼ 4 SCFTon S3

(r is the sphere radius).12 Combined with (4.16), these data
determine a large class of correlators in the 1D TQM for
either the SQCD or the affine D4 quiver theory.

2. Realizations in Lagrangian 3D SCFTs

Let us define R to be the ring of holomorphic functions
on the D4 singularity,

MD4
∶ X2 þ ZY2 þ Z3 ¼ 0 or U3 þ V3 þW2 ¼ 0:

ð4:21Þ

We now discuss 3D N ¼ 4 SCFTs that realize R as their
Higgs or Coulomb branch chiral ring. In the next section,
we will extract the 1D TQM that gives the deformation
quantization of R by the corresponding SCFT.
We denote by SUð2ÞR the relevant SUð2Þ R-symmetry

under which R is charged. We can fix the SUð2ÞR
11From the perspective of 3D N ¼ 4 SCFT, this is equivalent

to insisting that S3 be a global symmetry of the Higgs or Coulomb
branch operator algebra.

12In deriving these results, we use the results of Appendix A 3,
particularly (A34).
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representations of R using the fact that the holomorphic
symplectic form ω must transform as an SUð2ÞR triplet:

R½ω� ¼ 1: ð4:22Þ

Consequently,

R½U� ¼ R½V� ¼ R½X� ¼ R½Y� ¼ 2; R½W� ¼ R½Z� ¼ 3:

ð4:23Þ

Moreover, superconformal representation theory fixes the
scaling dimensions to be Δ ¼ R.

ΓD4
gauged free hyper.—In this case, the generators X , Y,

Z can be written in terms of the complex scalars Q; Q̃ in a
single hypermultiplet13 which is acted upon by the gauge
symmetry Q8 ¼ ΓD4

⊂ SUð2Þ as

rZ4
¼

�
i 0

0 −i

�
; sZ2

¼
�

0 1

−1 0

�
: ð4:25Þ

Hence a basis of gauge-invariant operators is given by

Z ¼ −2Q2Q̃2; Y ¼ iðQ4 þ Q̃4Þ;
X ¼

ffiffiffi
2

p
iQQ̃ðQ4 − Q̃4Þ; ð4:26Þ

which satisfy the constraint

X2 þ ZY2 þ Z3 ¼ 0: ð4:27Þ

Now the normalizer of Q8 in SUð2Þ is O48, the binary
octahedral group of order 48. Thus the global symmetry
group of the discretely gauged hypermultiplet is14

S3 ¼ O48=ΓD4
; ð4:28Þ

the permutation group of order 6.
More explicitly, O48 is defined by generators and

relations

O48 ¼ ΓE7
¼ hA;B;CjA2 ¼ B3 ¼ C4 ¼ ðC2AÞ2 ¼ −I2;

ðC2BÞ3 ¼ ðABÞ6 ¼ I2i; ð4:29Þ

where

A ¼
�

0 1

−1 0

�
; B ¼ 1

2

�
1þ i −1þ i

1þ i 1 − i

�
;

C ¼ 1ffiffiffi
2

p
�
1þ i 0

0 1 − i

�
: ð4:30Þ

The Z2 and Z3 generators of S3 are identified with C and B
in the quotient, respectively, which act as

C∶ ðX ;Y;ZÞ ↦ ð−X ;−Y;ZÞ;

B∶ ðX ;Y;ZÞ ↦
�
X ;−

Y þ 3iZ
2

;−
Z þ iY

2

�
: ð4:31Þ

Affine D4 quiver.—In this case, the gauge theory is
described as a 3D N ¼ 4 quiver with SUð2Þ ×Uð1Þ4
gauge group and four bifundamental hypermultiplets
ðQA; Q̃AÞ where A ¼ 1, 2, 3, 4. The quiver Lagrangian
has an obvious S4 global symmetry that acts naturally on
the A index, but its action is not faithful on the Higgs
branch chiral ring after we take into account the D-term
relations. In fact, the Higgs branch chiral ring R is
organized into faithful representations of S3. Without
loss of generality, we choose an S3 subgroup of S4 to be
the one permuting A ¼ 1, 2, 3. Then by identifying the
generators

sZ3
¼ ð123Þ; rZ2

¼ ð12Þ; ð4:32Þ

we find that

Z ¼
ffiffiffi
3

p
ðQ̃1Q3Q̃3Q1 þ Q̃2Q3Q̃3Q2Þ;

Y ¼
ffiffiffi
3

p
iðQ̃1Q3Q̃3Q1 − Q̃2Q3Q̃3Q2Þ;

X ¼ 2 · 33=4iQ̃1Q2Q̃2Q3Q̃3Q1 ð4:33Þ

[where the contraction of SUð2Þ gauge indices is pairwise
from the left] transform under S3 in the expected manner
and satisfy

X2 þ ZY2 þ Z3 ¼ 0: ð4:34Þ

Alternatively, we have

U ¼ eiπ=6Q̃1Q3Q̃3Q1 þ e−iπ=6Q̃2Q3Q̃3Q2;

V ¼ e−iπ=6Q̃1Q3Q̃3Q1 þ eiπ=6Q̃2Q3Q̃3Q2;

W ¼ 33=4iQ̃1Q2Q̃2Q3Q̃3Q1: ð4:35Þ

See Appendix C 1 for a derivation.

SUð2Þ SQCD with Nf ¼ 4.—The mirror dual of the affine
D4 quiver theory is known to be SUð2Þ SQCD with four
fundamental hypermultiplets. The Coulomb branch chiral
ring of the latter theory now realizesR. More explicitly, the

13Alternatively, we denote the scalars in a hyper by QaA where
a is the SUð2ÞH index and i is the SUð2Þ flavor index. They obey
the reality condition

ðqai Þ� ¼ qia ¼ ϵabϵ
ijqbj ; ϵ12 ¼ ϵ12 ¼ 1; ð4:24Þ

where Q ¼ q12 and Q̃ ¼ q11.14In general, the global symmetry of G gauged hypers is given
by the quotient group NUSpð2nHÞðGÞ=G.
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relevant Coulomb branch operators consist of monopole
operatorsM�2 and the Cartan scalarΦ, which are subject to
the quantum ring relation (one-loop effect)

4M2M−2 ¼ Φ4 ð4:36Þ

and transform under the Z2 Weyl group as

Φ → −Φ; M�2 → M∓2: ð4:37Þ

R is generated by the gauge-invariant combinations

Z ¼ Φ2; Y ¼ iðM2 þM−2Þ; X ¼ ΦðM2 −M−2Þ:
ð4:38Þ

(We discuss the algebra of these operators in more detail in
the next section, using a slightly different normalization.)

B. n > 4

For n > 4, we focus on two specific Lagrangian
realizations of the quantized Dn singularity, namely those
that participate in 3D mirror symmetry.

1. Higgs branch of affine Dn quiver

This quiver takes the shape of an affine Dn Dynkin
diagram. We label the four Uð1Þ ×Uð2Þ bifundamental
hypermultiplets by QA; Q̃A, as before. But now we have, in
addition, n − 4 Uð2Þ ×Uð2Þ bifundamental hypers KI; K̃I
connecting the n − 3 Uð2Þ gauge nodes. Nontrivial gauge-
invariant elements of the Higgs branch chiral ring corre-
spond to closed paths ending on one of the univalent
Uð1Þ nodes.
For this theory, we use the conventions

ð4:39Þ

where the overall quotient by Uð1Þ is implemented in the
matrix model by making the first Uð2Þ node SUð2Þ. We
label the hypermultiplets by

ðQAÞi; ðQ̃AÞi for A ¼ 1;…; 4;

ðKIÞij; ðK̃IÞij for I ¼ 1;…; n − 4

(so that the first index of KI and the last index of
K̃I are associated with node I), where i, j ¼ 1, 2. With
contractions implicit, the Higgs branch chiral ring gener-
ators are

Z ¼ −Q̃1Q3Q̃3Q1; ð4:40Þ

Y ¼ 2Q̃3K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3 þ ð−ZÞn=2−1;
ð4:41Þ

X ¼ 2Q̃1K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3Q̃3Q1 ð4:42Þ

for n ∈ 2Z (as in [45,46]) and

Z ¼ −Q̃1Q3Q̃3Q1; ð4:43Þ

Y ¼ 2Q̃3K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3; ð4:44Þ

X ¼2Q̃1K1 � � �Kn−4Q2Q̃2K̃n−4 � � �K̃1Q3Q̃3Q1−ð−ZÞðn−1Þ=2
ð4:45Þ

for n ∈ 2Zþ 1, which satisfy the ring relation

X2 þ ZY2 − Zn−1 ¼ 0: ð4:46Þ

The Z2 symmetry

Z2∶ðX ;Y;ZÞ ↦ ð−X ;−Y;ZÞ ð4:47Þ

is induced by the 1 ↔ 3 flip of the quiver, or ðQ1; Q̃1Þ ↔
ðQ3; Q̃3Þ at the Lagrangian level. See Appendix C 2 for
derivations.
So far, our discussion has been at the level of the

(“classical”) chiral ring. In the next section, we will see
through TQM computations how these operators become
“quantized.”

2. Coulomb branch of SUð2Þ SQCD with Nf = n

Consider SUð2Þ SQCD with Nf ≥ 0 fundamental fla-
vors. Using the slightly more compact notation from
Sec. II B, the Coulomb branch chiral ring is generated
by the Weyl-invariant operators M2, ΦM2, Φ2 with

ΔðM2Þ ¼Nf − 2; ΔðΦM2Þ ¼Nf − 1; ΔðΦ2Þ ¼ 2;

ð4:48Þ

whereM2 is the monopole of minimal charge and ΦM2 is
a dressed monopole. (Again, we discuss the algebra of
these operators in more detail in the next section.)

V. D-TYPE MIRROR SYMMETRY

Let us now see how the kinematical considerations of the
previous section translate into dynamical information about
quantum field theories. Specifically, by computing TQM
correlators in the theories whose Higgs and Coulomb
branches are exchanged by D-type mirror symmetry, we
derive the mirror map at the level of quantized Higgs and
Coulomb branch chiral rings. As before, we examine the
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cases n ¼ 4 and n > 4 separately due to the extra symmetry
of the former case.

A. Higgs branch of affine Dn quiver

1. n = 4

We summarize the relevant Higgs branch TQM OPE
data for the gauge-invariant operators Q̃1Q3Q̃3Q1 and
Q̃2Q3Q̃3Q2, extracted from localization computations
(see Appendix A 3). The one-point functions are

hQ̃1Q3Q̃3Q1i ¼ hQ̃2Q3Q̃3Q2i ¼
1

96π2r2
: ð5:1Þ

The diagonal two-point functions are

hQ̃1Q3Q̃3Q1 ⋆ Q̃1Q3Q̃3Q1i¼ hQ̃2Q3Q̃3Q2 ⋆ Q̃2Q3Q̃3Q2i

¼ π4−30

5120π8r4
ð5:2Þ

⇒ hQ̃1Q3Q̃3Q1 ⋆ Q̃1Q3Q̃3Q1ic
¼ hQ̃2Q3Q̃3Q2 ⋆ Q̃2Q3Q̃3Q2ic ¼

2π4 − 135

23040π8r4
; ð5:3Þ

where the c subscript denotes a connected correlator. The
mixed two-point function is

hQ̃1Q3Q̃3Q1 ⋆ Q̃2Q3Q̃3Q2i ¼
π4 þ 45

15360π8r4
ð5:4Þ

⇒ hQ̃1Q3Q̃3Q1 ⋆ Q̃2Q3Q̃3Q2ic ¼ −
2π4 − 135

46080π8r4
: ð5:5Þ

We then set

U0 ¼ e−iπ=6Q̃1Q3Q̃3Q1 þ eiπ=6Q̃2Q3Q̃3Q2; ð5:6Þ

V0 ¼ eiπ=6Q̃1Q3Q̃3Q1 þ e−iπ=6Q̃2Q3Q̃3Q2; ð5:7Þ

W0 ¼ 33=4iQ̃1Q2Q̃2Q3Q̃3Q1; ð5:8Þ

where hU0i ¼ hV0i ¼
ffiffi
3

p
96π2r2. (The connected n-point func-

tion of operators O0 is the n-point function of the
normalized operators O≡O0 − hO0i with hOi ¼ 0.) We
find that

hUi ¼ hVi ¼ hWi ¼ hU ⋆ Ui ¼ hV ⋆ Vi
¼ hU ⋆ Wi ¼ hV ⋆ Wi ¼ 0;

hU ⋆ Vi ¼ 2π4 − 135

60π4l4
; hW ⋆ Wi ¼ 3

ffiffiffi
3

p ðπ4 − 105Þ
140π4l6

;

ð5:9Þ

as required by the S3 global symmetry of the theory, all of
which can be checked explicitly using the Higgs branch
TQM path integral (A16).

2. n > 4

To illustrate how Higgs branch computations work for
arbitrary n, we start with the S3 partition function of the
affine Dn quiver theory,

ZDn
¼ 1

2n−4

Z Y4
A¼1

dσA
Yn−3
I¼1

Y2
i¼1

duiIδðu11 þ u21Þ
�Yn−3
I¼1

shðu1I − u2I Þ2
�
Zσ;u; ð5:10Þ

Zσ;u ≡ 1Q
2
i¼1½

Q
A¼1;3chðσA − ui1Þ

Q
A¼2;4chðσA − uin−3Þ�

Q
n−4
I¼1

Q
2
i;j¼1 chðuiI − ujIþ1Þ

ð5:11Þ

(note the 1=2n−4 prefactor rather than 1=2n−3),15 which
reduces to the expected ZD4

¼
Z

du
Y4
A¼1

dσA
shð2uÞ2Q

4
A¼1 chðσA � uÞ ð5:12Þ

for n ¼ 4.
Consider insertions of the operator Z ¼ −Q̃1Q3Q̃3Q1.

In Appendix A 4, we prove that these can be rewritten as
insertions of a function of the Coulomb branch scalar
vacuum expectation value (VEV) s into the rank-one SUð2Þ
SQCD Coulomb branch matrix model. The SUð2Þ matrix
model takes the form

15As explained in Appendix A 4, accounting for this factor of 2
is crucial for mirror symmetry to work at the level of S3 partition
functions, namely for matching the partition function to that of
SUð2Þ SQCD. This corrects a number of errors in [47].
Roughly speaking, the reason is that the gauge group of the

quiver theory is ½Uð2Þn−3 × Uð1Þ4�=Uð1Þ, and one of the SUð2Þ
gauge nodes is really SOð3Þ due to the identification. Since the
volume of SOð3Þ is halved relative to that of SUð2Þ, we have a
Weyl factor of 1=2 only for n − 4 of the n − 3 non-Abelian gauge
nodes.
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ZSUð2Þþn½fðsÞ� ¼
1

4r2

Z
ds

shðsÞ2
chðs=2Þ2n fðsÞ; ð5:13Þ

where “SUð2Þ þ n” is shorthand for “SUð2Þ with n
flavors” [see (5.39)]. By manipulations on the Higgs branch
side of the Dn theory, we find that

hZi ¼ ZSUð2Þþn½ðs2 − 1Þ=ð8πrÞ2�
ZSUð2Þþn

;

hZ ⋆ Zi ¼ ZSUð2Þþn½ðs2 − 1Þ2=ð8πrÞ4�
ZSUð2Þþn

; ð5:14Þ

which provides strong evidence for the mirror map

Z ↔

�
1

8π

�
2
�
Φ2 −

1

r2

�
ð5:15Þ

for all n > 4.
To go further, we now set up the computation of more

general Higgs branch correlation functions for Dn. We can
write

Zσ;u ¼
Z �Y4

A¼1

DQADQ̃A

��Yn−4
I¼1

DKIDK̃I

�
e4πr

R
dφL;

ð5:16Þ

where

L ¼
X
A¼1;3

ðQ̃AÞiðδjið∂φ þ σAÞ − ðu1ÞijÞðQAÞj þ
X
A¼2;4

ðQ̃AÞiðδjið∂φ þ σAÞ − ðun−3ÞijÞðQAÞj

þ
Xn−4
I¼1

ðK̃IÞijðδi0j δij0∂φ þ ðuIÞji0δij0 − δi
0
j ðuIþ1Þj0 iÞðKIÞi0 j0 ð5:17Þ

and uI ¼ diagðu1I ; u2I Þ. Hence we have

hðQAÞiðφ1ÞðQ̃BÞjðφ2Þiσ;u ¼ −δABδ
j
i
sgnðφ12Þ þ thðσA − ui1Þ

8πr
e−ðσA−ui1Þφ12 ðA; B ¼ 1; 3Þ;

hðQAÞiðφ1ÞðQ̃AÞjðφ2Þiσ;u ¼ −δABδ
j
i
sgnðφ12Þ þ thðσA − uin−3Þ

8πr
e−ðσA−u

i
n−3Þφ12 ðA;B ¼ 2; 4Þ;

hðKIÞijðφ1ÞðK̃IÞi0 j0 ðφ2Þiσ;u ¼ −δj
0
i δ

j
i0
sgnðφ12Þ þ thðuiI − ui

0
Iþ1Þ

8πr
e−ðu

i
I−u

i0
Iþ1

Þφ12 : ð5:18Þ

As an example, consider

h½ðQ̃1Þi1ðQ3Þi1ðQ̃3Þj1ðQ1Þj1 �ðφ1Þ � � � ½ðQ̃1ÞipðQ3ÞipðQ̃3ÞjpðQ1Þjp �ðφpÞiσ;u ð5:19Þ

