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We consider the Einstein-scalar-Gauss-Bonnet theory, and study the case where a negative cosmological
constant is replaced by a more realistic, negative scalar-field potential. We study different forms of the
coupling function between the scalar field and the Gauss-Bonnet term as well as of the scalar potential. In
all cases, we obtain asymptotically flat, regular black-hole solutions with a nontrivial scalar field which
naturally dies out at large distances. For a quadratic negative potential, two distinct subgroups of solutions
emerge: the first comprises light black holes with a large horizon radius, and the second includes massive,
ultracompact black holes. The most ultracompact solutions, having approximately 1=20 of the horizon
radius of the Schwarzschild solution with the same mass, emerge for the exponential and linear coupling
functions. For other polynomial forms of the scalar potential, the subgroup of ultracompact solutions
disappears, and the black holes obtained may have a horizon radius larger or smaller than the
Schwarzschild solution depending on the particular value of their mass.
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I. INTRODUCTION

In our quest for a fundamental theory of gravity, the
generalized gravitational theories, containing extra fields or
curvature terms compared to the traditional general rela-
tivity (GR) [1,2], provide a valuable framework of study.
These theories are considered to be only effective theories
of gravity which reduce to GR at the weak-field limit but
predict modifications of it at regimes of strong curvature.
The successful detection of gravitational waves during the
recent years [3,4] has provided an additional tool for the
study and verification, or disproof, of these theories, and
thus has refueled the interest in their predictions. In
particular, since modifications are expected only at regimes
of strong gravity, predictions for the existence of novel
black-hole solutions or compact objects have attracted a
wide interest in the community.
The study of generalized gravitational theories was ini-

tiated only a few years after the classification of black-hole

solutions in GR was completed, and included extensions of
GR [5] and its connection to other fields [6]. Soon, solutions
of black holes with additional characteristics, or “hair,”
compared to those ofGRwere found [7–9]. The development
of the superstring effective theory [10–12] gave an additional
boost to the study of these theories, and led theway toward the
discovery andstudyof a number of novel black-hole solutions
[13–25] (see [26–29] for a number of reviews). Most of these
solutions were found in the context of generalized theories
built around a scalar field with nonminimal couplings to
gravity, and evaded the so-called “no scalar-hair” theorem
[30]. Extending GR via the addition of a scalar field and
gravitational terms has also been the core of the Horndeski
[31] and Galileon [32] theories. In the context of these
theories, the no-hair theorems were reformulated [33,34] but
were again evaded, and additional black-hole solutions were
constructed [35–38].
The class of Einstein-scalar-Gauss-Bonnet (EsGB) the-

ories, which include, apart from the Einstein term, a scalar
field and the quadratic Gauss-Bonnet (GB) term, is a
particularly simple but extremely rich family of generalized
gravitational theories. It is characterized by the form of the
coupling function between the scalar field and the GB term,
which is not a priori fixed. Setting this coupling function to
be of an exponential form leads to the dilatonic theory, in
the context of which the dilatonic black holes [13], the first
counterexample of the scalar no-hair theorem [30], were
found. For a linear coupling function, the shift-symmetric
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Galileon black holes [37] were also derived. These sol-
utions have the characteristic feature of scalar hair: a
regular, nontrivial scalar field which is associated with
the black hole, a feature forbidden by GR. The group of
theories which may lead to such solutions was significantly
expanded a few years ago, when it was demonstrated [39],
both analytically and numerically, that the EsGB theories
support black-hole solutions with a regular, nontrivial
scalar hair for every form of the coupling function. In
addition to this natural scalarization of the solutions,
spontaneous scalarization of the corresponding GR sol-
ution was also shown to take place [40,41].
A large number of additional works has appeared over

the years, which studied novel black holes or compact
objects in these, or similar, types of theories as well as their
properties [42–141]. Apart from asymptotically flat black-
hole solutions, solutions with an asymptotic (anti)–de Sitter
behavior have also been investigated [142–165]. In addi-
tion, the Einstein-scalar-Gauss-Bonnet theory has been
shown to lead to a large number of families of wormhole
solutions that require no exotic matter [166,167]. Last, but
not least, it supports compact, particlelike solutions with
regular spacetimes, nontrivial scalar hair and a number of
interesting observable features [159,168–173].
In a previous work [160], we studied the EsGB theory in

the presence of a negative cosmological constant Λ, and
demonstrated that black-hole solutions with an asymptoti-
cally anti–de Sitter behavior and a scalar hair arise as easily
as their asymptotically flat counterparts. In the presentwork,
wewill address the casewhere this constant energy density is
replaced by a nontrivial potential for the scalar field. Our
objective is to provide a more realistic scenario where the
cosmological constant, usually introduced in an ad hocway
in the theory, is now replaced by a field potential. We will
first pose the question of whether black holes, naturally
scalarized, arise in the context of such a theory, and whether
only specific forms of the scalar-field potential may support
them. If novel black-hole solutions do emerge, we would
like to investigate which features of the previously found
solutions are still preserved and which are modified. To this
end, we will consider a variety of polynomial forms for the
scalar-field potential, and combine them with various forms
of the coupling function between the scalar field and the GB
term. Given that black-hole solutions arise in abundance in
the case of a negative cosmological constant [160], here, we
will consider only negative-definite forms of the scalar
potential. Scalarized solutions in the presence of a positive
scalar potential of quadratic and quartic form have been
studied in [90,91], respectively. In the present context, it will
also be of great interest to seewhether the combined effect of
theGB termwith a scalar potential—of a formnot physically
preferred—will manage to support regular black-hole
solutions.
Our analysis will demonstrate that this is indeed the case,

and that in fact regular black holes with a scalar hair emerge

for any combination of choices for the coupling function
and form of negative scalar potential we have used. We will
present families of robust solutions describing spacetimes
with a regular horizon at one end and an asymptotically flat
limit at the other. The scalar field, its effective potential, the
GB curvature-invariant term and all components of the
energy-momentum tensor will be finite reducing to zero at
large distances. The solutions obtained will be larger or
smaller, compared to the Schwarzschild solution with the
same mass, depending on the exact form of the scalar
potential, the value of the black-hole mass and the branch
they belong to. In the case of a negative, quadratic potential,
and for all forms of coupling functions, we obtain solutions
which belong to two subgroups: the first comprises light
GB black holes with horizon radius and entropy larger than
the ones of the corresponding GR solution, and the second
includes the more massive black holes with an increasingly
smaller horizon radius which terminates to a class of
massive, ultracompact black holes.
The outline of this work is as follows: in Sec. II, we

present our theoretical framework and in Sec. III, we
consider the form of the asymptotic solutions near the
sought-for black-hole horizon and asymptotic infinity. In
Sec. IV, we study their thermodynamical properties, and in
Sec. V, we present our numerical results for he black-hole
solutions found and their properties. We finish with our
conclusions and discussion of our results in Sec. VI.

