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We present the quantization of the 2þ 1 dimensional nonprojectable Hořava theory. The central point of
the approach is that this is a theory with second-class constraints, hence the quantization procedure must
take account of them. We consider all the terms in the Lagrangian that are compatible with the foliation-
preserving-diffeomorphisms symmetry, up to the z ¼ 2 order which is the minimal order indicated by
power-counting renormalizability. The measure of the path integral must be adapted to the second-class
constraints, and this has consequences in the quantum dynamics of the theory. Since this measure is defined
in terms of Poisson brackets between the second-class constraints, we develop all the Hamiltonian
formulation of the theory with the full Lagrangian. We found that the propagator of the lapse function (and
the one of the metric) acquires a totally regular form. The quantization requires the incorporation of a
Lagrange multiplier for a second-class constraint and fermionic ghosts associated to the measure of the
second-class constraints. These auxiliary variables have still nonregular propagators.
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I. INTRODUCTION

Hořava theory [1,2] is a geometrical field theory that may
be used to study quantum gravity since it is power-counting
renormalizable and unitary. As a field theory, it has some
open questions that deserve deep analysis. In particular, the
consistent quantization of its nonprojectable version must
be focused. This is a rather nondirect program since the
nonprojectable theory has second-class constraints, hence
any scheme of quantization must take account of them. Once
a consistent framework for such a quantized theory has been
established, an important application for it is to prove (or
disprove) its renormalizability. On the contrary, the project-
able version has not second-class constraints, hence its
quantization can be achieved with the standard techniques
of gauge field theories. Indeed, the renormalizabilty of the
projectable version has been proven [3]. Moreover, it is a
theory with asymptotic freedom in 2þ 1 dimensions [4].
Quantum corrections to the 2þ 1 projectable theory has been
studied in Ref. [5].
The geometrical framework introduced in the Hořava

theory is to represent the gravitating space as a foliation
of spacelike hypersurfaces along a given direction of time.

The foliation is considered as absolute, that is, it cannot
be changed by a symmetry transformation. The theory is
formulated in terms of the Arnowitt-Deser-Misner (ADM)
variables: the spatial metric gij, the lapse functionN and the
shift vector Ni, which are natural for such a foliation [6].
The gauge symmetry of the theory is given by the group of
all the foliation-preserving diffeomorphisms (FDiff) acting
on these variables. We emphasize that the presence of this
gauge symmetry does not guarantee that the standard
quantization procedures for gauge theories—Faddeev-
Popov [7], BRST, background-field method, etc., are
sufficient to perform its quantization, due to the presence
of the second-class constraints that are not associated to
gauge symmetries. Hence, besides the quantization of the
gauge sector, one must find a way to incorporate the second
class constraints as restrictions on the phase space, making
a consistent quantization.
The FDiff gauge symmetry leads to a theory that

includes higher order terms in spatial derivatives. As a
consequence, it is expected that the renormalizability of the
theory is improved with respect to general relativity, since
the behavior of propagators is improved in the ultraviolet.
Simultaneously, unitarity can be safe since no higher time
derivatives are generated. The theory has two versions, the
projectable version where the lapse function N is a function
only of time and the nonprojectable version where N may
depend on the time and the space. The projectable con-
dition is preserved by the FDiff summetry group, hence the
projectable case constitutes an independent formulation.
The nonprojectable version has field equations closer to
the Einstein equations, and its 3þ 1 formulation has more
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chance of surviving the observational tests than the project-
able case. In the nonprojectable version, a fundamental
extension of the Lagrangian was proposed in Ref. [8] by
including terms depending on the FDiff-covariant vector
ai ¼ ∂i lnN.
Computations in quatum gravity are typically difficult.

In the case of the nonprojectable 3þ 1 Hořava gravity, the
Lagrangian includes a number of the order of 102 different
terms that are compatible with the FDiff gauge symmetry.
However, when the dimensionality of the space is reduced
to 2þ 1, the number of independent terms in the
Lagrangian reduces drastically and the theory is still
interesting for doing quantum gravity. Indeed, an out-
standing feature of the 2þ 1 Hořava theory is that it
propagates a physical, scalar, degree of freedom, unlike
2þ 1 general relativity which is a topological theory. Thus,
2þ 1 Hořava theory is a three-dimensional model with a
particle carrying the local gravitational interaction, hence,
in principle, perturbative quantization based on Feynman
propagators and Feynman diagrams can be used. An
exception occurs when the theory is formulated at the
critical point, in which case a physical mode is suppressed.
This critical point, whose definition depends on the
dimensionality of the theory, has been called the kinetic-
conformal point [9]. In the 2þ 1 dimensional case the
theory becomes topological at the critical point, since the
only propagating mode disappears. This case deserves a
separate study, here we only consider the noncritical
formulation.
Our objective in this paper is to perform a detailed

analysis of the quantization of the 2þ 1 nonprojectable
Hořava theory. As we have commented, an essential feature
of the nonprojectable theory is the presence of second-class
constraints. This fact forces us to consider the quantization
in rather different approaches to ones used in general
relativity, projectable Hořava theory, and gauge theories in
general with only first-class constraints. As it is well
known, there are two main routes to manage theories with
second-class constraints, namely, the path integral quanti-
zation with the appropriate measure for the second-class
constraints and the Dirac brackets in the operator formal-
ism. We focus on the path integral quantization, since it is
more adaptable to a gravitational field theory as the Hořava
theory. Since the measure corresponding to the second-
class constraints is defined in terms of the canonical
variables and their Poisson brackets [10], our approach
is based on the Hamiltonian formulation of the theory.
We consider the full 2þ 1 theory. Hence we consider in

the Lagrangian all the inequivalent terms that are compat-
ible with the FDiff symmetry, up to the minimal order in
spatial derivatives required by power-counting renormaliz-
ability, which is z ¼ 2 in the 2þ 1 theory [1]. This yields a
Lagrangian with terms of second and fourth order in spatial
derivatives. We combine the perturbative approach, where
the constraints can be solved and one can obtain the

propagator of the theory, with formal nonperturbative
and nonreduced approaches.
We comment that, in spite of being a nontopological

theory, the 2þ 1 Hořava theory still shares some features
with 2þ 1 general relativity. A fundamental issue with
consequences in the local quantization is the definition of
asymptotic flatness, which in particular is relevant for the
Hamiltonian formulation of the theory. In 2þ 1 general
relativity the definition of asymptotic flatness is not based
on having a fixed metric at infinity, unlike the 3þ 1 case.
The definition lies on the existence of the exact solution
corresponding to the gravitational field of a massive point
particle. This solution is a locally flat cone with a deficit
angle that depends on the mass of the particle [11]. An
asymptotically flat configuration is then a configuration
that approaches this solution for large enough distances. As
a consequence, the dominant mode in the expansion is not
fixed functionally, as we have commented. In a previous
paper [12], we studied the analogous situation in the 2þ 1
nonprojectable Hořava theory, finding that the same sol-
ution for the massive point particle is valid in the Hořava
theory. Thus, we proposed the same definition of asymp-
totic flatness as in 2þ 1 general relativity [13] for the three-
dimensional Hořava theory. More consequences on the
value of the energy and the role of the higher order terms
were considered in that reference.