(by convention, we take φ1 < � � � < φp). The exponential factors cancel in all full contractions. There are clearly ðp!Þ2
different contractions (p! for each of A ¼ 1 and A ¼ 3):

hðQ̃1Q3Q̃3Q1Þpiσ;u ¼
�

1

8πr

�
2p X2

i1¼1

� � �
X2
ip¼1

X2
j1¼1

� � �
X2
jp¼1

X
ρ∈Sp

X
ρ0∈Sp

×
Yp
k¼1

δikjρðkÞ ð−sgnðφkρðkÞÞ þ thðσ1 − uik1 ÞÞ
Yp
l¼1

δ
jρðlÞ
il

ðsgnðφlρðlÞÞ þ thðσ3 − uil1 ÞÞ: ð5:20Þ

This reduces to previous results in Appendix A 4 for p ¼ 1, 2. On the other hand, the following involves only one
contraction:

hQ̃3K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3iσ;u ¼
�
−

1

8πr

�
n−2 X

i1;…;in−3

thðσ3 − ui11 Þthðσ2 − uin−3n−3Þ
Yn−4
I¼1

thðuiII − uiIþ1

Iþ1Þ: ð5:21Þ

Similarly,
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hQ̃1K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3Q̃3Q1iσ;u

¼
�
−

1

8πr

�
n−1 X

i1;…;in−3

thðσ1 − ui11 Þthðσ3 − ui11 Þthðσ2 − uin−3n−3Þ
Yn−4
I¼1

thðuiII − uiIþ1

Iþ1Þ: ð5:22Þ

To simplify these insertions in the matrix model (5.10), let us relabel σ1;3 ¼ u1;20 and σ2;4 ¼ u1;2n−2. As explained in
Appendix A 4, using the Cauchy determinant formula and swapping u1I and u2I for I ¼ 1;…; n − 2 results in a simplified
matrix model (A36) with no hyperbolic functions in the numerator. Note that (5.21) and (5.22) are symmetric under
swapping u1I and u2I for I ¼ 1;…; n − 3 and I ¼ 0;…; n − 3, respectively. So to evaluate these insertions in the original
matrix model (5.10), it suffices to insert them into (A36) after symmetrizing over u1n−2 and u2n−2:

hQ̃3K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3iu ∼
1

2

�
−

1

8πr

�
n−2 X

i1;…;in−2

thðu20 − ui11 Þthðuin−2n−2 − uin−3n−3Þ
Yn−4
I¼1

thðuiII − uiIþ1

Iþ1Þ; ð5:23Þ

hQ̃1K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q3Q̃3Q1iu

∼
1

2

�
−

1

8πr

�
n−1 X

i1;…;in−2

thðu10 − ui11 Þthðu20 − ui11 Þthðuin−2n−2 − uin−3n−3Þ
Yn−4
I¼1

thðuiII − uiIþ1

Iþ1Þ: ð5:24Þ

From the symmetries of the resulting integral, one can see many of the expected equivalences between chiral ring
representatives at the level of hiu.
For illustration, consider n ¼ 4. By the Z2 symmetry, we expect

hQ̃3Q2Q̃2Q3i ≠ 0; hQ̃1Q2Q̃2Q3Q̃3Q1i ¼ 0: ð5:25Þ

To demonstrate the latter (which is not obvious in the matrix model), we use that

hQ̃1Q2Q̃2Q3Q̃3Q1iu ∼
1

2

�
−

1

8πr

�
3X

i;j

thðu10 − ui1Þthðu20 − ui1Þthðuj2 − ui1Þ ð5:26Þ

when inserted into

ZD4
¼ 4

Z �Y2
I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu12 − u22Þ
Q

2
i¼1½chðui0 − ui1Þchðui1 − ui2Þ�

: ð5:27Þ

By simultaneously swapping u10 ↔ u20, u
1
1 ↔ u21, u

1
2 ↔ u22, we see that insertions of

thðu10 − u11Þthðu20 − u11Þthðu12 − u11Þ; thðu10 − u21Þthðu20 − u21Þthðu22 − u21Þ

into (5.27) are the same, and insertions of

thðu10 − u21Þthðu20 − u21Þthðu12 − u21Þ; thðu10 − u11Þthðu20 − u11Þthðu22 − u11Þ

into (5.27) are the same. So we have the unnormalized correlator

ZD4
½hQ̃1Q2Q̃2Q3Q̃3Q1iu� ¼ 4

�
−

1

8πr

�
3
Z �Y2

I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu12 − u22Þ
Q

2
i¼1½chðui0 − ui1Þchðui1 − ui2Þ�

×
X
i

thðu10 − u11Þthðu20 − u11Þthðui2 − u11Þ; ð5:28Þ

where we have written the integrand in such a way that the insertion contains only −u11 in the arguments. This is useful
because one can then write
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ZD4
½hQ̃1Q2Q̃2Q3Q̃3Q1iu� ¼ 4

�
−

1

8πr

�
3
Z

dudu10du
2
0du

1
2du

2
2thðu10Þthðu20Þðthðu12Þ þ thðu22ÞÞ

shðu10 − u20Þshðu12 − u22Þchðu10Þchðu20 þ 2uÞchðu12Þchðu22 þ 2uÞ ð5:29Þ

and use standard Fourier transform identities, including
(A7), to reduce this expression to a single-variable integral
(along the lines of Appendix A 4) that vanishes because the
integrand is odd.
The lesson that we draw from the above discussion is that

Higgs branch computations for general n are hard. For
example, while the vanishing of hXi and hYi follows
simply from the Z2 symmetry for all Dn, this fact seems to
be highly nonobvious in the Higgs branch matrix model:
according to (4.40)–(4.45), hXi and hYi are given by
inserting some linear combination of (5.22) and (5.20) or
(5.21) and (5.20) into (5.10), respectively, depending on
whether n is even or odd. Thus the Z2 symmetry of the
affine quiver Lagrangian is no longer manifest when we
insert X and Y into the matrix model. Nonetheless, the
nonsymmetric part of the integrand of the matrix model
with X or Y insertions should be a total derivative. In other
words, the F-term relations that imply that X and Y are Z2

odd (see Appendix C 2) become integration-by-parts iden-
tities in the matrix model.
In the end, we would like to derive the mirror map for all

of the chiral ring generators, including quantum corrections
[which we have, so far, for the generator of smallest
dimension in (5.15)]. While such a task seems daunting

from the point of view of Higgs branch correlators, we can
evade most difficulties by passing to the Coulomb branch
of the mirror theory, which we do next. The Coulomb
branch analysis is significantly simpler because the gluing
formula (2.11)–(2.13) contains a delta function that forces
vanishing of magnetic flux, from which one sees that
correlators of an odd number of monopoles vanish without
even doing any integration.
In fact, symmetries already take us a long way toward

rounding out the mirror map. Using our knowledge of how
Z maps to the Coulomb branch of the mirror dual,
including normalization and quantum corrections, we
can deduce the normalization of the mirror map for X
and Y by demanding that the chiral ring relation be satisfied
(this obviates the need to compute, e.g., hX ⋆ Xi on the
Higgs branch side). Furthermore, we know that the quan-
tum correction to Y vanishes by the Z2 symmetry, while X
can only mix with Y. This completely fixes the quantum
mirror map for Y. Finally, we use the Coulomb branch
results of the next subsection regarding the orthogonality of
bare and dressed monopoles [particularly (5.56)] to write
down the remaining entries in the quantized D-type mirror
symmetry dictionary. Combined with (5.15), we arrive at
the complete map

X̂ ↔
i

ð4πÞn−1
�
ΦM2 −

i
r
M2

�
; Y ↔

2M2

ð4πÞn−2 ; Z ↔

�
1

8π

�
2
�
Φ2 −

1

r2

�
; ð5:30Þ

where the Higgs branch operators X , Y, Z are given in (4.40)–(4.45) and we have accounted for operator mixing by setting

X̂ ≡ X −
hX ⋆ Yi
hY ⋆ Yi Y; ð5:31Þ

which satisfies hX̂ ⋆ Yi ¼ 0.16 The two-point functions in (5.31) can in principle be computed explicitly from the matrix
model for the affine quiver.17

16Strictly speaking, there is a sign ambiguity in (one of) the first two entries of (5.30). This is because knowing that Z ↔ CZC in the
chiral ring (i.e., ignoring 1=r corrections), whereC ¼ 1=ð8πÞ2 ∈ R>0 and C subscripts denote Coulomb branch operators, implies only
that

X ↔ �iCðn−1Þ=2XC; Y ↔ �0iCn=2−1YC ð5:32Þ
at the level of the chiral ring, where � and �0 are distinct signs. This follows from the Higgs and Coulomb branch chiral ring relations
(4.46) and (5.67). While the overall sign is inherently ambiguous due to the Z2 global symmetry ðX ;YÞ → ð−X ;−YÞ, the relative sign
can be fixed by computing suitable nonvanishing mixed correlators involving X and Y (e.g., numerically).

17In fact, hY ⋆ Yi can also be read off from the SQCD Coulomb branch matrix model via (5.84).
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B. Coulomb branch of SUð2Þ SQCD with Nf flavors

On the SUð2Þ SQCD side, the basic non-Weyl-invariant
shift operators are

M�2 ¼
�
−
1

2

�
Nf 1

rNf−2
ð1� irΦÞNf−1

ð�irΦÞ e∓2ði
2
∂σþ∂BÞ;

Φ ¼ 1

r

�
σ þ i

2
B

�
; ð5:33Þ

whereM�2 are related by the Z2 Weyl group. These act on
functions fðσ; BÞ where σ ∈ R and B ∈ 2Z. For Nf ≥ 1,
the monopole bubbling terms are necessarily polynomials
and can therefore be removed by operator mixing. In other
words, there exists an operator basis in which the bubbling
terms forM2 andΦM2 are zero; all other bases are related
to this one by operator mixing. This means that we can
write, without loss of generality,

M2 ¼ M2 þM−2; ΦM2 ¼ ΦðM2 −M−2Þ: ð5:34Þ

These shift operators already allow us to compute the star
product in the Coulomb branch TQM. For Nf ≥ 3, we can
further compute correlators of twisted CBOs as follows.
Define the vacuum wave function

Ψ0ðσ; BÞ ¼ δB;0
½ 1
2π Γð1−iσ2 ÞΓð1þiσ

2
Þ�Nf

1
2π Γð1 − iσÞΓð1þ iσÞ

¼ δB;0
shðσÞ

σchðσ=2ÞNf
ð5:35Þ

and the gluing measure

μðσ; BÞ ¼ 1

r2
ð−1ÞNfB=2

�
σ2 þ B2

4

�
: ð5:36Þ

Since jWj ¼ 2, the partition function is

Z ¼ 1

2

Z �
dσ
2

�
μðσ; 0ÞΨ0ðσ; 0Þ2

¼ 1

4r2

Z
dσ

shðσÞ2
chðσ=2Þ2Nf

ð5:37Þ

(the 1=2 in the measure dσ accounts for the half-integer
normalization of the weights). Then

hO1 ⋆ � � � ⋆ Oni ¼
1

2Z

Z �
dσ
2

�
μðσ; 0ÞΨ0ðσ; 0Þ

× ½ðO1 � � �OnΨ0Þðσ; 0Þ�; ð5:38Þ

where the left-hand side (LHS) of (5.38) means
hO1ðφ1Þ � � �OnðφnÞi with the φi in ascending order. It is
also convenient to define

Z½fðσÞ�≡ 1

4r2

Z
dσfðσÞ shðσÞ2

chðσ=2Þ2Nf
; Z¼Z½1�; ð5:39Þ

so that, for example, hðΦ2Þni ¼ Z−1Z½ðσ2=r2Þn� where
ðΦ2Þn ¼ Φ2 ⋆ � � � ⋆ Φ2 is understood.

1. Nf = 4

Computing correlators of Coulomb branch chiral pri-
mary operators (CPOs) from monopole shift operators is
particularly straightforward when Nf ¼ 4, as we now
show. This allows for a precise match to the results of
Sec. VA 1.
SUð2Þ SQCD with Nf ¼ 4 is mirror to the affine D4

quiver theory; the Higgs branch of the latter has a global S3
symmetry, which we reproduce. The mirror map is as
follows:

U;V ↔

ffiffiffi
3

p

128π2

�
Φ2 −

1

3r2

�
∓ i

16π2
M2; W ↔

33=4

128π3

�
ΦM2 −

i
r
M2

�
; ð5:40Þ

where the Higgs branch operators U, V, W are given
by (5.6)–(5.8) with one-point functions subtracted.
We present the derivation below, using C subscripts
to distinguish Coulomb branch operators from Higgs
branch operators.
The Coulomb branch chiral ring generators [in our

normalization, following from (5.33)] are

XC¼ 8ΦM2; YC¼−8iM2; ZC ¼Φ2: ð5:41Þ

These operators have dimensions ΔðXCÞ ¼ 3 and
ΔðYCÞ ¼ ΔðZCÞ ¼ 2. At the level of the chiral ring,
we have X2

C þ ZCY2
C þ Z3

C ¼ 0 ⇔ U3
C þ V3

C þW2
C ¼ 0

where

UC¼
1

2

�
ZCþ

YCffiffiffi
3

p
�
; VC¼

1

2

�
ZC−

YCffiffiffi
3

p
�
; WC¼

1

2
XC:

ð5:42Þ
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Using the Coulomb branch formalism,18 we compute the
one-point functions

hM2i ¼ hΦM2i ¼ 0; hΦ2i ¼ 1

3r2
ð5:46Þ

(the monopole one-point functions vanish automatically in
the absence of bubbling). We also have the two-point
functions

hΦ2⋆M2i¼hM2⋆Φ2i¼hΦ2⋆ΦM2i¼hΦM2⋆Φ2i¼0;

ð5:47Þ

hΦ2⋆Φ2i¼7π4−360

15π4r4
; hM2⋆M2i¼2π4−135

120π4r4
: ð5:48Þ

To define the operators UC, VC, WC including 1=r
corrections, note that by dimensional analysis, UC and
VC can only mix with the identity, while WC can mix with
UC, VC, and the identity. In addition, we would like all
correlation functions of UC, VC, WC, and composites
thereof to respect the S3 symmetry. In particular, we must
have

hUCi ¼ hVCi ¼ hWCi ¼ 0: ð5:49Þ

Using (5.46), the requirement that hUCi ¼ hVCi ¼ 0 fixes

UC ¼ 1

2

�
Φ2 −

1

3r2

�
−

4iffiffiffi
3

p M2;

VC ¼ 1

2

�
Φ2 −

1

3r2

�
þ 4iffiffiffi

3
p M2 ð5:50Þ

(note that conjugation flips the sign of the monopole).
Next, requiring that hWCi ¼ 0 shows that WC ¼
4ΦM2 þOð1=rÞ cannot mix with the identity, so

WC ¼ 4ΦM2 þ uUC þ vVC

r
ð5:51Þ

for some dimensionless constants u, v. To respect the
S3 symmetry, we must also impose that hUC ⋆ WCi ¼
hVC ⋆ WCi ¼ 0. More simply, we have the following
ansatz and requirements for WC:

WC ¼ 4ΦM2 þ a
r
M2 þ b

r

�
Φ2 −

1

3r2

�
;

hM2 ⋆ WCi ¼
��

Φ2 −
1

3r2

�
⋆ WC

�
¼ 0: ð5:52Þ

Using19

hM2 ⋆ΦM2i ¼ hΦM2 ⋆M2i ¼ i
r
hM2 ⋆M2i; ð5:56Þ

which holds for all Nf, fixes a ¼ −4i and b ¼ 0:

WC ¼ 4

�
ΦM2 −

i
r
M2

�
: ð5:57Þ

Having fixed the exact definitions of UC, VC,WC in (5.50)
and (5.57), we check that

hUC ⋆WCi ¼ hVC ⋆WCi ¼ hUC ⋆ UCi ¼ hVC ⋆ VCi ¼ 0;

hUC ⋆ VCi ≠ 0; hWC ⋆WCi ≠ 0; ð5:58Þ

18Specializing to Nf ¼ 4, we have

Z½fðσÞ� ¼ 1

64r2

Z
dσfðσÞ tanh

2ðπσ=2Þ
cosh4ðπσ=2Þ ; Z¼ 1

120πr2
: ð5:43Þ

A useful formula is

Z½σn� ¼ 1

120ðπiÞnr2 limτ→0

dn

dτn

�
τð1 − τ4Þ
sinhðπτÞ

�
⇒ Z½σ2� ¼ 1

360πr2
; Z½σ4� ¼ 7π4 − 360

1800π5r2
;…: ð5:44Þ

This is a special case of (5.73) (note that the right-hand side
(RHS) is real because it vanishes unless n is even). Some other
useful integrals are

Z

�
1

4þ σ2

�
¼ 120− π4

120π5r2
; Z

�
1

16þ σ2

�
¼ 2920− 27π4

5832π5r2
: ð5:45Þ

These formulas can be used, for example, to give alternative
derivations of (A34).

