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We use the effective field theory (EFT) framework to compute the mass quadrupole moment, the
equation of motion, and the power loss of inspiralling compact binaries at the second order in the post-
Newtonian (PN) approximation. We present expressions for the stress-energy pseudotensor components of
the binary system in higher PN orders. The 2PN correction to the mass quadrupole moment as well as to the
acceleration computed in the linearized harmonic gauge presented here are the ingredients needed for the
calculation of the next-to-next-to leading order radiation reaction force, which will be presented elsewhere.
While this paper reproduces known results, it supplies the building blocks necessary for future higher order

calculations in the EFT methodology.
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I. INTRODUCTION

The successful detections of gravitational waves by
LIGO and Virgo [1-8] and the consequent advent of
multimessenger astronomy [9—11] have expedited the need
for precise theoretical descriptions of the dynamics of
binary inspirals. While numerical techniques are required
for the late stages of inspirals, the early stage admits a
perturbative treatment via the post-Newtonian (PN)
approximation, which is an expansion in »?/c?, and can
be matched onto numerical results for later stages of the
inspiral. Generating higher order PN corrections will allow
for more accurate parameter estimations.

In this paper, we will utilize the effective field theory
(EFT) approach called nonrelativistic general relativity
(NRGR), proposed in [12] (for reviews see [13—17]), as
our calculation framework. To date, most of the results in the
nonspinning sector of the EFT formalism have been geared
towards the potential sector culminating in the present state
of the art 4PN results [18,19], which agree with results
previously derived using other methods [20-23]. In the
radiation sector, the EFT results have only' been calculated
to 1PN [26] as compared to the 3PN results calculated using
more traditional GR methods [27]. Therefore, this paper is
the next step in the calculation of higher order radiative
effects in NRGR. In particular, in a separate paper we will
use the results herein to calculate the next-to-next-to leading
order radiation reaction force via the generation of an
effective action.

'For spinning constituents the relevant multipole moments at
3PN for the flux [24] and 2.5 for the amplitude [25].
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The radiation sector of NRGR, the topic of this
paper, was first studied in [12]. The effective action that
describes radiative effects is determined by the underlying
symmetries—reparameterization and  diffeomorphism
invariances—and 1is applicable to arbitrary gravitational
wave sources in the long wavelength approximation. The
Wilson coefficients of the action, the multipole moments,
cannot be determined by the symmetries and need to be
fixed by a matching procedure. The expression for the
effective action to all orders in the multipole expansion and
the exact expressions of the multipole moments in terms of
the components of the stress-energy tensor were presented
in [28]. The NRGR framework provides a systematic way
to compute the multipole moments of a binary system by
integrating out the modes of the gravitational field that live
in the near zone. The stress-energy tensor, whose moments
are our targeted goal, is determined by calculating the
radiation graviton one point function in the presence of the
background potentials using Feynman diagrams. The
number of Feynman diagrams grows rapidly with PN order.

The goal of this paper is to determine the 2PN correction
to the mass quadrupole moment, which comes from various
moments of the stress-energy pseudotensor. Each such
contribution starts at different order in the PN expansion
and only a few of these contributions can be derived from
known quantities. We also derive the equation of motion of
the binary system at 2PN order in Appendix B. Note that
this acceleration was calculated previously in the EFT
approach in [29], where the authors worked with Kaluza-
Klein variables [30] in conjunction with harmonic coor-
dinates. The 2PN acceleration derived here, on the other
hand, is written in the linearized (background) harmonic
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gauge, which leaves a gauge invariant effective action for
the radiation field after the potential modes are integrated
out, and can be used in combination with previous results
obtained in the EFT approach where the linearized har-
monic gauge was used. Our results constitute the final
missing part necessary for the computation of the next-to-
next-to-leading order radiation reaction force as well as for
the construction of spinning templates at 2.5PN order for
the phase and 3PN order for the amplitude. These compu-
tations are ongoing and will be reported in a subsequent
publication.

This paper is organized as follows. In Sec. II, we provide
a summary of NRGR for binary systems of compact bodies
with emphasis in the radiation sector, where we explicitly
show how the mass quadrupole moment depends on the
components of the pseudotensor in different PN orders. The
contributions to the quadrupole that come from higher PN
order components of the pseudotensor are computed in
Sec. III, while the contributions coming from the lower PN
order components are obtained in Sec. IV. We use the
results obtained in these sections to write down, in Sec. V,
the components of the pseudotensor that can be used to
compute the multipole moments, which are shown to agree
with the literature. The assembly of all contributions
constitutes the 2PN correction to the mass quadrupole
moment, presented in Sec. VI, in terms of the worldlines of
the compact bodies and also in the center-of-mass (c.m.)
frame. In Sec. VII we present our final remarks on the
results presented in this paper. Appendix A is intended for
readers interested in computing radiation effects in NRGR
to higher orders. The necessary ingredients for the com-
putation of the higher PN order components of the
pseudotensor are presented therein. In Appendix B we
show the result for the acceleration at 2PN order computed
in the linearized harmonic gauge, which is necessary to
compare the quadrupole moment obtained in this paper
with the result in [27], as well as to compute the power loss
at the second PN order.

We use the following definitions throughout this paper:
m=m, +m,, v=mm,/m?, and u = mv. The relative
position is defined as r = x; — Xx,, while v=v; — v, and
a=a; —a, are the relative velocity and acceleration,
respectively. If those relative quantities appear inside a
sum over the particles indices a,b = 1,2, they become
dependent on the indices a, b instead, e.g., r = X, — X,;,. We
adopt the mostly minus signature convention for 7% and
Latin indices are contracted with the Euclidean metric.
We use ¢ =1 units and the Planck mass is defined as

mp) = 1/\/ 327G.

II. EFT SETUP

During the inspiral stage, the physics of a binary system
of compact bodies is naturally separated into three length
scales: the typical size of the bodies of order of the

Schwarzchild radius ry, the orbital distance between the
two bodies given by r, and the wavelength Agy of the
gravitational radiation. As the relative velocity v of the
bodies is small, those three length scales together constitute
a hierarchical structure
re LK r< /,{GW' (21)
The first step is to “integrate out” the scale associated with
the bodies’ size.” Hence, the binary system can be initially
described by the action
S:SEH+SGF+S[)177 (22)
such that gravity is described by the Einstein-Hilbert (EH)
action Sgy = —2mj, [ d*x,/=gg,, R* with a gauge fixing
term Sgp, while the massive bodies are described by the
point particle action S,, =->_, m, [ dr,. The index
a = 1, 2 distinguishes the two bodies.
Next, the two different modes of the gravitational field
are separated in a diffeomorphism invariant way3 via

G = My + M (%) = My + () + H (x). - (23)

The off-shell potential mode H obeys 0yH,, ~ (Y)H,,
and 0,H,, ~ (})H,, whereas the on-shell radiation mode
obeys d,h,, ~ (£)h,,. Moreover, the radiation field 7, (x)
has to be Taylor expanded around a point inside the source
(for instance c.m. of the binary system) at the level of the
action in order to achieve a uniform power counting in
the parameter v? ~ r; [32]. With these considerations, the
action in (2.2) is then given as an expansion in the fields
h,,(x) and H,,(x), each of which scale homogeneously
in 2.

To describe the dynamics associated with gravitational
waves, the potential mode of the gravitational field is
integrated leaving an effective action that will depend only
on the radiation field and the worldlines. This action will be
diffeomorphism invariant if one chooses the linearized
harmonic gauge when integrating out the potential field, via
the gauge fixing action

SGF = /d4)C\/ —QI:‘MI_W, (24)

where T, = V,H? —1V H% with V, representing the

covariant derivative associated with the background metric

_ e
g/w(x) = Nw + /;,1—(”)-

*Finite size effects are accounted for by inserting higher-
dimensional operators in the effective action, respecting the
syrglmetries of the system.

Double counting subtleties arise at 4PN but can be system-
atically disentangled [31].
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Moreover, as a result of the “elimination” of the degrees of freedom that live in the orbital scale, the binary system is then
regarded as a single point particle coupled to its gravitational field and whose internal dynamics is described by a set of
multipole moments. We present a brief review of the EFT radiation sector in the next section.