II. THE THEORETICAL FRAMEWORK

In this work, we will study a general class of higher-
curvature gravitational theories, which includes the
Einstein-Hilbert term, given by the Ricci scalar curvature
R, a scalar field ϕ, and the quadratic Gauss-Bonnet term
defined as

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð1Þ

in terms of the Riemann tensor Rμνρσ, the Ricci tensor Rμν

and the Ricci scalar R. Therefore, the action functional of
the theory has the form

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

2
∂μϕ∂μϕþfðϕÞR2

GB−2ΛVðϕÞ
�
:

ð2Þ

A general coupling function fðϕÞ provides a coupling of
the scalar field to the GB term since the latter is a total
derivative in four dimensions. We have also included in the
theory a self-interacting potential VðϕÞ for the scalar field;
this upgrades the usually assumed cosmological constant Λ
to a dynamical potential, with Λ assuming now the role of a
coupling constant. In the context of this work, we will
consider only the case with Λ < 0. Therefore, by setting
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VðϕÞ ¼ 1, we recover the Einstein-scalar-GB theory in the
presence of a negative cosmological constant [160].
The variation of the aforementioned action with respect

to the metric tensor gμν and the scalar field ϕ leads to the
gravitational field equations and the equation for the scalar
field, respectively. These have the form:

Gμν ¼ Tμν; ð3Þ

∇2ϕþ _fðϕÞR2
GB − 2Λ _VðϕÞ ¼ 0: ð4Þ

In the above, Gμν is the Einstein tensor and Tμν is the
energy-momentum tensor, given by the expression

Tμν ¼−
1

4
gμν∂ρϕ∂ρϕþ1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλνþgλμgρνÞηκλαβR̃ργ

αβ∇γ∂κfðϕÞ−ΛVðϕÞgμν:
ð5Þ

We also note that the dot over the coupling function and
potential denotes their derivatives with respect to the scalar
field (i.e., _V ¼ dV=dϕ). We have also used the definitions

R̃ργ
αβ ¼ ηργστRσταβ ¼

ϵργστffiffiffiffiffiffi−gp Rσταβ; ð6Þ

and, for simplicity, we have employed units in which
G ¼ c ¼ 1.
We are interested in deriving regular, static, spherically

symmetric black-hole solutions with a nontrivial scalar
field. The line-element of space-time will accordingly take
the form

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ð7Þ

We will assume that the scalar field has the same sym-
metries as the metric tensor, and therefore ϕ ¼ ϕðrÞ. Both
the coupling function fðϕÞ and the scalar potential VðϕÞ
will be assumed at the moment to have a general form, and
particular choices will be made in the forthcoming sections.
Employing the line-element (7), we may easily derive the

nonvanishing components of the Einstein tensor; these are

Gt
t ¼

e−B

r2
ð1 − eB − rB0Þ; ð8Þ

Gr
r ¼

e−B

r2
ð1 − eB þ rA0Þ; ð9Þ

Gθ
θ ¼ Gϕ

ϕ

¼ e−B

4r
½rA02 − 2B0 þ A0ð2 − rB0Þ þ 2rA00�: ð10Þ

Throughout our analysis, the prime denotes differentiation
with respect to the radial coordinate r. Next, using Eq. (5),
we may find the components of the energy-momentum
tensor Tμ

ν

Tt
t ¼ −

e−2B

4r2
½ϕ02ðr2eB þ 16f̈ðeB − 1ÞÞ

− 8_fðB0ϕ0ðeB − 3Þ − 2ϕ00ðeB − 1ÞÞ� − ΛV; ð11Þ

Tr
r ¼

e−Bϕ0

4

�
ϕ0 −

8e−BðeB − 3Þ _fA0

r2

�
− ΛV; ð12Þ

Tθ
θ ¼Tφ

φ

¼−
e−2B

4r
½ϕ02ðreB−8f̈A0Þ

−4_fðA02ϕ0 þ2ϕ0A00 þA0ð2ϕ00−3B0ϕ0ÞÞ�−ΛV: ð13Þ

The explicit form of Einstein’s field equations may then be
derived by matching the corresponding components of Gμ

ν

and Tμ
ν, We may also derive the explicit form of the scalar-

field equation (4) which reads

2rϕ00 þ ð4þ rA0 − rB0Þϕ0

þ 4_fe−B

r
½ðeB − 3ÞA0B0 − ðeB − 1Þð2A00 þ A02Þ�

− 4reBΛ _V ¼ 0: ð14Þ

In order to find a complete solution describing a regular
black hole with scalar hair, we need to determine three
unknown functions, namely AðrÞ, BðrÞ and ϕðrÞ. However,
the metric function BðrÞ is in fact a dependent quantity
whose form may easily be determined once the solutions
for AðrÞ and ϕðrÞ are found. Indeed, the ðrrÞ-component of
field equations takes the form of a second-order polynomial
with respect to eB, i.e., αe2B þ βeB þ γ ¼ 0, which then
leads to the solution

eB ¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αγ

p
2α

; ð15Þ

where

α¼1−ΛVr2; β¼ r2ϕ02

4
−ð2_fϕ0 þrÞA0−1; γ¼6_fϕ0A0:

ð16Þ

We may then eliminate the quantity B0 from all equations
since the above solution, when differentiated, leads to the
expression

B0 ¼ −
γ0 þ β0eB þ α0e2B

2αe2B þ βeB
: ð17Þ
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The remaining field equations then lead to a system of only
two independent, ordinary differential equations of second
order for the functions AðrÞ and ϕðrÞ:

A00 ¼ P
S
; ð18Þ

ϕ00 ¼ Q
S
: ð19Þ

The expressions for the quantities P, Q and S in terms of
ðr;ϕ0; A0; _f; _V; f̈Þ are given in Appendix A, for the inter-
ested reader, as they are quite complicated.

III. ASYMPTOTIC SOLUTIONS

Before turning to the numerical integration of the system
(18)–(19), we will attempt to derive the analytical form of
the solutions close to and far away from the black-hole
horizon. In fact, the asymptotic solution in the inner region
will be explicitly constructed by demanding the existence
of a regular, black-hole horizon. To this end, we assume
that, as r → rh, the metric function eAðrÞ should vanish (and
eBðrÞ should diverge) whereas the scalar field must remain
finite. As was explicitly shown in previous constructions
[39,160], this amounts to working in the limit A0ðrÞ → ∞
while keeping ϕ0ðrÞ and ϕ00ðrÞ finite as the black-hole
horizon is approached. Working in these limits, Eq. (15)
yields1

eB ¼ 2_fϕ0 þ r
ð1 − r2ΛVÞA

0

þ 2_fϕ0ðr2ϕ02 − 12Λr2V þ 8Þ þ rðr2ϕ02 − 4Þ
4ðr2ΛV − 1Þð2_fϕ0 þ rÞ

þO
�
1

A0

�
: ð20Þ

Employing the above expansion into the system (18)–(19),
we obtain

A00 ¼ W1

W3

A02 þOðA0Þ; ð21Þ

ϕ00 ¼ W2

W3

ð2_fϕ0 þ rÞA0 þOð1Þ; ð22Þ

where

W1 ¼ þ24Λ2r4V2 _f2 þ 4r3 _fðΛr _V − ϕ0Þ þ 16Λr2 _f3ϕ02 _V

þ 4_f2ð4Λr3ϕ0 _V − r2ϕ02 þ 6Þ
þ ΛV½4r5 _fϕ0 þ 4r2 _f2ðr2ϕ02 − 16Þ − 64r _f3ϕ0

− 64_f4ϕ02 þ r6� − r4; ð23Þ

W2 ¼ −32ΛV _f3ϕ02 þ 8Λr _f2ϕ0ð2Λr2V2 þ rϕ0 _V − 6VÞ
þ r3½ϕ0ðΛr2V − 1Þ þ 2Λr _V�
− 2_f½2Λ2r4V2 − 4Λr3ϕ0 _V þ r2ϕ02