II. THE NONPROJECTABLE HOŘAVA THEORY
IN 2 SPATIAL DIMENSIONS

The starting point is the definition of a foliation formed
by two-dimensional spatial slices, the foliation being
defined along a direction of time. This setting is considered
as absolute, it cannot be changed by a symmetry trans-
formation. Thus, the underlying gauge symmetry group is
given by the diffeomorphisms that preserve the foliation,
FDiff. Under a FDiff transformation, the coordinates ðt; x⃗Þ
transform as

δt ¼ fðtÞ; δxi ¼ ζiðt; x⃗Þ: ð2:1Þ

The Hořava theory is formulated in terms of the Arnowitt-
Deser-Misner (ADM) variables, which are the spatial
metric gij, the lapse function N and the shift function
Ni. Under a FDiff transformation, the ADM variables
transform as

δN ¼ ζk∂kN þ f _N þ _fN; ð2:2Þ

δNi ¼ ζk∂kNi þ Nk∂iζ
k þ _ζjgij þ f _Ni þ _fNi; ð2:3Þ

δgij ¼ ζk∂kgij þ 2gkði∂jÞζk þ f _gij: ð2:4Þ

With the FDiff gauge symmetry one may define the
Hořava theory in the projectable and the nonprojectable
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formulations. In the projectable version the lapse function
is a function only on time,NðtÞ. This condition is preserved
by the FDiff symmetry, as it can be directly deduced from
(2.2). We will focus in the nonprojectable version and the
minimal degree of anisotropy needed to ensure the power-
counting renormalization of the Hořava theory, which is
z ¼ spatial dimensions ¼ 2 [1].
The action of the nonprojectable Hořava theory in 2þ 1

dimensions is

S ¼
Z

dtd2x
ffiffiffi
g

p
NðGijklKijKkl − VÞ; ð2:5Þ

where the extrinsic curvature is defined by

Kij ¼
1

2N
ð _gij − 2∇ðiNjÞÞ; ð2:6Þ

and the hypermatrix Gijkl is a four-index metric

Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl: ð2:7Þ

The covariant derivative ∇i and all the standard notation
of Riemannian geometry that we use refers to the three-
dimensional spatial metric gij. We use the shorthand
notation ∇ijk… ≡∇i∇j∇k � � �. The dimensionless param-
eter λ included in the kinetic term plays a fundamental role
in the theory. The matrix Gijkl has inverse if and only if
λ ≠ 1=2, a condition that we assume throughout this paper.
On the contrary, when this parameter acquires the critical
value λ ¼ 1=d, where d is the spatial dimension, the kinetic
term acquires a conformal invariance, although the whole
theory is not conformally invariant due to the potential that
breaks this symmetry. The theory at λ ¼ 1=2 can become
conformally invariant if also the potential is conformal,
like a Cotton-square term or the potential studied in [14].
At the critical point λ ¼ 1=2 the extra scalar mode is
eliminated due to the raising of two additional second-class
constraints [15].
The potential V must be invariant under FDiff. Hence, it

must be formed by invariants written in terms of the spatial
metric and the acceleration vector [8]

ak ¼ ∂k lnN: ð2:8Þ

The full potential in 2þ 1 dimensions, considering all the
terms up to the z ¼ 2 degree of anisotropy, is given by [16]

V ¼ −βR − αa2 þ α1R2 þ α2a4 þ α3Ra2 þ α4a2∇kak

þ α5R∇kak þ α6∇lak∇lak þ α7ð∇kakÞ2; ð2:9Þ

where β, α, and the α1;…;7 are independent coupling
constants.

III. CANONICAL FORMULATION

A. Hamiltonian and constraints

Our main aim is to address the path-integral quantization
of the theory. To this end we perform the canonical
formulation. The nonreduced phase space is spanned by
the conjugate pairs ðgij; πijÞ and ðN;PNÞ. The reduced
phase is the subspace where all the constraints are satisfied.
The first (primary) constraint that arises in the formulation
is the vanishing of the momentum conjugate to the lapse
function,

PN ¼ 0; ð3:1Þ

since the Lagrangian in (2.5) does not depend on the time
derivative of N. Given the Lagrangian in (2.5), the
canonically conjugated momentum of the spatial metric
has the form

πijffiffiffi
g

p ¼ GijklKkl: ð3:2Þ

According to the previous discussion about the invertibility
of Gijkl, the time derivative of the metric _gij can be
completely solved from this expression only if λ ≠ 1=2,
as we assume.
As happens in the canonical formulation of general

relativity [6], the Legendre transformation automatically
incorporates the momentum constraint

H0i ¼ −2∇jπ
ij; ð3:3Þ

which generates spatial coordinate transformations on the
pair ðgij; πijÞ. Consequently, the shift function Ni can be
regarded as the Lagrange multiplier associated to the
momentum constraint. We are interested in the full gen-
erator of the spatial diffeomorphisms, therefore we must
include the generator of the spatial-coordinate transforma-
tions in ðN;PNÞ [17], hence we redefine (3.3) by

Hi ¼ −2∇jπ
ij þ PN∂iN: ð3:4Þ

Unlike general relativity, the bulk part of the
Hamiltonian does not arise as a sum of the primary
constraints, it arises instead as

H ¼
Z

d2x

�
N

�
πijπijffiffiffi

g
p þ λ

1 − 2λ

π2ffiffiffi
g

p þ ffiffiffi
g

p
V
�

þ NiHi þ σPN

�
; ð3:5Þ

where σ is another Lagrange multiplier.
Before we proceed further, we parenthetically make a

comment on the definition of asymptotic flatness in the

QUANTIZATION OF THE NONPROJECTABLE 2þ 1D … PHYS. REV. D 101, 084061 (2020)

084061-3



2þ 1 gravitational theories. The exact solution of a particle
at rest in 2þ 1 general relativity is a flat cone with a deficit
angle that depends of the mass of the particle [11]. This
motivates the definition of asymptotic flatness in 2þ 1
general relativity [13]. In 2þ 1 Hořava theory in 2þ 1
dimensions we found [12] that the same solution is valid,
hence we postulated the same definition of asymptotic
flatness for the three-dimensional Hořava theory. This is
stated as the condition of the canonical variables behave
asymptotically as [13]

gij¼ r−μðδijþOðr−1ÞÞ; πij∼Oðrμ−2Þ; N¼1þOðr−1Þ;
ð3:6Þ

for any value of the constant μ (further physical requisites
impose some bounds on μ [12,13]). The asymptotic flatness
condition imposes restrictions on the differentiability of the
Hamiltonian (3.5), hence a counterterm must be added to
the Hamiltonian (3.5),

E ¼ þ2πβμ: ð3:7Þ

This energy term is the same as in 2þ 1 general relativity,
except by the presence of the constant β.
Now we move to the time preservation of the primary

constraints. The preservation of the PN ¼ 0 generates a
secondary constraint, the Hamiltonian constraint H ¼ 0,
where

H ¼ 1ffiffiffi
g

p
�
πijπij þ

λ

1 − 2λ
π2
�
þ ffiffiffi

g
p �

V −
1

N
B

�
; ð3:8Þ

and B stands for total-divergence terms,

B≡ −2α∇kðNakÞ þ 4α2∇kðNa2akÞ þ 2α3∇kðNRakÞ
− α4ð∇2ðNa2Þ − 2∇lð∇kakNalÞÞ − α5∇2ðNRÞ
− 2α6∇klðN∇lakÞ − 2α7∇2ðN∇lalÞ: ð3:9Þ

Note that the integral of the Hamiltonian constraint (3.8)
has the form

Z
d2xNH ¼

Z
d2xN

�
πijπijffiffiffi

g
p þ λ

1 − 2λ

π2ffiffiffi
g

p þ ffiffiffi
g

p
V
�

−
Z

d2x
ffiffiffi
g

p
B: ð3:10Þ

As a consequence of the asymptotically flat conditions
(3.6), the last integral in (3.10), which is a boundary
integral, is zero. Contrasting (3.10) with (3.5), we see that,
at the end, the Hamiltonian (3.5) can be written as a sum of
constraints plus the term (3.7),

H ¼
Z

d2xðNHþ NiHi þ σPNÞ þ 2πβμ: ð3:11Þ

The last constraint that arises under Dirac’s procedure
is the Hamiltonian constraint (3.8). Since this analysis
involves very large formulas, we show it in the
Appendix A. We also show in this appendix the canonical
evolution equations obtained when all the constraints of the
theory are taken into account. Summarizing, we have found
two primary constraints, (3.1) and (3.4), and one secondary
constraint (3.8).

