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In this paper, we discuss some specific features for the stress-energy tensor of vacuum nonlinear
electrodynamics and based on these features we propose the inequalities which in form are close to the
energy conditions widely used in general relativity and which can be interpreted as their possible nonlinear
extension. The modified energy conditions were verified for the perfect fluid and real scalar field with an
arbitrary coupling to the kinetic term.

DOI: 10.1103/PhysRevD.101.085001

I. INTRODUCTION

Contemporary field theory considers a lot of theoretical
models, verification of the experimental status for which at
present is difficult or impossible with the various reasons.
For this reason the paramount importance is in search and
investigation of criteria, violation of which for the tested
model will lead to the contradiction of fundamental
physical principles. Of course, violation of such criteria
does not negate the need for a comprehensive experimental
study of the particular model predictions; however, this
allows to classify such a model as an exotic.
Among the many fundamental principles the special

place is given to the criteria of causality, unitarity, and to
the energy conditions. The causality criteria guarantee
that the group velocity for the elementary field excitations
do not exceed the speed of light in vacuum, while the
unitarity criteria provides the positive definiteness of
the norm of every elementary excitation of the vacuum.
These requirements provide a significant restriction on the
Lagrangian of the model under consideration. Such
restrictions on theoretical models of vacuum electro-
dynamics, coming from the noted principles, was obtained
in [1] as a set of inequalities on the Lagrangian and its
derivatives.
In turn, the energy conditions have the form of various

inequalities imposed on the matter stress-energy tensor
components Tik and originating from general requirement,
that the field energy density should be non-negative, when
measured by any observer. The formulation of energy
conditions can be quite varied. From the set of different
types for these conditions [2,3], one should especially note
the weak energy condition (WEC), the null energy con-
dition (NEC), and the dominant energy condition (DEC).
The weak energy condition guarantees positive definiteness

of the matter energy for an observer traversing any timelike
curve, which manifests in the form of inequality:

Tikaiak ≥ 0; ð1Þ

where ak is any timelike vector. This condition is satisfied
for most of the known types of matter; however, there are
predictions about possible violation of it in the inflating
space-times [4].
The null energy condition in form is similar to WEC;

however ak now is a null vector. In general relativity this
condition ensures the absence of repulsion for null geo-
desics, focused by the matter. It also is a clue assumption
for area [5] and singularity theorems [2,6]. The condition is
satisfied by most reasonable classical fields; however, its
violation is expected in some models of scalar-tensor
gravity, for instance, in Horndesky theory [7,8].
Both the WEC and the NEC conditions do not preclude

superluminal speed for the energy propagation; however
the WEC supplemented by the requirement that the energy
flux be a future-pointing causal vector

TikTkmaiak ≥ 0; ð2Þ

leads to the dominant energy condition which, widely
believed, is deprived of the pointed disadvantage.
Nevertheless, it should be noted that there are some
assumptions [3,9,10] indicating that the DEC is not enough
to solve the superluminal problem. These assumptions in
the particular cases seem to be self-consistent; however, it is
very difficult to generalize them to an arbitrary stress-
energy tensor.
The energy conditions listed above are heuristic in nature

and their fulfillment should be verified in each particular
case for the stress-energy tensor of the matter in question.
In this paper, we establish some new relations arising for
the stress-energy tensor of an arbitrary Lorentz-invariant*sokolov.sev@inbox.ru
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nonlinear electrodynamics with the most general depend-
ence on the electromagnetic field tensor invariants. In order
to find out whether the established relations are universal,
or are valid only for the electromagnetic field, we will
check their fulfillment for other types of matter.
The paper is organized as follows: In Sec. II, we discuss

vacuum nonlinear electrodynamics models and obtain
some specific features for their stress-energy tensor. In
this section wewill formulate a statement for the deviator of
the stress-energy tensor which will be verified for other
types of matter on the subsequent sections. In Sec. III we
perform verification of the statement for the perfect fluid
and in Sec. IV we will check it for scalar field with an
arbitrary coupling to kinetic term in the Lagrangian. In the
last section we summarize our results. For more conven-
ience, we will use geometerized units (G ¼ c ¼ ℏ ¼ 1) and
the metric signature fþ;−;−;−g.