− Λr2Vðr2ϕ02 þ 4Þ þ 6�; ð24Þ

and

W3 ¼ ð1 − Λr2VÞ½2r3 _fϕ0 þ 16_f2ð2Λr2V − 3Þ
− 32ΛrV _f3ϕ0 þ r4�: ð25Þ

From Eq. (22), we readily deduce that, if ϕ00 is to remain
finite near the black-hole horizon as A0 → ∞, the coef-
ficient of the latter, i.e., W2ð2_fϕ0 þ rÞ, should vanish.
But, from Eq. (20), we conclude that the combination
ð2_fϕ0 þ rÞmust be nonvanishing for the metric function eB

to have the correct behavior near the black-hole horizon.
Therefore, we demand that

W2jr¼rh ¼ 0: ð26Þ

This constraint has the form of a second-order polynomial
equation in terms of ϕ0 which may be solved to yield:

ϕ0
h ¼ −

r3hð1 − ΛVr2hÞ þ 16ΛVrh _f2ð3 − ΛVr2hÞ − 8Λ _Vr3h _f � ð1 − ΛVr2hÞ
ffiffiffiffi
C

p

4_f½r2hð1 − 4Λ _V _fÞ − ΛVðr4h − 16_f2Þ� ; ð27Þ

where all quantities have been evaluated at r ¼ rh. The
quantity C is given by the expression

C ¼ 384Λr2h _f
3 _V þ 32r2h _f

2ð2ΛVr2h − 3Þ
þ 256ΛV _f4ðΛVr2h − 6Þ þ r6h; ð28Þ

and should always be positive-definite. This additional
constraint imposes a bound on one of the free parameters of
the theory: for specific choices of fðϕÞ and VðϕÞ and fixed
coupling parameter Λ, the aforementioned constraint im-
poses a bound, or bounds, on the value of the black-hole
horizon rh.
For VðϕÞ ¼ 1, the expression of C may take the form of

a second-order polynomial for _f2h, which then leads to two
branches of black-hole solutions (or four, if negative values

1Note, that only the (+)-sign in the expression for eB in
Eq. (15) leads to the desired black-hole behavior.
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of _fh are also allowed) describing solutions having either a
minimum or a maximum horizon radius [60,160]. In reality,
only solutions with a minimum horizon radius are found
while the second branch is plagued by instabilities. For
VðϕÞ ≠ 1, the expression for C may take instead the form
of a third-order polynomial for r2h; this polynomial may
have from one up to three real roots, therefore branches of
solutions with either a minimum mass, a maximum mass or
both may emerge. Unfortunately, the complexity of this
polynomial combined with the arbitrariness in the values of
the different parameters do not allow us to analytically draw
definite conclusions about the number of positive, real roots
and thus about the existence of upper or lower limits on the
horizon radius of the black-hole solutions. However, we
may make the following observation: for ΛV < 0, as will
be the case in the present analysis, Eq. (20) dictates that the
combination ð2_fϕ0 þ rÞ must be necessarily positive near
the horizon, therefore, we may write that rh > −2_fhϕ0

h. If
the right-hand-side of this inequality is negative, it yields
the trivial bound rh > 0; if, however, it is positive, then it
signals the existence of a minimum horizon radius for our
black-hole solutions. As we will see in Sec. V, the right-
hand side of this inequality is indeed positive for all the
solutions found, therefore, a lower limit on the horizon
radius of the ensuing black holes always exists.
Coming back to the constraint (27) and employing it into

Eqs. (21)–(22), we readily obtain

A00 ¼ −A02 þOðA0Þ; ð29Þ

ϕ00 ¼ Oð1Þ: ð30Þ

The first of the above equations may be integrated to give

A0 ¼ 1

r − rh
; ð31Þ

which indeed exhibits the diverging behavior near the
black-hole horizon assumed at the beginning of the
analysis. Integrating once more leads to the solution for
the metric function AðrÞ as the black-hole horizon is
approached. Combining this with Eq. (20), we also obtain
the near-horizon behavior of the metric function B. Putting
everything together, we may therefore write the analytic
form of the solution of the field equations near rh as

eA ¼ a1ðr − rhÞ þ � � � ; ð32Þ

e−B ¼ b1ðr − rhÞ þ � � � ; ð33Þ

ϕ ¼ ϕh þ ϕ0
hðr − rhÞ þ ϕ00

hðr − rhÞ2 þ � � � ; ð34Þ

where a1, b1, ϕh, ϕ0
h, and ϕ00

h are integration constants.
The above expressions describe a regular black-hole
horizon with a nontrivial, finite scalar field. Apparently,

the presence of a general form of a potential for the scalar
field does not affect the existence per se of a near-horizon
asymptotic solution, however, it is expected to modify the
properties of the ensuing solutions.
We now turn to the form of the solution of the field

equations at large distances from the black-hole horizon. In
this regime, the assumed form of the potential for the scalar
field is of paramount importance. Indeed, for Λ ¼ 0, and
thus a vanishing potential, we expect to recover an
asymptotically flat spacetime and a scalar field of the form

ϕðrÞ ≃ ϕ∞ þD
r
þ � � � ; ð35Þ

for all forms of the coupling function fðϕÞ, with D being
the scalar charge, as found in [39]. For Λ < 0 and
VðϕÞ ¼ 1, black-hole solutions with an asymptotically
anti–de Sitter behavior are expected to emerge as in
[60,160]. These solutions do not possess a scalar charge
since the asymptotic behavior of the scalar field is given by
the expression

ϕðrÞ ≃ ϕ∞ þ d1 ln rþ
d2
r2

þ � � � ; ð36Þ

independently of the form of the coupling function fðϕÞ.
For Λ > 0, VðϕÞ ¼ 1 and fðϕÞ ¼ f0 − αϕ2, black-hole
solutions with a smooth scalar field both at the black-hole
and cosmological horizons of a form similar to the one
given in Eq. (34) were derived in [163]; however, the scalar
field diverges beyond the cosmological horizon thus
deviating from the expected asymptotically de Sitter
behavior. Finally, for Λ ¼ 1 and VðϕÞ ¼ m2ϕ2, the case
of a massive scalar field was studied for different forms of
the coupling function fðϕÞ [90]: in all cases, the spacetime
approached an asymptotically flat solution with the scalar
field exhibiting a universal profile of a Yukawa-type form,
namely

ϕðrÞ ≃ e−mr

r
þ � � � : ð37Þ

As a result, one cannot derive generic forms for either the
spacetime or the scalar field, at the limit of large distances
from the black-hole horizon, when the scalar potential
VðϕÞ is kept arbitrary. To this end, we will postpone this
analysis for the next sections where specific forms of VðϕÞ
will be chosen.

IV. THERMODYNAMICAL ANALYSIS

The form of the asymptotic solutions for the metric
functions and scalar field near the black-hole horizon,
derived in the previous section, allows us also to calculate
the thermodynamical properties of the assumed black-hole
solutions. Thus, the temperature of the sought-for black
hole may be derived from its surface gravity κh through the
following definition [174,175]
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T ¼ κh
2π

¼ 1

4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffijgttgrrj

p
���� dgttdr

����
�

rh

¼
ffiffiffiffiffiffiffiffiffiffi
a1b1

p
4π

: ð38Þ

The above formula holds for spherically symmetric black
holes emerging even in theories which contain higher-
derivative terms such as the GB term. After employing the
near-horizon asymptotic forms (32)–(33) of the metric
functions, the temperature of the black hole is expressed
solely in terms of the near-horizon coefficients a1 and b1;
however, the exact profile and horizon values of these
coefficients do depend on the exact content of the theory.
Next, we may calculate the entropy of the black hole.