B. Algebra of the constraints

In this section we show the algebra of the constraints.
The Poisson brackets that involve the momentum
constraint are

�Z
d2xϵkHk;

Z
d2yηlHl

�
¼

Z
d2xHlLϵ⃗η

l; ð3:12Þ

�Z
d2xϵkHk;

Z
d2yηH

�
¼

Z
d2xHLϵ⃗η; ð3:13Þ

�Z
d2xϵkHk;

Z
d2yηPN

�
¼

Z
d2xPNLϵ⃗η: ð3:14Þ

This confirms that the momentum constraint (3.4) is a first-
class constraint. It is the generator of the gauge symmetry
associated to the spatial transformations.
The Poisson bracket of PN with itself is zero. The

Hamiltonian constraint (3.8) does not commute with itself
neither with PN , therefore the constraints H and PN are
second-class constraints. Indeed, the Poisson brackets
between them are

�Z
d2xϵH;

Z
d2yηPN

�
¼

Z
d2x

ffiffiffi
g

p
η0½Bϵ0 − 2∇kðϵakf2Þ þ∇2ðϵf3Þ þ 2α6∇klðϵ∇lakÞ þ 2Nf2ak∇kϵ

0

þ f3N∇2ϵ0 −∇kð2Nf2∇kϵ
0Þ − 8α2∇lðNalak∇kϵ

0Þ þ 2α4∇2ðNak∇kϵ
0Þ

− 2α4∇kðNak∇2ϵ0Þ þ 2α7∇2ðN∇2ϵ0Þ þ 2α6N∇lak∇klϵ0 þ 2α6∇klðN∇klϵ0Þ�; ð3:15Þ
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�Z
d2xϵH;

Z
d2yηH

�
¼ 2

Z
d2x½ϵ∇kη

�
f1∇lπ

kl þ 1 − λ

1 − 2λ
ðπ∇kf1 − f1∇kπÞ − πkl∇lf1 − f3τklal

þ τijZijk − τakf4 þ τklalð2f2 − α6RÞ þ 2ð2α2 − α4Þτijaiajak

þ∇lðNf3Þ
N

�
1

2
τgkl − τkl

�
þ 2ðα4 − 2α7Þτij∇iajak −∇k

�
α4τijaiaj þ

1

2
α5τRþ 2α7τij∇iaj

�

− α4akal∇lτ þ
α6
N

ðτ∇lðN∇lakÞ − 2NMijkτijÞ
�

þ ηðτij∇ij − τ∇2Þðð2α3 − α6ÞðNak∇kϵ
0Þ þ α5ðN∇2ϵ0ÞÞ

þ 2α4ητij∇jðNaial∇lϵ
0Þ þ α7η

�
τij∇i −

1

2
∇j

�
ðNaj∇2ϵ0Þ

− α6ηðτij∇lðNaiaj∇lϵ0Þ − 2τijaj∇ikðN∇kϵ
0Þ þ τ∇lðal∇kðN∇kϵ

0ÞÞÞ − ðη ↔ ϵÞ
�
; ð3:16Þ

where ϵ, η are arbitrary functions and the prime indicates
division byN, ϵ0 ¼ ϵ=N, η0 ¼ η=N. The symbols f1, f2, f3,
f4, τij, τ, Zijk, and Mijk are defined in (A2)–(A8).
The canonical variables are fgij; πij; N; PNg (8 degrees of

freedom). Four functional degrees of freedom are eliminated
by the constraints Hi, PN , and H. The gauge symmetry
of the spatial diffeomorphisms gives two gauge degrees of
freedom. Therefore, among the original eight degrees of
freedom in the nonreduced phase space, six are unphysical,
leaving two propagating physical degrees of freedom. This
represent a even scalar degree of freedom in the theory.

IV. QUANTIZATION IN THE REDUCED
PHASE SPACE

A. Linearized theory

The first scheme we adopt for the quantization of the
2þ 1 nonprojectable Hořava theory is to deal with the
reduced phase space. To achieve this, we study the linearized
theory, since the constraints of the theory can be solved
perturbatively. This approach will give us the propagator of
the physical mode.
We start with the perturbations around the configuration

that corresponds to the “Minkowski” solution,

gij ¼ δij; N ¼ 1; Ni ¼ 0; πij ¼ 0: ð4:1Þ

The perturbations are parametrized according to

gij¼δijþhij; N¼1þn; πij¼pij; Ni¼ni: ð4:2Þ

These linearized variables transform under FDiff as

δn ¼ _f;

δni ¼ _ζi; ð4:3Þ

δhij ¼ 2∂ðiζjÞ; ð4:4Þ

where the functions f, ζ are infinitesimal FDiff
parameters. The linear-order version of the field
equations (A12)–(A14) is

_n ¼ σ; ð4:5Þ

_hij ¼ 2

�
pij þ

λ

1 − 2λ
δijp

�
þ 2∂ðinjÞ; ð4:6Þ

_pij ¼ βð∂i∂j − δij∂2Þn − ð∂i∂j − δij∂2Þ
× ð2α1ð−∂2hþ ∂k∂lhklÞ þ α5∂2nÞ: ð4:7Þ

In Appendix A it is shown that the (nonperturbative)
solution for A is A ¼ 0, hence we do not consider this
variable in this section. Equation (4.5) is just an equation
for fixing σ.
We introduce the orthogonal transverse and longitudinal

decomposition

hij ¼
�
δij −

∂i∂j

∂2

�
hT þ ∂ðihjÞ; ð4:8Þ

and similarly for pij. We impose the transverse gauge

∂ihij ¼ 0; ð4:9Þ

under which all the longitudinal sector of the metric is
eliminated, hi ¼ 0. The linearized momentum constraint
(3.4) eliminates the longitudinal sector of pij, since it takes
the form

∂ipij ¼ 0; ð4:10Þ

hence pi ¼ 0. The Hamiltonian constraint at first order is
given by

β∂2hT − α5∂4hT þ 2α∂2nþ 2ðα6 þ α7Þ∂4n ¼ 0: ð4:11Þ
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We may solve it for n,

n ¼ 1

2

�
−β þ α5∂2

αþ ðα6 þ α7Þ∂2

�
hT ≡ PhT: ð4:12Þ

Therefore, the momentum and Hamiltonian constraints and
the transverse gauge fix the variables hi, pi and n, leaving
the transverse sector fhT; pTg and the Lagrange multiplier
ni active. The longitudinal sector of the evolution equa-
tion (4.6) yields an equation for ni,

∂2ni þ ∂j∂inj ¼ −
2λ

1 − 2λ
∂ipT; ð4:13Þ

whose solution is

ni ¼ −
λ

1 − 2λ
∂i

�
1

∂2
pT

�
: ð4:14Þ

The longitudinal sector of Eq. (4.7) yields no new infor-
mation. The traces of the linearized Eqs. (4.6) and (4.7) lead
automatically to their transverse sector. The trace of these
equations, after using Eq. (4.14), leads to

_hT ¼ 2

�
1 − λ

1 − 2λ

�
pT; ð4:15Þ

_pT ¼ −β∂2n − 2α1∂4hT þ α5∂4n: ð4:16Þ

These equations, after substituting (4.12), imply

ḧT ¼ 2

�
1 − λ

1 − 2λ

�
ð−βP∂2hT þ ½α5P − 2α1�∂4hTÞ: ð4:17Þ

This represent the propagating equation for the scalar mode
fhT; pTg of the complete nonprojectable Hořava theory in
2þ 1 dimensions [16].

