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The modified XY model is a modification of the XY model by the addition of a half-periodic term. The
modified Goldstone model is a regular and continuum version of the modified XY model. The former
admits a vortex molecule, that is, two half-quantized vortices connected by a domain wall, as a regular
topological soliton solution to the equation of motion, while the latter admits it as a singular configuration.
Here, we define the Zn modified XY and Goldstone models as the n ¼ 2 case to be the modified XY and
Goldstone models, respectively. We exhaust all stable and metastable vortex solutions for n ¼ 2, 3 and find
a vortex confinement transition from an integer vortex to a vortex molecule of n 1=n-quantized vortices,
depending on the ratio between the term of the XY model and the modified term. We find that, for the case
of n ¼ 3, a rod-shaped molecule is the most stable, while a Y-shaped molecule is metastable. We also
construct some solutions for the case of n ¼ 4. The vortex confinement transition can be understood in
terms of the C=Zn orbifold geometry.
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I. INTRODUCTION

The XY model is a lattice model describing a lot of
physical systems such as superconductors and superfluids.
Its Hamiltonian is given by HXY ¼ −J

P
hi;ji cosðϑi − ϑjÞ,

where i and j label the lattice sites and hi; ji implies a pair
of nearest neighbors. In the continuum limit, it becomes
just a free U(1) scalar field theory or nonlinear O(2) model.
One of the most nontrivial features of this model is to
exhibit a topological phase transition called the Berezinskii-
Kosterlitz-Thouless (BKT) transition [1–4] in 2þ 1 dimen-
sions, which separates bound vortices at a low temperature
and liberated pairs of vortex and antivortex at a high
temperature. The BKT transition yields quasi-long-range
order with algebraically decaying correlations, although
long-range order with continuous symmetry is forbidden
by the Coleman-Mermin-Wagner theorem [5–7]. The BKT
transition has been confirmed experimentally in various
condensed matter systems such as 4He films [8], thin
superconductors [9–13], Josephson-junction arrays [14,15],
colloidal crystals [16–19], and ultracold atomic Bose gases
[20]. One of the drawbacks of the XYmodel may be the fact

that vortices are described as discontinuous configurations,
becoming a singular configuration in the continuum limit.
To overcome this problem, one can introduce a Higgs
(amplitude) degree of freedom together with a potential
term along the Higgs direction, and then the model becomes
the Goldstone or linear O(2) model, allowing vortices as
regular solutions to the equation of motion. The vortex core
singularity is resolved by the Higgs field, while the large-
distance behavior can be capture by the XY model.
The modified XY model is a modification of the XY

model by the addition of a half-periodic term [21–24]:

HmXY ¼ −J
X
hi;ji

cosðϑi − ϑjÞ − J0
X
hi;ji

cos½2ðϑi − ϑjÞ�; ð1Þ

where the second term is the half-periodic term. This
model admits a vortex molecule, that is, two half-quantized
vortices connected by a domain wall, as a singular
configuration, and its existence is crucial in the phase
diagram, as is so for the XY model. When the coupling J0
of the modified term is large enough compared with the
coupling J, there exists an Ising-type phase transition
[22–24] as a consequence of the presence of domain walls.
The modified model in Eq. (1) and its various modifica-
tions [25–33] are of great importance and interest because
of the applicability to various systems such as superfluidity
in atomic Bose gases [34], arrays of unconventional
Josephson junctions [35], or high-temperature supercon-
ductivity [36]. The modified Goldstone or modified
linear O(2) model is a regular (complemented by the
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Higgs mode) and continuum version of the modified XY
model [37]:

HmGoldstone¼
Z

ddx

�
aj∇ϕj2þbj∇ϕ2j2þ λ

2
ðjϕj2−v2Þ2

�
;

ð2Þ

where ϕ ¼ r expðiϑÞ is a complex scalar field (r is the
Higgs field in the same sense with that of the Goldstone or
Abelian-Higgs model) and λ, a, and b are positive coupling
constants determined from the lattice model. Here, we
denote spatial dimensions by d, but we focus on d ¼ 2 in
the following sections. This model admits a vortex mol-
ecule of half-quantized vortices connected by a domain
wall as a regular topological soliton solution to the equation
of motion when b is large enough [37], while for small b
the molecule collapses to an integer vortex. The phase
diagram is quite rich, and there is a two-step phase
transition of BKT type and of Ising type [37].
In this paper, as a generalization of the modified XYand