One could do this by employing the Euclidean approach in
which the entropy is given by the relation [176]

S ¼ β

�∂ðβFÞ
∂β − F

�
; ð39Þ

where F ¼ IE=β is the Helmholtz free-energy of the system
given in terms of the Euclidean version of the action IE, and
β ¼ 1=ðkBTÞ. However, as was discussed in [160,177,178],
this formula needs to be appropriately modified when the
spacetime asymptotic solution deviates from the asymp-
totically flat limit. Equivalently, as was demonstrated in
[178], one may employ an alternative method developed
in [179,180] in which the entropy of the black hole is
identified with the Noether charge on the horizon under
diffeomorphisms. In this case, we may write

S ¼ −2π
I

d2x
ffiffiffiffiffiffiffiffi
hð2Þ

q � ∂L
∂Rabcd

�
H
ϵ̂abϵ̂cd; ð40Þ

where L is the Lagrangian of the theory, ϵ̂ab the binormal to
the horizon surfaceH, and hð2Þ the 2-dimensional projected
metric on H.
Therefore, in order to calculate the entropy of the black

holes emerging in the context of the theory (2), one needs to
calculate the derivative of the Lagrangian with respect to
the Riemann tensor. In [160], we have presented a
straightforward, pedagogical way to do this for the theory
where VðϕÞ ¼ 1, and we have explicitly calculated the
entropy of the asymptotically anti–de Sitter black-hole
solutions to be

S ¼ Ah

4
þ 4πfðϕhÞ: ð41Þ

The above result gives the entropy of a black-hole solution
emerging in the context of the theory with a general
coupling function fðϕÞ between the scalar field and the
GB term. Its exact expression remains the same independ-
ently of whether a positive or negative cosmological
constant Λ is present in the theory, or whether a scalar-
field potential VðϕÞ is included in the theory since all these
additive terms do not bear any dependence on the Riemann

tensor. As in the case of the temperature, their presence will
only implicitly modify the entropy of the solution through
the values of the metric functions and scalar field at the
vicinity of the horizon.

V. NUMERICAL SOLUTIONS

We will now present the numerical results from the
integration of the system of field equations (18)–(19). The
integration starts from the vicinity of the black-hole
horizon, i.e., at r ≈ rh þOð10−5Þ (for simplicity, we set
rh ¼ 1) and proceeds outwards until an asymptotic solution
is reached. The near-horizon solutions (32) and (34) for the
metric function A and scalar field ϕ are used as boundary
conditions. The quantity ϕ0

h, which is an input parameter of
the problem, is uniquely determined through Eq. (27) once
the coupling function fðϕÞ and the scalar potential VðϕÞ
are chosen. We could write the coupling function as
fðϕÞ ¼ αf̃ðϕÞ, where α is a coupling constant with units
of ðlengthÞ2 and f̃ðϕÞ is dimensionless. However, ϕh and α
are not independent since they both appear in the expres-
sion of fðϕÞ and determine the strength of the scalar-GB
coupling; thus, we may in fact fix ϕh and vary only α.
The values of ϕh and Λ are also correlated as they both
appear in the expression of C given in Eq. (28)—the first
one implicitly, through the functions _f, V and _V. Since C
must always be positive, when the value of the first is
chosen, an allowed range of values exists for the second.
Our numerical code has successfully reproduced the

families of asymptotically flat scalarized black-hole sol-
utions derived in [39] as well as the asymptotically
AdS solutions found in [160]. In the first part of the
present analysis, we have chosen a specific form for the
coupling function, namely the exponential (dilatonic) form
fðϕÞ ¼ αeϕ, and supplemented it with different forms of
the scalar-field potential VðϕÞ. Due to the interesting
behavior found, we paid particular attention to the case
of the quadratic potential, VðϕÞ ¼ ϕ2 with Λ < 0. The
corresponding results are presented in the next two sub-
sections. Next, we considered a variety of choices for the
coupling function fðϕÞ combined always with a quadratic
form for VðϕÞ. This case is presented in the last subsection.

A. Exponential coupling function
with different potentials

We will first discuss the case of an exponential coupling
function, fðϕÞ ¼ αeϕ. The solutions for the metric func-
tions eAðrÞ and eBðrÞ are depicted in the left and right plot of
Fig. 1, respectively, for a variety of forms of the scalar-field
potential VðϕÞ. We observe the anticipated behavior near
the black-hole horizon, with eAðrÞ vanishing and eBðrÞ
diverging. At large distances, the gravitational background
approaches the Minkowski spacetime. Therefore, the
asymptotic forms of the metric functions read
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AðrÞ≃−
2M
r

þO
�
1

r2

�
; BðrÞ≃2M

r
þO

�
1

r2

�
; ð42Þ

from which we may easily obtain the mass M of the black
hole. The solutions presented correspond to the particular
values Λ ¼ −1 (in units of r−2h ), α ¼ 0.01 (in units of r2h)
and ϕh ¼ 0.1, however, the observed behavior is typical for
a large range of values we have used. We note that the
behavior of the metric functions both at small and large
distances from the black-hole horizon is in fact independent
of the form of the scalar-field potential VðϕÞ, as Fig. 1
clearly depicts.2 We would like to stress that the

asymptotically flat behavior of the grr metric component
at radial infinity follows naturally by solving the field
equations from the horizon outwards and without imposing
any condition at large distances. The gtt component also
approaches naturally a finite, constant value, and the
boundary condition gtt → −1, as r → ∞, is imposed in
order to determine the parameter a1 which otherwise
remains arbitrary.
The spacetime remains everywhere regular as this may

be seen from the profile of the curvature-invariant GB term
depicted in the left plot of Fig. 2. As expected, the GB term
assumes its maximum value near the black-hole horizon,
where the curvature is maximum, and quickly decreases
eventually vanishing far way from the horizon. Once again,
the exact form of the scalar-field potential VðϕÞ does not
affect the profile of the gravitational GB term. The
regularity of the spacetime is also reflected in the finiteness
of all components of the energy-momentum tensor pre-
sented on the right plot of Fig. 2. Here, the indicative case
of the quartic potential, VðϕÞ ¼ ϕ4, is presented, however,

FIG. 1. The metric components jgttj (left plot) and grr (right plot) in terms of the radial coordinate r, for fðϕÞ ¼ αeϕ and a variety of
potentials VðϕÞ (with Λ ¼ −1).

FIG. 2. The Gauss-Bonnet term R2
GB for a variety of potentials VðϕÞ (left plot) and the energy-momentum tensor Tμ

ν (right plot) for
the indicative case of the quartic potential, VðϕÞ ¼ ϕ4, in terms of the radial coordinate r, for fðϕÞ ¼ αeϕ and Λ ¼ −1.