II. VACUUM NONLINEAR ELECTRODYNAMICS
AND ITS SPECIFIC FEATURES

Vacuum nonlinear electrodynamics (NED) models arise
from the assumption about the nonlinear dependence of the
model Lagrangian on the invariants of the electromagnetic
field tensor. The specific form of the Lagrangian depends
on the model choice. Such nonlinear generalization can
solve some problems inherent to the Maxwell electro-
dynamics and also gives the predictions for new effects.
For instance, the Born-Infeld model [11] solves the

problem of the infinite energy of a pointlike charge by
bounding the field strength in the charge center.
Heisenberg-Euler theory [12] considers quantum radiative
corrections caused by electron-positron vacuum polariza-
tion in a strong electromagnetic field and predicts birefrin-
gence for electromagnetic waves in vacuum. There are
various modifications and extensions of the NED models
[13–15]. In this paper, we will not specify the particular
form of the Lagrangian L, assuming only that it is an
arbitrary function of the electromagnetic field invariants
J2 ¼ FikFki and J4 ¼ FikFklFlmFmi. In this case the action
for a vacuum nonlinear electrodynamics, in the space-time
with the metric tensor gik can be represented in the form

S ¼
Z ffiffiffiffiffiffi

−g
p

LðJ2; J4Þd4x; ð3Þ

where g is the metric determinant. It is easy to derive the
symmetric stress-energy tensor for the action (3):

Tik ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgik

¼ 4

�∂L
∂J2 þ J2

∂L
∂J4

�
Fð2Þ
ik

þ
�
ð2J4 − J22Þ

∂L
∂J4 − L

�
gik; ð4Þ

with the trace

T ¼ Ti
i ¼ 4

�∂L
∂J2 J2 þ 2J4

∂L
∂J4 − L

�
; ð5Þ

and where the second power of the electromagnetic field

tensor is introduced as Fð2Þ
ik ¼ FimFm·

· k. In general, there are
no reasons to assert that the weak energy condition (1) takes
place for an arbitrary vacuum nonlinear electrodynamics.
Fulfillment of this condition depends on the choice of
Lagrangian and on specific model phenomenology.
Nevertheless, some general relations inherent to an arbi-
trary nonlinear vacuum electrodynamics may be estab-
lished. To obtain such relations, we construct the deviator
of the stress-energy tensor (4)

Dik ¼Tik−
T
4
gik¼ 4

�∂L
∂J2þJ2

∂L
∂J4

��
Fð2Þ
ik −

J2
4
gik

�
: ð6Þ

It is easy to see that the deviator Dik is conformal to the
Maxwell electrodynamics stress-energy tensor, which up to
a constant coefficient corresponds to the expression in
the curly brackets. Moreover, as it was noted earlier, the
Lagrangian L must fulfill unitarity and causality condi-
tions, which were considered for an arbitrary NED in
assumption that ðE;BÞ ¼ 0 in the paper [1]. These restric-
tions lead to the set of inequalities, one of which has exactly
the same form as the first multiplier in (6)

∂L
∂J2 þ J2

∂L
∂J4 ≥ 0: ð7Þ

Because the weak energy condition (1) is satisfied for the
Maxwell electrodynamics, the quadratic form based on the
deviator of the stress-energy tensor will be non-negatively
defined on the set of causal vectors for an arbitrary
NED: Dikaiak ≥ 0.
This statement can be extended and generalized. To

make this, we derive an arbitrary power p of the stress-

energy tensor deviator DðpÞ
ik ¼ Dim1

Dm1m2 � � �Dmp−1k

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{p

. After
some cumbersome calculations we obtain the general
expression for even and odd powers of the deviator:

Dð2mÞ
ik ¼ 2m

�∂L
∂J2 þ J2

∂L
∂J4

�
2m
�
2J4 −

J22
2

�
m
gik; ð8Þ

Dð2mþ1Þ
ik ¼ 2mþ2

�∂L
∂J2 þ J2

∂L
∂J4

�
2mþ1

�
2J4 −

J22
2

�
m

×

�
Fð2Þ
ik −

J2
4
gik

�
; ð9Þ

where m is an arbitrary unsigned integer.
The multiplier (7) for all the expressions is non-negative,

as well as the multiplier 2J4 − J22=2. Therefore, in conse-
quence with the causality principle (7), the quadratic form
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for an arbitrary power p of the deviator, defined on the
set of causal vectors ak, will be not negative for an
arbitrary NED:

DðpÞ
ik aiak ≥ 0; akak ≥ 0: ð10Þ

The last expression can be rewritten in terms of the Ricci
tensor deviator. However, for such a representation, it will
be necessary to take a certain form of gravity equations, for
instance, to use the Einstein equations for the connection
between the components of the Ricci tensor and the energy-
momentum tensor. Such an approach involves the selection
of a specific theoretical model of gravity and therefore
limits the generality, so we will carry out all further
considerations in terms of the stress-energy tensor.
For the special class of NED with the zero trace of the

stress-energy tensor [15], the statement (10) will be valid
not only for the deviator but also for an arbitrary power of
the stress-energy tensor, and in the case when p ¼ 1 it leads
to the weak energy condition. In general, the statement (10)
can be interpreted as a nonlinear energy condition.
Nonlinear energy conditions constructed in the form of
power-law combinations of the stress-energy tensor com-
ponents already have been mentioned in the literature. For
example, in [16], the so-called “flux energy condition”
(FEC) was proposed as a quadratic form based on the
second power of vacuum averaged stress energy-tensor.
The paper [17] also considers a quadratic energy condition
in the form

ðTai − εηaiÞηikðTbk − εηbkÞVaVb ≥ ε2; ð11Þ

where ηia ¼ diagf1;−1;−1;−1g is the Minkowski
metric, ε is an arbitrary positive coefficient, and Va are
the components of the timelike vector. The deviator con-
dition (10) under the specific assumptions can be rewritten in
the form close to (11). Other nonlinear energy conditions,
which are in form significantly different from (10) are also
mentioned in Ref. [17]. For instance, the determinant energy
condition assumes that det Tik ≥ 0, and the trace-of-square
energy condition impose the restriction TikTik ≥ 0.
All of the listed above nonlinear energy conditions,

including (10), are empirical in nature, and as already noted
in [18], unfortunately, do not allow a vivid physical
interpretation. Primarily, this is due to the fact that the
linear energy conditions obtained their physical meaning,
due to the coincidence of the terms in some well-studied
equations with the expressions for these energy conditions.
For instance, in the Raychaudhuri equation, which
describes the expansion of congruences of geodesic rays,
one of the terms coincides by the form with the WEC.
Nonlinear equations are still poorly studied, and so far, the
equations which include the nonlinear power-law energy
conditions are unknown. Moreover, if such equations
exists, the interpretation of the energy conditions based

on them would be rather complicated due to nonlinearity. In
view of the described difficulties, we propose to consider
nonlinear energy conditions only as algebraic constraints
for the energy-momentum tensor established for a certain
type of matter, which can be extended on the other types of
matter with or without certain restrictions. The study of
the possibility of such an extension and search of the
limitations for this seems as the main aim of further
consideration.
In order to find out whether the property (10) of the

stress-energy tensor deviator is specific only for nonlinear
electrodynamics, or if it is not a unique feature, in the next
sections we will test this property for the other types of
matter.

III. VERIFICATION FOR A PERFECT FLUID

Let us check whether the inequality (10) is valid for an
arbitrary dynamics of the perfect fluid, for which the stress-
energy tensor and its trace have a form:

Tik ¼ ðwþ pÞuiuk − pgik; T ¼ w − 3p; ð12Þ

where w is the rest energy density, p is isotropic pressure
and uk is a four-velocity with the norm ukuk ¼ 1. It is easy
to derive the deviator for the stress-energy tensor:

Dik ¼ ðwþ pÞ
�
uiuk −

gik
4

�
: ð13Þ

As previously, after some calculations, we can obtain the
expression for an even and odd power of the deviator,
substitution of which to the inequality (10) gives

Dð2mþ1Þ
ik aiak¼

�
wþp
4

	
2mþ1

½ð32mþ1þ1ÞðukakÞ2−akak�;

Dð2mÞ
ik aiak¼

�
wþp
4

	
2m
½ð32m−1ÞðukakÞ2þakak�: ð14Þ

To find out the sign of the last expressions we will resort
to a technique close to the Newman-Penrose formalism
[19–21]. Let us introduce two isotropic four-vectors lk and
nk. We take into account that any causal future-pointing
vector ak can be represented as a superposition of two
noncollinear isotropic vectors, also pointing to the future
ak ¼ αlk þ βnk, where α,β are real constants. Without loss
of generality, one can take that lknk ¼ 1, so the causality
akak ≥ 0 sets the restriction on the coefficients αβ ≥ 0.
Now we supplement the set of vectors lk and nk with the

two other complex isotropic vectors mk and m̄k, so that
altogether these vectors form a tetrade with the following
scalar products:
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lklk ¼ nknk ¼ mkmk ¼ nkmk ¼ lkmk ¼ 0;

lknk ¼ −m̄kmk ¼ 1; ð15Þ

where the bar denotes complex conjugation. The tetrade
represents a basis, which can be used for four-velocity
decomposition:

uk ¼ f1lk þ f2nk þ f3ðmk þ m̄kÞ þ if4ðm̄k − m̄kÞ; ð16Þ

where the coefficients f are the fluid dynamics dependent
functions. From the realness of four-velocity uk ¼ ūk one
can conclude that all these coefficients are real. Another
property of the decomposition follows from the norm
ukuk ¼ 1 of four-velocity:

2f1f2 ¼ 1þ 2ðf23 þ f24Þ ≥ 1: ð17Þ

Finally, it is helpful to obtain some auxiliary expressions:

ðukakÞ2 ¼ ðαf2 þ βf1Þ2; akak ¼ 2αβ ≥ 0; ð18Þ

substitution of which into (14) gives

Dð2mþ1Þ
ik aiak ¼

�
wþp
4

	
2mþ1

× ½ð32mþ1 þ 1Þðα2f22 þ β2f21Þ
þ 2αβfð32mþ1 þ 1Þf1f2 − 1g�;

Dð2mÞ
ik aiak ¼

�
wþp
4

	
2m
½ð32m − 1Þðαf2 þ βf1Þ2 þ 2αβ�:

ð19Þ

Since the sum of the pressure and the rest energy density is
non-negative pþ w ≥ 0 (which also follows from the
WEC for the perfect fluid [3]), and by virtue of (17) and
(18) one can conclude that both expressions in (19) are non-
negative for arbitrary coefficients of decomposition α and
β, which depend on the ak choice, for arbitrary coefficients
f which depend on the fluid dynamics and also for an
arbitrary power index m. Therefore the statement of non-
negativity of the quadratic form, constructed with the
powers of the stress-energy tensor deviator, holds not only
for the vacuum nonlinear electrodynamics, but also for the
perfect fluid.

IV. VERIFICATION FOR A SCALAR FIELD

Now let us check the statement for the real scalar field ϕ,
under the assumption of an arbitrary coupling between the
Lagrangian and the kinetic term. Such type of matter is
widely discussed in general relativity as a k-essence model
of the dark energy [22]. In this case the action functional
can be represented in the form

S ¼
Z ffiffiffiffiffiffi

−g
p

LðX;ϕÞd4x; ð20Þ

where X ¼ ∇kϕ∇kϕ is the kinetic term. For the action (20)
it is easy to derive the symmetric stress-energy tensor

Tik ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgik

¼ 2
∂L
∂X∇iϕ∇kϕ − Lgik; ð21Þ

and its deviator, which is close by the form to the similar
expression for the perfect fluid:

Dik ¼ 2
∂L
∂X

�
∇iϕ∇kϕ −

X
4
gik

	
: ð22Þ

However, we should note, that now there is no restriction on
the value of X and it can be zero or negative, in contra-
diction to ukuk > 0 in the perfect fluid model. As earlier in
Secs. II and III, we obtain the general expressions for the
deviator powers, which we use to construct a quadratic
form with the causal vector ak. Omitting auxiliary calcu-
lations, we get

Dð2mÞ
ik aiak ¼

�∂L
∂X

	
2m X2m−1

22m

× fð32m − 1Þð∇kϕakÞ2 þ Xakakg; ð23Þ

D2mþ1
ik aiak ¼

�∂L
∂X

	
2mþ1 X2m

22mþ1

× fð32mþ1 þ 1Þð∇kϕakÞ2 − Xakakg: ð24Þ

In order to determine the sign of the expression for each
quadratic form, we perform decomposition of the covariant
derivative on the basis of the isotropic tetrade (15):

∇kϕ¼ f1lkþf2nkþf3ðmkþ m̄kÞþ if4ðm̄k−mkÞ; ð25Þ

where the coefficients f depends on the scalar field
configuration, and as earlier in Sec. III we use the following
decomposition for the causal vector: ak ¼ αlk þ βnk, with
αβ ≥ 0. Representation (25) allows us to obtain useful
auxiliary expressions:

X ¼ ∇kϕ∇kϕ ¼ 2ðf1f2 − f23 − f24Þ;
ð∇kϕakÞ2 ¼ ðαf2 þ βf1Þ2; ð26Þ

substitution of which into Eq. (23) leads to

Dð2mÞ
ik aiak ¼

�∂L
∂X

	
2m X2m−1

22m

× fð32m − 1Þðαf2 þ βf1Þ2
þ 4αβðf1f2 − f23 − f24Þg; ð27Þ

SOKOLOV, GARMAEV, and ROSTOVSKY PHYS. REV. D 101, 085001 (2020)