Goldstone models, we define the Zn modified XY and
Goldstone models:

HZnmXY¼−J
X
hi;ji

cosðϑi−ϑjÞ−J0
X
hi;ji

cos½nðϑi−ϑjÞ� ð3Þ

and

HZnmGoldstone¼
Z

ddx

�
aj∇ϕj2þbj∇ϕnj2þ λ

2
ðjϕj2−v2Þ2

�
;

ð4Þ

respectively. The case of n ¼ 2 corresponds to the usual
modified XY and Goldstone models. We study vortex
solutions in this model with particular attention to the
cases of n ¼ 2, 3. We exhaust stable and metastable vortex
solutions for these cases and find a vortex confinement
transition from an integer vortex to a vortex molecule,
depending on the ratio between a and b. We find for the
case of n ¼ 3 that a rod-shaped molecule is the most stable,
while a Y-shaped molecule is metastable. We also give
some examples of (meta)stable vortices in the case of
n ¼ 4. This transition can be understood in terms of the
C=Zn orbifold geometry; the model can be written in the
form of a nonlinear sigma model with the target space
C=Zn with a possible orbifold singularity resolved. If
vacua are far from the origin in the target space, a vortex
becomes a molecule of 1=n fractional vortices, while if
the vacua are close to the origin, the vortex becomes an
integer vortex.
This paper is organized as follows. In Sec. II, we

introduce our model. In Sec. III, we construct vortex
solutions. Section IV is devoted to a summary and
discussion.

II. THE MODEL AND GEOMETRY

In this section, we formulate our model and discuss
geometric properties. The Lagrangian of the Zn modified
Goldstone model is given by

L ¼ a∂μϕ
�∂μϕþ b

n
∂μϕ

�n∂μϕn −
λ

2
ðjϕj2 − v2Þ2

¼ ðaþ bnjϕn−1j2Þ∂μϕ
�∂μϕ −

λ

2
ðjϕj2 − v2Þ2: ð5Þ

The vacua are S1 defined by jϕj2 ¼ v2. This model is just a
nonlinear sigma model with the target space metric

gðϕ;ϕ�Þ ¼ aþ bnjϕn−1j2: ð6Þ

In the limit of λ → ∞, the model reduces to an Oð2Þ
nonlinear sigma model (or the XY model) with the
Lagrangian L ¼ ðaþ bnv2n−2Þ∂μϕ

�∂μϕ with a constraint
jϕj2 ¼ v2. It is sometimes useful to rewrite the Lagrangian
by a new field Φ ¼ ϕn as

L¼ a∂μΦ�1=n∂μΦ1=nþb
n
∂μΦ�∂μΦ−

λ

2
ðjΦ1=nj2−v2Þ2

¼ 1

n

�
a
n
jΦ−½ðn−1Þ=n�j2þb

�
∂μΦ�∂μΦ−

λ

2
ðjΦ1=nj2−v2Þ2:

ð7Þ
Let us discuss the asymptotic behavior of the target

space geometry. Writing ϕ ¼ reiθ or Φ ¼ ReiΘ (R ¼ rn

and Θ ¼ nθ), the geometry behaves in two different ways
separated by the critical radius r ¼ rc defined by

rc ¼
�
a
bn

�
1=ð2n−2Þ

; Rc ¼
�
a
bn

�
n=ð2n−2Þ

: ð8Þ

Then, we can see that the metric behaves differently at large
and short distances as follows:

(i) For the large distance r ≫ rc ðR ≫ RcÞ, the first
term in the metric in Eq. (6) is negligible, and the
Lagrangian reduces to

Llarge ¼
b
n
∂μΦ�∂μΦ −

λ

2
ðjΦ1=nj2 − v2Þ2

¼ b
n
∂μϕ

�n∂μϕn −
λ

2
ðjϕj2 − v2Þ2: ð9Þ

One observes that Φ is a good coordinate rather than
ϕ. The kinetic term of the Lagrangian in Eq. (9) is
just a free scalar field in terms of Φ, but the target
space is rather an orbifold:

M ≃ C=Zn: ð10Þ

This is because all ϕωa with a ¼ 0; 1; 2;…n − 1
yield the same Φ, where ωn ¼ 1;ω ¼ expð2πi=nÞ.
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This metric has an orbifold singularity in the origin,
but it is not the case for the whole metric.