2Note, that we present only even functions of the scalar field ϕ
for the potential VðϕÞ. It is only for these choices that we obtain
asymptotically flat black-hole solutions. For odd functions of ϕ,
the asymptotic behavior of the obtained solutions resembles the
one for a de Sitter spacetime. As these solutions seem to comprise
a physically different family of black-hole solutions, we postpone
their detailed study for a subsequent work.
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the observed profile remains unaffected as the form of VðϕÞ
varies. We may clearly see the characteristic behavior
caused by the presence of the GB in the theory: the radial
pressure p ¼ Tr

r is positive near the horizon while the
energy density ρ ¼ −Tt

t is negative—both these features
cause the evasion of the scalar no-hair theorems [13,39] and
the emergence of regular black-hole solutions with scalar
hair. The depicted profiles of Tμ

ν also reveal the asymptotic
flatness of spacetime as all components assume a zero value
away from the black-hole horizon.
Let us now turn to the profile of the scalar field which

supports the aforementioned behavior of the energy-
momentum tensor. This is depicted in the left plot of
Fig. 3, for a variety of forms of its potential VðϕÞ. As
demonstrated in Sec. III, the scalar field is regular near the
black-hole horizon independently of the form of its potential.
However, the subsequent evolution does strongly depend on
the particular form of VðϕÞ. We observe that, despite the
negative sign ofΛ, the profile of the scalar field remains finite
in the entire radial regime. For all of the forms of VðϕÞ
employed, the scalar field decreases at the near-horizon
regimeand reduces to a vanishingvalue at asymptotic infinity.
Once again, no boundary condition is imposed at large
distances on the scalar field, which naturally approaches a
zero value. This is supported also by the behavior of the
effective potential of the scalar field defined as

Veff ¼ −fðϕÞR2
GB þ 2ΛVðϕÞ; ð43Þ

the value of which is presented in the right plot of Fig. 3. For
all forms of VðϕÞ, the effective potential adopts its maximum
value near the black hole horizon, where it supports a
nontrivial scalar field, while it decays to zero at asymptotic
infinity leading to a trivial scalar field there. The asymptotic
behavior of the scalar field is difficult to obtain in an analytic
way; employing the asymptotic forms (42) of the metric
functions, the scalar-field equation (14) takes the form

rϕ00 þ 2ϕ0 − 2rΛ
dV
dϕ

¼ 0: ð44Þ

For VðϕÞ ¼ 0, the above equation leads to the solution (35),
which is indeed the asymptotic behavior of a scalar field
possessing only a coupling to the GB term and no potential
[39]. For VðϕÞ ¼ ϕ2 andΛ ¼ m2=2, the solution is given by
Eq. (37) describing the asymptotic form of a massive scalar
field [90]. For the casewithVðϕÞ ¼ ϕ2 andΛ ¼ −m2=2 that
we consider here, the solution of Eq. (44) takes the form

ϕðrÞ ≃ 1

r
½C1 cosðmrÞ þ C2 sinðmrÞ�: ð45Þ

The above solution justifies the oscillatory behavior clearly
observed in the lower curve of the left plot of Fig. 3, which
corresponds to this case. Unfortunately, Eq. (44) cannot be
analytically solved for any of the other forms of the scalar
potentialVðϕÞ thatwe study in thiswork.The similarity in the
profile of theeffective potential but also the observedbehavior
of the scalar-field curves, depicted in Fig. 3 for VðϕÞ ¼ ϕ2n,
imply that the scalar field decreases asymptotically to zero in
anoscillatoryway also for the caseswithn > 1; however, asn
increases, the frequency of the oscillations is strongly damped
and the asymptotic vanishing value is reached at an increas-
ingly larger distance.
Although this may be true, there seem to be some

fundamental differences between the GB black-hole sol-
utions where the scalar field possesses a quadratic potential
and the solutions where the scalar field has a higher-power
potential. To see this, in Fig. 4, we plot the horizon radius
and the entropy of the corresponding black-hole solutions
in terms of their mass M. These quantities are normalized
to the corresponding Schwarzschild values, rSch ¼ 2M
and SSch ¼ 4πM2, for easy comparison. All solutions for
VðϕÞ ¼ ϕ2n with n > 1 exhibit the existence of multiple
branches with their horizon radius and entropy being
smaller or larger than the corresponding Schwarzschild
values depending on the mass range and value of the power

FIG. 3. The scalar field (left plot) and its effective potential Veff (right plot) in terms of the radial coordinate r, for fðϕÞ ¼ αeϕ and
various forms of VðϕÞ (with Λ ¼ −1).
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n. On the other hand, the quadratic case allows only one
branch, which crosses the horizontal line, marking the
equality of rh and SGB with the Schwarzschild values, at
only one point: black holes with masses below that point
have a horizon radius larger than the corresponding
Schwarzschild solution and are also more thermodynami-
cally stable. For all forms of the scalar potential, our
numerical analysis has revealed the existence of an upper
bound on the coupling parameter α, which then translates to
a lower bound for the black-hole mass M, a feature
common for all GB black holes [13,39,160].
Another distinctive feature of the case with a negative

quadratic potential is the behavior of the black-hole
solutions in the limit of large mass, a feature that distin-
guishes this case both from the ordinary massive case and
from the case with a higher-power potential. From Fig. 4,
we observe that, as the mass of the black-hole solution
increases, the horizon radius and entropy for the case with
VðϕÞ ¼ ϕ2 decrease reaching eventually a very small
value. Thus, in the limit of large mass, a branch of massive,

ultracompact black holes seems to emerge. In contrast, for
all other forms of the scalar-field potential, this branch of
solutions is absent since the horizon radius and entropy of
the corresponding solutions approach, in the limit of large
mass, values which are very close to the Schwarzschild
ones. In the ordinary massive case [90], the GB black holes
also approach the Schwarzschild solution in the large-mass
limit. We consider the emergence of this ultracompact
family of black holes as a rather interesting feature of the
theory, therefore, in the next subsection we study in greater
detail the case with a negative quadratic potential.

B. Exponential coupling function
with a quadratic potential

If we focus on the EsGB theory with an exponential
coupling function and a negative quadratic potential, the
decisive parameter of the theory is the coupling parameter
Λ. The form of the metric functions AðrÞ and BðrÞ are not
significantly affected as Λ varies, and they are still

FIG. 4. The horizon radius rh (left plot) and entropy SGB (right plot) normalized with respect to the corresponding Schwarzschild
values, for fðϕÞ ¼ αeϕ and different forms of VðϕÞ (with Λ < 0).

FIG. 5. The scalar field ϕ (left plot) and its source term _Veff (right plot) in terms of the radial coordinate r, for fðϕÞ ¼ αeϕ and
VðϕÞ ¼ ϕ2 (with Λ < 0).
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accurately described by the profiles depicted in Fig. 1.
However, Λ strongly affects the solution for the scalar field:
as may be clearly seen from the left plot of Fig. 5, the
parameter Λ affects both the rate of decrease of the scalar
field near the black-hole horizon and the frequency of the
oscillatory phase as the asymptotic solution at infinity is
approached. These dependences are also supported by
Eq. (27) and Eq. (45), where m ¼ ffiffiffiffiffiffiffiffiffi

2jΛjp
, respectively.

We note that both of these quantities increase with Λ. The
same holds for the source term _Veff , which appears in
the scalar-field equation (4) and determines the profile of
the scalar field; this is depicted in the right plot of Fig. 5 for
various values of Λ.
Finally, as expected, the same oscillatory behavior is

observed also in the components of the energy-momentum
tensor, and becomes more prominent as Λ increases. In
Fig. 6, we display all three Tμ

ν components for Λ ¼ −0.5
(left plot) and Λ ¼ −2 (right plot) with all the other

parameters fixed. The overall behavior noted in Fig. 2 is
observed also here, with all components remaining finite
and approaching zero values at infinity. In addition, we note
that, as Λ increases, an oscillatory phase appears in all
components and is preserved until the asymptotic regime at
infinity is reached.
In Fig. 7, we plot again the horizon radius rh (left plot)

and entropy SGB (right plot) normalized with respect to the
corresponding Schwarzschild values, for solutions obtained
for fðϕÞ ¼ αeϕ, VðϕÞ ¼ ϕ2 and various negative values of
the parameter Λ. The case with Λ ¼ 0 corresponding to the
asymptotically flat dilatonic GB black holes with no
potential [13,39] is also shown for comparison. From the
left plot of Fig. 7, we observe that whereas the dilatonic
black holes are always smaller than the corresponding
Schwarzschild black holes, the black-hole solutions with a
negative quadratic potential may be either smaller, equal or
larger than the Schwarzschild solution with respect to their