A. Radiation sector

The radiation action, which describes arbitrary gravitational wave sources in the long wavelength approximation, can be
written in a diffeomorpshim invariant way in terms of multipoles. Specifically, it is a derivative expansion where higher
order terms are suppressed by powers of the ratio between the size of the binary system over the wavelength of the radiation
emitted. In the c.m. frame, the action of the radiation sector is

_ 1 &
Sraalh. xa] = —/dfvgoo [m +5 Lyjwg + Z (
1=

2

where a multi-index representation L = i;...i; is used. The
first two terms generate the Kerr background in which the
gravitational waves propagate. The multipole moments,
which constitute the source of radiation, are coupled to the
electric and the magnetic components of the Weyl tensor.
To check the expressions of the terms present in the
equation above, see Ref. [26].

To determine the moments, one performs a matching
between the effective action (2.5) in the long wavelength
limit and the action valid below the orbital scale (2.2),
which depends on both radiation and potential modes of the
gravitational field. The latter action is used in order to

1 21

EILVL—ZEil_Ii, - WJLVL—ZBi,_Itj)]v (2.5)

compute the one-graviton emission amplitude. As a result,
by definition the resulting action takes the form

Il = -

d*xT"h,,,
2mp1 o e

(2.6)
where T+ is the stress-energy pseudotensor of the system.
Relations from the Ward identity 9, 7" = 0 as well as the
on-shell equations of motion can be used to bring both
actions (2.5) and (2.6) in a comparable form. After that, a
general form for the mass quadrupole moment is obtained
in terms of the components of the stress-energy pseudo-
tensor and its derivatives,

. - 5N 2p(3+p) / 3o 2P 7002 <iv i 4 / 3¢ 2P Tl 2P iy ]
=N 2 (22T r 3x 2P TOX 2P xix) 142 3x 2P Tlx2Pxix)
Z(Zp)!!(S—i—Zp)!!{( + 3 d*x0,"Tx*Px'x TF+ +3 d*x0,"T"x*Px'x .

p=0

4 o 1 .
_ - <1 + B) |:/ d3X8317+1T01X2pX1X1X]:| 4= |:/ d3X83p+2TkIX2PXkX1XlX]:| }’
3 2 TF 6 TF

(2.7)

where TF stands for trace free.* For the exact expressions for the multipole moments in all orders in the PN expansion, see
[28]. The leading-order contribution to the mass quadrupole moment comes from just one term

ij o _ 3 0 iy _ i)
Topn = [/d XTgPNX X]] = E My [XXa] 7,
TF 7

(2.8)

while its 1PN correction [26] is given by four different contributions of the components of the stress-energy pseudotensor:

- o o 4 o 11 .
Iion = [/ d3xT(1’8NX’XJ] + {/ d3xTélPNx’xf] - {/ d3x80T8{,Nx’x’Xf] +— {/ dAPXOZTRNX>X %/
TF F 3 e 42 TF

_ 3.5 GmbijlleZij
= | (578~ 3 445 et -

4d

44 v o9

TF

“More precisely, the multipole moments are symmetric trace-free (STF) quantities, but we are suppressing the “S” in the label to avoid
redundancy since the general expression for the quadrupole moment is explicitly written as a symmetric tensor already.
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The 2PN correction to the leading order mass quadrupole moment is given by

. o 4 1 oo
Loy = [/ dBXTR X! X’:| + {/ d3XT[11PNx’x-’] {/ x0T\ x'x X’:| += {/ d3X8%T’5{,Nka’x’xf}
TF w3 F 0 TF

11

23 . )
+ ﬁ |:/ d3X63T8gNX4X’XJ} + IIJPN(ale).
TF

Notice that the last term in the expression above arises from
the last two terms of (2.9) after using the equations of
motion. While ngN and TOLy are known, the higher PN
order components 790y, 0%y, Ty have yet to be obtained
in the EFT formalism.

III. HIGHER ORDER STRESS-ENERGY TENSORS

Introducing the partial Fourier transform of the stress-
energy pseudotensor T#(1,k) = [ d®xT(1,x)e™ %%, we
consider the long wavelength limit k — O to write

T (t,k) = Z (_nl') (/ d3xT””(t,x)Xi'...Xi")kil...k,-n,

n=0

(3.1)

where each term in this expansion corresponds to a sum of
Feynman diagrams that scale as a definite power of the
parameter ». This partial Fourier transform is convenient
since Feynman graphs are more easily handled in momen-
tum space and, with the pseudotensor written in this way,
we can read off the contributions to the mass quadrupole
moment (2.10), the ultimate goal of this paper.

A. 2PN correction to 7%

The leading order and the next-to-leading order temporal
components of the pseudotensor, obtained in [26] using the
EFT techniques summarized in the previous section, are
given by

TN K) = mgemkx, (3.2)
00 Gm,my,
T9 (1, k) = Z mV—Z S+ 0(k) +
a#b
x e~ kXa, (3.3)

If we take into account the zeroth order term of the
exponential expanded in the radiation momentum k, we
see that the leading order pseudotensor provides the total
mass whereas the next-to-leading order represents the
Newtonian energy of a dynamical two-body system.

o 2 o 1 o
+E {/ d3x0%T?gNX2X’x/] +ﬁ [/ d3x3(2)T(l)leX2X’xf} ] {/ d3x88T8{>NX2XZX1XJ]
TF TF TF

(2.10)

These quantities scale as m1° and mv?, respectively.

Hence, to obtain the 2PN correction to the leading order
T%, we have to calculate all Feynman diagrams that
contribute to the one-graviton f, emission and enter at
order v*.

The simplest contribution to the second PN correction
for the temporal component of the stress-energy pseudo-
tensor is illustrated in Fig. 1 and comes from the source
action term (A7). Comparing this diagram against (2.6), we
extract the following contribution to the pseudotensor:

3 :
Tg(l)gl (t7 k) = ngavie_lkixa'

a

(3.4)

By expanding the exponential up to the second order in the
radiation momentum Kk, we read off the contribution for the
mass quadrupole moment:

3 o
/d3 Tg?g1[ X' = ngaVi[XZX{z]Tp. (3.5)

The diagrams that contain the exchange of one potential
graviton are shown in Fig. 2 and are composed by the

o

FIG. 1. No graviton exchange between the two particles, one
external 2% momentum.

o

S

Tl

¢

v 2 v

(a) (b) () (d

FIG. 2. One-graviton exchange with external 2°° momentum.
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couplings between the source action terms (A1)—(A6) and
also the propagator (A15) and its correction (A16). Notice
that we need not separate out all of the various terms that
arise in the Feynman rules into different orders in the PN
expansion as is done in Appendix A. We also calculated
covariant vertices, as is done when calculating in the post-
Minkowskian (PM) expansion (see e.g., [33]), and then
expand in v, as a calculational check. However, for
pedagogical purposes we have separated Feynman rules
into given orders in the PN expansion. The results from
Fig. 2 are given by

5Gm,my Ve,

TR (1. k) = (3.6)
& prrs 2
3Gm,my,
Ty (1. k) = 2fVi T (3.7)
a#b
00 Gm allp o —ikx
TX, (k) ==Y 4 - vye kX (3.8)
a#b
00 Gmagmy ;i o 2\ ,—ikx
TFngd(t k)= Z o (—apr' + vy — (v, -m)%)e ™ Xe,
a#b
(3.9)
Leaving

T%(l)g3a(t’ k) = 4r
a#b

) 5
+ik’[<v2+a-r—'r2+iva-vb

d3 X Tgnga 2d [Xixj] TF

_ZGm mb

a#b

/

(5v2 +4v —8v, v,

—a,-1— (v, n>2)xl X{l]TF

(3.10)
Note the implicit dependence on the indices a, b in the
quantities r = X, — X,,, 7 = [r| and n = £ inside the sum.
Additionally, notice the presence of an acceleration term in
(3.9), which indicates that we are not using the equations of
motion to reduce the accelerations. In fact, we will use the
equations of motion to write the final expression for the
mass quadrupole moment at 2PN order later on in this
paper, after all contributions have been computed.

The graphs in Fig. 3 are composed by the source terms
(A1)—(A3) together with the vertices (A17)—(A21) and (A16).
Note that we multipole expand the denominators in k/q ~ v

1 1

1 2(q-k)

+4(q-k>2
’(q+k)? ¢ q° q

.