19This equation can be derived as follows. Let IM2M−2 and
IM−2M2 denote the insertions in the Coulomb branch matrix
model corresponding to M2M−2 and M−2M2. Then the correla-
tors hM2 ⋆ M2i, hΦM2 ⋆ M2i, hM2 ⋆ ΦM2i correspond to
the insertions

IM2M−2 þ IM−2M2 ;
σ

r
ðIM2M−2 − IM−2M2Þ;

σ þ 2i
r

IM−2M2 −
σ − 2i

r
IM2M−2 ; ð5:53Þ

respectively, which implies that

hM2 ⋆ ΦM2i þ hΦM2 ⋆ M2i ¼ 2i
r
hM2 ⋆ M2i ð5:54Þ

⇔

�
M2 ⋆

�
ΦM2−

i
r
M2

��
þ
��

ΦM2−
i
r
M2

�
⋆M2

�
¼ 0:

ð5:55Þ

The commutativity hM2 ⋆ ΦM2i ¼ hΦM2 ⋆ M2i is required
for consistency of the deformation quantization.
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so these correlators respect the full S3 symmetry.20

Specifically, the Higgs branch computation gives (for
U ¼ U0 − hU0i, V ¼ V0 − hV0i, etc.)

hU ⋆Vi¼ α2ζ
4¼ 2π4−135

15360π8r4
;

hW ⋆Wi¼ ð6α1þAþ4Þα2
4

ζ6¼ 33=2ðπ4−105Þ
573440π10r6

; ð5:59Þ

which we reproduce on the Coulomb branch side by
identifying

ðU;V;WÞ↔ ðcUC;cVC;c3=2WCÞ; c≡
ffiffiffi
3

p

64π2
; ð5:60Þ

thus substantiating the mirror map (5.40). Note that such a
rescaling by powers of c ∈ R>0 preserves the chiral ring
relation.
As a further check, Eq. (5.40) implies that

Q̃1Q3Q̃3Q1 ↔
1

128π2

�
Φ2 þ 1

r2

�
þ 1

16π2
M2; ð5:61Þ

Q̃2Q3Q̃3Q2 ↔
1

128π2

�
Φ2 þ 1

r2

�
−

1

16π2
M2: ð5:62Þ

Using (5.61) and (5.62), we reproduce all of the Higgs
branch correlators of the Q̃iQ3Q̃3Qi (i ¼ 1, 2) using the
Coulomb branch formalism. These identifications make
sense because the Z2 switches 1 ↔ 2 on the Higgs
branch side.
The integral manipulations that led to (5.14) are equally

valid when n ¼ 4. So how do we reconcile the conclusion
(5.15) with the known mirror map (5.61) in this case?
It turns out that there is no contradiction. By writing

shðsÞ2
chðs=2Þ2n ¼

1

chðs=2Þ2n−4 −
4

chðs=2Þ2n−2 ð5:63Þ

and using the trick of differentiating
R
ds e2πist

chðsÞ#,
21 we derive

below that

hΦ2i ¼ 2

π2r2

�
ψ ð1Þðn − 2Þ þ 2

n − 2

�
ð5:64Þ

in the SUð2Þ þ n theory. For each n ≥ 3, there exists a
qn ∈ Q such that

ψ ð1Þðn − 2Þ ¼ qn þ
π2

6
: ð5:65Þ

In fact, we have q3¼0 and q4 ¼ −1, whereas qn≥5 ∈ QnZ.
Hence n¼4 is special in that hΦ2i¼1=3r2 is simply a
rational number with no factors of π2. In particular,
we see that

3ZSUð2Þþ4½s2� ¼ ZSUð2Þþ4½1�; ð5:66Þ

so an insertion of3s2 is equivalent to a trivial insertion.Hence
the results (5.14) cannot be used directly to read off themirror
map when n ¼ 4: they are ambiguous. Specifically, (5.66)
implies that the one-point function of the operator (5.61) in
SUð2Þ þ 4 is equivalent to an insertion of−ðs2 − 1Þ=ð8πrÞ2,
despite appearances. Somewhat miraculously, a similar
statement holds for all p-point functions despite the mixing
with themonopole. Namely, the insertion corresponding top
copies of (5.61) can always be written as a polynomial of
degree p in s2 plus a multiple of ð4þ s2Þ−1, and one can
check numerically for any given p that this gives the same
result as an insertion of ½−ðs2 − 1Þ=ð8πrÞ2�p. It would be
interesting to construct a proof of this fact. Finally, for n ≥ 5,
there is nomixing with themonopole andwe can read off the
mirror map directly from (5.14).
We finish with some conceptual comments. At fixed φ,

the twisted CBOs in (5.41) represent nontrivial elements of
the chiral ring. However, only after operator mixing is
properly accounted for do they correspond to twisted
translations of scalar conformal primaries in the CFT
(hence CPOs). Namely, we must choose a basis in which
their one-point functions vanish and they are orthogonal to
all lower-dimension operators (this is the “CFT gauge”
of [24]). In this basis, the monopoles correspond to the
primary operators constructed in [48]. Usually, such a basis
is obtained by diagonalizing the matrix of two-point
functions. However, to respect the S3 symmetry, that is
not what we do here: rather, we impose that composite
operators have vanishing one-point functions and non-
vanishing two-point functions only with their conjugates,
where conjugation is defined by the Z2 subgroup of S3.

2. Nf > 4

For Nf > 4, we do not expect any mixing between
the scalar and the monopole(s), by dimension counting.
Correspondingly, we lose the S3 symmetry and are left with
only the Z2 of charge conjugation.
In our normalization, the Coulomb branch chiral ring

generators are

ðXC;YC;ZCÞ ¼ ð2Nf−1ΦM2;−i2Nf−1M2;Φ2Þ
⇒ X2

C þ ZCY2
C þ Z

Nf−1
C ¼ 0; ð5:67Þ

where the above equalities hold at the level of the classical
chiral ring. The dimensions are as in (4.48). The Z2

20One can go on to define additional composite operators. For

example, cU2
C (defined as a shift of UC ⋆ UC) can mix with VC andcV2

C can mix with UC, which is consistent with the S3 symmetry.
21In other words, Z½σn� can be evaluated analytically by

writing the SUð2Þ SQCD partition function as a sum of SQED
partition functions and differentiating with respect to the Fayet-
Iliopoulos (FI) parameter.
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symmetry takes ðXC;YC;ZCÞ ↦ ð−XC;−YC;ZCÞ. We
wish to determine the “quantum corrections” to XC, YC,
ZC. First note that

Z
dσ

e2πiτσ

chðσÞN ¼ ΓðN
2
− iτÞΓðN

2
þ iτÞ

2πΓðNÞ

⇒
Z

dσ
chðσÞN ¼ ΓðN

2
Þ

2N
ffiffiffi
π

p
ΓðNþ1

2
Þ ð5:68Þ

by the duplication formula ΓðzÞΓðzþ 1
2
Þ ¼ 21−2z

ffiffiffi
π

p
Γð2zÞ,

so the partition function (5.37) is

Z ¼ 1

2r2

Z
dσ

chðσÞ2ðNf−2Þ −
2

r2

Z
dσ

chðσÞ2ðNf−1Þ ð5:69Þ

¼ 1

r2
ΓðNf − 2Þ

22ðNf−1Þ ffiffiffi
π

p
ΓðNf − 1

2
Þ : ð5:70Þ

More generally, it is convenient to write (5.39) as

Z½fðσÞ� ¼ 1

r2

�
1

2
z2ðNf−2Þ½fð2σÞ� − 2z2ðNf−1Þ½fð2σÞ�

�
;

zN ½fðσÞ�≡
Z

dσ
fðσÞ
chðσÞN : ð5:71Þ

By differentiating (5.68) with respect to τ, we get

Z
dσ

ð2πiσÞp
chðσÞN ¼ dp

dτp

�
elnΓðN2−iτÞþlnΓðN

2
þiτÞ

2πΓðNÞ
�				

τ¼0

; ð5:72Þ

which vanishes for odd p and can be written in terms
of polygamma functions for even p (it seems challenging to
obtain a closed-form expression for this integral, but it
can be evaluated for fixed p and arbitrary N).22 In
particular, we have

Z
dσ

σ2

chðσÞN ¼ ΓðN
2
Þψ ð1ÞðN

2
Þ

2Nþ1π5=2ΓðNþ1
2
Þ : ð5:74Þ

We can then evaluate

hΦ2i ¼ 2

r4Z
ðz2ðNf−2Þ½σ2� − 4z2ðNf−1Þ½σ2�Þ

¼ 2

π2r2

�
ψ ð1ÞðNf − 2Þ þ 2

Nf − 2

�
; ð5:75Þ

where we have used the recurrence relation

ψ ðmÞðzþ 1Þ ¼ ψ ðmÞðzÞ þ ð−1Þmm!

zmþ1
ð5:76Þ

for simplification (the other one-point functions are trivial:
hM2i ¼ hΦM2i ¼ 0). Now note that the Z2 symmetry
requires that hXCi ¼ hYCi ¼ 0, but does not restrict hZCi.
Therefore, including 1=r corrections, the most general
mixing pattern is

XC ¼ 2Nf−1ΦM2 þ x
r
M2 þ x0

rNf−3
ðΦ2 − hΦ2iÞ; ð5:77Þ

YC ¼ −i2Nf−1M2 þ y
rNf−4

ðΦ2 − hΦ2iÞ; ð5:78Þ

ZC ¼ Φ2 þ z
r2

ð5:79Þ

for x; x0; y; z ∈ C. To constrain these coefficients, we
consider two-point functions. The Z2 symmetry requires
that

hXC ⋆ ZCi ¼ hYC ⋆ ZCi ¼ 0 ð5:80Þ

and does not restrict hXC ⋆ XCi; hYC ⋆ YCi; hZC ⋆ ZCi;
hXC ⋆ YCi. We clearly have (by flux conservation) that
the two-point functions of M2 or ΦM2 with Φ2 vanish.
UsingZ

dσ
σ4

chðσÞN ¼ ΓðN
2
Þð6ψ ð1ÞðN

2
Þ2 þ ψ ð3ÞðN

2
ÞÞ

2Nþ3π9=2ΓðNþ1
2
Þ ; ð5:81Þ

we compute that

hΦ2 ⋆ Φ2i ¼ 8

r6Z
ðz2ðNf−2Þ½σ4� − 4z2ðNf−1Þ½σ4�Þ ð5:82Þ

¼ 2

π4r4

�
ψ ð3ÞðNf−2Þ

þ6ψ ð1ÞðNf−2Þ
�
ψ ð1ÞðNf−2Þþ 4

Nf−2

��
:

ð5:83Þ

On general grounds, we have the relation (5.56) where

22Likewise, one derives the simple formula

Z½σn� ¼ 1

ðπiÞnr2 limτ→0

dn

dτn

×

�ðNf − 2ðτ2 þ 1ÞÞΓðNf − 2 − iτÞΓðNf − 2þ iτÞ
2πΓð2ðNf − 1ÞÞ

�
;

ð5:73Þ

which can be evaluated on a case-by-case basis.

YALE FAN and YIFAN WANG PHYS. REV. D 101, 085008 (2020)

085008-18



hM2 ⋆ M2i ¼ Z−1Z

�
1

22Nfr2ðNf−2Þ
ðσ þ 2iÞðσ − iÞ2ðNf−1Þ þ ðσ − 2iÞðσ þ iÞ2ðNf−1Þ

σðσ2 þ 4Þ
�
: ð5:84Þ

We also compute that

hΦM2 ⋆ ΦM2i

¼ Z−1Z

�
−
ðσ − iÞ2ðNf−1Þ þ ðσ þ iÞ2ðNf−1Þ

22Nfr2ðNf−1Þ

�
: ð5:85Þ

The monopole two-point functions are difficult to evaluate
analytically, unless one fixes Nf. Requiring hXC ⋆ ZCi ¼
hYC ⋆ ZCi ¼ 0 gives

x0hΦ2 ⋆ Φ2ic ¼ yhΦ2 ⋆ Φ2ic ¼ 0 ⇔ x0 ¼ y ¼ 0; ð5:86Þ

where hΦ2 ⋆ Φ2ic ¼ hΦ2 ⋆ Φ2i − hΦ2i2 ≠ 0, so we have
determined that

XC ¼ 2Nf−1ΦM2 þ x
r
M2; YC ¼ −i2Nf−1M2;

ZC ¼ Φ2 þ z
r2
: ð5:87Þ

But now any correlator containing odd numbers of XC, YC
obviously vanishes by flux conservation, so higher-point
functions automatically respect the Z2 symmetry and do
not fix x, z. That is, the Z2 symmetry does not completely
determine XC, ZC at the quantum level (we have more
freedom than when Nf ¼ 4). However, we can still map
M2;ΦM2;Φ2 individually to the Higgs branch side by
matching correlators.23

VI. DEFORMATION QUANTIZATION OF C2=ΓE6;7;8

A. Periods and associativity

We now move on to the E-type singularities

ME6
∶ fðX; Y; ZÞ ¼ X2 þ Y3 þ Z4 ¼ 0;

ME7
∶ fðX; Y; ZÞ ¼ X2 þ Y3 þ YZ3 ¼ 0;

ME8
∶ fðX; Y; ZÞ ¼ X2 þ Y3 þ Z5 ¼ 0; ð6:1Þ

which are hyperkähler quotients of the type C2=ΓE6;7;8
.

In 3D N ¼ 4 SCFTs that realize these on the Higgs or
Coulomb branch, X, Y, Z are half-BPS chiral primaries of
scaling dimension [¼ SUð2ÞR spin]

E6∶ Δ ¼ ð6; 4; 3Þ;
E7∶ Δ ¼ ð9; 6; 4Þ;
E8∶ Δ ¼ ð15; 10; 6Þ: ð6:2Þ

Equations (6.1) then correspond to the chiral ring relations.
As usual, the dynamics of the SCFT gives rise to a

deformation quantization of the Higgs or Coulomb branch.
In particular, the chiral ring relations (6.1) are deformed.
The truncation property of the Higgs or Coulomb branch
algebra (TQM) implies that the deformations are all
relevant, the sense of which should be obvious below.
For the E6 singularity, we start by writing down the most

general deformed chiral ring relation as ΩE6
ðX̂; Ŷ; ẐÞ ¼ 0

with

ΩE6
¼ X̂2 þ Ŷ3 þ Ẑ4 þ β1ζ

2ŶẐ2 þ β2ζ
3Ŷ Ẑþ β3ζ

4Ẑ2

þ β4ζ
6Ŷ þ β5ζ

8Ẑ þ β6ζ
12; ð6:3Þ

where the βi are dimensionless parameters.24 The most
general even deformations of the commutators that satisfy
the Jacobi identities are given by

½X̂; Ŷ� ¼ 4ζẐ3 þ α1ζ
3ðŶ ẐþẐ ŶÞ þ α2ζ

6Ẑ;

½X̂; Ẑ� ¼ −3ζŶ2 þ α1ζ
3Ẑ2 þ α3ζ

9;

½Ŷ; Ẑ� ¼ 2ζX̂: ð6:4Þ

Here, we have used the freedom in operator redefinitions to
put the last two commutators above in simpler forms.
Furthermore, consistency requires Ω to be in the center of
the algebra C½X̂; Ŷ; Ẑ� with commutators (6.4), so that

½X̂;Ω� ¼ ½Ŷ;Ω� ¼ ½Ẑ;Ω� ¼ 0: ð6:5Þ

This puts constraints on the coefficients βi. Indeed, all of
the βi except for one are uniquely determined by α1;2;3 in
(6.4) as follows:

ΩE6
¼ X̂2 þ Ŷ3 þ Ẑ4 þ ð12 − α1Þðζ2ŶẐ2 − 2ζ3X̂ ẐÞ

þ 4ð6 − α1Þζ4Ŷ2 þ 24α1 þ α2
2

ζ6Ẑ2

− ðα2 þ α3Þζ8Ŷ þ γζ12: ð6:6Þ
23The matching of Z across mirror symmetry in (5.15)

determines z in (5.87). A scheme for fixing x is given in
(5.30). Namely, imposing that XC and YC be orthogonal (a
natural choice of basis, in lieu of additional symmetry) gives
x ¼ −i2Nf−1, by (5.56).

24Note that we have partially fixed the gauge redundancy in
defining the operators to put the deformed chiral ring relation in
this form.
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The four parameters fα1;…;α3; γg label the even quanti-
zations of the E6 singularity.
The undeformed E6 singularity has a nontrivial Z2

symmetry that acts as X → −X, Z → −Z. Note that while
the general Coulomb branch algebra presented in (6.4) and
(6.6) is conveniently invariant under this Z2, the constraints
of Z2 will show up in specifying the short products on this
algebra.
For the E7 case, by solving the Jacobi identities and the

center condition (6.5), we find a seven-parameter family of

even quantizations labeled by fα1;…; α6; γg, where the
commutation relations are

½X̂; Ŷ� ¼ 3ζŶẐ2 − 6ζ2X̂ Ẑþζ3ðα4Ẑ3 − 6Ŷ2Þ
− 2ζ5α6Ŷ Ẑþ2ζ6α6X̂þ ζ7Ẑ2α3 þ ζ11α2Ẑþ ζ15α1;

½X̂; Ẑ� ¼ −ζð3Ŷ2 þ Ẑ3Þ þ α6ζ
5Ẑ2 þ α5ζ

13;

½Ŷ; Ẑ� ¼ 2ζX̂; ð6:7Þ
and the center element is

ΩE7
¼ X̂2 þ Ŷ3 þ ŶẐ3

− 3ζX̂Ẑ2 þ ζ2
�
−12Ŷ2Ẑ þ α4

4
Ẑ4

�
þ 18ζ3X̂ Ŷ −ð36þ 3α4 þ α6Þζ4ðŶẐ2 − 2ζX̂ ẐÞ

þ 1

3
ζ6ð6ð36þ 3α4 þ 2α6ÞŶ2 þ ðα3 − 27α4ÞẐ3Þ − 2ζ8ðα3 − 12α6ÞðŶ Ẑ−ζX̂Þ

þ 1

2
ζ10ðα2 − 6ð4α3 þ α4α6ÞÞẐ2 − ζ12ðα2 þ α5ÞŶ þ ζ14ðα1 − 12α2ÞẐ þ γζ18: ð6:8Þ

Similarly, for the E8 singularity, we find an eight-parameter family of even quantizations labeled by fα1; α2;…; α7; γg with
commutators

½X̂; Ŷ� ¼ 5ζẐ4 þ 3α7ζ
3ð−ŶẐ2 þ 2ζX̂ Ẑþ2ζ2Ŷ2Þ þ ζ7α4Ẑ

3 − 2ζ9α6ðŶ Ẑ−ζX̂Þ þ ζ13α3Ẑ
2 þ ζ19α2Ẑ þ ζ25α1;

½X̂; Ẑ� ¼ −3ζŶ2 þ ζ3Ẑ3α7 þ ζ9Ẑ2α6 þ ζ21α5;

½Ŷ; Ẑ� ¼ 2ζX̂ ð6:9Þ

and center element

ΩE8
¼ X̂2 þ Ŷ3 þ Ẑ5 − 20ŶẐ3ζ2 þ 60X̂Ẑ2ζ3 þ 120Ŷ2Ẑζ4 − 120X̂ Ŷ ζ5 þ 960þ α4

4
ζ6Ẑ4

− ζ8ð3α4 þ α6ÞðŶẐ2 − 2ζX̂ ẐÞ þ 2ζ10ð3α4 þ 2α6ÞŶ2 þ ζ12
�
α3
3
þ 48α4 − 56α6

�
Ẑ3

− 2ζ14ðα3 þ 60α6ÞðŶ Ẑ−ζX̂Þ þ ζ18
�
α2
2
þ 48α3 − 3α4α6

�
Ẑ2

− ζ20tðα2 þ α5ÞŶ þ ζ24ðα1 þ 48ðα2 − α5ÞÞẐ þ γζ30: ð6:10Þ

Note that for E7;8, there is no hyperkähler Z2 isometry: thus
the operators X̂; Ŷ; Ẑ are all self-conjugate.

