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In the framework of a general scalar-tensor theory, where the scalar field is nonminimally coupled to the
five-dimensional Ricci scalar curvature, we investigate the emergence of complete braneworld solutions.
By assuming a variety of forms for the coupling function, we solve the field equations in the bulk, and
determine in an analytic way the form of the gravitational background and scalar field in each case.
The solutions are always characterized by a regular scalar field, a finite energy-momentum tensor, and an
exponentially decaying warp factor even in the absence of a negative bulk cosmological constant. The
space-time on the brane is described by the Schwarzschild solution leading to either a nonhomogeneous
black-string solution in the bulk, when the mass parameter M is nonzero, or a regular anti-de Sitter space-
time, when M = 0. We construct physically acceptable solutions by demanding in addition a positive
effective gravitational constant on our brane, a positive total energy density for our brane, and the validity of
the weak energy condition in the bulk. We find that, although the theory does not allow for all three
conditions to be simultaneously satisfied, a plethora of solutions emerge which satisfy the first two, and

most fundamental, conditions.
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I. INTRODUCTION

The first higher-dimensional formulation of the general
theory of relativity [1-3] by Kaluza [4] and Klein [5] is
almost as old as the original theory itself. In the 1980s, the
postulation of the existence of extra spacelike dimensions
in nature was combined with the string-inspired notion of
the brane, which plays the role of our four-dimensional
world [6,7]. At the turn of the last century, the modern
braneworld theories were proposed [8-12] in which
the extra spatial dimensions may be large compared to
the Planck scale or, even, infinite. This radical change in the
structure and topology of space-time has significantly
affected the properties of all gravitational solutions which
emerge in the framework of the new theories. In addition,
the phase space of solutions of a higher-dimensional
gravitational theory now contains a variety of black objects,
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namely black holes, black strings, black branes, black
rings, or black saturns [13].

The warped braneworld model [11,12] admits an infi-
nitely long extra dimension which is nevertheless accom-
panied by the localization of the graviton close to our brane.
This is realized with the help of an exponentially decreas-
ing warp factor in the expression of the line element which
describes the higher-dimensional gravitational background.
However, the presence of this factor has proven to be an
insurmountable obstacle in the derivation of an analytical,
nonapproximate solution describing a regular, localized
close-to-our-brane black hole (see Refs. [14-46] for an
impartial list of works on this topic; for a number of
numerical solutions describing in principle regular brane-
world black holes, see [47-53]).

The aforementioned attempts to derive an analytical
solution of a localized braneworld black hole have in fact
proven that solutions describing a different type of a black
object, namely a black string, are much easier to construct.
Although the first such solution [14] in the context of the
warped braneworld models [11,12] was proven to be
unstable [54,55], a variety of higher-dimensional black
strings have since been derived in the context of different
theories in the literature—see, for example Refs. [56-74].
In [31,38], a braneworld model, that contained a bulk scalar
field with an arbitrary potential and a nonminimal coupling
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to gravity, was studied. Scalar-tensor theories of this type
are very popular and have been extensively studied in the
context of four-dimensional gravity, while braneworld
generalizations have been studied in the literature before,
both in static and nonstatic backgrounds [75-80]. The
objective of the analyses in [31,38] was to derive an
analytical solution describing a regular, localized black
hole; although no such solution was found, these studies
hinted that black-string solutions were in fact much easier
to emerge in the context of a nonminimally coupled scalar-
tensor braneworld model.