B. The reduced Hamiltonian and the propagator
of the physical mode

The physical or reduced Hamiltonian of the linearized
theory is obtained by expanding the Hamiltonian (3.5) up to
second order in perturbations (constraints are no added
since in the reduced theory they are explicitly solved). The
expansion yields

H ¼
Z

d2x

�
pijpij þ

λ

1 − 2λ
p2 − β

�
−∂2hþ ∂i∂jhij þ hij∂2hij −

1

2
hij∂i∂lhlj þ

1

2
hij∂i∂jh −

1

4
∂lhij∂lhij − ∂lhlk∂ihik

þ 1

2
∂lhlk∂kh −

1

4
∂kh∂khþ

�
nþ 1

2
h

�
ð−∂2hþ ∂i∂jhijÞ

�
− α∂kn∂knþ α1ð−∂2hþ ∂i∂jhijÞ2

þ α5∂2nð−∂2hþ ∂i∂jhijÞ þ α6∂i∂jn∂i∂jnþ α7∂2n∂2n

�
: ð4:18Þ

After substituting the solutions for the unphysical variables
found in the previous section (in the transverse gauge), we
arrive at the reduced Hamiltonian for the transverse sector,

HRED ¼
Z

d2xðpTMpT þ hTMhTÞ; ð4:19Þ

where

M ¼ 1 − λ

1 − 2λ
; ð4:20Þ

M ¼ ðβP þ αP2Þ∂2 þ ðα1 − α5P þ ½α6 þ α7�P2Þ∂4:

ð4:21Þ

We look for the propagator of the independent physical
mode in the transverse gauge. The path integral in the
reduced phase space has the form

Z0¼
Z

DhTDpT exp

�
i
Z

dtd2xðpT _hT−HREDÞ
�
; ð4:22Þ

where HRED is reduced Hamiltonian density of the
Eq. (4.19). After Gausssian integration in pT we obtain
the path integral in noncanonical form

Z0 ¼
Z

DhT exp

�
i
Z

dtd2x

�
1

4M
_hT _hT − hTMhT

��
;

ð4:23Þ

we can get the propagator of the physical mode in Fourier
space,

hhThTi

¼ 1

ω2=4M−ðβPþαP2Þk⃗ 2þðα1−α5Pþ½α6þα7�P2Þk⃗4
:

ð4:24Þ
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V. THE PATH INTEGRAL IN THE
NONREDUCED PHASE SPACE

A. Nonperturbative formalism

1. Definition of the measure

In the Hamiltonian formulation of a field theory, the recipe
for the measure of the gauge sector was provided by Faddeev
[18]. In this formulation, the gauge symmetries have first-
class constraints associated. The measure is then given by the
brackets between the first-class constraints and the chosen
gauge-fixing conditions, which, by definition, must be
nonzero brackets. In our case the first class constraints
are the components of the momentum constraintsHi. Let us
denote by χi ¼ 0 the associated gauge-fixing conditions.
The measure of the gauge sector is given by

detfHk; χlg: ð5:1Þ
The path-integral quantization of systems with second-

class constraints was focused by Senjanovic in Ref. [10].
He showed that the measure associated to the second-class
constraints is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
; ð5:2Þ

where θp stands for each one of the second-class constraints.
Note that this definition only makes sense in the canonical
formulation, where Poisson brackets are defined. This is one
of the reasons why we focused the Hamiltonian formulation
of the 2þ 1 nonprojectable Hořava theory. Senjanovic’s
proof of his theorem starts with postulating the path integral
(for a mechanical system) with the measure (5.2), then the
integration over the unphysical variables leads to a canonical
path integral over the reduced phase spacewith measure 1, as
it must be. An essential step of the proof is the existence of a
canonical transformation that leads to transformed second-
class constraints with “canonical” Poisson brackets between
them, which means that these brackets are equal to a given
constant matrix. After this transformation, the integration on
unphysical variables can be done, leading to the reduced path
integral with measure 1. Fradkin and Fradkina [19] intro-
duced the same measure (5.2) for systems with second-class
constraints, extending the so-called Batalin-Fradkin-
Vilkovisky quantization of gauge theories (in [19] fermionic
degrees of freedom were also included). An alternative proof
of the measure (5.2), based on a geometrical approach, can
be found in the book of Henneaux and Teitelboim [20].
In order to use the measure (5.2) in the present theory, we

introduce a common notation for the second-class con-
straints, namely, θ1 ¼ H and θ2 ¼ PN . The path integral in
terms of the nonreduced canonical variables has then the
form

Z0 ¼
Z

DVδðHiÞδðχiÞδðθ1Þδðθ2ÞeiScan ; ð5:3Þ

where the measure and the action are given respectively by

DV ¼ DgijDπijDNDPN × detfHk; χlg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
;

ð5:4Þ

Scan ¼
Z

dtd2x

�
PN

_N þ πij _gij −
Nffiffiffi
g

p
�
πijπij þ

λ

1 − 2λ
π2
�

− N
ffiffiffi
g

p
V
�
: ð5:5Þ

2. The measure of the gauge sector

Since we have the momentum constraint explicitly,
Eq. (3.4), we can make explicit computations on the
measure of the gauge sector, taking a quite general
gauge-fixing condition χi. This must be a condition that
fixes the freedom of choosing spatial coordinates. For
simplicity, let us consider that this condition only involves
the spatial metric, χi ¼ χiðhÞ, but otherwise arbitrary.
Using the expression (3.4), we obtain the bracket

fHkðxÞ; χlðyÞg ¼ 2

Z
d2z∇ðiðδkjÞδ2Þ

δχlðhÞ
δhij

¼ −2δkði∇jÞ

�
δχl
δhij

�
: ð5:6Þ

A important question one can pose here is whether this
approach for dealing with the gauge fixing and the first-
class constraints is equivalent to the usual approach
(Faddeev-Popov) for incorporating the gauge-fixing con-
dition in the path integral quantization of gauge theories,
typically formulated in terms of covariant Lagrangians.
To answer this question, we evaluate the Fadeev-Popov
determinant of the standard approach. We need the gauge-
transformed field, where the gauge symmetry is an infini-
tesimal spatial diffeomorphism, then

hζij ¼ hij þ 2∇ðiζjÞ: ð5:7Þ

The Faddeev-Popov factor becomes

δχlðhζðxÞÞ
δζkðyÞ

¼
Z

d2z
δχlðhζðxÞÞ
δhζijðzÞ

δhζijðzÞ
δζkðyÞ

¼ 2

Z
d2z∇ðiðδkjÞδ2Þ

δχlðhζÞ
δhζij

: ð5:8Þ

This shows, at least for a general gauge-fixing condition
that depends on the spatial metric, χiðhÞ, that the measure in
the Hamiltonian formulation (5.6) and the measure in the
Fadeev-Popov approach coincide.
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If we consider the transverse gauge condition, χj ¼ ∂ihij ¼ 0, the bracket of the measure becomes

fHk; χlg ¼ δχlðh0Þ
δζk

¼ δkl ∂2δ2 þ ∂k∂lδ
2 þ ðδklΓij

i þ Γjl
kÞ∂jδ2: ð5:9Þ

In the path integral, the determinant of the gauge sector is incorporated to the action by means of ghosts fields,

detfHk; χlg ¼
Z

Dϵ̄Dϵ exp

�
i
Z

dtd2xϵ̄kðδkl ∂2δ2 þ ∂k∂lδ
2 þ ðδklΓij

i þ Γjl
kÞ∂jδ2Þϵl

�
: ð5:10Þ

3. The second-class-constraint measure

There is a important simplification because the matrix of brackets between the second-class constraints acquires a
triangular form,

fθp; θqg ¼
� fH;Hg fH; PNg
fPN;Hg 0

�
; ð5:11Þ

which is a consequence of the fact that PN has zero bracket with itself. Then the determinant of the matrix of Poisson
brackets is a quadratic form, hence