(ii) In fact, the short-distance behavior [r ≪ rc
ðR ≪ RcÞ] is dominated by the first term in the
metric, and the Lagrangian reduces to

Lshort ¼ a∂μϕ
�∂μϕ −

λ

2
ðjϕj2 − v2Þ2

¼ a∂μΦ�1=n∂μΦ1=n −
λ

2
ðjΦ1=nj2 − v2Þ2: ð11Þ

The Lagrangian is nothing but the usual Goldstone
model in terms of ϕ. In this case, ϕ is a good
coordinate in which the metric is smooth at the
origin ϕ ¼ 0. Therefore, we have seen that a
possible singularity in the orbifold C=Zn is resolved
in the full metric, and the whole target space is
smooth.

III. VORTICES

Comparing the vacua r ¼ v and the critical radius r ¼ rc
around which the geometry behaves differently, we find
two different scheme of the structure of vacua and,
consequently, that of vortices. When the vacua exist inside
the critical radius r ¼ rc from the origin in the target space,
that is, v ≪ rc, we do not need the outside geometry, in
which case the Lagrangian reduces to the usual Goldstone
model of ϕ admitting the S1 vacua and integer global
vortices. A single vortex configuration is of the form of
ϕ ¼ fðρÞ expðiφÞ with the polar coordinates ðρ;φÞ.
On the other hand, when rc ≪ v, the Lagrangian is well

described byΦ in Eq. (7), which is asymptotically reducing
the Lagrangian Eq. (9) of a Goldstone model in terms of Φ.
The vacua are Φ1=n ¼ veiα. Note that ϕ ∼ ϕωa yield the
same Φ with ωn ¼ 1, ω ¼ expð2πi=nÞ. If a ¼ 0, Φ is
always a good coordinate, and the model admits 1=n
quantized (fractional) global vortices Φ ¼ gnðρÞ expðiφÞ,
[ϕ ¼ gðρÞ expðiφ=nÞ]. However, if a ≠ 0, these fractional
vortices cannot exist alone, since only ϕ is a good

coordinate in the vicinity of the origin of the target space.
Instead, n of them must be confined to one integer vortex.
In summary, we have the following two cases:
(i) rc ≫ v, Rc ≫ vn.—integer vortex scheme;
(ii) rc ≪ v, Rc ≪ vn.—fractional vortex scheme.
We have numerically obtained the stationary solution

with one integer vortex in two-dimensional space by
minimizing the energy

E ¼
Z
Ω
dx2

�
aj∇ϕj2 þ b

n
j∇ϕnj2 þ λ

2
ðjϕj2 − v2Þ2

�
: ð12Þ

The solution can be calculated by solving the equation

0¼ δE
δϕ� ¼−a∇2ϕ−bð∇2ϕnÞϕ�n−1þλðjϕj2−v2Þϕ; ð13Þ

under the boundary condition ϕ ¼ veiφ (on ∂Ω). As
numerical parameters, we have chosen λ ¼ v ¼ 1. To find
the solution of Eq. (13), we have used the conjugate-
gradient method on the discretized space by using FreeFem++

for the finite-element method [38]. a and b are para-
metrized by θ as a ¼ cos θ and b ¼ sin θ, respectively.
Figures 1 and 2 show the spatial configuration of jϕj2 for an
integer vortex with n ¼ 2 and n ¼ 3, respectively. For
small θ, the vortex has the circular structure which is
qualitatively the same as that for the usual Goldstone model
with θ ¼ 0. On the other hand, at larger θ, the circular
integer vortex becomes energetically unstable and splits
into n fractional vortices connected with line defects.
We call this structure a vortex molecule. For n ¼ 3,
furthermore, there are several metastable solutions for
Eq. (13) when θ is large. The triangular-shaped mole-
cule in Fig. 2(d) is metastable and has the higher relative
energy Ē ≡ E − Esym ∼ −1.184 than the rod-shaped
molecule in Fig. 2(c) having the lowest relative energy
E − Esym ∼ −1.837, where Esym denotes the energy for the
symmetric solution satisfying ϕ ¼ gðρÞeiφ.
Figure 3 shows the dependence of the relative energy Ē