FIG. 6. The energy-momentum tensor Tμ
ν components for fðϕÞ ¼ αeϕ and VðϕÞ ¼ ϕ2, and two different values of Λ, namely

Λ ¼ −0.5 (left plot) and Λ ¼ −2 (right plot).
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FIG. 7. The horizon radius rh (left plot) and entropy SGB (right plot) normalized with respect to the corresponding Schwarzschild
values, for fðϕÞ ¼ αeϕ, VðϕÞ ¼ ϕ2 and various values of Λ < 0. The blue dots correspond to the dilatonic black holes with no
potential (Λ ¼ 0).
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horizon values. The same holds for the entropy of these
solutions, shown in the right plot, with the ones being larger
in size than the Schwarzschild radius being also more
thermodynamically stable. The new feature emerging from
these plots is that, also for the negative quadratic potential,
branches of solutions with the same mass M but with
different horizon radii and entropies appear for certain
regimes of the Λ parameter.
The branch of themassive ultracompact GBblack holes is

also present for every nonvanishing, negative value of the
coupling parameter Λ. In fact, the exact value of Λ
determines the value of M where this branch terminates.
As themassM increases, the horizon radius gets smaller and
its entropy decreases to a very small value. The question
emerges of whether the end point is indeed a black holewith
a small but nonvanishing horizon radius or perhaps a naked
singularity. To investigate this, in Fig. 8 we plot the values of
the GB term at the location of the horizon (multiplied by
fðϕhÞ for scaling purposes) in terms of the black-hole mass
M of the solutions. The case of the dilatonic black holes with
Λ ¼ 0 is again shown for comparison. We observe that, in
the presence of a negative potential, a reversal takes place in
the behavior of the GB term: for Λ ¼ 0, it is the low-mass
GB black-hole solutions that are the most compact, and
therefore create the most curved background around them;
for Λ < 0, on the other hand, it is the black-hole solutions
near the endpoint of the branch of ultracompact objects, i.e.,
the black holes with the smallest horizon radius and the
largest mass, that naturally create the most curved back-
ground. Although theGB term reaches a large value, it never
becomes infinite—the solutions at the end of the branch
have a GB term at their horizon which is comparable to
the one for a dilatonic black hole with no potential. This
signifies the fact that the horizon radius, althoughvery small,
remains in fact nonvanishing and therefore these massive,
ultracompact objects are extremely small-sized black holes.
The existence of a minimum horizon radius is also supported

by the constraint rh > −2_fhϕh discussed in Sec. III. As
follows from the left plots of Figs. 3 and 5, the quantity ϕ0

h is
always negative while, for all of our choices, _f > 0; as a
result, the aforementioned inequality does impose a lower
bound on the horizonvalue of our black-hole solutions. For a
quadratic potential, this lower bound corresponds to the
endpoint of the branch of massive, ultracompact black holes.
In the right plot of Fig. 8, we finally present the

temperature of the black-hole solutions, found in the case
of an exponential coupling functions and a negative
quadratic potential, in terms of the mass and for different
values of Λ. We observe that the temperature of all the
solutions belonging to the group of light but large black
holes have a temperature smaller than the Schwarzschild
one. In contrast, all solutions belonging to the group of
massive, compact black holes have a temperature larger
than the Schwarzschild value, which increases as we
approach the endpoint of the branch of ultracompact
solutions. Therefore, the thermodynamically more stable
solutions, from the point-of-view of the entropy, have a
small temperature while the less stable have a large
temperature. In contrast, the behavior of the temperature
depends only mildly on the coupling parameter Λ.

C. Different coupling functions
with a quadratic potential

Wewould now like to investigate whether the emergence
of the aforementioned black-hole solutions is restricted
only in the case of the exponential coupling function
between the scalar field and the GB term or is a generic
feature of the class of EsGB theories. We have therefore
considered a variety of coupling functions, mainly odd and
even polynomial functions of the form fðϕÞ ¼ αϕl, with l
a positive integer. We have also kept the scalar quadratic
potential in order to investigate whether both large and
small-sized black holes continue to emerge.

2 5 10 20
0.90

0.95

1.00

1.05

1.10

FIG. 8. The combination fðϕÞR2
GB at the horizon radius (left plot) and the temperature (right plot) in terms of the mass M, for

fðϕÞ ¼ αeϕ, VðϕÞ ¼ ϕ2 and various values of Λ < 0. The blue dots correspond again to the dilatonic black holes with no
potential (Λ ¼ 0).
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According to our analysis, classes of black holes similar
to the ones presented in Sec. V.2 emerge in every single
case. The solutions for the metric functions are given by
curves identical to the ones in Fig. 1 for every coupling
function—as in the case with no scalar potential [39,160],
the exact form of fðϕÞ is of minor importance for the
solution of the gravitational background. The solution for
the scalar field is more strongly affected by the form of
fðϕÞ, as can be seen in the left plot of Fig. 9. In fact, there
seems to be a common behavior of the solutions for the
scalar field for the coupling functions fðϕÞ ¼ αeϕ and
fðϕÞ ¼ αϕ and another one for all higher polynomials
fðϕÞ ¼ αϕl, with l > 1. In all cases, the scalar field is
finite and oscillates toward a vanishing value at asymptotic
infinity. As in the case of the exponential coupling function,
also here, the value of the coupling parameter Λ affects the
near-horizon slope and the frequency of oscillations
appearing in the curve of the scalar field. It also affects
in a similar way the effective potential of the scalar
field (whose form for a fixed value of Λ is shown in the

right plot of Fig. 9) and the energy-momentum tensor
components, therefore, we refrain from presenting addi-
tional plots here.
The horizon radius and entropy of the black-hole sol-

utions obtained for different forms of the coupling function
fðϕÞ, normalized again to the corresponding Schwarzschild
values, are presented in Fig. 10. For a quadratic scalar
potential, we observe that all classes of solutions extend
between a maximum and a minimum horizon radius, which
in turn corresponds to a minimum and a maximummass for
the black holes. The subgroup of black holes with a horizon
radius larger than the Schwarzschild solution have also a
larger entropy, and thus they are more thermodynamically
stable. Independently of the form of the coupling function,
the smallest in mass GB black holes with a negative
quadratic potential are typically 10 times larger than the
corresponding Schwarzschild solution, and have at least two
orders of magnitude larger entropy.
The subgroup of the more massive black holes, on the

other hand, terminates for each coupling function at a

FIG. 9. The scalar field (left plot) and its effective potential Veff (right plot) in terms of the radial coordinate r, for VðϕÞ ¼ ϕ2 (with
Λ ¼ −1) and a variety of coupling functions fðϕÞ.