(3.11)

In calculating the contributions to the mass quadrupole
sourced by the temporal components of the pseudotensor at
2PN, we are allowed to drop terms depending on k? in the
expansion of the denominator, since those terms contribute to
the trace part of the mass quadrupole, which is removed in the
definition of the STF moment. The results are organized in
orders of the radiation momentum, as it is shown below:

G )
X:Me"k"‘ﬂ{Z(v2 +a-r—i?)+5v,-v,—5v,-nv,-n

5V nv,-n |r
2a b

1 ; 5 i ; 5 i 2(qgi i
+ Err—l—ivbm vl — 2rr+§vb-r v, —r*(aj, +aj})

1. .
+ gk’kf [—(2v2 +5v, - v,

—2i?—=5v,-nv,-n+2a-r)r'r/

+(4v, - r+ v, T)Vir/ = (2v, - T+ 8v, - 1)Vir/
+72(=4vivi = Tviv) 4 2alr/ + 4a§,r/)}} +O0(K3) + -, (3.12)
’L)2 1/1 Ul
T T T T T
| I I | ®
2 nAAN AAAN AAAN vl nAaAn AAAA
l l l l |
oL
(@ (b) © (d) ()
FIG. 3. Diagrams with two potential gravitons coupled to .
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Gmomy, |7 3 T A i
Ty (1K) = —;fe kex, |:ZV127 —I—ZVZ -5k vir +5 k'K <5V[2)I' r/ + 2r2vbv{]>} + 0k +---,  (3.13)
00 2Gmgmy e jv2vi ) 3
T (1. k) = Zfe «(2v, - v, + KKIP2ViV)) + O(K?) 4 - -, (3.14)
a#b
2Gmgmy,  _; i . . .
Tt K) = =) =2 em*x {—gk’[zrzaz + 20V, T v, )]
a#b
—Ek’kf[rz(vﬁlvé —vivi —ral) —vir/(v, - r+ v, r)]} +O0(K3) + -, (3.15)

TOO

o 4r

— Ek’k’[(—ab T+ Vi = (v, - n)))r’r/ + 4v, - rvir/-2rlalr/ + 2r2v§7v{,}} +O(K3) + -+

Gmamy _ax 3 i i i
Ot k) ==y =ik a{6(—ab-r+v§,—(vb-n)2) -5k [(ay -1 = V3 + (v, -n))r! = 2v, - rv, + rlal]

Together, these quantities provide us with the following contribution:

i Gm,m,
/d3XTg?g3a—3e[X XJ]TF:Z 127 [(=2v;

a#b

+ (Vg - T+ v, - 1) (=20Vi,x), 4 26vix))

(3.16)
—35v5 4+ 26v, -V, — 10v, -nv, - n
+3(v,-n)2+12(v, -n)2 —4i2 4 a, -r + 8a, - r)x’x)
+ (V2 4V, -V, =5V, -nv, -n + 3(v, -n)2 = 2i2 + a, - r)xix)
(3.17)

+1r2(2vi vl — Vi) — 22alx} — 23alx))] g7 p-

Contributions from Fig. 4 are composed of the source
terms (Al), (A4), (A8) and (A9) and yield

G*m2m, .
TP (1K) = ;—}; e k%, (3.18)
a
00 K) = 3G*m my, —ik-x 1
T (1. K) = ;Te “ (3.19)
a
3G?m mym
Tg(i)g4c(t’ k) = _Z 2:2 e ik x”, (320)
a#b
/,\\ /,\\ /,\\
/ \ / \ / \
/ \ / \ / ANAN
/ \ / \ / \
{_‘LLL \ VA \ VA \
(a) (b) (©

FIG. 4. Two-potential-graviton exchange with external 7%
momentum.

which gives us

o G’mimy, .
/dSXYg?gzLa—ztc[XquTF == E 27:; (xixa]rp- (3.21)
a#b

The diagrams illustrated in Fig. 5 are composed of the
three-potential-graviton vertices (A28)—(A30) as well as the
three-potential-one-radiation-graviton vertex (A32)—(A33)
in composition with (A1) and (A4) contribute to 790y
These diagrams give

G*m m? .
THesa(r. k) = =) _——5—Fehx, (3.22)
a#b
2G*m2im;, .
sy (1. k) = —ZTbe ex, (3.23)
a#b
00 Gmimy e (1 Ty Sy Jpipei
TFigSc(t7k):—Z—2€ (532K TSR
a#b r
+O(K) 4+, (3.24)
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(a) (b) (© (@ (e)

FIG. 5. Three-potential-graviton exchange with external 2% momentum.

G*m? . 2
T 54(1.K) :Z%e—zk«a <5—2ik’r’+§k’k/r’r/) +0(K¥)+--, (3.25)
a#b
G? m, m2
00 _ h —lkX
T s (1. k) = —;T (3.26)

Keeping terms to second order in the radiation momentum we have

3¢ 700 i G*mymy [3 i i i i
X5, 5, XX |7 = Z 2 3 (my — my)XLX4 — m XX, +2m X, x| . (3.27)
a#b TF

Summing the contributions (3.5), (3.10), (3.17), (3.21) and (3.27), the total contribution of T(z)PN to the mass quadrupole is

G
/d3xT(2)PN[x X |pp = E 8m VAKX E m“;nb [(28V§ —11v2 =22v,-v, — 10V, -nv, -n
G o
m +6ﬂ>X;X{¢
r

G o
+ (vﬁ—i—vu'vh—Sva‘nv,,-n+3(va‘n)2—2i~2+au-r—12ﬂ>x;x})
r

+3(vy-n)?+6(v,-n)?>—4i” +a,-

+(Vg - T+ vy, - 1) (=20Vix) 4+ 26Vix)) + 12 (2vi V) — viv) — 22alx), — 23a;xfb')] . (3.28)
STF

; 0i m, ik
B. 1PN 'correctlon toT Tgfgf,a(f k)= ZTVQV?& kX, | (3.30)
The leading order 7% component obtained in [26] is a
T (2, k) Zmav ek, (3.29)

T (1. k) = Zwvge-fha, (3.31)
The 1PN corrections enter at »> and are shown in Fig. 6. b

To extract the 7% contributions to the mass quadrupole
moment, which is the third term in (2.10), the expansion of
the denominator of vertices in Fig. 6(c) and 6(d) has to be Lif’l
carried out to third order. In addition, k? terms cannot be

<
"""77;
<
T

dropped, since they contribute terms that cannot be A v

included in the trace part of the quadrupole. ! '
Comparing the diagrams illustrated in Fig. 6, which are (a) (b) © ()

composed of (A1), (A2), (A10), (A11) together with (A15),

(A22) and (A23) we find FIG. 6. All diagrams that contribute to 7%,.
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TOI
a#b

+ é K'k/KK (r25ivkr! — p2silv]rk

TPigea(t, k)
1g T 4r

G : o
F1g6c(t’ k) = Z m:mb e_lkixa |:_2Vla + 2ikl(vfzrl

r'v)) + k'K’ (r'r/v, — vir/r!)

—2virirfr! + 2r"rfr"vla)} +Ok*) 4+, (3.32)

Gm,m . 1 i . L ) ) 1
= 24“ b p=ikx, {VQ + vl — = (Vo +v,) -rr! — Ekl <3rr6” —ri (v, + Vi) +vir + p(Va +v,) - rr’r’)

+ kK {—SrQ (Vi 4+ V)8! + (4v, - T = 5v,, - 1) + (v, — 2vi )rir!

1 .. . 1 1
+(Vfl+vé)<§5’1r2—r’rf) —I—(Va-r—l—vb'r)<25’fr + 5 rirr 1)]

- ikikjkk {5kl(6rzvgrj + 14r?>vix/ — 5v, - rriv/ + 7v, - rriv/)

+ 52 (36

+ ek (v + VL) + (3v)

v, -1 =35v, -t — kvl —rkvl + vEr! — i)

. 1 .
—vi)rirfr! — r—(v +vp) - rr’r/r"rl] } + O0(k*) +

=87 (v, - r+v, - r)rfr!

(3.33)

Expanding the exponentials up to the third order in the radiation momentum, we get

o d |1
/d x0T\ X! XX/ |7 = Zdt { MyVav, - X, X xa]
TF

+ Zi {M {(8# —20r - X, )Vix + (20r” = 22r - X, Vi x;,

7 dt 12r

2 -
+ <22va-xa —30vy, - X, — 8V, - X, + 8V, - X, — = (V, + V) -rr~xb>xﬁ,xé
r

1 o
+<9va "X, =TV, X, —ﬁ(vu +v,)-rr- x,,)x;x{]} }

C. 1PN correction to T%
The leading order 7% component obtained in [26] has the

form
ii 2 Gm,m,
TOPN(t’ k) = Zmava - Z 2 + O(k)
a a#b

x e~ kXa, (3.35)

Notice that, while 795y in (3.29) is down by v! relative to
T8PN in (3. 2) the leading order spatial component (3.35) is
down by v? compared to TJ9\; this fixes the PN hierarchy
among the components 7%, T°, and T% of the pseudotensor

To obtain T{py as well as its contnbutlons to I3y we
have to compute all diagrams that enter at v* with one A"

(3.34)
STF

external momentum. To compute the spatial component of
the pseudotensor and to extract its contribution to the mass
quadrupole moment we have to carry out the expansions up
to the second order in the radiation momentum. As in
Sec. III A, k? may be dropped.