B. Realizations in Lagrangian 3D SCFTs

1. Discretely gauged free hyper

In the following free theories, the Higgs branch chiral
ring generators are easily deduced from the known poly-
nomial invariants of the binary tetrahedral, octahedral, and
icosahedral groups (see, e.g., [49]).

ΓE6
gauged free hyper.—In this case,

Z ¼ 3
3
4

ffiffiffi
2

p
QQ̃ðQ4 − Q̃4Þ;

Y ¼ −ðQ8 þ Q̃8 þ 14Q4Q̃4Þ;
X ¼ Q12 þ Q̃12 − 33Q4Q̃4ðQ4 þ Q̃4Þ; ð6:11Þ

which satisfy X 2 þ Y3 þ Z4 ¼ 0.
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ΓE7
gauged free hyper.—In this case,

Z ¼ −2−2
93−

1
3ðQ8 þ Q̃8 þ 14Q4Q̃4Þ;

Y ¼ −3 × 2
2
3Q2Q̃2ðQ8 þ Q̃8 − 2Q4Q̃4Þ;

X ¼ iðQQ̃ðQ16 − Q̃16Þ − 34Q5Q̃5ðQ8 − Q̃8ÞÞ; ð6:12Þ
which satisfy X 2 þ Y3 þ YZ3 ¼ 0.

ΓE8
gauged free hyper.—In this case,

Z¼QQ̃ðQ10−Q̃10þ11Q5Q̃5Þ;

Y¼ 1

12
ðQ20−228Q15Q̃5þ494Q10Q̃10þ228Q5Q̃15þQ̃20Þ;

X¼ i

24
ffiffiffi
3

p ðQ30þ522Q25Q̃5−10005Q20Q̃10

−10005Q10Q̃20−522Q5Q̃25þQ̃30Þ; ð6:13Þ
which satisfy X 2 þ Y3 þ Z5 ¼ 0.

2. Star-shaped quivers

The only known realizations of E6;7;8 singularities by
interacting SCFTs are through the Higgs branches of affine
E6;7;8 quiver theories.

Affine E6 quiver.—This theory looks as follows:

ð6:14Þ

The quiver has an obvious S3 symmetry acting on the Higgs
branch, but at the operator level, only a Z2 subgroup acts
faithfully. The latter corresponds to the nontrivial Z2 acting
as ðX ;Y;ZÞ → ð−X ;Y;−ZÞ on the Higgs branch CPOs.
The affine E6 quiver is obtained by gauging the diagonal

SUð3Þ Higgs branch flavor symmetry of three T½SUð3Þ�
linear quiver theories. Hence the Higgs branch CPOs of the
E6 theory are conveniently described as SUð3Þ-invariant
combinations of those of T½SUð3Þ�.
Recall the T½SUð3Þ� quiver

ð6:15Þ

and denote the two bifundamental hypers by ðqi; q̃iÞ and
ðQA

i ; Q̃
i
AÞ, with i ¼ 1, 2 and A ¼ 1, 2, 3 being the

fundamental indices for Uð2Þ and SUð3Þ, respectively.
The Higgs branch chiral ring is generated by the meson
(moment map operator)

MA
B ≡QA

i Q̃
i
B −

1

3
QC

i Q̃
i
Cδ

A
B; ð6:16Þ

whose quarks are Uð2Þ × SUð3Þ bifundamentals. It has
dimension Δ ¼ 1 and transforms in the adjoint representa-
tion of SUð3Þ.
Let us denote the generators of the Higgs branch algebra

of the three copies of T½SUð3Þ� by MðaÞAB. By contracting
the SUð3Þ indices, we can construct the Higgs branch
algebra of the E6 theory. Recall that the dimensions of the
CPOs are ΔðXÞ ¼ 6, ΔðYÞ ¼ 4, and ΔðZÞ ¼ 3. Thus

X ∝ trðM2
ð1ÞM

2
ð2ÞM

2
ð3ÞÞ þ Z2;

Y ∝ trðM2
ð1ÞM

2
ð2ÞÞ;

Z ∝ trðM2
ð1ÞMð2ÞÞ: ð6:17Þ

The precise expressions are given in Appendix C. 3. a. In
(6.17), we give a particular way to represent the CPOsX , Y,
Z in terms of the hypermultiplet scalars. All other repre-
sentatives differ by terms involving the D-term relations.

Affine E7 quiver.—Our conventions are

ð6:18Þ

where subscripts label mesons for each leg. One can use the
same reasoning as for E6 to find the invariants at various Δ;
the result, as summarized in [46,50], is that the basic
invariants are

Z ¼ trðM3
ð1ÞMð3ÞÞ;

Y ¼ −trðM3
ð1ÞM

3
ð2ÞÞ;

X ¼ trðM2
ð1ÞM

3
ð2ÞM

3
ð1ÞMð3ÞÞ: ð6:19Þ

See Appendix C. 3 b for details.

Affine E8 quiver.—Our conventions are

ð6:20Þ

The basic invariants (again, see [46]) are

Z ¼ trðM5
ð1ÞMð2ÞÞ;

Y ¼ trðM5
ð1ÞM

2
ð2ÞMð1ÞM2

ð2ÞÞ;
X ¼ trðM5

ð1ÞM
2
ð2ÞMð1ÞM2

ð2ÞM
3
ð1ÞM

2
ð2ÞÞ: ð6:21Þ

See Appendix C. 3. c for details.

NON-ABELIAN MIRROR SYMMETRY BEYOND THE CHIRAL … PHYS. REV. D 101, 085008 (2020)

085008-21



VII. E-TYPE MIRROR SYMMETRY

The main appeal of the Higgs branch topological sectors
in the affine E-type quivers is that they might shed light on
the non-Lagrangian Coulomb branch algebras (not asso-
ciated with a non-Abelian gauge theory with matter) to
which they are mirror dual. One hope is that applying
suitable manipulations and Fourier transform identities to
the Higgs branch matrix models for the E-series partition
functions might give hints about the mirror duals.
Since the E-type (and D-type) theories can be built from

T½SUðNÞ� theories [which are realized on S-duality domain
walls of 4D N ¼ 4 SUðNÞ SYM [41] ] by diagonal
gauging, it is natural to use the massive TQM of the
constituent T½SUðNÞ� theories to determine the operator
algebras of the full quiver theories.25

A. En matrix models

While we leave an in-depth examination of the Higgs
branch matrix models of the affine En quiver theories to
future work, we briefly make some comments on the most
tractable case, E6. The partition function of the affine E6

quiver is given by

ZE6
¼ 1

2!

Z Y3
a¼1

dua3δðu13 þ u23 þ u33Þ
�Y
a<b

shðua3 − ub3Þ2
�

× ZT½SUð3Þ�ðua3Þ3; ð7:1Þ

where ZT½SUð3Þ�ðua3Þ with
P

3
a¼1 u

a
3 ¼ 0 is the Higgs branch

mass-deformed T½SUð3Þ� partition function.26 The partition
function of a single leg can be evaluated explicitly [47]:

ZT½SUð3Þ�ðua3Þ ¼
1

2!

Z
du1

Y2
i¼1

dui2

×
shðu12 −u22Þ2Q

2
i¼1 chðu1−ui2Þ

Q
2
i¼1

Q
3
a¼1 chðui2−ua3Þ

ð7:2Þ

¼ 1

2!

Z Y2
i¼1

dui2
ðu12−u22Þshðu12−u22ÞQ
2
i¼1

Q
3
a¼1chðui2−ua3Þ

ð7:3Þ

¼ 1

2

Y
a<b

ua3 − ub3
shðua3 − ub3Þ

: ð7:4Þ

Thus by integrating over the T½SUð3Þ� variables u1;2 and
then taking Fourier transforms, one can rewrite (7.1) in a
form reminiscent of a rank-one matrix model. Namely,
using

Z
dy e2πixy

yn

shðyÞ ¼
i
2

∂n
x thðxÞ
ð2πiÞn

⇒
x3

shðxÞ ¼
Z

dy e2πixy
�
4 − chð2yÞ
chðyÞ4

�
ð7:5Þ

and a cyclic convolution identity from [32] gives27

ZE6
¼ 1

16

Z Y3
a¼1

dua3δðu13 þ u23 þ u33Þ
Y
a<b

ðua3 − ub3Þ3
shðua3 − ub3Þ

¼ 1

48

Z
dy

�
4 − chð2yÞ
chðyÞ4

�
3

: ð7:8Þ

To mimic the one-loop determinants in a rank-one
Lagrangian theory, one might wish to write the integrand
in the form sh���sh

ch���ch, but it remains to be seen whether this
rewriting has any physical significance.
Note that the E7 theory contains two copies of T½SUð4Þ�

and one copy of T ½2;2�½SUð4Þ�, whereas the E8 theory
contains one copy each of T½SUð6Þ�, T ½3;3�½SUð6Þ�, and
T ½2;2;2�½SUð6Þ�.28 Hence one can use the same strategy of
combining the convolution identity (7.7) with the results of
[47,51] for T½SUðNÞ� and the results of [52] for the
partition functions of the other legs (in the limit of
vanishing FI parameters) to rewrite the E7;8 partition
functions as one-dimensional integrals.
Returning to T½SUð3Þ�, we have

ZT½SUð3Þ�ðua3Þ ¼
1

2!

Z
du1

�Y2
i¼1

dui2

�
shðu12 − u22Þ2Zuðua3Þ;

ð7:9Þ

where
P

3
a¼1 u

a
3 ¼ 0 and

25See [37,47,51,52] for results on the sphere partition functions
of the T½SUðNÞ� (and more generally, the Tσ

ρ½G�) theories, and in
particular Appendix A of [37] for comments on the T3 theory [53]
mirror to the affine E6 quiver. See also [54] for applications of the
technique of gauging linear quivers to the study of mirror
symmetry for various balanced quivers.

26The prefactor of 1=2! rather than 1=3! is due to our
convention of defining the affine E-type quivers by making
the central node PSU as opposed to SU; see Footnote 15.

27Let σj−1;1 ≡ σj−1 − σj, σ0 ≡ σN . If FjðσÞ are functions
whose Fourier transforms F̃jðτÞ are defined by

FjðσÞ¼
Z

dτe−2πiστF̃jðτÞ; F̃jðτÞ¼
Z

dσe2πiστFjðσÞ; ð7:6Þ

then we have

Z �YN
j¼1

dσj

�
δ

�
1

N

XN
j¼1

σj

�YN
j¼1

Fjðσj−1;jÞ¼
Z

dτ
YN
j¼1

F̃jðτÞ: ð7:7Þ
28Here, we use the notation of [52] where T½SUðNÞ�≡

T ½1;…;1�
½1;…;1�½SUðNÞ� and Tρ½SUðNÞ�≡ T ½1;…;1�

ρ ½SUðNÞ�.
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Zuðua3Þ ¼
1Q

2
i¼1 chðu1 − ui2Þ

Q
2
i¼1

Q
3
a¼1 chðui2 − ua3Þ

¼
Z

DqDq̃DQDQ̃e4πr
R

dφL ð7:10Þ

with

L ¼ q̃iðδjið∂φ þ u1Þ − ðu2ÞijÞqj
þ Q̃i

AðδjiδAB∂φ þ ðu2ÞijδAB − δjiðu3ÞBAÞQB
j ð7:11Þ

and u2 ¼ diagðu12; u22Þ, u3 ¼ diagðu13; u23; u33Þ. Hence we
have

hqiðφ1Þq̃jðφ2Þiu ¼ −δji
sgnðφ12Þ þ thðu1 − ui2Þ

8πr

× e−ðu1−ui2Þφ12 ; ð7:12Þ

hQA
i ðφ1ÞQ̃j

Bðφ2Þiu ¼ −δjiδAB
sgnðφ12Þ þ thðui2 − uA3 Þ

8πr

× e−ðu
i
2
−uA

3
Þφ12 : ð7:13Þ

These two-point functions allow us to compute the OPE
within the TQM and hence the quantization of the E6 chiral
ring relation, along the lines of Sec. 6 of [32]. Recalling that
ðMðIÞÞAB ¼ ðQðIÞÞAi ðQ̃ðIÞÞiB, we can also consider insertions
of operators built from these mesons into ZT½SUð3Þ�ðua3Þ
written in the simplified form (7.3). We have yet to find a
way to write these insertions in an enlightening way.
Finally, the Z2 symmetry of the E6 theory may help

identify which chiral ring generators map to monopoles and
which to scalars, assuming that this Z2 is realized as charge
conjugation in the mirror theory.29 By this logic, X and Z
in the E6 theory (which flip sign under charge conjugation,
and whose one-point functions must vanish) should map to
monopoles in the non-Lagrangian dual. This is contrary to
the D-case, where Z maps to a scalar. In the E7 and E8

cases, we no longer have a Z2 symmetry, so the circum-
stantial vanishing of one-point functions can no longer be
used as evidence of mapping to monopoles (for instance,
one cannot rule out mixing with the Cartan scalar, after
subtracting one-point functions).

B. En monopoles

Putting aside the structure of the (known) matrix models,
it is interesting to ask whether the structure of the would-be
shift operators themselves reveals any information about
the monopole spectrum of the non-Lagrangian duals to the

En quiver theories. Some hints that we can use to answer
this question are Lagrangian intuition, the commutative
limit, and scaling dimensions (for constraining bubbling
coefficients).
Let us make a few preliminary comments that can

hopefully be clarified in future work. We make the
following assumptions:

(i) The fact that the mirror dual theories have rank one
means that their monopole charges belong to a one-
dimensional vector space.

(ii) The hypothetical dual gauge group is “semisimple,”
meaning that the dimensions of (dressed) monopoles
are fully accounted for by powers of the vector
multiplet scalar in the commutative limit (see
Footnote 9).

(iii) One of the Coulomb branch chiral ring generators is
constructed from the vector multiplet scalar and
therefore takes the form Φd, where d is a positive
integer determined by the hypothetical Weyl group.

The second assumption is motivated by the fact that the
dimensions (6.2) of the En chiral ring generators are known
to be integers, just as the dimensions of monopoles in a
Lagrangian theory with semisimple gauge group are
integers (otherwise, they could be half-integers, or con-
ceivably even other fractions in a non-Lagrangian theory).
The third assumption is perhaps most plausible in the case
of E6, which has a Z2 symmetry.
We now work out the consequences of these assump-

tions. In the commutative limit, a primitive monopole [33]
of dimension Δ and charge q can only bubble to the
identity:

Mq
∞¼ΦΔcðqÞe½q�⇒gMq

∞¼ΦΔðcðqÞe½q�þbðqÞÞ ð7:14Þ

⇒ΦδMq
∞ ¼

X
w∈W

w−1ðΦÞΔþδðcðwðqÞÞe½wðqÞ�þbðwðqÞÞÞ;

ð7:15Þ

where b, c are complex numbers. By the rank-one
assumption, a given Weyl group element w can only act
via multiplication by a constant cw, so

ΦδMq
∞¼

X
w∈W

�
Φ
cw

�
Δþδ

ðcðcwqÞe½cwq�þbðcwqÞÞ: ð7:16Þ

If Δ ≥ 0, then the bubbling term is a “Weyl-invariant”
polynomial (monomial in the commutative limit) and can
be removed by a change of basis:

ΦδMq
∞ ¼

X
w∈W

�
Φ
cw

�
Δþδ

cðcwqÞe½cwq�: ð7:17Þ

Note that e½cwq� ¼ e½q�cw . Now recall the relevant singu-
larities (below, we omit the subscript C for “Coulomb”):

29The Coulomb branches in the A, D, and E6 cases all have a
Z2 symmetry (S3 in the case of D4) that commutes with the
hyperkähler structure, whereas the E7 and E8 cases do not have
any symmetries. For A and D, it is natural to identify the Z2 with
charge conjugation, which acts on monopoles.
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AN∶ X2 þ Y2 þ ZNþ1 ¼ 0; ð7:18Þ

DN∶ X2 þ ZY2 þ ZN−1 ¼ 0; ð7:19Þ

E6∶ X2 þ Y3 þ Z4 ¼ 0; ð7:20Þ

E7∶ X2 þ Y3 þ YZ3 ¼ 0; ð7:21Þ

E8∶ X2 þ Y3 þ Z5 ¼ 0: ð7:22Þ

We wish to determine the Coulomb branch operators in
rank-one theories that satisfy these relations. For AN and
DN , we think of X and Y as (dressed) monopoles and Z as
the vector multiplet scalar. Since overall factors of Φ must
cancel for dimensional reasons, to solve the above rela-
tions, we may set Z ¼ 1 and replace X and Y by Laurent
polynomials P and Q in a single variable x ∼ e½q� (by the
rank-one assumption):

AN and DN∶ Pðx;x−1Þ2þQðx;x−1Þ2þ 1¼ 0: ð7:23Þ

This equation is easily solved by

Pðx;x−1Þ ¼ x− x−1

2
; Qðx;x−1Þ ¼ iðxþ x−1Þ

2
: ð7:24Þ

For the E-series, there are more possibilities to consider for
which operators are scalars and which are monopoles, but
let us restrict our attention to the possibility that Y is the
scalar (which is most plausible in the case of E6). Then we
obtain the equation

Pðx; x−1Þm þQðx; x−1Þn þ 1 ¼ 0; ð7:25Þ

where m, n are positive integers and P, Q are single-
variable Laurent polynomials with coefficients in C. The
cases of E6;7;8 correspond to ðm; nÞ ¼ ð2; 4Þ; ð2; 3Þ; ð2; 5Þ,
respectively, while the A- and D-series correspond to
ðm; nÞ ¼ ð2; 2Þ. We wish to find nontrivial solutions to
the above polynomial Diophantine equations, i.e., solutions
with neither P nor Q constant (if no such solutions exist,
then the assumptions should be relaxed).30

In general, one can ask for which m, n there exist
nontrivial solutions to (7.25) (without loss of generality, we
may restrict our attention to 2 ≤ m ≤ n, where we impose

the first inequality because solutions are trivial to obtain if
either m, n is 1). We have not been able to find or rule out
nontrivial solutions beyond ðm; nÞ ¼ ð2; 2Þ.31 One pos-
sibility is that we should abandon semisimplicity, so that
the monopoles have dimensions not accounted for by Φ.