FIG. 10. The horizon radius rh (left plot) and entropy SGB (right plot) normalized with respect to the corresponding Schwarzschild
values, for VðϕÞ ¼ ϕ2 (with Λ ¼ −1) and a variety of coupling functions fðϕÞ.
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different maximum value of the mass, or at a different
minimum value of the horizon radius, as the bound rh >
−2_fhϕ0

h dictates. The solutions for the exponential and
linear coupling functions have the largest upper value for the
mass and the smallest horizon radius of all, with the latter
being approximately 1=20 of the horizon radius of the
Schwarzschild solution with the same mass. In contrast, as
the integerm in the form of the coupling function increases,
the maximum mass decreases and the minimum horizon
radius increases. Since the small-sized black holes are
smaller in entropy compared to the Schwarzschild solution,
they are also less thermodynamically stable. According to
the right plot of Fig. 10, the dilatonic and linear GB
ultracompact black holes have two orders of magnitude
smaller entropy than the Schwarzschild solution. This is the
same difference in entropy as the one between the small-
mass GB black holes and the Schwarzschild solution. In
other words, the ultracompact GB black holes are less
thermodynamically stable compared to the Schwarzschild
solution as much as the Schwarzschild solution is less stable
compared to the small-mass GB black holes. On the other
hand, the “quadratic” and “higher” GB black holes have
approximately 1=4 of the entropy of the Schwarzschild
solution. This makes them much more thermodynamically
stable than their dilatonic and “linear” analogues but their
compactness is limited being typically only half in size
compared to the Schwarzschild solution.
In Fig. 11 (left plot), we depict again the combination

fðϕÞR2
GB at the horizon of the black-hole solutions, in terms

of their massM, for the quadratic negative potential and for
various forms of the coupling function. We observe again
that the GB term remains finite even close to the end point
of the branch of the ultracompact solutions. In accordance
with the previous findings, the curvature of spacetime is
stronger around the small-sized, massive black holes
obtained for the exponential and linear coupling functions,
which constitute the most compact objects found in this
theory. Finally, in the right plot of Fig. 11, we present the

temperature of the black-hole solutions, found for a
negative quadratic potential and various coupling func-
tions. The same behavior found in the case of the
exponential coupling function is also observed here: the
light but large black holes have a temperature smaller than
the Schwarzschild one while the massive, compact black
holes have a temperature larger than the Schwarzschild
value. Again, it is the exponential and linear coupling
functions which produce the solutions with the largest
values of the temperature. In the opposite limit of small
mass, it is also the same coupling functions that produce the
smallest values of the temperature and support the most
thermodynamically stable solutions.

VI. CONCLUSIONS

In this work, we have focused on the study of the
EsGB theory where the scalar field possesses also a self-
interacting potential. This potential was considered to be
negative and thus to have the opposite sign in the action
compared to a traditional self-interacting term. This choice
was motivated by our desire to investigate whether this
theory, which yielded a plethora of novel black-hole
solutions with a nontrivial scalar field in the presence of
a negative cosmological constant [160], could still support
similar types of solutions in the more realistic case where
the constant negative distribution of energy is replaced by a
negative field potential. To this end, we have considered a
variety of forms for both the coupling function between the
scalar field and the GB term and for the scalar-field
potential, and looked for static, spherically symmetric,
regular black holes with a nontrivial scalar field.
We first performed an analytic study of the field

equations and demonstrated that, independently of the
forms of the scalar-GB coupling function and of the
scalar potential, an asymptotic solution describing a
black-hole horizon with a regular scalar field always
emerges. The particular choices for these two functions

FIG. 11. The combination fðϕÞR2
GB at the horizon radius (left plot) and the temperature (right plot) in terms of the mass M, for

VðϕÞ ¼ ϕ2 (and Λ ¼ −1) and various forms of the coupling function fðϕÞ.
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do not significantly affect the form of the gravitational
background either close to or far away from the black-hole
horizon. The field equations lead naturally to asymptoti-
cally flat families of solutions which are everywhere
regular, as the profile of the scale-invariant GB term
reveals. The solution for the scalar field does depend on
the assumed form of its potential but it always describes a
regular field approaching a vanishing value at asymptotic
infinity. All components of the energy-momentum tensor
also remain finite for every choice of the scalar potential
and coupling function, and tend asymptotically to zero
values in agreement with the asymptotic flatness of the
solutions. The effective potential of the scalar field receives
contributions from both the GB coupling and the negative
potential, however, both contributions remain bounded and
both vanish at large distances.
Using the case of the exponential scalar-GB coupling

function as a prototype, we varied the form of the scalar
potential and studied the properties of the black-hole
solutions obtained, namely the horizon radius, the entropy
and the temperature. We have found a distinctly different
behavior of the parameters of the black holes obtained for
either VðϕÞ ¼ ϕ2 or for VðϕÞ ¼ ϕ2n, with n > 1. In the
latter case, branches of solutions, either smaller or larger
than the Schwarzschild solution depending on their mass
and value of n, were found; these solutions were charac-
terized by a minimum mass and approached the properties
of the Schwarzschild solution in the limit of large mass, as
all previously found GB black holes [13,39,160]. In the
former case, however, of a negative quadratic potential, the
solutions are divided in two subgroups: the first subgroup
comprises the small-mass GB black holes which all have a
larger horizon radius, a larger entropy and a smaller
temperature compared to the Schwarzschild solution; the
second subgroup includes the more massive black holes the
horizon radius of which gets increasingly smaller as their
mass increases—these solutions have also a smaller
entropy and a larger temperature compared to the
Schwarzschild solution. Whereas the GB black holes
obtained in the case of a positive quadratic potential
approach the Schwarzschild solution in the limit of large
mass [90], the GB solutions supported by a negative
quadratic potential exhibit a regime of very massive but
ultracompact subgroup of black holes.
The same behavior is observed when the coupling

function between the scalar field and the GB term assumes
a polynomial function, either even or odd, of the scalar
field. The only differences appear in the values of the
minimum and maximum values of the horizon radius, or
correspondingly the mass, of the black-hole solutions
obtained in each case. In all cases, however, the spacetime
remains regular even around the massive, ultracompact
solutions. According to our results, the most compact black
holes emerge for either the exponential (dilatonic) or linear
form of the coupling function with the smallest horizon

radius being approximately 1=20 of the horizon radius of a
Schwarzschild black hole with exactly the same mass.
These objects have only 1=100 of the entropy of the
Schwarzschild solution, while the Schwarzschild solution
has again only 1=100 of the entropy of the largest (and less
massive) GB black holes in the theory.
It is worth stressing again the large differences found

between the results derived in this work and those found in
the case of a negative cosmological constant [160], as this
was our main motivation. In the latter case, the constant,
negative Λ term worked together with the GB term in order
to create a branch of black holes which started from the
Schwarzschild solution, in the limit of large mass, and gave
increasingly smaller black holes (both in terms of the mass
and the horizon radius) until the point of minimum mass,
and minimum horizon radius, was reached. When the
negative cosmological constant is replaced by a negative
field potential—different from quadratic—the existence of
a branch of solutions extending from the Schwarzschild
limit down to a minimum-mass GB black-hole is still
observed; however, the horizon radius may be larger or
smaller than the Schwarzschild value depending on the
particular value of the mass of the black hole. When
specifically the negative quadratic potential is considered,
we have the appearance of the two distinct subgroups of
light but large black holes (as in the case of a positive
quadratic potential [90]) and the massive but ultracompact
ones. The reversal in the behavior of the GB term in this
case is also interesting: whereas in the asymptotically flat
[39] and asymptotically AdS [160] cases, the GB takes its
largest value around the black holes with the minimum
mass, now it is the most massive black holes which create
the most curved gravitational background around them; the
reason for that is clearly the fact that these are now the most
compact objects in the theory.
The above solutions owe their existence to the synergy of

the GB term with the negative scalar potential. Black holes
emerging in the theory of a minimally coupled scalar field
with a negative potential would be most likely considered
as unnatural objects—indeed, to our knowledge, no such
black-hole solutions have been derived or studied. In our
analysis, we have demonstrated that, in the presence of
the GB term, the negative potential does not comprise a
source of any irregular or destabilizing effects in our
solutions. Both the distribution of energy and the spacetime
remain finite outside the black-hole horizon, and support
solutions for the scalar field which are always bounded and
naturally die out at large distances. The negativity of
the potential may have implications on the stability of
the solutions under perturbations. Although the form of the
entropy hints toward the fact that a large number of them
may in fact be stable from the thermodynamical point of
view, this remains to be investigated. Even if a subclass of
our solutions turns out to be unstable, their emergence
for a finite amount of time may be in fact associated
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with interesting phenomena especially in the strong gravi-
tational-field limit where quadratic terms, such as the GB,
are expected to be important.
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APPENDIX A: SET OF
DIFFERENTIAL EQUATIONS