on θ. The zero relative energy Ē ¼ 0 shows that the circular

FIG. 1. Spatial configuration of jϕj2 for an integer vortex with n ¼ 2. The radius of the system is 20.
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integer vortex solution is the stable solution. In the case of
n ¼ 2, the circular integer vortex solution changes to
unstable against the vortex molecule solution at θ ∼ 85°.
In the case of n ¼ 3, the circular integer vortex solution
changed into the rod-shaped vortex molecule solution at
θ ∼ 80°. While the only rod-shaped vortex molecule
appears as the stable solution at 80°≲ θ ≲ 85°, the triangu-
lar-shaped vortex molecule solution appears as the meta-
stable solution at θ ≳ 85°.

In the case of n ¼ 4, we have found three symmetric
solutions as shown in Figs. 4(a)–4(c), i.e., rod-shaped, cross-
shaped, and triangular-shapedmolecules for Figs. 4(a), 4(b),
and 4(c), respectively. Being different from the n ¼ 2 and
n ¼ 3 cases, the rod-shaped solution in Fig. 4(a) is not the
most stable but metastable, having higher energy than that
for the triangular-shaped solution in Fig. 4(c), andwe expect
that the triangular-shaped solution is the most stable
(minimum energy) solution. However, there is a large

FIG. 2. Spatial configuration of jϕj2 for an integer vortex with n ¼ 3. The radius of the system is 30. While the solution in (c) is the
stable ground state, the solution in (d) is the metastable state having higher energy than that in (c).

FIG. 3. Dependence of the relative energy Ē on θ.

FIG. 4. Spatial configuration of jϕj2 for an integer vortex with n ¼ 4 and θ ¼ 88°. The radius of the system is 40.
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number of nonsymmetric solutions as shown in Fig. 4(d),
and we have not exhausted all of them. Although all
nonsymmetric solutions that we have found thus far have
higher energies than those of symmetric solutions, we
cannot give a clear conclusion that all nonsymmetric
solutions truly have higher energies than those of symmetric
solutions, and the triangular-shaped solution is the most
stable solution.Wewill report the detailed analysis for n ≥ 4
elsewhere.

IV. SUMMARY AND DISCUSSION

As a generalization of the modified XY and Goldstone
models, we have defined the Zn modified XY and
Goldstone models, having a 2π=n periodic term in addition
to the usual XY (2π periodic) term. We have pointed out
that the modified Goldstone model can be regarded as a
nonlinear sigma model with the target space of the orbifold
geometry C=Zn with the orbifold singularity resolved.
Depending on the vacua, we have found two different
schemes: the integer vortex scheme, in which the XY
term is dominant, and the fractional vortex scheme, in
which the modified term is dominant. We have exhausted
vortex solutions for n ¼ 2, 3 and have found a vortex
confinement transition from an integer vortex in the integer
vortex scheme to a vortex molecule, i.e., n 1=n-quantized
vortices connected by a domain wall (or walls) in the
fractional vortex scheme. In the case of n ¼ 3, we have
found a Y-shaped molecule as a metastable solution, and
the most stable solution is a rod-shaped molecule for the
fractional vortex regime.
As a related topic, two (or n) complex scalar fields

coupled by a Josephson term(s) also admit a vortex
molecule of half-quantized (1=n quantized) vortices; see

Refs. [39–47] for two-component Bose-Einstein conden-
sates (BECs), Refs. [48–52] for n-component BECs, and
Ref. [53] for a spinor BEC. In this case, in contrast to the
case of the modified model, there is no two-step phase
transition [54,55], but it is unclear what the crucial differ-
ence is between the two cases, although both admit similar
solutions.
If we gauge the U(1) symmetry of the Goldstone model,

we have an Abelian-Higgs model. While the former admits
a global vortex as we have discussed in this paper, the latter
admits a local Abrikosov-Nielsen-Olesen vortex [56,57]. It
is an interesting question whether a modified Abelian-
Higgs model admits local vortices of the molecule type.
There are several questions such as whether there is a
critical Bogomol'nyi-Prasad-Sommerfield coupling and
whether it admits a supersymmetric extension; see, e.g.,
Ref. [58]. Whether there is any superconductor described
by such models is also an interesting question.
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