VIII. SUMMARY AND FUTURE DIRECTION

This paper presents the results of precision studies of
non-Abelian ADE mirror symmetry beyond the chiral ring,
using the recently developed TQM techniques in [31–33].
As a by-product, we extend the construction of deformation
quantizations of [24] to the D- and E-series. We focus on
D-type quivers, in particular synthesizing OPE data (struc-
ture constants) for the chiral ring generators of theD-series,
but we also comment on possible implications for the
monopole spectrum of the non-Lagrangian theories whose
Coulomb branches are C2=ΓE6;7;8

. We find the precise map
between quantized Higgs branch chiral ring generators in
D-type quivers and quantized Coulomb branch chiral ring
generators in SUð2Þ SQCD. Our results provide additional
entries in the mirror symmetry dictionary for non-Abelian
3D N ¼ 4 gauge theories beyond, e.g., the matching of
supersymmetric partition functions32 [55–58] and chiral
rings [17].
It is safe to say that the range of applications of the Higgs

and Coulomb branch TQM has yet to be fully explored. For
one thing, it would be interesting to incorporate the
additional constraints of N ¼ 6 or N ¼ 8 SUSY [59] into
the TQM analysis. For another, the OPE data that we have
computed can be fed into the bootstrap machine to study
the full CFT spectrum and (self-)mirror symmetry beyond
the TQM sector, à la [37]. Finally, the connection between
these techniques and protected operator algebras in one
dimension higher [60] (several aspects of which have
recently been derived from localization [61,62]) via dimen-
sional reduction [63–65] leads us to wonder whether the
TQM contains tractable lessons about line operators in 4D
gauge theories.
A technical detail that we have glossed over is the

following. To define the star-shaped quivers of interest, we
start with all nodes unitary (U) and quotient by the diagonal
Uð1Þ, as suggested by their brane constructions. (See [66]
for Coulomb branch computations in these theories.) As a
computational matter, it is convenient to implement the

30Recall that the A-series has two independent monopoles and
trivial Weyl group, while the D-series has one independent
monopole and nontrivial Weyl group. For the E-series, we
assume that two of the generators are monopoles, but assuming
only one independent monopole (so that the other is simply a
dressed version of it) would imply that P and Q have the same
powers of x and differ only in their coefficients; then P and Q
(and the corresponding monopole operator) would need infinitely
many terms, since the degrees could not match otherwise. So we
are led to postulate two independent monopoles for the E-series.

31However, the existence of nontrivial solutions for small
ðm; nÞ is not immediately ruled out by the abc inequality for
polynomials (Mason-Stothers theorem). We thank J. Silverman
for this comment.

32Matrix models for sphere partition functions of affine A-type
quiver theories of arbitrary rank have been studied in [55],
leading to a derivation of the mirror map between mass and FI
parameters. The corresponding analysis for D-type quivers was
performed in [56,57], and in this case, a free-fermion represen-
tation for the partition function (with vanishing mass and FI
parameters) was derived in [58].

YALE FAN and YIFAN WANG PHYS. REV. D 101, 085008 (2020)

085008-24



quotient simply by making one of the nodes SU. More
precisely, we should make one of the nodes PSU. The
distinction between SU and PSU is irrelevant to normal-
ized correlation functions of local operators (in particular,
TQM observables). However, the precise normalization of
the partition function depends on which U node we make
PSU: a PSUðNÞ node introduces a factor of N in the
partition function relative to an SUðNÞ node because the
volumes of these groups differ, and the inverse volume
enters into the gauge-fixed path integral. We found that to
match the partition function of the affine D-type quiver to
that of SUð2Þ SQCD, it suffices to make one of the Uð2Þ
nodes SOð3Þ. The situation is less clear for the affine
E-type quivers since their mirrors are non-Lagrangian, but
one can in principle match partition functions (including
discrete factors) by reducing the 4D index of the En
Minahan-Nemeschansky theories [67,68]. It would be
interesting to clarify the general procedure for decoupling
the overall Uð1Þ and to understand better the global
structure of the gauge group in the affine quiver when
comparing to the mirror theory.
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APPENDIX A: DETAILS OF TQM
COMPUTATIONS

1. Fourier transform identities

The basic Fourier transform identities that we will
need are

1

chðxÞ¼
Z

dy
e2πixy

chðyÞ ;
1

shðxÞ¼
i
2

Z
dye−2πixythðyÞ: ðA1Þ

Other useful identities includeZ
dy

e2πixy

chðyÞ2 ¼
x

shðxÞ ;
Z

dy
e2πixy

chðyÞ3 ¼
1þ 4x2

8chðxÞ : ðA2Þ

By differentiating (A1), we obtainZ
dy e2πixy

thðyÞ
chðyÞ ¼

2ix
chðxÞ : ðA3Þ

By further differentiating (A3), we obtain analogous for-
mulas for ynthðyÞ=chðyÞ, e.g.,

Z
dy e2πixy

y thðyÞ
chðyÞ ¼ 1 − πx thðxÞ

π chðxÞ : ðA4Þ

We have in addition thatZ
dy e2πixy

thðyÞ2
chðyÞ ¼ 1 − 4x2

2chðxÞ ; ðA5Þ

and by differentiating (A5), we obtain analogous formulas
for ynthðyÞ2=chðyÞ, e.g.,Z

dy e2πixy
y thðyÞ2
chðyÞ ¼ ið8xþ πð1 − 4x2ÞthðxÞÞ

4π chðxÞ : ðA6Þ

One can go on to derive similar identities. Finally, we
note thatZ

dσ
chðσ − u1Þchðσ − u2Þ

¼ u1 − u2
shðu1 − u2Þ

: ðA7Þ

2. ΓD4
Gauged free hyper

Recall that in this theory,

Z0 ¼ −2Q2Q̃2; Y0 ¼ iðQ4 þ Q̃4Þ;
X0 ¼

ffiffiffi
2

p
iQQ̃ðQ4 − Q̃4Þ: ðA8Þ

Thus

U0;V0 ¼ −Q2Q̃2 � i

2
ffiffiffi
3

p ðQ4 þ Q̃4Þ;

W0 ¼
iffiffiffi
2

p QQ̃ðQ4 − Q̃4Þ; ðA9Þ

where we use the 0 subscript to denote a “bare” Higgs
branch CPO. Canonically normalized CPOs without 0
subscripts have vanishing one-point functions and diagonal
two-point functions (in a real basis).
We would like to compute correlation functions of the

CPOs. To proceed, we need the two-point function ofQ; Q̃,
which is

hQðφ1ÞQ̃ðφ2Þi ¼ −
sgnðφ12Þ

8πr
¼ sgnðφ12Þ

2l
ðA10Þ

(recall that l ¼ −4πr from [31]). The correlator at coinci-
dent points is 0. In particular,

hU0i ¼ hV0i ¼ hW0i ¼ 0; ðA11Þ

and consequently the normalized CPOs are
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U ¼ U0; V ¼ V0; W ¼ W0: ðA12Þ

There is no further “gauge ambiguity” in this case.
Doing simple Wick contractions, we obtain

hU ⋆Vi¼ 1

2l4
; hW ⋆Wi¼−

15

8l6
;

hU ⋆Wi¼hV ⋆Wi¼0;

hU ⋆U ⋆Ui¼hV ⋆V ⋆Vi¼ 3

l6
; hU ⋆V ⋆Wi¼−

5
ffiffiffi
6

p

2l7
;

hU2 ⋆V2i¼ 15

2l8
; hUV ⋆UVi¼122×4!2þ8!×2

122ð2lÞ8 ¼ 21

4l8
:

ðA13Þ

Thus, comparing to (4.16), we have

ζ ¼ 4
ffiffiffi
2

p

l
; A ¼ −

179

32
;

α1 ¼
3

16
; α2 ¼

1

2048
; α4 ¼

5

8
: ðA14Þ

In particular, the S3 symmetry is obvious in the TQM.

3. Affine D4 quiver

Recall that the Higgs branch chiral ring generators are
given by

U0 ¼ eiπ=6Q̃1Q3Q̃3Q1 þ e−iπ=6Q̃2Q3Q̃3Q2;

V0 ¼ e−iπ=6Q̃1Q3Q̃3Q1 þ eiπ=6Q̃2Q3Q̃3Q2;

W0 ¼ 33=4iQ̃1Q2Q̃2Q3Q̃3Q1 ðA15Þ

in terms of gauge-invariant combinations of the
hypermultiplets.
We adopt the normalization (5.12) for the S3 partition

function of the affine D4 quiver, which we can write as

ZD4
¼

Z
du

Y
A

dσAshð2uÞ2Zσ;u ¼
1

120π
; ðA16Þ

where

Zσ;u ¼
Z Y

A

DQi
ADQ̃iA

×exp

�
4πr

Z
dφ

�X
A

Q̃iAð∂φδ
i
jþ σAδ

i
jþutijÞQj

A

��
ðA17Þ

and t ¼ σ3. Thus the propagators are

hQiAðφ1ÞQ̃j
Bðφ2Þiσ;u

¼ −δABδ
j
i
sgnðφ12Þ þ thðσA � uÞ

8πr
e−ðσA�uÞφ12 ; ðA18Þ

where φ12 ≡ φ1 − φ2 and the � sign is þ when i ¼ j ¼ 1
and − when i ¼ j ¼ 2. We emphasize that the 1D TQM
path integral has an explicit S4 symmetry permuting the A
indices (as explained before, only an S3 subgroup acts
faithfully on CPOs). At coincident points, we use the
symmetrized expression

hQiAðφÞQ̃j
BðφÞiσ;u ¼ −δABδ

j
i
thðσA � uÞ

8πr
; ðA19Þ

and in computing correlation functions, we always assume
the φi are ordered as33

φ1 < φ2 < φ3 < � � � : ðA20Þ

Note that (incomplete) self-contractions of a composite
operator can also contribute to connected correlators. The
correlators that we compute below are normalized
by (A16).

a. Computation of TQM correlators

To compute the (normalized) two-point function
hU ⋆ Vi, we need to compute hU0 ⋆ V0i as well as the
one-point functions hU0i and hV0i.
We start by recording the Wick contractions in the 1D

TQM on the Higgs branch:

hðQ̃1Q3Q̃3Q1Þðφ1ÞðQ̃1Q3Q̃3Q1Þðφ2Þiσ
¼ 1

ð2lÞ4 ðIc þ Is þ IssÞ ðA21Þ

for φ1 < φ2, where cross-contractions give

Ic ¼ ðð1þ thðσ1 − uÞÞð1 − thðσ3 − uÞÞ
þ ðu ↔ −uÞÞ × ðσ1 ↔ σ3Þ

¼ 16

�
1

chðσ1 − uÞchðσ3 − uÞ þ
1

chðσ1 þ uÞchðσ3 þ uÞ
�

2

ðA22Þ

and self-contractions give

Is ¼ ðthðσ1 − uÞ2ðthðσ3 − uÞ2 − 1Þ þ ðu ↔ −uÞÞ
þ ðσ1 ↔ σ3Þ ðA23Þ

33Thus our conventions are that operator insertions in the
expression hO1 ⋆ � � � ⋆ Oni are understood to be in ascending
order; compare to (2.11) and (5.38).
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as well as

Iss ¼ ðthðσ1 − uÞthðσ3 − uÞ þ ðu ↔ −uÞÞ2: ðA24Þ

Doing the matrix integral, we get

hðQ̃1Q3Q̃3Q1Þðφ1ÞðQ̃1Q3Q̃3Q1Þðφ2Þi ¼
π4− 30

20π4l4
: ðA25Þ

Similarly,

hðQ̃1Q3Q̃3Q1Þðφ1ÞðQ̃2Q3Q̃3Q2Þðφ2Þiσ
∝ ðthðσ1 − uÞthðσ2 − uÞðthðσ3 − uÞ2 − 1Þ þ ðu ↔ −uÞÞ
þ ðthðσ1 − uÞthðσ3 − uÞ þ ðu ↔ −uÞÞ
× ðthðσ2 − uÞthðσ3 − uÞ þ ðu ↔ −uÞÞ ðA26Þ

has only self-contractions. We get

hðQ̃1Q3Q̃3Q1Þðφ1ÞðQ̃2Q3Q̃3Q2Þðφ2Þi¼
45þπ4

60π4l4
: ðA27Þ

We also have the one-point functions

hQ̃1Q3Q̃3Q1i ¼ hQ̃2Q3Q̃3Q2i ¼
1

6l2
: ðA28Þ

Thus the connected two-point functions (hO1O2ic ¼
hO1O2i − hO1ihO2i) are

hðQ̃1Q3Q̃3Q1Þðφ1ÞðQ̃1Q3Q̃3Q1Þðφ2Þic
¼ hðQ̃2Q3Q̃3Q2Þðφ1ÞðQ̃2Q3Q̃3Q2Þðφ2Þic
¼ −2hðQ̃1Q3Q̃3Q1Þðφ1ÞðQ̃2Q3Q̃3Q2Þðφ2Þic
¼ 2π4 − 135

90π4l4
: ðA29Þ

Putting everything together, we have

U ¼ U0 − hU0i; V ¼ V0 − hV0i; ðA30Þ

where

hU ⋆ Vi ¼ 2hQ̃1Q3Q̃3Q1 ⋆ Q̃1Q3Q̃3Q1ic
þ hQ̃1Q3Q̃3Q1 ⋆ Q̃2Q3Q̃3Q2ic

¼ 2π4 − 135

60π4l4
; ðA31Þ

hU ⋆ Ui ¼ hQ̃1Q3Q̃3Q1 ⋆ Q̃1Q3Q̃3Q1ic
þ 2hQ̃1Q3Q̃3Q1 ⋆ Q̃2Q3Q̃3Q2ic ¼ 0: ðA32Þ

Similarly, one can check explicitly that

hU ⋆ Wi ¼ hV ⋆ Wi ¼ 0: ðA33Þ

At the level of the TQM, this is a simple consequence of the
exact S3 symmetry of (A16).
We summarize the results of similar computations for

various correlators below:

hU ⋆ Vi ¼ 2π4 − 135

60π4l4
;

hU ⋆ U ⋆ Ui ¼ hV ⋆ V ⋆ Vi ¼ 32π4 − 2835

420
ffiffiffi
3

p
π4l6

;

hW ⋆ Wi ¼ 3
ffiffiffi
3

p ðπ4 − 105Þ
140π4l6

;

hU ⋆ V ⋆ Wi ¼ 3
ffiffiffi
34

p ðπ4 − 105Þ
140π4l7

;

hU2 ⋆ V2i ¼ −
ðπ4 − 105Þð32π4 − 2835Þ
490π4ð2π4 − 135Þl8

;

hUV ⋆ UVi ¼ −
14175þ 12180π4 − 128π8

2800π8l8
: ðA34Þ

These correspond to (4.18) with ζ ¼ 1. Note that we have
performed Gram-Schmidt diagonalization to define the
composite operators.