The diagrams illustrated in Fig. 7 involve (A1), (A8),
(A12), (A13), (A15), and (A24) which give

@ifrf w7
T
I
I
I
I
1

(a) (b) (©

FIG. 7. Diagrams with 2 external momentum.
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v v Ul
T T T T T
I I I I ®
02 nAAA NAAN NAANAN vl nAaAn AANAN
| | |
| | | : :
1,71
(a) (b) © (d) (e
FIG. 8. One potential graviton exchange with 2" external momentum.
T (k) =Y Zeyhemikx, 3.36
Fig7a< k) = Tvae ) (3.36)
a
1l K) = Gmgmy, 2 ,—ik-x
Ty (1K) = Z L Y€ (3.37)
a#b
G*m mym _,
il _ M i,
Th 7o (1K) = —;Te x| (3.38)
a

It is straightforward to extract the contribution for the mass quadrupole moment by expanding the exponentials up to the
second order in the radiation momentum,

i m, i Gm,my, Gm i
/d3XTf:lig7a—7c x'x/]p = 27V2 (xeXalrp + Zf (v% - 7) (XeXalrp- (3.39)
a a#b

The computation of Ty follows from the diagrams shown in Fig. 8 which involve (A1)-(A3) and (A15), (A16),
(A24)-(A27),

3G . ) 1
Tiigsa(t. k) = Z%eﬂk'x" {2v2 + Vv, =2 = 3V TV T+ 2a-r
a#b

+%k’[<2v2+va-Vb—2i2——zva-rv,,-r—l—Za-r)r’
r

+vi(4v, -t =3v, 1)+ v (3v, - T —4v, - 1) —2r*(al, + a};)}

1. . 5 o o] -

+8k’kf =2V =V, Vy—2a-r+ 21" + 5V, TV, -1 T'r/
r

+ (6v, - T =8V, -T)Vir/ + (4v, -t =3V, - 1)Vir/

+72(—4vViv] — 3viv) — 4viv) —dalr 4 6aérj)] } +O(K3) + -, (3.40)
G ) 1 o o | .
T (1K) = ZL‘:’”” e~ kXa {Z (V2 +v}) — iv2k'r' — k'k/ (r2v;v{, - 5vgrfr/) } +O0(K)+---.  (341)
a#b

Gm,m . . . . .
Tiigs (1. k) = ZT‘;be"k"‘a [—4v, - v, — iK'(2v, - Vur' +4v, - 1V) — 4V, - TV))
a#b

KK 202V V) + v, - v e = 2v, eV 4 2v, - evie)] + O(K?) A+ - -, (3.42)
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G : 1
Tigsa(t. k) = Z%e"k'xa{—4<v “Vgot+a,-r — 3V, -r>
a#b

- 2ik’ {ri <v vV, +a,- r—fvu . r> + v, r(vi— ZVL)]
r

+ gk’kl[rz(v’vfl +a,r’) +2r'v/(v-v, +a,-r)

+ rivir/ +2v, - r(2vir/ = 3vir/) — 20y, - rrirj]} +O(k3) + -, (3.43)
r
Gmamy _x %, i i i
Thigse (1. k) = =) == e a{z(—a,, TV = (v ) =Sk 1= ]+ (v m))r = 2v, - 1) + ra]
a#b
2o - - - -
—i—gk’kf[(—ab 4 v)— (v m)A)r'r +4v, - rvir/ — 2rfalr/ + ZrZVZVJb}} +O(K3) + -, (3.44)

which provide us with

/ PXT s, X% ]y = ;%{(10@ —17v2 = 10V, - v,
+5(v,-n)2+2v,-nv,-n —8(v,-n)> —5a, - r+8a, - r)x.x},
+ (=5V2 4+ 7v, -V, 4+ 5(v, -n)2 = 7v, -nv, - n — 5a, - r)xix]
+ (4v, - v —44v, - T)Vix) + (14v, - ¥ = 58, - 1)Vix)

+7r2(38VL V] — TViv) + 14alx) + 19aix))} orp (3.45)

Finally, the diagrams containing a three-potential-

3 Tl i
graviton exchange shown in Fig. 9 which involve (Al), / & XTgig90_9c XX |7

(A31), and (A34) give Gimom, [3 . .
= 272 5 MXaXa = MaX Xy, . (3.49)
G*mimy, 5 7. A atb STF
Tgig9a(t’k):#ZbTe kX (_§+§lk r _§k kir rf>
YO+, (3.46) With this, we now write the total contribution of 7'y to the

mass quadrupole,

2,2
G mgmy, oKX,

T
Tll:lig%(t’k):ZT (1—6ik’r’+§k’k1r’r1> iJJJ, J/_f
a#b v
T
|
|
|
|

+O(K3)+--, (3.47) |
NANN
|
1G*m,m3 . I
1 _ b —ikx,
TFig9c(t’ k) = Zz—rzae KX , (348) (a) (b) (C)
a#b
FIG. 9. Three-potential-graviton exchange with i’ external
which lead to momentum.
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ioj a i <) G a
/d3xT11’PN[x’xJ]TF = E %vﬁ[xgxé]ﬁ + g T2:nb { <22Vf, —17vZ = 10v, - v,
a#b

a

G o
+5(v,-n)2+2v,-nv,-n—8(v,-n)>—5a,-r+8a, -r+ 12m> X\ X
r

G o
+ <—5V§ +7v, -V, +5(v,-n)?> =Tv,-nv, -n —5a, - m“) x\x]
r
+ (4v, - v —44v, - T)Vix) + (14v, - ¥ — 58, - 1)Vix)
r2(38viv), — Tviv) 4 14alx) + 19a;x-,’;)} . (3.50)
STF

IV. LOWER ORDER STRESS-ENERGY TENSORS

Although TOPN, Tix, and T have been computed before in [26], to write an expression for the mass quadrupole

moment at 2PN order, we need to expand them in the radiation momentum to higher order and terms depending on k? must
be kept.

To obtain the sixth term of (2.10) we need diagrams in Figs. 10(a) and 10(b). This gives us an expression for the leading
order T%, as shown below:

G K 1
Tin(0:) = S s SO o [t ke
+ Ek’kf {IOrz(é’déU — §k§I) + sMrir/ + siirkr! — 25! +22r’r/rkrl}
r
- - . 1
- ﬁk k/k™ [r (105§ — 106K6) — stirmrkr! + rir/ (25’”"1" - & — rkr’>]
r
! 164 Kisij _ siksily 1 p28i smnkpl _ 12 smn sikpl
—I—mk 'k/k"K" 3 SM(SK ST — 5§ + rr8 S k! = 2re 8 5/

+ " (341’25”‘5-’1 —33r26k59 — 358 rir/ + 65%*r/r! — 38Vrkr! — —2r’r/rkr’)] } +O(K3) +---. (4.1)
r

The first term in the expression above is related to Fig. 10(a), which comes from the simple source action term

_Zz’”a

) dt,vivihii(x,). The other terms come from Fig. 10(b), which is composed of (A1) and (A17) by considering

T S U T B | 1 1
FHH®) g k WiV = hi |-=q'q/ — =q'k/ — =k'k/ + 67 [ ~q* + -k - q +=k? 4.2
[q. k. hV] 540 — 54’k k'K +67( g + 7k g+ : (4.2)

where FH"H") is defined in (A22).