Here, we display the explicit expressions of the coef-
ficients P, Q and S which appear in the system of
differential equations (18)–(19). For notational simplicity,
in these expressions we have eliminated, via Eq. (17), B0,
which involves A00 and ϕ00, but retained eB. They are

P ¼ −128e4BΛ2r3V2 _fðrA0 þ 2eB − 2Þ þ 16A03 _f½−2eBð−14eB þ 3e2B þ 19Þr _fϕ0

þ 8ð−8eB þ 3e2B þ 9Þ _f2ϕ02 − e2Bð3eB − 5Þr2� þ 4eBA02feBr _f½ð5eB − 19Þr2ϕ02

þ 12ðeB − 1Þ2� − 4_f2ϕ0½ð9eB − 17Þr2ϕ02 þ 8ðeB − 1Þ2� þ e2Br4ϕ0g
þ 4e2B2VΛf−e2Br3ð−2þ rA0Þϕ0 − 16A0 _f2ϕ0½6ð3 − 4eB þ e2BÞ þ ð−5þ eBÞrA0�
þ 4eB _f½−3r2A02ð1þ eBÞ þ 4ð4ð−1þ eBÞ2 − r2ϕ02Þ þ 2rA0ð3 − 3eB þ r2ϕ02Þ�g
− 2e2Brϕ0f8_f½4rΛ _VeBð−1þ eBÞ − ϕ0ð4eBð−1þ eBÞ þ r2ϕ02ð−2þ eBÞÞ�
− 4reBð−1þ eBÞ − rϕ02½r2eB − 16f̈ð−1þ eBÞ�g − A0eBf−32r _f2ϕ2½8rΛ _Ve2B

− ϕ0ð9 − 4eB þ 3e2BÞ� − r3ϕ0eB½4eBð1þ eBÞ − ϕ02ðr2eB þ 16f̈ð1þ eBÞÞ�
þ 8eB _f½4ð−1þ eBÞ2 þ 4r3Λ _Vϕ0eBð1þ eBÞ þ r2ϕ02ð−7þ 3eBÞ − 2ϕ04ðr4 þ 8r2f̈Þ�g; ðA1Þ

Q ¼ 2304A0 _f2f̈ϕ04 − 1152A02 _f3ϕ03 þ eBð−144r2A0 _f2ϕ04 þ 672rA02 _f2ϕ02 þ 768A02 _f3ϕ03

− 384A0 _f2ϕ02 − 1024rA0 _f f̈ ϕ03 − 3584A0 _f2f̈ϕ04 þ 480r _f2ϕ04 þ 64r2 _f f̈ ϕ05 − 640_f f̈ ϕ03Þ
þ e2Bð128r2A0f̈ϕ02 þ 52r3A0 _fϕ03 þ 80r2A0 _f2ϕ04 − 128r2A02 _fϕ0 − 576Λr2VA0 _f2ϕ02

− 320rA02 _f2ϕ02 þ 176rA0 _fϕ0 − 128A02 _f3ϕ03 þ 640A0 _f2ϕ02 þ 1280rA0 _f f̈ ϕ03 þ 1280A0 _f2f̈ϕ04

− 16r3f̈ϕ04 þ 128rf̈ϕ02 − 4r4 _fϕ05 − 152r2 _fϕ03 − 384Λr2 _f2ϕ03 _V − 256r _f2ϕ04 þ 384ΛrV _f2ϕ02

þ 160_fϕ0 − 64r2 _f f̈ ϕ05 − 512Λr2V _f f̈ ϕ03 þ 1280_f f̈ ϕ03� þ e3B½−128r2A0f̈ϕ02 − 12r3A0 _fϕ03

þ 208Λr3VA0 _fϕ0 þ 32r2A02 _fϕ0 þ 320Λr2VA0 _f2ϕ02 þ 32rA02 _f02ϕ02 − 224rA0 _fϕ0

− 256A0 _f2ϕ02 − 256rA0 _f f̈ ϕ03 − 6r4A0ϕ02 þ 8r3A02 − 24r2A0 þ 16r3f̈ϕ04 þ 128Λr3Vf̈ϕ02

− 256rf̈ϕ02 þ 16Λr4V _fϕ03 þ 160Λr3 _fϕ02 _V þ 24r2 _fϕ03 þ 128Λr2 _f2ϕ03 _V þ 224Λr2V _fϕ0

þ 32r _f2ϕ04 − 512ΛrV _f2ϕ02 − 320_fϕ0 þ 512Λr2V _f f̈ ϕ03 − 640_f f̈ ϕ03 þ r5ϕ04 þ 12r3ϕ02 − 32r�
þ e4B½−48Λr3VA0 _fϕ0 þ 48rA0 _fϕ0 − 24Λr4VA0 þ 24r2A0 − 128Λr3Vf̈ϕ02 þ 128rf̈ϕ02

þ 128Λ2r4V2 _fϕ0 − 32Λr3 _fϕ02 _V − 224Λr2V _fϕ0 þ 128ΛrV _f2ϕ02 þ 160_fϕ0 − 4Λr5Vϕ02

− 16Λr4φ0V0 þ 4r3ϕ02 − 64Λr3V þ 64r� þ e5B½−32Λ2r5V2 þ 64Λr3V − 32r�; ðA2Þ

and

S ¼ 2304A0 _f3ϕ02 þ 8eBð−128rA0 _f2ϕ0 − 448A0 _f3ϕ02 þ 32r2 _f2ϕ03 − 80_f2ϕ0Þ
þ 8e2Bð16r2A0f0 þ 160rA0 _f2ϕ0 þ 160A0 _f3ϕ02 − 12r3 _fϕ02 − 16r2 _f2ϕ03 − 64Λr2V _f2ϕ0

þ 16r _f þ 160_f2ϕ0Þ þ 8e3Bð−16r2A0 _f − 32rA0 _f2ϕ0 þ 4r3 _fϕ02 þ 16Λr3V _f

þ 64Λr2V _f2ϕ0 − 32r _f − 80_f2ϕ0 þ r4ϕ0Þ þ 8e4Bð16r _f − 16Λr3V _fÞ: ðA3Þ
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APPENDIX B: SCALAR QUANTITIES

By employing the metric components of the line-element (7), one may compute the following scalar-invariant
gravitational quantities:

R ¼ þ e−B

2r2
ð4eB − 4 − r2A02 þ 4rB0 − 4rA0 þ r2A0B0 − 2r2A00Þ; ðB1Þ

RμνRμν ¼þe−2B

16r4
½8ð2−2eBþ rA0− rB0Þ2þ r2ðrA02−4B0− rA0B0 þ2rA00Þ2þ r2ðrA02þA0ð4− rB0Þþ2rA00Þ2�; ðB2Þ

RμνρσRμνρσ ¼þe−2B

4r4
½r4A04−2r4A03B0−4r4A0B0A00 þ r2A02ð8þ r2B02þ4r2A00Þþ16ðeB−1Þ2þ8r2B02þ4r4A002�; ðB3Þ

R2
GB ¼ þ 2e−2B

r2
½ðeB − 3ÞA0B0 − ðeB − 1ÞA02 − 2ðeB − 1ÞA00�: ðB4Þ
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