4. Affine Dn quiver

a. Partition function

We start by simplifying the Higgs branch matrix model
of the affine Dn quiver, while also reviewing the mirror
equivalence to SQCD at the level of S3 partition functions.
The Cauchy determinant formulaQ

i<jshðxi − xjÞshðyi − yjÞQ
i;jchðxi − yjÞ

¼
X
ρ∈SN

ð−1ÞρQ
N
i¼1 chðxi − yρðiÞÞ

¼ detM; ðA35Þ

where Mij ¼ 1=chðxi − yjÞ and i; j ¼ 1;…; N, proves
useful for removing “sh” factors from the integrand.
We first check that accounting for the volume factor of 2

(for PSU versus SU gauge group) is necessary to match the
partition function to that of SUð2Þ SQCD.34 Relabeling
σ1;3 ¼ u1;20 and σ2;4 ¼ u1;2n−2, we write

34Alternatively, the affineDn quiver can be realized by gluing a
nonaffineD3 quiver to aDn−3 quiver by gauging the SUð2Þ flavor
node(s). Each Dk quiver takes the form

with k − 2 Uð2Þ gauge nodes.
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ZDn
¼ 1

2n−4

Z �Yn−2
I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

Q
n−3
I¼1 shðu1I − u2I Þ2Q

n−3
I¼0

Q
2
i;j¼1 chðuiI − ujIþ1Þ

¼ 1

2n−4

Z �Yn−2
I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu1n−2 − u2n−2Þ

Q
n−3
I¼0 shðu1I − u2I Þshðu1Iþ1 − u2Iþ1ÞQ

n−3
I¼0

Q
2
i;j¼1 chðuiI − ujIþ1Þ

and then use (A35) in the formQ
i<jshðuiI − ujIÞshðuiIþ1 − ujIþ1ÞQ

i;jchðuiI − ujIþ1Þ
¼

X
ρ∈S2

ð−1ÞρQ
2
i¼1 chðuiI − uρðiÞIþ1Þ

to get

ZDn
¼ 1

2n−4

Z �Yn−2
I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu1n−2 − u2n−2Þ
Yn−3
I¼0

X
ρI∈S2

ð−1ÞρIQ
2
i¼1 chðuiI − uρIðiÞIþ1 Þ

:

Now note that the integrand is even under swapping the integration variables u1I and u2I for I ¼ 0;…; n − 2; by swapping
these variables in turn, this becomes simply

ZDn
¼ 1

2n−4

Z �Yn−2
I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu1n−2 − u2n−2Þ
Yn−3
I¼0

2Q
2
i¼1 chðuiI − uiIþ1Þ

¼ 4

Z �Yn−2
I¼0

Y2
i¼1

duiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu1n−2 − u2n−2Þ
Q

n−3
I¼0

Q
2
i¼1 chðuiI − uiIþ1Þ

: ðA36Þ

Using (A1) and simplifying, we get

ZDn
¼ 4

Z �Yn−2
I¼0

Y2
i¼1

duiI

��Yn−3
I¼0

Y2
i¼1

dsiI

�
δðu11 þ u21Þ

shðu10 − u20Þshðu1n−2 − u2n−2Þ
Yn−3
I¼0

Y2
i¼1

e2πis
i
IðuiI−uiIþ1

Þ

chðsiIÞ
¼ � � �

¼ 1

2

Z
ds10ds

1
1

chðs10Þ2chðs11Þ2ðn−3Þ
thðs10Þthðs11Þδðs10 − s11Þ ¼

1

4

Z
ds

shðsÞ2
chðs=2Þ2n ; ðA37Þ

which coincides with the partition function of SUð2Þ with n flavors up to our conventional factor of 1=r2 [see (5.37)].35

b. Computation of TQM correlators

We now compute the one- and two-point functions hZi and hZ ⋆ Zi. Recall that

Z ≡ −Q̃1Q3Q̃3Q1 ¼ −ðQ̃1ÞiðQ3ÞiðQ̃3ÞjðQ1Þj: ðA39Þ

It is helpful to note that integration by parts can be used to simplify hZ � � �ZiHB: in the matrix model (5.10) for ZDn
, an

insertion of the form

35Another typo in [47] can be found in their formula (3.3). The correct version is

1

2

Z
dx

shð2xÞ2QNf

i¼1 chðx −miÞchðxþmiÞ
¼ ð−1ÞNfþ1

XNf

i¼1

mishð2miÞQ
j≠iðshðmiÞ2 − shðmjÞ2Þ

; ðA38Þ

the ð−1ÞNfþ1 on the RHS having been overlooked. The LHS is the partition function of SUð2Þ SQCD with Nf flavors and mass
parameters, which reduces to our expression (5.37) (up to the 1=r2) when the mi ¼ 0. However, the above equality holds only when the
mass parameters are distinct.
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chðσ − uÞchðσ þ uÞ∂σ

�
thðσ − uÞpthðσ þ uÞq
chðσ − uÞchðσ þ uÞ

�
ðA40Þ

(where σ is σ1 or σ3 and u≡ u11 ¼ −u21) is a total derivative.
In particular, taking ðp; qÞ to be (0, 0) or (1, 0) shows that
the expressions

thðσ − uÞ þ thðσ þ uÞ;
1–2thðσ − uÞ2 − thðσ − uÞthðσ þ uÞ ðA41Þ

are total derivatives. This observation is useful because
before simplification, hZ � � �ZiHB is a polynomial in
thðσ � uÞ, while dropping total derivatives allows it to
be written as a polynomial in thðσ − uÞ; this facilitates
manipulation of the resulting integrals because it allows for
shifts of σ by u, thus decoupling the u integral.
To set the stage, we determine the expression for the

partition function after integrating over all Higgs branch
variables except for ui0 (i.e., σ1;3) and ui1. This yields a
simplified Higgs branch matrix model with all scalar VEVs
integrated out, apart from those relevant to an insertion
of hZ � � �ZiHB. Starting from the first line of (A37), we
derive that

ZDn
¼ −2i

Z
ds e2πisðu11−u21ÞthðsÞ

chðsÞ2n−6
�Y2

i¼1

dui0du
i
1

�
×

δðu11 þ u21Þ
shðu10 − u20Þchðu10 − u11Þchðu20 − u21Þ

¼ −2i
Z

ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
×

du
shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ : ðA42Þ

Let us write

h� � �i ¼ 1

ZDn

ZDn
½h� � �iHB�: ðA43Þ

We now compute by taking Wick contractions that

hZiHB ¼ −
�

1

8πr

�
2

ðthðσ1 þ u11Þthðσ3 þ u11Þ

þ thðσ1 þ u21Þthðσ3 þ u21ÞÞ: ðA44Þ

Setting u≡ u11 ¼ −u21 and integrating by parts allows us to
write

hZiHB ∼ −2
�

1

8πr

�
2

thðσ1 − uÞthðσ3 − uÞ: ðA45Þ

We also have

hZ ⋆ ZiHB ¼
�

1

8πr

�
4

ðIc þ Is þ IssÞ; ðA46Þ

where, as in the D4 case,

Ic ¼ ðð1þ thðσ1 þ u11ÞÞð1 − thðσ3 þ u11ÞÞ
þ ðu11 ↔ u21ÞÞ × ðσ1 ↔ σ3Þ; ðA47Þ

Is ¼ ðthðσ1 þ u11Þ2ðthðσ3 þ u11Þ2 − 1Þ þ ðu11 ↔ u21ÞÞ
þ ðσ1 ↔ σ3Þ; ðA48Þ

Iss ¼ ðthðσ1 þ u11Þthðσ3 þ u11Þ þ ðu11 ↔ u21ÞÞ2: ðA49Þ

Setting u≡ u11 ¼ −u21 and integrating by parts gives

Icþ Isþ Iss∼4

�
3−2

Y
A¼1;3

thðσA−uÞ−16
X
A¼1;3

1

chðσA−uÞ2

þ96
Y
A¼1;3

1

chðσA−uÞ2
�
: ðA50Þ

To evaluate the multidimensional integrals for hZi and
hZ ⋆ Zi, our main tool for simplification is to take a
Fourier transform whenever an argument of “sh,” “ch,” or
“th” involves a combination of two variables: this allows us
to decouple the single-variable integrals. For instance,
we have

hZi ¼ −
2i
ZDn

Z
ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ hZiHB

¼ 4i
ZDn

�
1

8πr

�
2
Z

ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

thðu10 − uÞthðu20 − uÞ
shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ

¼ 2i
ZDn

�
1

8πr

�
2
Z

ds
thðsÞ

chðsÞ2n−5
�Y2

i¼1

dui0

�
thðu10Þthðu20Þe−2πisu

2
0

shðu10 − u20Þchðu10Þ
;
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where we have shifted ui0 → ui0 þ u and integrated
over u using (A1). Taking the Fourier transform of the
1=shðu10 − u20Þ, and iterating this process as necessary
(possibly with the help of various identities from Appen-
dix A 1), leaves us with nested single-variable integrals that
can be evaluated sequentially to yield a single integral:

hZi ¼ 1

4ZDn

�
1

8πr

�
2
Z

ds
shðsÞ2

chðs=2Þ2n ðs
2 − 1Þ: ðA51Þ

For hZ ⋆ Zi, we must evaluate three additional integrals
(call them I1, I2, I12). First, we have

I1 ≡
Z

ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ
�

1

chðu10 − uÞ2
�

¼ 1

2

Z
ds

thðsÞ
chðsÞ2n−5

�Y2
i¼1

dui0

�
e−2πisu

2
0

shðu10 − u20Þchðu10Þ3

¼ i
64

Z
ds

shðsÞ2
chðs=2Þ2n ðs

2 þ 1Þ: ðA52Þ

Second, we have

I2 ≡
Z

ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ
�

1

chðu20 − uÞ2
�

¼ 1

2

Z
ds

thðsÞ
chðsÞ2n−5

�Y2
i¼1

dui0

�
e−2πisu

2
0

shðu10 − u20Þchðu10Þchðu20Þ2

¼ i
64

Z
ds

shðsÞ2
chðs=2Þ2n ðs

2 þ 1Þ − i
16π

Z
ds

s shðsÞ
chðs=2Þ2n−2 : ðA53Þ

Third, we have

I12 ≡
Z

ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ
�

1Q
2
i¼1 chðui0 − uÞ2

�

¼ 1

2

Z
ds

thðsÞ
chðsÞ2n−5

�Y2
i¼1

dui0

�
e−2πisu

2
0

shðu10 − u20Þchðu10Þ3chðu20Þ2

¼ i
3072

Z
ds

shðsÞ2
chðs=2Þ2n ðs

4 þ 10s2 þ 9Þ − i
96π

Z
ds

s shðsÞ
chðs=2Þ2n−2 : ðA54Þ

Combining the results (A52), (A53), (A54), andZ
dse4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

shðu10−u20Þchðu10−uÞchðu20þuÞ ½thðu
1
0−uÞthðu20−uÞ� ¼−

i
16

Z
ds

shðsÞ2
chðs=2Þ2n ðs

2−1Þ ðA55Þ

(which we deduce from our result for hZi) gives

hZ ⋆ Zi ¼ −
2i
ZDn

Z
ds e4πisuthðsÞ
chðsÞ2n−6

�Y2
i¼1

dui0

�
du

shðu10 − u20Þchðu10 − uÞchðu20 þ uÞ hZ ⋆ ZiHB

¼ 1

4ZDn

�
1

8πr

�
4
Z

ds
shðsÞ2

chðs=2Þ2n ðs
2 − 1Þ2: ðA56Þ

Combining the above gives (5.14).
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APPENDIX B: QUANTIZED COULOMB
BRANCHES FOR AD

Here, we consider some realizations of deformation
quantizations of the C2=ΓAN

and C2=ΓDN
singularities by

Lagrangian quantum field theories, namely the Coulomb
branches of 3D N ¼ 4 Uð1Þ and SUð2Þ gauge theories
with arbitrary matter representations. In these cases, the
choice of basis is strongly constrained by Uð1Þ and Z2

flavor symmetries, respectively.
We expect both the Coulomb branch chiral ring (the

“classical” Coulomb branch) and its Poisson structure to
depend only on N, because N determines the holomorphic
symplectic form.36 We also expect the number of distinct
quantizations realized by these theories to be related to
partitions of N. An interesting question that one might ask,
which we do not attempt to answer here, is, do there exist
examples of different Lagrangian theories with the same
“quantum” Coulomb branch, to higher orders in ℏ ∼ 1=r
beyond Oðℏ1Þ?
Nondegenerate short star products for quotient singu-

larities, including Kleinian singularities, have been classi-
fied in [38]. For example, even nondegenerate short star
products for An singularities depend on ne þ ns parameters
where the first ne ¼ bðnþ 1Þ=2c parameters determine the
corresponding quantum algebra A up to isomorphism (i.e.,
the period of the quantization) and the remaining ns ¼
ne þ ðð−1Þn − 1Þ=2 parameters determine maps from the
associated graded algebra grðAÞ (the “commutative limit”
of the associative algebra A) into A, corresponding to
physical gauge fixings. This agrees with the counting of
free parameters in [24] for the examples of An≤4 before
imposing unitarity (i.e., positivity), which is a stronger
condition than nondegeneracy. In the examples below,
fixing a Lagrangian SCFT should be understood as fixing
a particular value of the period for the quantization.

1. Uð1Þ
Consider Uð1Þ for some set of charges fqg with

multiplicities fNqg, where q ∈ Znf0g and Nq ∈ Z≥0
(uncharged matter does not contribute, but we may con-
sider the pure case). The shift operators for the Coulomb
branch chiral ring generators are

M�1¼
Y
q

�ð−1Þðjqj�qÞ=2

rjqj=2

�
1−qB

2
þiqσ

�
ðjqj�qÞ=2

�
Nq

e∓ði
2
∂σþ∂BÞ;

Φ¼1

r

�
σþ i

2
B

�
: ðB1Þ

We compute that

M∓1 ⋆ M�1 ¼
Y
q

ð−iqΦÞjqjNq þO

�
1

r

�
: ðB2Þ

Setting N ¼ P
q jqjNq and

X ¼ 1

ð4πÞN=2C1=2M
−1; Y ¼ 1

ð4πÞN=2C1=2 M
1;

Z ¼ −
i
4π

Φ; C≡Y
q

qjqjNq ðB3Þ

(this normalization being natural from the point of view of
correlation functions), we find that XY ¼ ZN in the chiral
ring. Accounting for sign, we obtainX

P∈fpartitions of Ng
2#partsðPÞ > pðNÞ ðB4Þ

distinct quantizations from these theories for fixed N. At
finite r and to subleading order in 1=r, we compute that

M∓1 ⋆ M�1 ¼
Y
q

�
1

rjqj

�
−iqrΦþ jqj � q − 1

2

�
jqj

�
Nq

ðB5Þ

¼
�Y

q

ð−iqΦÞjqjNq

�
×
�
1þ i

rΦ

X
q

Nq

�
� jqj

2
þ q − sgnðqÞ

��
þO

�
1

r2

�
; ðB6Þ

so that

½M−1;M1�⋆ ¼ i
rΦ

�X
q

jqjNq

��Y
q

ð−iqΦÞjqjNq

�
þO

�
1

r2

�
: ðB7Þ

Equivalently,

½X ;Y�⋆ ¼ 1

r
PðZÞ ¼ N

4πr
ZN−1 þO

�
1

r2

�
: ðB8Þ

Hence the Poisson structure, as with the chiral ring,
depends only on N (as expected). These quantizations
are distinguished by the coefficients of the subleading
terms in the polynomial PðZÞ (computing the commutator
is simpler than directly computing three-point functions
because various gauge-fixing ambiguities cancel in the
former).

36The fact that the first subleading term in the star product is
determined by the Coulomb branch also follows from a less
transparent topological descent argument [24].
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The structure constants for the deformation quantizations
corresponding to the Higgs branch of the affine A2;3 quivers
were originally bootstrapped in [24] and later derived from
localization in [31]. By using the above techniques for the
Coulomb branch of the mirror dual, we obtain these results
and more with very little effort.

2. SUð2Þ
Consider SUð2Þ SQCD with matter specified by some

set of spins fjg with multiplicities fNjg, where j ∈ 1
2
Z>0

and Nj ∈ Z≥0 (uncharged matter does not contribute, but
we may consider the pure case). In conventions where the
weights of SUð2Þ are half-integers and monopole charges
are even integers (b ∈ 2Z), we have

Mb ¼
Q

j½
Q

mj

ð−1ÞðmjbÞþ

rjmjbj=2 ð1
2
þ irmjΦÞðmjbÞþ �

Nj

1
rjbj ðirsgnðbÞΦÞjbj

e−bði2∂σþ∂BÞ;

Φ2 ¼ 1

r2

�
σ þ i

2
B

�
2

;

ðB9Þ
where mj ∈ f−j;−jþ 1;…; jg. Indicating the commuta-
tive limit with an ∞ subscript (for r → ∞), we have

Mb
∞ ¼ ð−isgnðbÞΦÞjbjð12

P
j
SjNj−1Þ

�Y
j

Y
mj>0

m
jbjmjNj

j

�
e½b�;

ðB10Þ

Sj ≡
Xj

mj¼−j
jmjj ¼



jðjþ 1Þ if j ∈ Z;

ðjþ 1=2Þ2 if j ∈ Zþ 1
2
:

ðB11Þ

Set N ¼ P
j SjNj. Then, in particular, we see that

ΔðM2Þ ¼ N − 2; ΔðΦM2Þ ¼ N − 1; ΔðΦ2Þ ¼ 2:

ðB12Þ
On dimensional grounds, the bubbling coefficient for M2

∞
is a monomial in Φ for N ≥ 2, which we can eliminate by a
change of basis. So for N ≥ 2,

M2
∞ ¼ M2

∞ þM−2
∞

¼
�Y

j

Y
mj>0

m
2mjNj

j

�
ðiΦÞN−2ðð−1ÞNe½2� þ e½−2�Þ;

ðB13Þ
ΦM2

∞ ¼ΦðM2
∞ −M−2

∞ Þ

¼
�Y

j

Y
mj>0

m
2mjNj

j

�
ΦðiΦÞN−2ðð−1ÞNe½2�− e½−2�Þ:

ðB14Þ

Using e½2�e½−2� ¼ 1 gives

Φ2ðM2
∞Þ2−ðΦM2

∞Þ2¼4

�Y
j

Y
mj>0

m
2mjNj

j

�
2

ðΦ2ÞN−1:

ðB15Þ

Then setting

X ¼ C−1ΦM2
∞; Y ¼ −iC−1M2

∞;

Z ¼ Φ2; C≡ 2

�Y
j

Y
mj>0

m
2mjNj

j

�
ðB16Þ

yields the equation of a DN singularity,

X2 þ ZY2 þ ZN−1 ¼ 0: ðB17Þ

For N ¼ 1 (i.e., N1=2 ¼ 1), one can show that the relevant
bubbling coefficient vanishes by a polynomiality compu-
tation at finite r [33], but let us not assume this. We have

M2
∞ ¼

�
M2

∞ þ c
Φ

�
þ
�
M−2

∞ −
c
Φ

�
¼ −

1

2iΦ
ðe½2� − e½−2�Þ; ðB18Þ

ΦM2
∞ ¼ Φ

�
M2

∞ þ c
Φ

�
−Φ

�
M−2

∞ −
c
Φ

�
¼ −

1

2i
ðe½2� þ e½−2�Þ þ 2c; ðB19Þ

so that

Φ2ðM2
∞Þ2 − ðΦM2

∞ − 2cÞ2 ¼ 1: ðB20Þ
Equivalently,

X ¼ ΦM2
∞; Y ¼ −iM2

∞;

Z ¼ Φ2; ðX − 2cÞ2 þ ZY2 þ 1 ¼ 0: ðB21Þ
Unless c ¼ 0, this is a nonsingular deformation of a D1

singularity [as can be seen from the nonvanishing of the
partial derivatives at (0, 0, 0)]. For N ¼ 0 (the pure case),
we have

M2
∞ ¼

�
M2

∞ þ c
Φ2

�
þ
�
M−2

∞ þ c
Φ2

�
¼ −

1

Φ2
ðe½2� þ e½−2�Þ þ 2c

Φ2
; ðB22Þ

ΦM2
∞ ¼ Φ

�
M2

∞ þ c
Φ2

�
−Φ

�
M−2

∞ þ c
Φ2

�
¼ −

1

Φ
ðe½2� − e½−2�Þ; ðB23Þ
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and therefore

ðΦ2 ·M2
∞ − 2cÞ2 −Φ2ðΦM2

∞Þ2 ¼ 4: ðB24Þ
Equivalently,

X ¼ ΦM2
∞; Y ¼ −iM2

∞; Z ¼ Φ2;

ZðX 2 þ ZY2 þ 4icYÞ þ 4ð1 − c2Þ ¼ 0: ðB25Þ
The degree of the relation is reduced when c¼�1 (the sign
ambiguity is present even when using polynomiality [33]):

X ¼ ΦM2
∞; Y ¼ �4M2

∞;

Z ¼ Φ2; X2 þ ZY2 þ Y ¼ 0; ðB26Þ
wherewe have slightly redefined the variables. This gives an
alternative way to fix c2. Note that the theory is good for
N ≥ 3, we expect theDN equation to hold forN ≥ 1, and we
expect it to bemodified as above forN ¼ 0. The possibilities
for bad theories are simply fjg ¼ fg (N ¼ 0), fjg ¼ f1=2g
(N ¼ 1), and fjg ¼ f1=2; 1=2g; f1g (N ¼ 2).