085001-4



D2mþ1
ik aiak ¼

�∂L
∂X

	
2mþ1 X2m

22mþ1
fð32mþ1 − 1Þ

× ðαf2 þ βf1Þ2 þ 4αβðf23 þ f24Þ
þ 2ðα2f22 þ β22f

2
1Þg: ð28Þ

It should be taken into account that due to the requirement
of the ghosts lack (unitarity condition), the derivative of the
Lagrangian over the kinetic term ∂L=∂X ≥ 0 is not
negative [23] and this governs the sign of the first multiplier
in (27) and (28) also to be not negative. It is easy to see that
the second multiplier and the expression in the curly
brackets in (28) are non-negative for all m starting from
zero and for all α, β, and f. Based on this, we can conclude
that the quadratic form constructed with the odd power of
the stress-energy tensor deviator is non-negative on the set

of causal vectors Dð2mþ1Þ
ik aiak ≥ 0. This fact supports our

statement about the deviator powers; however, consider-
ation of the expression for an even powers (27) gives an

opposite result. Let us discuss this in detail and consider
two cases of the kinetic term sign.
When X ≥ 0, from the expression (26) follows that

f1f2 ≥ f23 þ f24, so all the terms in the curly brackets in
(27) are non-negative, and therefore this quadratic form is
also non-negative.
In the opposite case, when X < 0, the inequalities in

Eq. (26) leads to the estimation:

ðαf2 þ βf1Þ2 < ðαf2Þ2 þ ðβf1Þ2 þ 2αβðf23 þ f24Þ: ð29Þ

Moreover, the quadratic form, based on the even power of
the deviatior (27) can be rewritten as

Dð2mÞ
ik aiak ¼

�∂L
∂X

	
2mX2m−1

22m
fð32mþ1Þðαf2þβf1Þ2

−2ðαf2Þ2−2ðβf1Þ2−4αβðf23þf24Þg; ð30Þ

where the first term in the curly brackets can be bounded by
using (29), which leads to the estimation from above:

Dð2mÞ
ik aiak <

�∂L
∂X

	
2m X2m−1

22m
fð32m þ 1Þ½ðαf2Þ2 þ ðβf1Þ2 þ 2αβðf23 þ f24Þ� − 2ðαf2Þ2 − 2ðβf1Þ2 − 4αβðf23 þ f24Þg

¼ ð32m − 1Þ
�∂L
∂X

	
2m X2m−1

22m
fðαf2Þ2 þ ðβf1Þ2 þ 2αβðf23 þ f24Þg < 0: ð31Þ

Due to X < 0 the right-hand side of the last expression is
always negative for any coefficients α and β, which are
correspondent to the causal vector αβ ≥ 0 and this result
indicates that the statement about positive definiteness of
the deviator powers can be violated.

V. CONCLUSION

In the paper we have considered the properties of the
stress-energy tensor deviator. We have investigated the
expressions that can be interpreted as nonlinear generali-
zation of the energy conditions,which are commonly used in
general relativity. It was revealed that, for an arbitrarymodel
of vacuum nonlinear electrodynamics the quadratic form
constructedwith an arbitrary power of the deviator can never
be negative on the set of causal vectors. To find out whether
this feature is characteristic only for nonlinear electrody-
namics or it has a more common character, we checked this
property for an isotropic perfect fluid model and for an
arbitrary real scalar field. In the case of the perfect fluid, the
noted feature of the quadratic form is also valid for any fluid
dynamics. However, for the scalar field the statement cannot
always be confirmed. It was shown that for the scalar field

configurationwith negative kinetic term (for instance,which
corresponds to the case of static inhomogeneous field), the
quadratic form for the even powers of the deviator will be
negative. The possibility of violating the positive definite-
ness of the quadratic form indicates that the models of
vacuum nonlinear electrodynamics are specific, since this
violation does not take place for them.
It should be noted that, despite the fact that in accordance

with Eq. (31), the quadratic form for a scalar field is not sign-
specified, the same expression leads to another remarkable
property. The sign of the quadratic form is completely
determined by the field configuration and does not depend
on the choice of the causal vector ak, which is usually
interpreted as the four-velocity of an observer which tests the
features of the field. Hence, for each considered field
configuration any observer will find that the sign of a
quadratic form which is constructed with an arbitrary power
of the stress-energy tensor deviator will not depend on the
choice of the four-velocity of the observer. This statement is
valid for vacuumnonlinear electrodynamics, the perfect fluid
model, and the scalar field with an arbitrary coupling to the
kinetic term in the Lagrangian; however, it should be verified
for the other types of matter in each particular case.
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