Now, expanding the exponentials up to the fourth order in the radiation momentum, we extract the contribution

o d? o
[ xR xyp = {Zamam -xa>2x;xé]

d? G ) -
+—dl2{ %[(271‘2+X5—2xa-xb—ﬁr-xar-xh>x;x{l
#b

27 1 o
+ <2 r’+x;——(r- xu)2) x;xf,] } . (4.3)
r STF

TF

Taking the trace of (4.1), we get
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TOPN (1,k)
a#b

+ i Kk/k” (21126 + 2rirr

144
which contributes to the quadrupole in the form below:
/d3x82T1P X2 [x'x/]pp = s [z m,vix2x xa}

d2
dr*

TF

+ 12r

To be able to compute the fifth contribution in (2.10), we
need an expression for 799 up to the fourth order in the
radiation momentum. We regard the source action term
- fdt v2h%(x,) and also (A15), (Al), (A4), and

(A18) to solve the diagrams in Figs. 10(a)-10(c). With this,
we get an expression for 709, and its contribution to the
mass quadrupole at 2PN, respectively:

Gm,m ) 1
TO (1. k) = E m vZe ikXa 4 E 27aTh —ikex, {__
ien 2y )

e (14 de i 1 kg
8 2 6 36

+0(K%) + (4.6)
/d x5 T(I)PNX X'x/] 7

dﬂ{zz’” v2x2[xix}] F}

dz{ Gm(m,,r2 T N
+— — 2 -2 (2xx) 4+ xLx)) —=x2x! X, :

(4.7)

-

(a) (b) (©

FIG. 10. Diagrams (a) and (b) contribute to Ty when the
external leg is 4/ (x), while diagrams (a), (b), and (c) contribute to
7%\ when we consider /% (x) as the external leg.

}:m Ve —zkxa+§ :Gm ab ik,
2r

{ I—Ekr +4k 'K/ (7?87 + rir/)

")

+ —k ‘KKK (Te*5i s — 42r% S — 3rir/r”’r")} +O(K3) + -,

(4.4)

G . o
{z#b Mal [(—104x3+196xa.x,,—98xl2,)x;xg—49r2x;xg]}m. (4.5)

Moreover, considering the expansion up to the fifth
and sixth orders in the radiation momentum at (3.29) and
(3.2), respectively, in addition to taking time derivatives,
we get

/d3 DT x?x! [x X/ TF_?[Z MV, X X2X Xa]

TF
(4.8)
43 84T0 i ] 7d_4 40 ) 4.9
x0gTopnX*[x'x ]TF_dt4 Zumaxaxaxa (4.9)

TF

Before writing the final expression for the 2PN correc-
tion to the mass quadrupole moment, we still need to write
the contribution of Ijy(apx), which is given by the two
terms

3 0 lyi
{/d X0y TopnX X’X/:| g MyapNg

alXt XH]TF’

(4.10)

{/ d3X33T83NX2Xin:|
TF

2PN
E 2m,[x2 aleaxa + ajpng - XX X“]STF’
a

(4.11)

where the 1PN correction to the acceleration, for
instance obtained in [34] using the EFT framework, is
given by
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4 Gm 12Gm
iy = o {o L =307 4 98) + 700w 301 ) m)|

—vi(vy-m) = (v -m)Vh + i(6v] = 7v5 —n(v, - n))
—6ral +7ral + (vl —=n'7)(v, -n) + rmi(ay - n) + ni(v, - (v — nr))} —Ea’IV% —vi(v;-a)). (4.12)

V. CONSISTENCY TESTS

Now we check the expressions for the components 799, TV, and T'py, which were obtained here for the first time in
the EFT approach, with previous results derived using different methods.

The results presented in Sec. III A allow us to write down an expression for the temporal component of the pseudotensor
up to 2PN order,”

G 7 5 5
TO(t, k) = e~kXa {Zm ( += V + >+Z Mally {—1+V2+5V3—5V%+5Va'vb

5 G
—Eva-nvb~n+2(vb-n)z—i2+a-r+2ab-r+—(4ma—3mb)
r

1. . 1 5 5 3 3 .
+Eik‘[<vz+ivi+iva-Vb—iz—iva'nvb-n—i—i(vb-n)2+a-r+§ab-r>r‘

11 A 1 .
+<8va-r+7vb~r—2r'r>vﬁ,+(gvb-r+§r'r>v;,+r( 2ah)+6i}}+0(k2)+--}. (5.1)

We can use (3.1) to read off different contributions of 7% to the dynamics of the binary system. For instance, at zeroth
order in the radiation momentum, we can read off the mechanical energy of the system. It is straightforward to see in (5.1)
that the leading order terms in the PN approximation reproduce the total mass of the two-body system, while the next-to-
leading order terms provide us with the Newtonian energy. The terms that account for the next-to-next-to-leading order
(2PN) correction to this pseudotensor, which were calculated in Sec. Il A, give us the following contribution to the
conserved energy:

Gm,m Gm
EIPN:/d xT%, (x) Zm v4 +Z ”[ Vo = (Ve o) = (Vo m)(vp -m) + == (5.2)

This result is equal to the first correction to the Newtonian energy presented in Eq. (205) of [35] and can also be calculated
computing the Hamiltonian function using the Lagrangian obtained by Einstein, Infeld, and Hoffman in [36].
Regarding the 2PN terms in Eq. (5.1), we can read off the correction to the c.m. position

Gsz :/d3XTg3N(X)X

G 7
:—ZmVX +z mmh{|: —7Va'Vh—§Vi—Va-an-n
a#b
1 1 G G
—E(Va-n)2+§(vb-n)2—5 m“+7ﬂ} a—7(va-r+vb-r)va}, (5.3)
which agrees with the result presented in Eq. (B2c) of [37], where = P, the total conserved linear momentum, such that

the c.m. frame is defined by G = 0. By solving this equation 1terat1ve1y, using the equations of motion to reduce the second
time derivatives of the position, we get the 2PN correction to the c.m. frame,

>To have an expression for 700 containing terms of second order in the radiation momentum, we would have to include k2 terms, but
we discarded those terms since they are not needed to extract the contribution of 795 to the mass quadrupole moment. Nevertheless, it is
enough to consider terms up the first order in the radiation momentum to perform the consistency tests on T(Z)PN in this section.
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_ vém 3 3w\, Gm 19 3v\ , I 3v\., 7 v\ Gm 7 .
s =S e -2+ (R 30+ (e F)7+ G-5) 5 o fiom] ) o9

with ém = m; — m,, which agrees with (B4a), (B4b), and (B5b) of [37].
Let us now consider the results obtained in Sec. III B to write down an expression for 7% up to 1PN order,

. 1 Gm,m 1
T (t, k) = e"k'xﬂ{Zmavfl <1 +§v%,) + ZT“rb {—3vﬁ, + v - p (Vo +v,) -rr!
a a#b

—%k’ <v’r’ —16vir' + 15r'v, — rivl 4+ 3ris! + s (Vg +vp) -rr’r’)] + O(k?) + -+ } (5.5)

Taking into account only terms of order zero in the radiation momentum, we obtain the 1PN correction to the linear
momentum of the binary system,

I R LR LU
(Vi +v,) r}xl—f—[zv] P

Gmm
Pipy = /d3xT%N(x) = _{ L2

33 }vll +1<2. (5.6)

The result above agrees with Eqs. (B1) and (B2b) of Ref. [37]. Considering all linear terms in the radiation momentum in
(5.5), we are able to obtain the 1PN correction to the angular momentum of the binary system,

. 1 . 1 . G
Lipy = —Ee’”‘ / Bx (T xk = T x") = Ez/m(r X v)! [(1 =3V + Tm (6 + 21/)} : (5.7)

which agrees with Eq. (2.9b) of Ref. [38].
Furthermore, considering the result obtained in Sec. III C, we provide an expression for 7" (¢, k) up to 1PN order:

) 1 G
T (t, k) = e"k"‘“{Zmuvﬁ (1 + 5V§> + Z% {—2 —5V2+5v2 —v, v, —6i?
a a#b

G
—3v,-nv,-n+2(v,-n)> +16iv,-n—10a, - r —4a, -r +— (—8m, + 12m,,)
r

! > n n—i—l( n)
— . __V . . — .
2Va A 5 Va Vb 3 Vb

I 5
+ ik’ {r’ <—9V§ + Evﬁ - .

5 10G 25 )
—3'r2—|—8iva-n—53a-r—§ab~r— m”) + <2va-r+2v;7 ~r>v’a
r

+<_gVa -r+5Vb'1')VZ —r2<3a; +§32>] } +0(k?) +} (5.8)

We can use the moment relation

3 Il:ld_z 3¢ 70042
d°xT 5 a7 d’xT x (5.9)

to prove the self-consistency of our results. At leading order in the PN expansion, it is trivial to prove that this relation
holds using (5.1) and (5.8), while at next-to-leading order more computation is required. From (5.8) we can read off
up to 1PN,

1 Gm,m 11 3 7 5Gm,
/d3xT”:;muv3(l+2v3>+; . b[—2—4va-vb+2(vu~n)2—4vu~nvb-n+2 |- (5.10)

To check if the result above satisfies (5.9), we need a complete expression for 7%(z, k) up to 1PN order and which contains
all terms up to the quadratic order in the radiation momentum. In other words, we cannot discard terms proportional to k? as
we did in Sec. IIT A, where we dropped these terms that would not contribute to the trace-free quadrupole moment.
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Therefore, the expression that we need for 7%z, k) is the sum of (3.2) with (4.6), which provides us with the following
result up to 1PN order:

L [ Gmam (159
T &’xT' Zma + V X; +Z —3Xat ) (5.11)

At this point, it is straightforward to show, after taking the second order time derivative and imposing the leading and next-
to-leading order equations of motion, that (5.9) holds, as we expected.