APPENDIX C: HIGGS BRANCH
CHIRAL RINGS FOR DE

In this appendix, we derive the Higgs branch chiral rings
of the D- and E-type quivers considered in the main text.
We discuss the Dn chiral ring in some detail, since a
comprehensive derivation seems to be missing from the
literature (see [50], Sec. 5 of [45], and Appendix A. 1 of
[46] for earlier discussions). In the cases of E6;7;8, we also
fill in some details regarding existing derivations (useful
references include [50] and Appendix A. 2 of [46]).
Note that for 3D N ¼ 4 theories containing only vector

multiplets and hypermultiplets, there exists no distinction
between the D-term and F-term relations in 3D N ¼ 2
language because the auxiliary fields combine into an
SUð2ÞR triplet (equivalently, the Kähler potential fixes
the superpotential). Hence we may equivalently write the
D-term relations in the TQM, which take the form

ðQ̃RðTÞQÞðφÞ ¼ 0 ðC1Þ

for all T ∈ g [31], or derive the F-term relations from the
superpotential, as we do below.37

1. Affine D4 quiver

The affine D4 quiver contains hypermultiplets ðQAÞi,
ðQ̃AÞi with A ¼ 1;…; 4 and i ¼ 1, 2. The superpotential is

W ¼ Φij

X
A

Qi
AQ̃

j
A þ

X
A

ϕAQi
AQ̃

j
Aϵij; ðC2Þ

where Φ and ϕA are adjoint chirals for the SUð2Þ and Uð1Þ
gauge nodes, respectively. We introduce the notation
hABi≡ Q̃AQB; then the F-term relations giveX

A

AihA ¼ hAAi ¼ 0: ðC3Þ

For fixed A, we have the four relationsX
B≠A

hABihBAi ¼ 0: ðC4Þ

Hence out of the six candidate chiral ring generators with
Δ ¼ 2, namely

hABihBAi with A < B; ðC5Þ
only two are independent. We also see that out of the eight
candidate chiral ring generators with Δ ¼ 3, namely

hABihBCihCAi with A<B<C or A<C<B; ðC6Þ
only one of them is independent because any two such
operators are equal by one of the 12 relationsX

C

hACihCBi ¼ 0 ðC7Þ

for fixed A, B with A ≠ B (here, the order of A and B
matters). The properly normalized chiral ring generators
may be taken to be

Z ¼
ffiffiffi
3

p
ðh13ih31i þ h23ih32iÞ; ðC8Þ

Y ¼
ffiffiffi
3

p
iðh13ih31i − h23ih32iÞ; ðC9Þ

X ¼ 2 · 33=4ih12ih23ih31i: ðC10Þ

They satisfy the chiral ring relation for D4 because

X2 þ ZY2 þ Z3 ¼ 12
ffiffiffi
3

p
h23ih31iðh13i2h31ih32i þ h32i2h23ih13i − h12i2h23ih31iÞ

¼ 12
ffiffiffi
3

p
h23ih31ið−h13ih31ih14ih42i − h23ih32ih14ih42i − h14ih43ih34ih42iÞ

¼ 12
ffiffiffi
3

p
h23ih31ih14ih42ið−h31ih13i − h32ih23i − h34ih43iÞ ¼ 0: ðC11Þ

37While (C1) holds at the level of the chiral ring, it may be modified by contact terms at the level of correlation functions.
Additionally, the RHS of (C1) receives contributions from FI parameters, which we have set to zero.
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Moreover, the S3 generators (4.32) act as

rZ2
∶

(
h12ih23ih31i ↦ h21ih13ih32i ¼ −h24ih43ih32i ¼ h24ih41ih12i ¼ −h23ih31ih12i;
h13ih31i ↦ h23ih32i ðC12Þ

and

sZ3
∶

8>><>>:
h12ih23ih31i ↦ h23ih31ih12i;
h13ih31i ↦ h21ih12i ¼ h34ih43i ¼ −h13ih31i − h23ih32i;
h23ih32i ↦ h31ih13i;

ðC13Þ

giving the expected (4.31).

2. Affine Dn>4 quiver

For the affineDn quiver, we have adjoint chirals ϕA and ΦI (I ¼ 1;…; n − 3) for the Uð1Þ and Uð2Þ nodes, respectively.
The superpotential is

W ¼ ððQ̃1ÞiðΦ1ÞijðQ1Þj − ϕ1ðQ̃1ÞiðQ1ÞiÞ þ ððQ̃3ÞiðΦ1ÞijðQ3Þj − ϕ3ðQ̃3ÞiðQ3ÞiÞ
þ ððQ̃2ÞiðΦn−3ÞijðQ2Þj − ϕ2ðQ̃2ÞiðQ2ÞiÞ þ ððQ̃4ÞiðΦn−3ÞijðQ4Þj − ϕ4ðQ̃4ÞiðQ4ÞiÞ

þ
Xn−4
I¼1

ððK̃IÞkiðΦIÞijðKIÞjk − ðKIÞkiðΦIþ1ÞijðK̃IÞjkÞ: ðC14Þ

The signs keep track of orientation in the N ¼ 2 sense (the legs are unoriented in the N ¼ 4 sense). The F-term
relations are

ðQ̃AÞiðQAÞi ¼ 0ðA ¼ 1; 2; 3; 4Þ; ðC15Þ
ðQ1ÞiðQ̃1Þj þ ðQ3ÞiðQ̃3Þj þ ðK1ÞikðK̃1Þkj ¼ 0; ðC16Þ

ðQ2ÞiðQ̃2Þj þ ðQ4ÞiðQ̃4Þj − ðK̃n−4ÞikðKn−4Þkj ¼ 0; ðC17Þ

ðK̃IÞikðKIÞkj − ðKIþ1ÞikðK̃Iþ1Þkj ¼ 0ðI ¼ 1;…; n − 5Þ: ðC18Þ

It should be kept in mind that the Uð2Þ indices are associated with different nodes. Below, gauge indices are appropriately
contracted between pairs of hypers when suppressed.
To justify our description of the Higgs branch chiral ring in (4.40)–(4.45), we first list some useful equivalences between

chiral ring elements, which are reflected in correlation functions.38 From the F-term relations, we derive

Q̃2ðK̃n−4Kn−4ÞaQ2 ¼ Q̃4ðK̃n−4Kn−4ÞaQ4

¼ Q̃2ðQ2Q̃2 þQ4Q̃4ÞaQ2 ¼ Q̃4ðQ2Q̃2 þQ4Q̃4ÞaQ4

¼


0 a ∈ 2Z;

ðQ̃2Q4Q̃4Q2Þðaþ1Þ=2 a ∈ 2Zþ 1
ðC19Þ

and

Q̃1ðK1K̃1ÞaQ1 ¼ Q̃3ðK1K̃1ÞaQ3

¼ ð−1ÞaQ̃1ðQ1Q̃1 þQ3Q̃3ÞaQ1 ¼ ð−1ÞaQ̃3ðQ1Q̃1 þQ3Q̃3ÞaQ3

¼


0 a ∈ 2Z;

−ðQ̃1Q3Q̃3Q1Þðaþ1Þ=2 a ∈ 2Zþ 1:
ðC20Þ

38In the process, we fix several mistakes in (A. 3) of [46].
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Similarly, we derive that

Q̃2ðK̃n−4Kn−4ÞaQ4Q̃4Q2¼Q̃4ðK̃n−4Kn−4ÞaQ2Q̃2Q4

¼

ðQ̃2Q4Q̃4Q2Þa=2þ1 a∈2Z;

0 a∈2Zþ1;

ðC21Þ

Q̃1ðK1K̃1ÞaQ3Q̃3Q1 ¼ Q̃3ðK1K̃1ÞaQ1Q̃1Q3

¼

 ðQ̃1Q3Q̃3Q1Þa=2þ1 a ∈ 2Z;

0 a ∈ 2Zþ 1:

ðC22Þ

Moreover, we see that

Q̃AK̃n−4 � � � K̃1ðK1K̃1ÞaK1 � � �Kn−4QA0

¼ Q̃AðK̃n−4Kn−4Þnþa−4QA0 ðC23Þ

for A; A0 ∈ f2; 4g and

Q̃AK1 � � �Kn−4ðK̃n−4Kn−4ÞaK̃n−4 � � � K̃1QA0

¼ Q̃AðK1K̃1Þnþa−4QA0 ðC24Þ

for A; A0 ∈ f1; 3g (these operators by themselves are not
gauge invariant unless A ¼ A0). Finally, rearranging and
squaring both sides of the F-term equations for the trivalent
Uð2Þ nodes gives

ðQ1ÞiðQ̃1Þj þ ðQ3ÞiðQ̃3Þj ¼ −ðK1ÞikðK̃1Þkj
⇒ 2Q̃1Q3Q̃3Q1 ¼ TrððK1K̃1Þ2Þ;

ðQ2ÞiðQ̃2Þj þ ðQ4ÞiðQ̃4Þj ¼ ðK̃n−4ÞikðKn−4Þkj
⇒ 2Q̃2Q4Q̃4Q2 ¼ TrððK̃n−4Kn−4Þ2Þ:

But TrððKIK̃IÞ2Þ ¼ TrððK̃IKIÞ2Þ and TrððK̃IKIÞ2Þ ¼
TrððKIþ1K̃Iþ1Þ2Þ (the latter for I ¼ 1;…; n − 5), implying
that

Q̃1Q3Q̃3Q1 ¼ Q̃2Q4Q̃4Q2 ðC25Þ

in the chiral ring.39

Now consider the Z2 action on (4.40)–(4.45). The “Uð1Þ
Schouten identity” implies that

Q̃AK1 � � �Kn−4QA0Q̃A0K̃n−4 � � � K̃1QA

¼ Q̃A0K̃n−4 � � � K̃1QAQ̃AK1 � � �Kn−4QA0 ; ðC26Þ

where A ∈ f1; 3g and A0 ∈ f2; 4g. From (C24) and (C20),
we have

Q̃3K1 � � �Kn−4ðQ2Q̃2 þQ4Q̃4ÞK̃n−4 � � � K̃1Q3

¼


0 n ∈ 2Zþ 1;

−ðQ̃1Q3Q̃3Q1Þn=2−1 n ∈ 2Z:
ðC27Þ

From (C24) and (C22), we also have

Q̃1K1 � � �Kn−4ðQ2Q̃2 þQ4Q̃4ÞK̃n−4 � � � K̃1Q3Q̃3Q1

¼

 ðQ̃1Q3Q̃3Q1Þðn−1Þ=2 n ∈ 2Zþ 1;

0 n ∈ 2Z:
ðC28Þ

So we see that the Z2 symmetry that takes 2 ↔ 4 [i.e.,
ðQ2; Q̃2Þ ↔ ðQ4; Q̃4Þ] acts as

Z2∶ ðX ;Y;ZÞ ↦ ð−X ;−Y;ZÞ ðC29Þ

regardless of whether n ∈ 2Z or n ∈ 2Zþ 1. Equivalently,
the Z2 symmetry can be implemented by swapping 1 ↔ 3

[i.e., ðQ1; Q̃1Þ ↔ ðQ3; Q̃3Þ]. To see this, note that (C19),
(C23), and (C25) imply that

Q̃2K̃n−4 � � � K̃1ðQ1Q̃1 þQ3Q̃3ÞK1 � � �Kn−4Q2

¼


0 n ∈ 2Zþ 1;

−ðQ̃1Q3Q̃3Q1Þn=2−1 n ∈ 2Z:
ðC30Þ

Moreover, combining

ðQ1ÞiðQ̃1ÞkðQ3ÞkðQ̃3Þj þ ðQ3ÞiðQ̃3ÞkðQ1ÞkðQ̃1Þj
¼ ðK1ÞikðK̃1ÞklðK1ÞlmðK̃1Þmj ðC31Þ

with (C19), (C23), and (C25) gives

Q̃2K̃n−4 � � � K̃1Q1Q̃3K1 � � �Kn−4Q2Q̃1Q3 þ ð1 ↔ 3Þ

¼

 ðQ̃1Q3Q̃3Q1Þðn−1Þ=2 n ∈ 2Zþ 1;

0 n ∈ 2Z:
ðC32Þ

Hence theZ2 symmetry that takes 1 ↔ 3 acts in exactly the
same way as that which takes 2 ↔ 4. We use 1 ↔ 3 by
convention.
Next, consider the chiral ring relation. First let n ∈ 2Z

and set

Y ≡ Y0 þ ð−ZÞn=2−1: ðC33Þ

Defining the orientation-reversed operator

Ȳ0≡Y0j1↔3¼2Q̃1K1 ���Kn−4Q2Q̃2K̃n−4 ���K̃1Q1; ðC34Þ

we see that

39This conclusion also holds for n ¼ 4, from squaring both
sides of

ðQ1ÞiðQ̃1Þj þ ðQ3ÞiðQ̃3Þj ¼ −ðQ2ÞiðQ̃2Þj − ðQ4ÞiðQ̃4Þj:
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Y0 þ Ȳ0 ¼ −2ð−ZÞn=2−1; Y0Ȳ0Z ¼ X 2: ðC35Þ

Thus we get

ZY02 ¼ ZY0ð−2ð−ZÞn=2−1 − Ȳ0Þ
⇔ X 2 þ ZY02 − 2Y0ð−ZÞn=2 ¼ 0

⇔ X 2 þ ZY2 ¼ Zn−1; ðC36Þ

as desired. Now let n ∈ 2Zþ 1 and set

X ≡ X 0 − ð−ZÞðn−1Þ=2: ðC37Þ

Defining the orientation-reversed operator

X̄ 0 ≡ X 0j1↔3

¼ 2Q̃3K1 � � �Kn−4Q2Q̃2K̃n−4 � � � K̃1Q1Q̃1Q3; ðC38Þ

we see that

X 0 þ X̄ 0 ¼ 2ð−ZÞðn−1Þ=2; X 0X̄ 0 ¼ ZY2: ðC39Þ

Thus we get

X 02 ¼ X 0ð2ð−ZÞðn−1Þ=2 − X̄ 0Þ
⇔ X 02 − 2X 0ð−ZÞðn−1Þ=2 þ ZY2 ¼ 0

⇔ X 2 þ ZY2 ¼ Zn−1; ðC40Þ

as desired.
To conclude, we remark that the basis (4.40)–(4.45)

(which we refer to as the “alternate basis”) differs from the
earlier one that we used when n ¼ 4, namely (4.33), and
that the Z2 acts differently in the two cases. When n ¼ 4,
we have in the alternate basis that

Z ¼ −
ffiffiffi
3

p
Q̃1Q3Q̃3Q1;

Y ¼
ffiffiffi
3

p
ið2Q̃2Q3Q̃3Q2 þ Q̃1Q3Q̃3Q1Þ;

X ¼ 2 · 33=4iQ̃1Q2Q̃2Q3Q̃3Q1; ðC41Þ

where we have rescaled the generators so that they satisfy
X2 þ ZY2 þ Z3 ¼ 0 and so thatX is the same as in (4.33).
At the level of the chiral ring, this alternate basis maps to

ðZC;YC;XCÞ

¼
�
−C2

�
1

8
Φ2 þM2

∞

�
; iC2

�
3

8
Φ2 −M2

∞

�
;C3ΦM2

∞

�
ðC42Þ

on theCoulombbranch ofSUð2ÞSQCDwithNf ¼ 4, where
we have set C≡ 31=4ð4πÞ−1. A short calculation with the
corresponding commutative shift operators shows that these
operators likewise satisfy X2

C þ ZCY2
C þ Z3

C ¼ 0. By the

same reasoning as in Sec. V B 1, the enhanced S3 symmetry
requires that40

ðZC;YC;XCÞ ¼
�
−C2

�
1

8
cΦ2 þM2

�
; iC2

�
3

8
cΦ2 −M2

�
;

C3

�
ΦM2 −

i
r
M2

��
ðC44Þ

at the quantum level, where we have defined cΦ2 ≡Φ2 −
1=3r2 (which satisfies hcΦ2i ¼ 0). In the alternate basis, the
Z2 symmetry therefore acts as

ðcΦ2;M2;ΦM2Þ↦
�
−
1

2
cΦ2þ4M2;

1

2
M2þ 3

16
cΦ2;

−ΦM2þ 3i
2r

�
M2þ1

8
cΦ2

��
: ðC45Þ

This should be contrasted with the Z2 symmetry acting on
(4.33), which ismore natural from theCoulomb branch point
of view in that it simply flips the signs of monopoles. TheZ2

is only ambiguous when n ¼ 4 because it can be conjugated
by elements of S3: otherwise, it is unique.