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfθp; θqg

q
¼ detfH; PNg; ð5:12Þ

simplifying greatly the measure of the second-class constraints. The bracket between the Hamiltonian constraint and PN is
show in (3.15). By setting ϵ and η as appropriate Dirac deltas in (3.15), we obtain

fHðx⃗Þ; PNðy⃗Þg ¼
ffiffiffi
g

p
N

�
B
N
− 2∇kð:akf2Þ þ∇2ð:f3Þ þ 2α6∇klð:∇lakÞ þ 2Nf2ak∇k

�
:
N

�

þ f3N∇2

�
:
N

�
− 2∇k

�
Nf2∇k

�
:
N

��
− 8α2∇l

�
Nalak∇k

�
:
N

��

þ 2α4∇2

�
Nak∇k

�
:
N

��
− 2α4∇k

�
Nak∇2

�
:
N

��
þ 2α7∇2

�
N∇2

�
:
N

��

þ 2α6N∇lak∇kl

�
:
N

�
þ 2α6∇kl

�
N∇kl

�
:
N

���
δð2Þðx⃗ − y⃗Þ: ð5:13Þ

[the dot means ∇iða·Þb ¼ ∇iðabÞ]. We may promote the measure (5.12) to the action by means of ghosts fields. We define
the fermionic fields η and η̄, such that

detfH; PNg ¼
Z

Dη̄Dη exp

�
i
Z

dtd2xη̄fH; PNgη
�
: ð5:14Þ

B. Perturbations in the path integral: Linearized theory

We the aim of focusing the ultraviolet behavior of the theory, in this section we consider only the z ¼ 2 terms and discard
the lower order terms in the Lagrangian. Thus, in this section we will find the most important terms for the propagators of
the nonreduced variables at the ultraviolet regime.
According to the definition of the measure (5.4), the result (5.12), and expanding the action up to second order in

perturbations, the perturbative path integral takes the form
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Z0 ¼
Z

DhijDpijDnDpn × δðHiÞδðχjÞδðHÞδðpnÞ detfHk; χlg detfH; png

exp

�
i
Z

dtd2x

�
pn _nþ pij _hij −

�
pijpij þ

λ

1 − 2λ
p2

�
− α6∂i∂jn∂i∂jn

− α7∂2n∂2n − α1ð−∂2hþ ∂i∂jhijÞ2 − α5ð−∂2hþ ∂i∂jhijÞ∂2n

��
: ð5:15Þ

The measure corresponding to the second-class constraints can be promoted to the Lagrangian by means of ghost fields.
The ghosts are of first order in perturbations, therefore in the quadratic action the determinant of second-class constraints
must be considered at zero order,

detfH; png ¼
Z

Dη̄Dη exp

�
i
Z

dtd2xη̄ð2ðα6 þ α7Þ∂4Þη
�
: ð5:16Þ

To further advance in the computations, and since we are mainly interested in the role of the second-class-constraint
sector, we perform a partial reduction in the phase space eliminating all the variables that belong to the gauge sector,
but leaving the second-class constraints unsolved. This allows us to find the propagators of all the sector that is not
associated to the gauge symmetry. First, let us decompose the spatial metric hij and its conjugate momentum pij in the
transverseþ longitudinal decomposition shown in (4.8),

S ¼
Z

dtd2x
�
pn _nþM

�
pT −

1

2

�
1

M
_hT −

2λ

1 − λ
∂kpk

��
2

þ 1

2
ðpi − _hiÞðδik∂2 þ ∂i∂kÞpk þ 1

4
M
�
1

M
_hT −

2λ

1 − λ
∂kpk

�
2

þ ðM − 1Þpk∂k∂lpl − ðα6 þ α7Þn∂4n − α1ðhT þ ∂khkÞ∂4ðhT þ ∂khkÞ þ α5n∂4ðhT þ ∂khkÞ
�

ð5:17Þ

To eliminate the gauge sector, we impose the transverse gauge, χj ¼ ∂ihij ¼ 0, which eliminates hi. Moreover, the
linearized momentum constraint eliminates pi upon integration. The measure of the gauge sector detfHk; χlg yields an
irrelevant (constant) factor at second order in perturbations. The resulting path integral is

Z0 ¼
Z

DhTDpTDnDpNDη̄DηδðHÞδðpNÞ exp
�
i
Z

dtd2x

�
pN _n −M

�
pT −

1

2M
_hT
�

2

þ 1

4M
_hT _hT − ðα1hTΔ2hT þ nððα6 þ α7ÞΔ2Þn − hTðα5Δ2ÞnÞ þ η̄ð2ðα6 þ α7Þ∂4Þη

��
; ð5:18Þ

The variables pn and pT are not associated to gauge symmetries, but them can be integrated directly (pn is trivial and the
integration on pT is Gaussian). Finally, we may promote the delta δðHÞ to the Lagrangian by means of a Lagrange
multiplier, which we denote by a,

δðHÞ ¼
Z

Da exp

�
i
Z

dtd2xaH
�
; ð5:19Þ

such that the path integral includes the integration in a. In the perturbative approach, a is considered as a variable of linear
order, hence, in the quadratic action we need the expression of the Hamiltonian constraintH up to linear order. The linear-
order expression for H can be taken from Eq. (4.11),

H ¼ −α5∂4hT þ 2ðα6 þ α7Þ∂4n: ð5:20Þ

After these steps, we arrive at the path integral

Z0 ¼
Z

DhTDnDη̄Dη exp

�
i
Z

dtd2x

�
1

4M
_hT _hT − α1hT∂4hT − ðα6 þ α7Þn∂4n

þ α5hT∂4nþ að−α5∂4hT þ 2ðα6 þ α7Þ∂4nÞ þ 2ðα6 þ α7Þη̄∂4η

��
: ð5:21Þ
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From this quantum action we may extract the propagators
of the hT field and the variables associated to the second-
class constraints, which are n, a, η̄, η. Our notation for the
propagators is as follows: in Fourier space, the quadratic
Lagrangian given in (5.21) is written as

ð hT n a η̄ η Þ
�
M1 0

0 M2

�
0
BBBBBB@

hT

n

a

η̄

η

1
CCCCCCA
; ð5:22Þ

where

M1 ¼

0
BB@

ω2

4M þ α1k4 −α5k4=2 α5k4=2

−α5k4=2 ðα6 þ α7Þk4 −ðα6 þ α7Þk4
α5k4=2 −ðα6 þ α7Þk4 0

1
CCA;

ð5:23Þ

M2 ¼
�

0 −ðα6 þ α7Þk4
ðα6 þ α7Þk4 0

�
: ð5:24Þ

Therefore, to get the propagators we must invert the matrix
in (5.22). This yields the propagators

hhThTi ¼ 4M

�
ω2 þM

�
4α1 −

α25
α6 þ α7

�
k4
�−1

; ð5:25Þ

hnni ¼ α25M
ðα6 þ α7Þ2

�
ω2 þM

�
4α1 −

α25
α6 þ α7

�
k4
�−1

;

ð5:26Þ

hhTni ¼ 2α5M
α6 þ α7

�
ω2 þM

�
4α1 −

α25
α6 þ α7

�
k4
�−1

;