VI. MASS QUADRUPOLE MOMENT AT 2PN ORDER

We are now ready to sum the contributions (3.28), (3.34), (3.50), (4.3), (4.5), (4.7), (4.8), (4.9) and to write down the
expression for the 2PN correction to the mass quadrupole moment in a general orbit,

G G
2PN*Z’" +Z Mallh Zah dt{zm“f +Z Mallh 4ab:|

a#b a#b

d Gm,my, d*

| St + ST |+ 5 [t } S| omrl] e
a a#b
where we have defined the following quantities for convenience:

” 7, . 11 . i1 o

) — | D vii ) N 2al J _ -7 . -
) = {8 VoxLX) + 7 Xga)pn, X0 X apNy XaXaXa:| - (6.2)

1
2ah E

<50v —28v2 —32v, v, —4i* =24v,-nv, -n

G
+8(v,-m)? + 14(v, -n)?> —4da, -r + 10a, -t + 24

G o
Ma | 18ﬂ> xix}
r

r

G o
+( —4v2 +8v, -V, —12v, -nv, -n + 8(v, - n)? —25’2—4aa~r—24ml>xgxi
r
Vi

+ xa( 16v, - r—64v, - 1) + V;x£(40va ‘r—32v, 1)
r2(40vi v} — 8viv) — 8aix) —4aix))| (6.3)
STF
ij 2, i)
) =7 VaVa" X, [XLX0 ] 7 (6.4)
io=_ Mg + (20r2 — 22 Px)
Hah) =g (8r2 — 20r - x;,)vi,x}, + (20r2 — r-X,)V,X,
2 .
—30v, - X, — 8V, - X, + 8V, - X, — = (V, + V) - IT - X, | XX
r
1 i
“Xp =5 (Vg +Vp) - IT X, | X0X, |, (6.5)
r STF
y 1 19 ,
Sj(a) = (g (Vo %) +@V2X2) Xixt]rps (6.6)
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i 31 11 8 11 o _m

1 = T2 . w2 . . [ X1 = l'+5l‘ +"', 6.10
6(ab) = [(42"” 3 X, Xp —|-9Xb 18r2r X,r xb> X, Xy 1 m IPN ( )

4 1 11 i m
) — ——(r-x,)? )xix’ 6.7 Xy =——T+rpy+- -, 6.11
+< +36 3672 (r-x,) )xaxb} - (6.7) 2 . IPN (6.11)
where orpy accounts for the 1PN correction to the c.m.
1 frame, which can be obtained following the procedure

Yy =7 Ve XaXg[XiXa] e (6.8)  presented through (5.3) and (5.4) but this time using (4.6).
Thus, the corrections to the c.m. frame necessary to write
the 2PN mass quadrupole are

. 2 o

LY — 4yl v/

8(a) = 1512 Xq[XoXa]rp- (6.9) P vém r(vz Gm>
2m '

. (6.12)

With the exception of the accelerations in (6.2) which are of
1PN order, all other accelerations in I2PN should be takenas ~ gp,, — ’/25_’” { K% - 31/) v + Gm < <19 + 3y> )
m

the Newtonian acceleration. 4 4

In order to write the 2PN correction of the mass 130\, 7 Gm 7 .
quadrupole moment in the c.m. frame, we must have in + <_Z + ?> e+ (5 - I/) T} -V {5 Gmr] }
mind that the positions of the compact bodies in this frame
are given by (6.13)

Applying (6.10) and (6.11) to (2.8) and (2.9), we obtain the following contributions at 2PN order:

i v*ém? Gm G*m*\, . .
IOJPN+2PN = am ( —-2v 2—+ 2 )[rlr/}TFv (6.14)
, 25m? Gm 17. Gm\] . .
Il]PNJrlPN 1m {{ 29 4+—<41 2+7r2—127>}r’r/
G . Gm
+(24v2—19—m>r;»vlr-/+< —20v? +22—>r vvf} . (6.15)
r STF

Adding these two contributions to (6.1) after applying (6.10) and (6.11), we finally obtain the expression for the 2PN
correction to the mass quadrupole moment in the c.m. frame,

2 .2 1

o G m Gm
i ipd | — - 2 — — — 2
Lipy = mu{r r {252 (653 — 1906w + 337v7) + 756 (2021 — 5947y — 48831%) — b

756

Gm 1
(131 = 9070 + 12730%) = =72 + 2 (253 — 18350 + 3545,%)0 ]
r

R Gm 1
— ririvi 1 4057y — 14 26— 2020 + 41
rir'v [378(085 057v 631%) — 63(6 02v + 4181°)v ]
vivi | (742 = 3350 — 98502) ™ L (41 2 3370 4 73302002 4 2 (1 = 5u 4+ 512) (6.16)
189 r 126 63 o ‘

We can use the result above to compute, for instance, the 2PN correction to the power loss, whose expression in terms of
the multipole moments is given by [28]

G 5
P___{ @0 _ 5 @@

/95 166,06 5 @@
5 + g I = g i+ } (6.17)

Iij ij 189 z]k ljk+9072 ijkl z/kl 9 ij
The expressions for these multipole moments below 2PN order are known and can be found for instance in [16].

Considering all terms which contribute to the power loss at 2PN order in the expression above, making use of (6.16) and the
2PN acceleration (B10) obtained in Appendix B, we get
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P2PN _ 8 G3
EFT — 15

1
- g (97247 + 9798y + 537612) 7 ]

G’m?

2
7{ (=253 + 10261 — 562)

G*m?

1
—— + [ 56(245185+818281/+43681/)
s

1
+ [21 (—4446 + 5237y — 13931%)v*

G
(4987 8513v + 216512)v?i? —@(33510 60971y + 14290v )] -

1
+ 2 L (1692 = 54970 + 443002)15 — 13 (1719 = 102780 + 629220

1 1
T (2018 — 15207v + 7572004 — o) (2501 —20234v + 84041/2)1'”6}.

At this point we can see that (6.16) and (6.18) seem to be in
disagreement with the results presented at [39] and [40]
where the Epstein-Wagoner formalism and multipolar
post-Minkowskian approach of Blanchet, Damour, and
Iyer (BDI) were used, respectively. For instance, the
mass quadrupole moment presented in this paper and the
ones in the mentioned references differ by a factor of

2 2 -
—4GT’" [mur'y/| ;. The power loss shown above and the

energy fluxes at (6.13d) in [39] and at (3.5d) in [40] differ
by a global minus sign, as well as by the numerical factors

5.,6.2:2
and ¢ ’"r L The dlfference

in the global sign comes from the relation P = d 5 E which
is actually a matter of convention on how the energy flux is
defined. For this reason, we consider instead |P| = |4

and compare the result for the power loss obtained here

against the ones in the literature, and we find the following
difference:

on terms depending on Gmy?

_ 322G mbL?
Pppr —P=—

s (40 = 3i?),

(6.19)

where P is the modulus of the energy flux computed via the
Epstein-Wagoner and BDI approaches.6

Furthermore, the 2PN acceleration obtained in
Appendix B is also different from the one presented in
[40], which was computed via the BDI formalism. It turns out
that these differences should not be a surprise since the gauge
choice adopted here and in other formalisms are not the same:
in the BDI and in the Epstein-Wagoner approaches the
harmonic gauge is used, while in the EFT approach we use
the linearized harmonic gauge (2.4), which depends on the
background field metric. The different gauge choices for
fixing the gravity action imply different coordinate systems.
In fact, the difference between the mass quadrupole moments
suggests a coordinate transformation of the form

2G%m?

72

Yppr > T —

. (6.20)

°If the power is expressed in terms of the gauge invariant
frequency of a circular orbit P = P.