3. Affine En quivers

We now turn to the E-type quiver theories. In all cases,
the fundamental “meson” operators satisfyMlI

ðIÞ ¼ 0 where

lI is the length of leg I. To derive the chiral ring relation for
E6, we need only the Uð1Þ Schouten identity: following
[46], the trick is to write the generators containing squares
of mesons as Uð1Þ ×Uð1Þ bifundamentals. For E7;8, we
instead employ the Uð2Þ Schouten identity: following [50],
we define auxiliary operators with only Uð2Þ indices
uncontracted. We present the derivations for E6;7;8 in
decreasing amounts of detail.
Deriving a Schouten identity for tensors of given rank

involves antisymmetrizing over an appropriate number of
indices and then contracting a subset of these indices. For
instance, the Schouten identity for two-component vectors
follows from contracting any two indices in x½iyjzk� ¼ 0.
A Schouten identity for matrices [50] following from
Mk1

½i1Nk2
i2Kk3

i3� ¼ 0 is

40At the level of the quantized chiral ring, we know that

Q̃1Q2Q̃2Q3Q̃3Q1 ↔ −
1

128π3

�
iΦM2 þ 1

r
M2

�
; ðC43Þ

as well as (5.61) and (5.62). These correspondences are consistent
with (C41) if we define the Higgs branch variables X , Y, Z at the
quantum level simply by subtracting their one-point functions.
These 1=r corrections ensure that the one-point functions of
Z2-odd operators are zero, in the alternate basis.
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TrðfM;NgKÞ ¼
X
cyc

TrðMNÞTrðKÞ − TrðMÞTrðNÞTrðKÞ;

ðC46Þ

where the indices range over f1; 2g.

a. E6

Our conventions are as in Sec. VI B 2. In this case,
the symmetry acts as Z2∶ðX ;Y;ZÞ ↦ ð−X ;Y;−ZÞ. The
Uð2Þ and Uð1Þ D-term relations imply that, for each
T½SUð3Þ� leg,

QC
j Q̃

i
C þ qjq̃i ¼ 0; qiq̃i ¼ 0: ðC47Þ

For a given leg, one can verify using these relations that, for
example, the Δ ¼ 2 CPOs

qiq̃jQA
j Q̃

i
B −

1

3
qiq̃jQC

j Q̃
i
Cδ

A
B ðC48Þ

are equivalent to −MA
CMC

B in the chiral ring. Since the
trace part vanishes in the chiral ring, we may simply
write MA

B ¼ QA
i Q̃

i
B.

We first summarize some useful relations. Writing the
MðIÞAB as matrices, we have

Mð1Þ þMð2Þ þMð3Þ ¼ 0 ðC49Þ
from the SUð3Þ D-term relation. We see from the D-term
relations for each leg that

trðMp
ðIÞÞ ¼ 0 ðC50Þ

for integers p ≥ 1 and I ¼ 1, 2, 3. Moreover, we have

M3
ðIÞ ¼ 0: ðC51Þ

Indeed,

� � �MðIÞABMðIÞBCMðIÞCD � � �
¼ � � � ðQðIÞÞAi ðQ̃ðIÞÞiBðQðIÞÞBj ðQ̃ðIÞÞjCðQðIÞÞCk ðQ̃ðIÞÞkD � � �
¼ � � � ðQðIÞÞAi ðq̃ðIÞÞiðqðIÞÞjðq̃ðIÞÞjðqðIÞÞkðQ̃ðIÞÞkD � � �
¼ 0; ðC52Þ

since ðqðIÞÞjðq̃ðIÞÞj ¼ 0.
Let us now enumerate the nontrivial chiral ring elements

of small dimension (compare to [46]). The p ¼ 1 case of
(C50) rules out chiral ring elements at Δ ¼ 1. From (C49)
and (C50), we also have

trðMðIÞMðJÞÞ ¼ −trðMðIÞMðKÞÞ ¼ trðMðJÞMðKÞÞ
¼ −trðMðJÞMðIÞÞ
⇒ trðMðIÞMðJÞÞ ¼ 0; ðC53Þ

ruling out chiral ring elements at Δ ¼ 2. At Δ ¼ 3,
trðM2

ðIÞMðJÞÞ is nontrivial while

trðMðIÞMðJÞMðKÞÞ ¼ −trðM2
ðJÞMðKÞ þMðJÞM2

ðKÞÞ
¼ 0; ðC54Þ

giving a single candidate for the chiral ring generator Z (up
to normalization):

trðM2
ð1ÞMð2ÞÞ ¼ trðM2

ð2ÞMð3ÞÞ ¼ trðM2
ð3ÞMð1ÞÞ

¼ −trðM2
ð1ÞMð3ÞÞ ¼ −trðM2

ð2ÞMð1ÞÞ
¼ −trðM2

ð3ÞMð2ÞÞ: ðC55Þ

At Δ ¼ 4, Eq. (C51) implies that

trðM2
ð1ÞM

2
ð2ÞÞ ¼ trðM2

ð1ÞM
2
ð3ÞÞ ¼ trðM2

ð2ÞM
2
ð3ÞÞ; ðC56Þ

giving a single candidate for the chiral ring generator Y.
This is the only candidate because

trððMðIÞMðJ=KÞÞ2Þ ¼ −trðMðIÞMðJÞMðIÞMðKÞÞ
¼ −trðM2

ðIÞM
2
ðJÞ þM2

ðIÞM
2
ðKÞÞ; ðC57Þ

trðM2
ðIÞMðJÞMðKÞÞ ¼ trððMðJÞMðKÞÞ2 þM2

ðJÞM
2
ðKÞÞ: ðC58Þ

At Δ ¼ 5, there are no nontrivial chiral ring elements.
Indeed, with two types of MðIÞ, there is only one pattern of
contraction:

trðM2
ðIÞMðJÞMðIÞMðJÞÞ: ðC59Þ

With three types, we have the possibilities

trðM2
ðIÞMðJÞMðIÞMðKÞÞ; trðM2

ðIÞM
2
ðJÞMðKÞÞ;

trðM2
ðIÞMðJÞMðKÞMðJÞÞ; trðMðIÞMðJÞMðIÞMðJÞMðKÞÞ:

ðC60Þ
But we have

trðM2
ðIÞMðJÞMðIÞMðKÞÞ ¼ −trðM2

ðIÞMðJÞMðIÞMðJÞÞ
¼ trðM2

ðIÞMðJÞMðKÞMðJÞÞ
¼ −trðM2

ðIÞM
2
ðKÞMðJÞÞ ¼ 0; ðC61Þ

trðMðIÞMðJÞMðIÞMðJÞMðKÞÞ
¼ −trðM2

ðIÞMðJÞMðIÞMðJÞÞ − trðM2
ðJÞMðIÞMðJÞMðIÞÞ

¼ −0 − 0 ¼ 0: ðC62Þ
At Δ ¼ 6, the possible contractions involving two types of
MðIÞ are
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trðM2
ðIÞM

2
ðJÞMðIÞMðJÞÞ; trððM2

ðIÞMðJÞÞ2Þ;
trððMðIÞMðJÞÞ3Þ; ðC63Þ

and those involving three types can all be written as linear
combinations of those involving two types using (C49).
Restricting our attention to two types, we derive that

trðM2
ðIÞM

2
ðJÞMðIÞMðJÞÞ þ trðM2

ðIÞM
2
ðKÞMðIÞMðKÞÞ

¼ −trððM2
ðIÞMðJ=KÞÞ2Þ ðC64Þ

and

trððMðIÞMðJÞÞ3Þ ¼ −trððMðIÞMðKÞÞ3Þ ¼ trððMðJÞMðKÞÞ3Þ
¼ −trððMðIÞMðJÞÞ3Þ ¼ 0; ðC65Þ

so it suffices to consider contractions of the form
trðM2

ðIÞM
2
ðJÞMðIÞMðJÞÞ. But

trðM2
ðIÞM

2
ðJÞMðIÞMðJÞÞ ¼ trðM2

ðIÞM
2
ðJÞM

2
ðKÞÞ; ðC66Þ

so we are left with only two independent chiral ring
elements at Δ ¼ 6:

trðM2
ð1ÞM

2
ð2ÞM

2
ð3ÞÞ; trðM2

ð1ÞM
2
ð3ÞM

2
ð2ÞÞ: ðC67Þ

One linear combination of them should give the square of
the generator at Δ ¼ 3, and the other should give the new
generator X at Δ ¼ 6.
To derive the chiral ring relation (compare to [50], but

without FI parameters), set

W ≡ trðM2
ð1ÞMð2ÞÞ; ðC68Þ

V ≡ trðM2
ð1ÞM

2
ð2ÞÞ; ðC69Þ

U ≡ trðM2
ð1ÞM

2
ð2ÞM

2
ð3ÞÞ; ðC70Þ

Ū ≡ trðM2
ð1ÞM

2
ð3ÞM

2
ð2ÞÞ: ðC71Þ

Let

ðIJÞ≡ ðq̃ðIÞÞiðQðIÞÞAi ðQ̃ðJÞÞjAðqðJÞÞj: ðC72Þ

Using ðM2
ðIÞÞAB¼ðqðIÞÞjðq̃ðIÞÞiðQðIÞÞAi ðQ̃ðIÞÞjB and rearrang-

ing, we have

trðM2
ðIÞM

2
ðJÞÞ ¼ ðIJÞðJIÞ; ðC73Þ

trðM2
ðIÞM

2
ðJÞM

2
ðKÞÞ ¼ −ðIKÞðKJÞðJIÞ: ðC74Þ

Hence we derive that

trðM2
ð1ÞM

2
ð2ÞM

2
ð3ÞÞtrðM2

ð1ÞM
2
ð3ÞM

2
ð2ÞÞ

¼ ð12Þð21Þð13Þð31Þð23Þð32Þ
¼ trðM2

ð1ÞM
2
ð2ÞÞtrðM2

ð1ÞM
2
ð3ÞÞtrðM2

ð2ÞM
2
ð3ÞÞ; ðC75Þ

meaning [by virtue of (C56)]

UŪ ¼ V3: ðC76Þ

Now let

ðIJKÞ≡ ðq̃ðIÞÞiðQðIÞÞAi ðQ̃ðJÞÞjAðQðJÞÞBj ðQ̃ðKÞÞkBðqðKÞÞk:
ðC77Þ

Recall (C64), which is equivalent to

trðM2
ðIÞM

2
ðJÞM

2
ðKÞÞ þ trðM2

ðIÞM
2
ðKÞM

2
ðJÞÞ

¼ −trððM2
ðIÞMðJÞÞ2Þ ¼ −trððM2

ðIÞMðKÞÞ2Þ
¼ −trððM2

ðJÞMðIÞÞ2Þ ¼ −trððM2
ðJÞMðKÞÞ2Þ

¼ −trððM2
ðKÞMðIÞÞ2Þ ¼ −trððM2

ðKÞMðJÞÞ2Þ; ðC78Þ

and note that

trðM2
ð1ÞMð2ÞÞ ¼ −ð121Þ; trððM2

ð1ÞMð2ÞÞ2Þ ¼ ð121Þ2:
ðC79Þ

So we get

trððM2
ð1ÞMð2ÞÞ2Þ ¼ trðM2

ð1ÞMð2ÞÞ2; ðC80Þ

which implies that

U þ Ū ¼ −W2: ðC81Þ

Combining (C76) and (C81) gives

U2 þ UW2 þ V3 ¼ 0; ðC82Þ

and making the change of variables

U ¼ iX − Z2; V ¼ −Y; W ¼
ffiffiffi
2

p
Z ðC83Þ

gives

X2 þ Y3 þ Z4 ¼ 0; ðC84Þ

where
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Z ¼ 1ffiffiffi
2

p trðM2
ð1ÞMð2ÞÞ; Y ¼ −trðM2

ð1ÞM
2
ð2ÞÞ;

X ¼ −i½trðM2
ð1ÞM

2
ð2ÞM

2
ð3ÞÞ þ Z2�: ðC85Þ

In this presentation, the Z2 symmetry acts as ð1Þ ↔ ð2Þ.

b. E7

For each T½SUð4Þ� leg, we denote the bifundamental
hypers by

ððq12Þi; ðq̃12ÞiÞ; ððq23ÞAi ; ðq̃23ÞiAÞ; ððq34ÞNA ; ðq̃34ÞANÞ;
ðC86Þ

where i ¼ 1, 2; A ¼ 1, 2, 3; and N ¼ 1, 2, 3, 4. The
subscripts indicate the ranks of the gauge nodes.
Accounting for orientation, the D=F-term equations are
(in our conventions)

ðq12Þiðq̃12Þi ¼ 0; ðq12Þiðq̃12Þj þ ðq23ÞAi ðq̃23ÞjA ¼ 0;

ðq23ÞAi ðq̃23ÞiB − ðq̃34ÞANðq34ÞNB ¼ 0; ðC87Þ
and we have the mesons

MM
N ≡ ðq34ÞMA ðq̃34ÞAN; ðC88Þ

which are traceless in the chiral ring by the D=F-term
relations. We can also write

ðM2ÞMN ¼ ðq23ÞAi ðq̃23ÞiBðq34ÞMA ðq̃34ÞBN; ðC89Þ
ðM3ÞMN ¼ −ðq12Þiðq̃12Þjðq23ÞAj ðq̃23ÞiBðq34ÞMA ðq̃34ÞBN:

ðC90Þ

Higher powers vanish, as do all traces of powers:
trðMpÞ ¼ 0 for p ≥ 1.
For the leg of length two, we have theD=F-term relation

qMi q̃
j
M ¼ 0 ðC91Þ

and the meson

MM
N ≡ qMi q̃

i
N; ðC92Þ

whose trace and higher powers vanish.
For the quiver as a whole, we have

Mð1Þ þMð2Þ þMð3Þ ¼ 0 ðC93Þ

by the SUð4Þ D-term relation.
To proceed, define (as in [50]) the traceless Uð2Þ

matrices41

Mi
j ≡ ðq̃12ð1ÞÞiðq12ð1ÞÞj; ðC94Þ

N i
j ≡ ðq̃23ð1ÞÞiAðq23ð1ÞÞBj ðq̃34ð1ÞÞAMðq34ð1ÞÞNB ðMð3ÞÞMN;

ðC95Þ

Ki
j ≡ −ðq̃23ð1ÞÞiAðq23ð1ÞÞBj ðq̃34ð1ÞÞAMðq34ð1ÞÞNB ðM3

ð2ÞÞMN:

ðC96Þ

Then we have by construction that

trðMN Þ ¼ Z; trðMKÞ ¼ −Y; ðC97Þ

and we compute using the D=F-term relations that

trðN 2Þ ¼ −2Y; trðNKÞ ¼ −Z2;

YtrðMNKN Þ ¼ X2: ðC98Þ

We now write

trðMNKN Þ ¼ trðfM;N gKN Þ

−
1

2
trðMKfN ;N gÞ ðC99Þ

and use the 2 × 2 Schouten identity (C46) as well as
trðMÞ ¼ trðN Þ ¼ trðKÞ ¼ 0 to get

trðMNKN Þ ¼ trðMN ÞtrðKN Þ

−
1

2
trðMKÞtrðN 2Þ; ðC100Þ

which implies that

X2 þ Y3 þ YZ3 ¼ 0; ðC101Þ

as desired.

c. E8

In this case, we define the traceless Uð2Þ matrices

Ai
j ≡ ðMð1ÞÞMNðq̃46ð2ÞÞAMðq46ð2ÞÞNB ðq̃24ð2ÞÞiAðq24ð2ÞÞBj ;

ðC102Þ

Bi
j ≡ ðM3

ð1ÞÞMNðq̃46ð2ÞÞAMðq46ð2ÞÞNB ðq̃24ð2ÞÞiAðq24ð2ÞÞBj ;
ðC103Þ

Cij ≡ −ðM5
ð1ÞÞMNðq̃46ð2ÞÞAMðq46ð2ÞÞNB ðq̃24ð2ÞÞiAðq24ð2ÞÞBj ;

ðC104Þ

with the minus sign due to our conventions for Uð1Þ
nodes; then by construction, we have Y¼ trðACÞ and
X¼ trðABCÞ. We also compute that

41The minus sign in K is a consequence of our conventions
(C87).
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trðABÞ ¼ 0; trðBCÞ ¼ Z2;

trðA2Þ ¼ −2Z; trðB2Þ ¼ −2Y: ðC105Þ

Now consider the following expression, which we simplify
by writing in terms of anticommutators, using the 2 × 2
Schouten identity (C46), and using that individual traces of
A, B, C vanish:

trðABCABCÞ ¼ trðfA;BgCABCÞ − trðBfA; CgABCÞ

þ 1

2
trðBCfA;AgBCÞ ðC106Þ

¼ trðABÞtrðABC2Þ − trðACÞtrðABCBÞ

þ 1

2
trðA2ÞtrððBCÞ2Þ: ðC107Þ

We also have that

trðABCBÞ ¼ trðABfB; CgÞ − 1

2
trðAfB;BgCÞ

¼ trðABÞtrðBCÞ − 1

2
trðACÞtrðB2Þ; ðC108Þ

which, in combination with trðABÞ ¼ 0, implies that

trðABCABCÞ ¼ 1

2
trðACÞ2trðB2Þ

þ 1

2
trðA2ÞtrððBCÞ2Þ: ðC109Þ

By the 1D Schouten identity, we have trððABCÞ2Þ ¼
trðABCÞ2 ¼ X2 as well as trððBCÞ2Þ ¼ trðBCÞ2 ¼ Z4, so
we arrive at

X2 þ Y3 þ Z5 ¼ 0; ðC110Þ
as desired.
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