ð5:27Þ

hhTai ¼ 0; ð5:28Þ

hnai ¼ −
1

ðα6 þ α7Þk4
; ð5:29Þ

haai ¼ −
1

ðα6 þ α7Þk4
; ð5:30Þ

hη̄ηi ¼ 1

ðα6 þ α7Þk4
: ð5:31Þ

We observe that the propagators of hT and n get a regular
form. Any nonregular part of the propagator of the lapse
function has disappeared once the second-class constraint
have been taken into account. However, the propagators of
the auxiliary variables a and η̄; η and the mixed correlator
between n and a acquire nonregular forms. There is an
evident similarity between these nonregular propagators.
The propagator of the ghosts η̄; η (5.31) is restricted by

the fact that these fields are of first order in perturbations.
Due to this, in the linearized theory the measure of the
second-class constraints contributes only at zero order in
perturbations, in the sense we commented before (5.16).
This implies that, in the resulting linearized quantum
Lagrangian, there are not couplings between the ghosts
η̄; η and the rest of the fields. Note that this criterium of
order in perturbations is independent of the gauge chosen;
in any gauge only the zero-order terms of the second-class-
constraint measure contribute, as it is exemplified in (5.16)
in the transverse gauge. There are two consequences of this
restriction that have incidence on the form of the propagator
(5.31). The first one is that the matrix in (5.22) has always a
block-diagonal form, with no crossings between the η̄; η
sector and the other sectors. The propagator of η̄; η is then
the direct inverse of the block M2; it does not receive
contributions from the other fields. In this way, the
dependence on ω arising in M1 due to other fields cannot
be transferred to the propagator of the η̄; η ghosts. The
second consequence concerns the possibility of generating
ω-dependence on the η̄; η propagator directly from the
measure (5.14), by using another gauge-fixing condition
(that is, getting dependence on ω directly in M2). This
would require that the measure (5.14) depends on some
canonical momentum, such that time derivatives are gen-
erated after integration in momentum. But this is also
discarded by the order criterium: the coupling between the
η̄; η ghosts and any canonical momentumwould be, at least,
of cubic order in perturbations. In conclusion, although the
form of the propagator (5.31) may depend on the gauge
chosen, it can not acquire dependence on ω, hence it cannot
be brought to a regular form.
In Ref. [3] the renormalization of the projectable Hořava

theory was achieved. Those authors obtained regular
propagators by imposing a gauge-fixing condition that in
particular is nonlocal. The projectable theory has no
second-class constraints. In the quantization we have
presented for the nonprojectable theory, the freedom to
impose different gauge-fixing conditions is limited to
canonical gauges, which are gauge conditions that depend
only on the canonical variables. The transverse gauge is an
example of a canonical gauge. This is so because Faddeev’s
measure of the gauge sector (5.1) is defined only for
canonical gauge conditions χi. We are forced to take this
measure for the gauge sector because we define the path
integral in the canonical formalism, which in turn is a
requisite imposed by the presence of second-class
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constraints. Therefore, the gauge-fixing condition used in
Ref. [3] cannot be inserted here since it is a noncanonical
gauge condition. It depends on the shift vector Ni, which is
a Lagrange multiplier from the point of view of the
canonical formalism.
Finally, we comment that nonlocal but canonical gauges

do not render the propagator of the η̄; η regular due to the
same previous reason, since nonlocality of operators does
not alter the criterium of order in perturbations dis-
cussed above.
Although the linearized theory does not allow to explore

further, when considering amplitudes with interactions
there is still the possibility that some cancellations occur
between the propagators of the ghosts fields η̄; η and the rest
of fields. Aimed as a first step towards this task, in
Appendix B we present the theory at the first nontrivial
order for interactions: the cubic theory.

VI. CONCLUSIONS

We have considered the consistent quantization of the
2þ 1 nonprojectable Hořava theory, considering all the
terms in the Lagrangian that are covariant under the FDiff
gauge symmetry. Our central focus has been the presence of
the second-class constraints, which requires that the quan-
tization must be addressed in a different way to the pure
gauge theories, that is, gauge theories without second-class
constraints. We highlight that the recipe for the measure of
a theory with second-class constraints is known in the
Hamiltonian formalism [10], see also [19,20]. In this paper
we have evaluated this formula for the measure explicitly
for the 2þ 1 Hořava theory.
We have performed the full Hamiltonian analysis of the

theory, finding all the constraints explicitly and classify-
ing them between first and second class. As expected, the
momentum constraint is the only first-class constraint. It
is associated to the symmetry of arbitrary spatial diffeo-
morphisms over each leaf of the foliation, which is the
only gauge symmetry of the theory in the strict sense.
The set of constraints is complete in the sense that its
preservation leads to elliptic differential equations for
Lagrange multipliers. An application of this analysis is
the characterization of the physical propagating mode of
the theory. We have shown this by means of a perturbative
analysis.
As we commented, the Hamiltonian formulation of the

theory has enabled us to obtain the measure of the second-
class constraints explicitly. A central result is that the
matrix of Poisson brackets of the second-class constraints
acquires a quadratic form. This simplifies the square root of
the measure, such that it can be incorporated to the quantum
Lagrangian by means of fermionic ghosts. We have
extracted further consequences of the measure using
perturbative analysis. We have found that, when the
Hamiltonian constraint and the measure are considered

in the quantization procedure, the propagator of the lapse
function acquires a completely regular form. There are no
nonregular terms in this propagator, nor in the one of the
scalar mode of the spatial metric. However, auxiliary
variables associated to the second-class constraints
(Lagrange multiplier and ghosts) acquire nonregular
propagators. Nonregular terms were previously found
in Ref. [3], presenting an obstacle to achieve the renorm-
alization of the nonprojectable theory by means of the
technique of regular propagators. We have discussed how
the nonregular form of the propagator of the ghosts
associated the second-class constraints can not be altered
(it cannot acquire a dependence on the frequency) by
choosing a different canonical gauge-fixing condition
(throughout this paper we have used the transverse
gauge). In the quantization of the projectable Hořava
theory [3], the choosing of the appropriated gauge
condition, in particular a nonlocal gauge, leaded to
regular propagators. Thus, the nonlocal gauge condition
was crucial for obtaining the renormalization of the
projectable theory. We have discussed that such a gauge
condition cannot be imposed in this scheme of quantiza-
tion since it is a noncanonical gauge. A further possibility
is the usage of a canonical but nonlocal gauge-fixing
condition, but this does not alter the nonregularity of the
propagator of the ghosts associated to the second-class
constraints.
Further computations on the quantization of the theory

with interactions are required. In particular they may shed
light on the renormalization, since explicit amplitudes can
be computed. An interesting question is whether there
are cancellations between the auxiliary variables associated
to the second-class constraints. With this aim, we have
presented the quantum theory, that is, the measure and
the potential, at cubic order in perturbations. We expect
that this work can be extended with the computations
of the (scalar) graviton scattering and to explore its
renormalization.
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APPENDIX A: CONSISTENCY OF THE
SET OF CONSTRAINTS