(6.18)

where r is the coordinate used in the BDI and Epstein-
Wagoner approaches. When this transformation is applied to
the power loss (6.18), we can verify that

An analogous comparison holds for the mass quadrupole
moment and the 2PN acceleration, showing the agreement
between our results and the literature. It should also be
noticed that this coordinate transformation was already
brought to attention in [12] when the authors used NRGR
to calculate the spacetime metric generated by a point mass
at rest.

VII. FINAL REMARKS

In this paper, we provided an independent computation
of the 2PN correction to the mass quadrupole moment of a
binary system of compact bodies moving in general orbits,
using the EFT approach in the linearized harmonic gauge.
We calculated high order corrections to the components of
the pseudo-stress-energy tensor, which were used to obtain
the mass quadrupole moment correction as well as the 1PN
correction to the conserved energy and to the linear and
angular momenta of the system and the 2PN correction to
the c.m. frame. We used these quantities to perform tests
that confirmed the consistency of our results within the EFT
formalism itself and with results presented in the literature
computed using different formalisms. Therefore, we not
only extracted the contributions of the stress-energy pseu-
dotensor to the 2PN correction to the mass quadrupole, but
we provided the expressions for the components of the
pseudotensor with higher order corrections that will be
useful for future calculations on the dynamics of a compact
binary system.

We also calculated the 2PN correction to the equation of
motion in the linearized harmonic gauge that was used,
together with the mass quadrupole moment obtained in this
paper, to write down the power loss due to the emission of
gravitational waves. We thus compared our results against
the literature and we showed that the 2PN correction to the
mass quadrupole moment, to the relative acceleration of the
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two-body system, and to the power loss obtained in this
paper are in agreement with the results computed via the
BDI and in the Epstein-Wagoner formalisms once a
coordinate transformation is performed.

Although the 2PN correction to the mass quadrupole and
to the equation of motion of compact binary systems
obtained here were known in the literature, this derivation
establishes the ground work for higher order calculations in
the EFT formalism. Finally, these are the final missing
ingredients necessary for the analysis of the radiation
reaction of the binary system at the next-to-next-to-leading
order in the EFT approach, which will be presented in a
future paper.
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APPENDIX A: COMPONENTS IN THE
CALCULATION OF THE PSEUDOTENSOR

In this appendix we show the ingredients used to
compute the components of the pseudotensor. We used
the package xAct [41] from Mathematica for the extraction
of the vertices from the action.

1. Source terms

The source action terms needed to compute the con-
tributions to TgPN are given below:

m

s = - < [ dt,H®
za:zmpl/ ¢ &

m . .

sV = a / di,vi H% (x

2 <

—_ a pyoo i {;Hij A
S () i), (a3
o= >0 | dr,HO(x, )i (x,)
}'lOO - — 4m12)l a a as

hno = Z mpl/dl V HOI hOO( )

(A1)

(A2)

(A4)

(A5)

0= g | BVHO ) - 2 H (5,

(A6)

SV = (A7)

dt 4h00
16mP1 / v (va).

(A8)

0 m,
Sp =3 gt [t H e ) Hx,)
a Pl

SV = 216 : / i HO (3, H(x, B (x,). (A9)

In addition, to write down the contributions for 7%, we
must to consider

00(x, )%
h"'_ EszI/dth D% (x,),
Oz
ho, g mPl/dtv ViR (x,),

whereas for T!,y the following terms are also necessary:

(A10)

(Al1)

v Ma il 1700 (. \Tij
S}_zif - za:%/dtavavdl—] (xa)hj(xa)7 (A12)

(A13)

nm L=
i = =3 [ i),
a Mpi

Although all the sources terms above are conveniently
expressed in position space, effectively we perform the
partial Fourier transform’

H™(1,q) = / BxH™(1,x)e” 9% (Al4)

to carry out the Feynman diagrams in momentum space.

2. Vertices

From the EH action expanded in the radiation and
potential fields and fixed with the background gauge, we
obtain the propagator

<H;w(t’ q)Ha/f(t/v q/)>

1
= _i(2”)3puyaﬂ5(t - tl>53(q + q/) ? s (AIS)
as well as its correction
<H/,w(t’ q)Ha/}(tl’ q/>>1;2
i(27)3 P & 1) &3 A Al6
iR Py g0t = 5@+ @) e (AL6)

The two-potential-one-radiation vertex regarded inside
the momentum integrals of the internal potential momenta
coupled to the particles has the form

"We consider the partial Fourier transform for the radiation
field as well.
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d3q d3q/ i’ o .
/(2”)3/(2”)36 XTI (S 2 )

j 3 . Flg,k, h
=~ Lty [ S iox T
npy (27) q°(q + k)

(A17)

for which the different contractions necessary to write
down the contributions to 799 are

F(H""H”“) [q, k. 7100]

-3 5 5 1
= h% L—‘ (> +k-q) —Z‘I% ~ 4 k040 —Eké} . (AI8)
, _ _ 1
FOH"H) [k, ) = 700V {—qk <qo + 5’@)] . (AL9)
FOMHH) [ 700)
_ 1 1
= ROyky! {Z (g +3k-q) - Ek"k‘] . (A20)
F(vﬁHOkHOIVQ [q7 k, EOO]
_ 1 1
= ROvkyl [—Zék’(q2 +k-q)+ Zkkkl] - (A21)

On the other hand, to compute the contributions to 705y,
the contractions required are

S 1 | .
F<HOOHOO>[q,k,h0']:hOl |:q0 <qz+_kz> +k0 <5q1+kl>:|’

2
(A22)
FViHHD) [q,k,flOi]
o (1 ; 1
= hOivk {—5”‘ <§q2+k-q> +q’k"+5k’k"} . (A23)
whereas for T'}y we need
F<H00H00> [q7 k, f_l]l]
L 3.5 2
, - - 1
FOUEH) (g, &, BT = RV {—ko (q" + Ekkﬂ . (A25)
F<v’fv[1 HM H) [q7 k, l_l”]
- 1 1 1
= hilvkv! [5"1 (—Zqz + Zk : q) - Ekkkl] . (A26)

F(vll‘HO"H(”v’z) [617 k, Ell]

- 1 1 1 1
:hll k1 _5kl 2 k- _ lkk _ kkl _kkkl )
Vivaly (¢°+k-q) 74 +2q +4

(A27)

The three-graviton vertex, in turn, comes naturally in a
simple form even not integrated on the internal momenta:

27)3
<H3?H?1(2)H83>:—%5(f2—f1)5(f3—f1)53(41+¢12+‘I3)
P!
2, 2 2
it a+a3) (A28)

3343

In the composition of the three-potential-graviton vertex
with two-potential-one-radiation-graviton vertex, after inte-
grating in the third momentum, the integrand takes the form

F[ql’ q>, k’ h]
qig3(q; + k)X (q +q + k)*’

(A29)

in which the numerators for the contractions needed
to compute the contributions for 793y and T,y are,
respectively,

F<H00H00H00> [ql Q. k, f_loo]
1~ 4 5 2 5 22 2
= hoo q1+5q1(ql-qz)+5q1qz+(q1+qz) (q;-k)

20 (a0 k) + 3K (a2 k)~ 0K+ (k)2
(A30)

F(H°°H°°H°°) [ql,Q%k?B”]
Rl
= ——[2q} —q?q,-q, + 10q3q; -k + 10(q, - k)> - q3q}

8
—Q%(h'k—z((h'k)<Q2'k)_2(Q2‘k)z]- (A31)

The three-potential-one-radiation-graviton vertex inte-
grated in the internal momenta can be expressed in this
way:

3 3
d q; iq-X: /o
H/—(Z”)geqt (iSh)
i=1
1 d3q2
=——6(th—1)8(ts—t;) | —=
m%)] (2 1) (3 l)/(zﬂ_)’;

/ d3q3 ei(q2+q3)~xF[q2, (IB, k’ }_l]
(27)* q343(qr + g5 + k)?

. (A32)

where we have chosen to integrate on q;, for instance
coupled to particle 1, and leaving the momenta q, and q3,
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both coupled to particle 2, to be integrated in the process of
solving the diagrams. For this case, the contractions
required to write down the contribution for 79 and
TQZPN, respectively, are given by

F<H00HOOHOO> [qz qz k 17100]

1-
= —ghoo(‘l%+qg +q-q3 +q -k +q3-k), (A33)

F<H00HOOHOO>[q2 q3 k ]7[”]

7 -
:—ghll(q§+q%+q2-q3+q2~k+q3~k). (A34)

3. Integrals

To solve integrals in the momentum space, it is helpful to
use some general relations that can be obtained by using
Feynman parameters [42]. If we consider a spacetime of d
dimensions, then for D = d — 1 we have

d’k e*r 1 TG -a) (\*
/ 2m)P (K2 (47)? T(a) <4> 7 (A35)
/de 1

(27) [[(k - p))°

_ (pz)%—a—b F(a +b _Q) F(Q_ a)F(Q _ b)

(@)t r(a)r(b)2 FZ(D — by (A36)
/de ki

(27)° k?)[(k —p)?]”