In Sec. III. A we arrived at the Hamiltonian constraint
(3.8), which arises as a secondary constraint. In this
appendix we continue on Dirac’s procedure for obtaining
the constraints of the theory. The next step is to impose the
preservation of the Hamiltonian constraint (3.8). This is
obtained from the bracket
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fH;
Z

d2xηHg ¼
Z

d2x

�
HLN⃗ηþ 2ðN∇kη − η∇kNÞ

�
f1∇lπ

kl þ ð1þ ωÞðπ∇kf1 − f1∇kπÞ

− πkl∇lf1 − f3τklal þ τijZijk − τakf4 þ τklalð2f2 − α6RÞ þ 2ð2α2 − α4Þτijaiajak

þ∇lðNf3Þ
N

�
1

2
τgkl − τkl

�
þ 2ðα4 − 2α7Þτij∇iajak − α4akal∇lτ −∇k

�
α4τijaiaj

þ α5
2
τRþ 2α7τij∇iaj

�
þ α6

N
ðτ∇lðN∇lakÞ − 2NMijkτijÞ

�

þ 2N
�
ð−2α3 þ α6Þðτij∇ij − τ∇2ÞðNak∇kη

0Þ − α5ðτij∇ij − τ∇2ÞðN∇2η0Þ

− 2α4τij∇jðNaial∇lη
0Þ þ α6ðτij∇lðNaiaj∇lη0Þ − 2τijaj∇ikðN∇kη

0Þ

− τ∇lðal∇kðN∇kη
0ÞÞÞ − α7

�
τij∇iðNaj∇2η0Þ − 1

2
∇lðNal∇2η0Þ

��

−
ffiffiffi
g

p σ

N
½Bη0 − 2∇kðηakf2Þ þ∇2ðηf3Þ þ 2α6∇klðη∇lakÞ þ 2Nf2ak∇kη

0

þ f3N∇2η0 − 2∇kðNf2∇kη
0Þ − 8α2∇lðNalak∇kη

0Þ þ 2α4∇2ðNak∇kη
0Þ

− 2α4∇kðNak∇2η0Þ þ 2α7∇2ðN∇2η0Þ þ 2α6N∇lak∇klη0 þ 2α6∇klðN∇klη0Þ�
�
; ðA1Þ

where η is arbitrary function and the prime indicates division by N, η0 ¼ η=N. The symbols introduced above are

τkl ¼ πkl þ
λ

1 − 2λ
gklπ; τ ¼ gklτkl; ðA2Þ

f1 ¼ −β þ 2α1Rþ α3a2 þ α5∇kak; ðA3Þ

f2 ¼ −αþ α3Rþ α4∇kak þ 2α2a2; ðA4Þ

f3 ¼ α4a2 þ α5Rþ 2α7∇kak; ðA5Þ

f4 ¼ −αþ 2α2a2 þ α4ða2 þ∇lalÞ þ α5Rþ 1

2
α6R; ðA6Þ

ZðijÞk ¼ 1

2
f3gijak − α6ðaði∇kajÞ þ aði∇jÞak − ak∇ðiajÞÞ; ðA7Þ

Mijk ¼ ai∇jak þ al∇laigkj þ gki∇j∇lal: ðA8Þ

To obtain the desired time preservation of the Hamiltonian constraint, we put η ¼ δ2ðx − yÞ into the bracket (A1).
This yields an elliptic partial differential equation for the Langrange multiplier σ,
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0 ¼ −
ffiffiffi
g

p �
2ðα6 þ α7Þ

�
1

N
∇4 þ 2ak∇k∇2

�
σ0 þ 2

�
f3 − f2 −

α4
N

∇kðNakÞ þ 2α7
N

∇2N

�
∇2σ0

þ
�
−8α2alak þ

4α4
N

∇kðNalÞ þ α6

�
4∇lak þ

2

N
∇klN

��
∇klσ0 þ 1

N
ð2∇kðNðf3 − f2ÞÞ − 8α2∇lðNalakÞ

þ 2α4∇2ðNakÞ þ 4α6∇lðN∇kalÞÞ∇kσ0 þ 1

N
ðNB − 2∇kðNf2akÞ þ 2α6∇klðN∇lakÞ

þ∇2ðNf3ÞÞσ0
�
þ 2ð2α3 − α6Þ∇kðNakð∇ijðNτijÞ −∇2ðNτÞÞÞ − 2α5∇2ðNð∇ijðNτijÞ −∇2ðNτÞÞÞ

− 4α4∇kðNakai∇jðNτijÞÞ þ 2α6∇lðNaiaj∇lðNτijÞ þ 2N∇i∇lðNaiτijÞ − N∇lðτak∇kðNτÞÞÞ
þ α7∇2ð2Nai∇jðNτijÞ − N2akakÞ − 2∇kðNPkÞ − 2NakPk −∇kðHNkÞ; ðA9Þ

where

Pk ¼ f1∇lπ
kl þ ð1þ ωÞðπ∇kf1 − f1∇kπÞ − πkl∇lf1 − f3τklal þ τijZijk − τakf4 þ τklalð2f2 − α6RÞ

þ 2ð2α2 − α4Þτijaiajak þ
∇lðNf3Þ

N

�
1

2
τgkl − τkl

�
þ 2ðα4 − 2α7Þτij∇iajak −∇k

�
α4τijaiaj þ

α5
2
τRþ 2α7τij∇iaj

�

− α4akal∇lτ þ
α6
N

ðτ∇lðN∇lakÞ − NMijkτijÞ: ðA10Þ

The preservation of the Hamiltonian constraint H has generated the Eq. (A9) for the Lagrange multiplier σ. This is an
elliptic partial differential equation, whenever the condition α6 þ α7 ≠ 0 on the space of coupling constants holds (this is the
coefficient of the highest order (elliptic) operator on σ). Therefore, this equation can be solved with the proper boundary
conditions. Dirac’s procedure ends at this step, no more constraints are generated.
The Hamiltonian with all the constraints incorporated takes the form

H ¼
Z

d2x

�
N

�
πijπijffiffiffi

g
p þ λ

1 − 2λ

π2ffiffiffi
g

p þ ffiffiffi
g

p
V
�
þ NiHi þ σPN þ AH

�
þ 2πβμ; ðA11Þ

where A is a Lagrange multiplier (we assume that A decays fast enough asymptotically). The variations of the canonical
action with respect to the canonical variables ðgij; πijÞ and ðN;PNÞ yields the following field equations

_N ¼ Nk∇kN þ σ; ðA12Þ

_gij ¼
2ffiffiffi
g

p ðN þ AÞ
�
πij þ

λ

1 − 2λ
gijπ

�
þ 2∇ðiNjÞ; ðA13Þ
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_πijffiffiffi
g

p ¼ ðN þ AÞ
�
1

2

gij

g

�
πklπkl þ

λ

1 − 2λ
π2
�
−
2

g

�
πikπjk þ

λ

1 − 2λ
ππij

�
−
1

2
gijV

þ
�
1

2
f1gijRþ f2aiaj þ f3∇iaj þ 2α6∇iak∇jak

��
− ð∇ijðf1ðN þ AÞÞ

− gij∇2ðf1ðN þ AÞÞ þ∇ðiðf3ajÞðN þ AÞÞ −∇kðZðijÞkðN þ AÞÞÞ −HðiNjÞ

− 2∇kðNðiπkjÞÞ þ∇kðNkπijÞ þ αNðakgij − 2aðigjÞkÞ∇kA0 − 2α2Nðakgij
− 2akaiaj − 2a2aðigkjÞÞ∇kA0 þ 2α3ðNRaðigkjÞ∇kA0 −∇ijðNak∇kA0Þ

þ gij∇2ðNak∇kA0ÞÞ þ α4

�
1

2
ðgklgij − 2gkðigjÞlÞ∇lðNamamÞ∇kA0 þ Naiaj∇2A0

− ð∇lalak − 2∇lalaðigkjÞ − 2ak∇iajÞN∇kA0 − 2∇ðiðajÞNak∇kA0Þ

þ gij∇kðakNal∇lA0Þ
�
þ α5

2
ððgklgij − gkðigjÞlÞ∇klA0 þ gijNR∇2A0

− 2∇ijðN∇2A0Þ þ 2gijðN∇2A0ÞÞ þ α6

�
gij∇lðN∇lakÞ∇kA0 þ∇kðNaiaj∇kA0Þ

− 2ð∇ðijÞak þ∇lN∇laðigjÞkÞ∇kA0 −
1

2
gijNRak∇kA0 þ∇ijðNak∇kA0Þ

− N∇ðiA0ð2∇jÞ∇lal þ RajÞÞ − gij∇2ðNak∇kA0Þ þ 2∇iaj∇kðN∇kA0Þ

− 2∇ðiðajÞ∇kðN∇kA0ÞÞ þ gij∇lðal∇kðN∇kA0ÞÞ
�
þ α7ð2N∇iaj∇2A0

þ ðgklgij − 2gkðigjÞlÞ∇lðN∇mamÞ∇kA0 − 2∇ðiðajÞN0∇2A0Þ þ gij∇lðNal∇2A0ÞÞ; ðA14Þ

0 ¼ H −∇iðPNNiÞ þ
ffiffiffi
g

p
N

ðBA0 − 2∇kðAakf2Þ þ∇2ðAf3Þ þ 2α6∇klðA∇lakÞ
þ 2Nf2ak∇kA0 þ f3N∇2A0 − 2∇kðNf2∇kA0Þ − 8α2∇lðNalak∇kA0Þ
þ 2α4∇2ðNak∇kA0Þ − 2α4∇kðNak∇2A0Þ þ 2α7∇2ðN∇2A0Þ
þ 2α6N∇lak∇klA0 þ 2α6∇klðN∇klA0ÞÞ: ðA15Þ

Equation (A15) corresponds to the variations with respect to N. Since PN ¼ 0 is a preserved constraint of the theory, this
equation acquires no time derivative. Instead, it is an elliptic partial differential equation for the Lagrange multiplier A. It is
of fourth-order, α6 þ α7 being the coefficient of the fourth-order operator. Hence we require that this combination is not
zero. The same condition arose previously when preserving the constraints. Since we assume that A goes asymptotically
(fast enough) to zero, the only everywhere-continuous solution is A ¼ 0.

APPENDIX B: INTERACTIONS

The analysis we have presented can be continued by incorporating interactions. This is a highly nontrivial step due to the
fact that the number of interactions (vertices) is big. As a contribution to this task, in this appendix we list the third-order
version of the measure of the second-class constraints and the potential

detfH; PNg ¼
Z

Dη̄Dη exp

�
i
Z

dtd2xη̄

�
−2ðα6 þ α7Þð−∂4 þ ∂4nþ n∂4 þ 2∂kn∂2∂kÞ þ ð4α4 − 2α6 − 8α7Þ∂i∂jn∂i∂j

þ ð−3α4 − 2α6 þ 2α7Þ∂2n∂2 þ 2ð−α3 þ α5Þð−∂k∂2hþ ∂k∂i∂jhijÞ∂k þ ð−α3 þ 2α5Þð−∂2hþ ∂i∂jhijÞ∂2

þ ðα6 þ α7Þðh∂4 − 2∂2ðδijχijk∂kÞÞ þ α6ð−∂k∂2h∂k þ ∂k∂i∂jhij∂k − ∂2h∂2 þ ∂i∂jhij∂2 − 2δijχijk∂k∂2Þ

þ 2α7

�
−∂2hij∂i∂j − 2∂ihjk∂i∂j∂k − 2hij∂2∂i∂j − ∂ihij∂j∂2 þ 1

2
∂kh∂k∂2

��
η

�
; ðB1Þ

where
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χijk ¼
1

2
ð∂ihjk þ ∂jhik − ∂khijÞ: ðB2Þ

The potential up to third order takes the form

N
ffiffiffi
g

p
V ¼ α6∂i∂jn∂i∂jnþ α7∂2n∂2nþ α1ð−∂2hþ ∂i∂jhijÞ2 þ α5ð−∂2hþ ∂i∂jhijÞ∂2nþ α4∂2n∂kn∂kn

− α6ð2∂kn∂in∂k∂inþ n∂k∂in∂k∂inÞ − α7ð2∂kn∂kn∂2nþ n∂2n∂2nÞ þ α1nð−∂2hþ ∂i∂jhijÞ2

þ α3ð−∂2hþ ∂i∂jhijÞ∂kn∂knþ α5

�
ð−∂2hþ ∂i∂jhijÞ

�
1

2
h∂2n − hkl∂k∂ln − ∂kn∂kn − ∂knγlpχlpk

�

þ
�
hij∂2hij − 2hij∂i∂lhlj þ hij∂i∂jhþ 1

2
∂lhij∂lhij − ∂lhlk∂ihik þ

1

2
∂lhlk∂kh

�
∂2n

�

þ α6

�
−2hij∂k∂jn∂k∂inþ 1

2
h∂i∂jn∂i∂jn − 2χijk∂i∂jn∂kn

�

þ α7

�
1

2
h∂2n∂2n − 2hij∂i∂jn∂2n − 2∂2n∂inδjkχjki

�
þ α1

�
1

2
hð−∂2hþ ∂i∂jhijÞ2

þ 2ð−∂2hþ ∂k∂lhklÞ
�
hij∂2hij − 2hij∂i∂rhrj þ hij∂i∂jhþ 1

2
∂rhij∂rhij − ∂rhrj∂ihij þ

1

2
∂ihij∂jh

��
: ðB3Þ

The Hamiltonian constraint up to third order takes the form

H ¼ pijpij þ ωp2 − β

�
Rð1Þ þ Rð2Þ þ

1

2
hRð1Þ

�
− α∂kn∂knþ α1R2

ð1Þ

þ α5∂2nRð1Þα6∂i∂jn∂i∂jnþ α7∂2n∂2nþ 2α

�
½1 − n�∂2nþ ∂k

�
1

2
h∂kn − hkl∂ln

��

− 2α3∂kðRð1Þ∂knÞ þ α4∂2ð∂ln∂lnÞ − 2α4∂lð∂ln∂2nÞ þ α5

�
½1 − n�∂2Rð1Þ

− ∂k

��
hkl −

1

2
δklh

�
∂lRð1Þ

�
þ ∂2ðnRð1Þ þ Rð2ÞÞ

�
þ 2α6

�
½δkl − hkl − nδkl�∂lð∂2∂knÞ

þ 1

2
∂kðh∂2∂knÞ þ ∂k

�
−
1

2
hij∂i∂j∂kn − ∂2ðn∂knÞ − ∂ið∂lnγlmχikmÞ þ ∂iðn∂i∂knÞ

− δij∂m∂knχijm − ∂j∂lnγlmχkjm

��
þ 2α7

�
ð1 − nÞð∂4nÞ þ ∂k

��
−hkl þ 1

2
hδkl

�
∂l∂2n

�

þ ∂2ðn∂2n − ∂jðn∂jnÞ − δijδlm∂lnχijm − hij∂i∂jnÞ
�
: ðB4Þ

where

Rð1Þ ¼ −∂2hþ ∂i∂jhij; ðB5Þ

Rð2Þ ¼
�
nþ 1

2
h

�
ð−∂2hþ ∂i∂jhijÞ þ

1

2
hij∂i∂jh −

1

2
hij∂kð∂ihjk þ ∂jhik − ∂khijÞ

− ∂kðhkl∂ihilÞ þ
1

2
∂kðhkl∂lhÞ þ

1

2
∂kðhij∂khijÞ þ

1

2
∂kh∂lhkl −

1

4
∂kh∂kh −

1

4
ð−∂ihjk∂ihjk þ 2∂ihjk∂khijÞ ðB6Þ
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[2] P. Hořava, Membranes at quantum criticality, J. High
Energy Phys. 03 (2009) 020.

[3] A. O.Barvinsky,D.Blas,M.Herrero-Valea, S.M. Sibiryakov,
and C. F. Steinwachs, Renormalization of Hořava gravity,
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