( )2 a— bF(Cl-Fb—f) (*—CH-I)F(%—b), (A37)

[(a)(b) T(D—a—b+1)

(4m)?
|

LFi 12
g 67’
a#b 1

+3v2v? +2v2a, -r—a,

3
+2(ay =) (v, 1)2 + 12(V, - v, — V2V, -1V, - r+ﬁ(va 1)(vy, - r)z}.

-ra, -r+28a,-v,v,

/de k'k/

(27)P [k2]*[(k —p)?]”

_ 1 (p?)7 "
(4z)2T(a)L(b)[(D—a—b+2)

g p? D D D
x{ > F<a+b 1 2>F<2 a+1 | > b+1
o D D D
+p’pfF<a+b—2>F<2—b)F<2—a+2>}. (A38)

These integrals are especially important to solve diagrams
that have a composition of the three-potential-graviton
vertex with the two-potential-one-radiation vertex, where
an analysis of the integrals in an arbitrary dimension D is
required to handle divergences.

APPENDIX B: 2PN ACCELERATION

In this appendix we present the result for the 2PN
acceleration computed via the EFT approach in the linear-
ized harmonic gauge.

To write down the equation of motion of the binary
system at 2PN order, we need to obtain the Lagrangian by
integrating out the potential modes of the gravitational
fields in the action (2.2). Below the diagrams which
contribute to the dynamics at 2PN order are presented.

The simplest contribution to the 2PN Lagrangian comes
from the diagram show in Fig. 11, which gives the
following contribution:

1
Lpig1 = 21—67" \2
a

Next, we have the diagrams with one-graviton exchange
illustrated in Fig. 12. Summing those diagrams together
yields

(B1)

G
= e {15r4aa “ay + 7 [14v; = 20V5v, v, + 2(V, - V)

-r+24a,-v,v, 1]

(B2)

In Fig. 13 we show all diagrams with two-graviton exchange that enter at the second PN order. The sum of those

diagrams is

G2 2
— ng“mb (6r*v2 + Tr*v?2

Lrig13 o
a#b

—14r%v, - v, +2riv,

‘T =2V, IV, T). (B3)
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o0 v’ v!
I ] I
v? ol
FIG. 11. Diagram with no graviton exchange. (a) (b) ©]
ol
! : 2 " : :
. . ; LY LY A
1 1 1 // \\ // \\ // \\
I I I
: : : vl vl vl
] ] ]
oL 02 (d) (©) ®
(a) (b) ©
® | |
, A ~ ®
v? vt PN SR AN
| | ®
I
(% ? ® (€9) () ®
1 1 1
ol FIG. 15. Diagrams with three-graviton exchange.
(d) (e) (®
FIG. 12. Diagrams with one-graviton exchange. G*m2m
£ g £ Lpigis = ZTZ‘[) [r2(5v2 — 6V, -V, + 2V +2a; - 1)
. . . . #b
There is also the diagram with a three-graviton source ‘ 5 5
—9(v,-r)*+ 14v,-rv,-r—3(v;-1)?].  (B5)

term as well as two other diagrams with combinations of
the two-graviton source, as shown in Fig. 14. Their
contribution to the Lagrangian is

In Fig. 16, we show diagrams with a four-graviton vertex
that enter at the 2PN order and, together, yield the result

G*mZm,
Lpigls = —ZT (my +3my). (B4)
azb G’mim,
a
) ) ) ) ) LFig16 = Z 3 . (B6)
The diagrams which contain three-graviton vertices are a#b
illustrated in Fig. 15 and give
02 ol
N N N N N
/7 N\ /7 N\ /7 N\ /7 N\ /7 N\
I/ \\ // \\ // \\ // \\ // ®
/ \ / \ / \ / \ / \
/ \ / \ / \ / \ / \
7)2 /U] 1)1 ’U1
(a) (b) (© (d) (e
FIG. 13. Diagrams with two-graviton exchange.
) ) 7 ~ T T
1)\ I\ I 7\ 1 |
/7 | \ 7\ 1 / \ ] |
/ \ ooy / /\ ~
VA B ' v AN BERNY
/ | A i v / / A |
(a) (b) (© (d)

FIG. 14.
graviton vertex with a two-graviton vertex in the source term.
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1 \\ // \\ // ,X\ P . N // \\

(a) (b) (©)

(@) (b)
FIG. 17. Diagrams with five propagators.

FIG. 16. Diagrams with four-graviton vertex.

Lastly, the diagrams with five propagators are shown in
Fig. 17 and provide us with the following result: Summing up all contributions from Fig. 11 to Fig. 17, we
G3mm write down the Lagrangian at 2PN order in the linearized
Lpig17 = Zri;b (my, —2my). (B7)  harmonic gauge:
a#b
|
1 6 G3m1m2 2 G2m1m2 )
LZPN = Emlvl - T (3m1 + mlmz) + T (16m| + 11m2)V1

2 12
—13mV1 *Vy — 4-m231 - r -3 (8m1 —+ 37’)7,2)(V1 . r)z + —2mV1 - Irvy - r:|
r r

G 15 3
% [7;" aj-a, +7vi—10viv, - vy + (v - vp)? + EV%V%

1
+a, -rv§—14a1-v2v2-r+1231-V1v2~r—§a1 -raz-r—ﬁal-1['(v2-r)2

1 3
+= (6v1 STV, IV Vo — (V1) — 6V, 1V, TVE 32 (v 1) (v, - r)z)] +1 <2 (BS)
r
We use the Lagrangian above to determine the equations of motion of the two-body system at the second PN order. Below

we show the acceleration for one of the objects in the binary:

oy 1Gmy [G? G
Ayt =3 3 — (—=2m7 — 20mym, + 16m3) + (18m1 + 56m,)v: — (84m) + 128m,)v; - Vo + (58m; + 64m,)v3

g pQ
28 1 )
+30m a; - r — 12ma, - v+ — (m; — 4my)vy - x(vy -1 =2V, - 1) — — (56m; + 176m,)(v, - r)
r r
+2v] = 16(v; - v5)> — 16v5 + 32v; - v,v3 — 2via, - T — 2va, - T

. 4
—4az-V2v2-r+M(12vl 48V, - v, + 36v2) — 15%}
r r

1G G
e {— [(48”12 — 15m1)V1 -r—+ (231’”1 - 40m2)V2 . I‘] + \LN r(4V% + 16V1 *Vp — 20V%>

el
. .r)2 .r)3
YA r(:;z r) +18 (Vzrzr) +v, - r(8v] — 16V, - v, + 16v5 — 2a, - 1) + 2r*(12a, — 7a,) 'V1}
) 1 G*mm, G2m§ Gm, ,
+231 'V1V1V1 +—31 49 5 +36 5 + 12 Vl +V1
4 r r r
1G G
+Z—n312 Vz{ [(B1m; = 24my)v) -+ (40my — 9m )V, - 1] + v, - 1(=4v3 — 16V; - v, + 20v3)
.
v -r(vy - 1)? (v 1)3 ) ) 7Gm,
+ 24 = - 18 " +vy -r(16v; - v, — 16v3) — 14r°a; - v, _ZTaz 6—+V]+V2 (B9)
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All accelerations in the right-hand side of the equality above
should be regarded as Newtonian accelerations if we want the
entire expression to be of definite 2PN order. To write the
acceleration in the c.m. frame, we have to consider, in
addition to (B9), the reduced contribution from applying the

|

Gm G*m?
aArpN — _W {r |:(56 —+ 1741/) r2

G
— (32 + 520 — 1602) —2 2 + (112 = 2000 — 161%)
r

equation of motion inside (4.12) as well as the PN corrections
to the c.m. frame (6.10) and (6.11). Adding these contribu-
tions together, we finally obtain the expression for the relative
acceleration of the two-body system in the c.m. frame, at the
second PN order, in the linearized harmonic gauge:

Gm .
;2

+(24v = 3207)v* - (36v — 480%)v*# + (150 — 45y2);»4]

G
+4riv {(—12 + 41y + 8?) om_
.

(150 + 402)0% + (v + 61/2)1"2] }

(B10)
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