To demonstrate this, in [69] we launched a comprehen-
sive study of the types of black-string solutions that emerge
in the context of this theory. Solving analytically the
complete set of gravitational and scalar-field equations in
the bulk, we determined novel black-string solutions which
reduced to a Schwarzschild-(anti-)de Sitter space-time on
the brane. The sign of the effective cosmological constant
on the brane was shown to determine not only the topology
of our brane—leading to a de Sitter, anti-de Sitter, or
Minkowski four-dimensional background—but also the
properties of the coupling function between the bulk scalar
field and the five-dimensional Ricci scalar curvature. In
[69], we focused on the case of a positive cosmological
constant on the brane, and showed that, in order for the
scalar field to be real valued, the coupling function had to
be negative over a particular regime in the bulk.
Nevertheless, we were able to derive solutions which
had a robust four-dimensional effective theory on the brane
and a number of interesting, yet provocative, features in the
bulk. In a follow-up work [73], we considered the case of a
negative cosmological constant on the brane, which
allowed positive-definite coupling functions; by employing
two particular forms of the latter, we produced two
complete analytical solutions that were characterized by
a regular scalar field and a localized close-to-our brane
energy-momentum tensor. In addition, the solutions fea-
tured a negative-definite bulk potential which supported by
itself the warping of the space-time even in the absence of
the traditional, negative, bulk cosmological constant.

Having covered the cases of a de Sitter and anti-de Sitter
space-time on our brane in [69,73], in this third installment
we turn our attention to the case of a Minkowski brane, i.e.,
with a vanishing effective cosmological constant. The
objective would be the same, namely to perform a com-
prehensive study of the complete set of field equations and
derive analytical solutions for the gravitational background
and scalar field in the bulk. As we will demonstrate, this
case is the least restrictive and most flexible of the three,
and allows for a variety of profiles for the coupling function
and scalar field along the extra coordinate. In order to
construct physically acceptable solutions, we will demand
the finiteness of both the coupling function and scalar field
everywhere in the bulk; in fact, we will consider forms of
the coupling function that become trivial at large distances

from our brane thus leading to a minimally coupled scalar-
tensor theory in that limit. Even under the above assump-
tions, we will present a large number of solutions; they will
all be characterized by a regular scalar field and a finite
energy-momentum tensor localized near our brane. In
addition, the bulk potential of the scalar field may take a
variety of forms at our will, while supporting in all cases an
exponentially decaying warp factor even in the absence of a
negative bulk cosmological constant. Negative values of the
coupling function in the bulk will not be necessary in our
analysis, nevertheless, they will be allowed. The form of the
effective theory on the brane will thus be of primary
importance and a necessary ingredient of our analysis in
the study of each solution presented. We will naturally
demand a positive effective gravitational constant on our
brane, and investigate whether this demand may be simul-
taneously satisfied with the condition of a positive total
energy of our brane and the validity of the weak energy
conditions in the bulk. The gravitational background on the
brane will be described by the Schwarzschild solution
leading to either a nonhomogeneous black-string solution
in the bulk, when the mass parameter M is nonzero, or a
regular anti-de Sitter space-time, when M = 0.

Our paper has the following outline: in Sec. II, we
present our theory, the field equations, and impose a
number of physical constraints on the scalar field and its
coupling function. In Sec. III to VIII, we present a large
number of complete braneworld solutions, and discuss in
detail their physical properties in the bulk, the junction
conditions, the effective theory on the brane and the
parameter space where the optimum solutions—f{rom the
physical point of view—emerge in each case. We present
our conclusions in Sec. IX.

II. THE THEORETICAL FRAMEWORK

We consider the following action functional which
describes a five-dimensional scalar-tensor theory of gravity

SB:/d“x/dy\/—g(S)

<[

2
2k

1
R=As =5 0,000 = Vy(®)|.  (2.1)

The theory contains the five-dimensional scalar curvature
R, a bulk cosmological constant As, and a five-dimensional
scalar field @. The latter is characterized by a self-
interacting potential Vz(®) and a nonminimal coupling
to R via a coupling function f(®). As in our previous
works [69,73], we will initially keep this function arbitrary
so that our formalism is applicable to a large class of
theories. In the above, K% = 87xG5, where Gj is the five-

dimensional gravitational constant G5, and 91(‘2\, is the

metric tensor of the five-dimensional space-time.
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Embedded in this five-dimensional space-time is a
3-brane, our four-dimensional world, located at y =0
along the extra spatial dimension. The energy content of
our brane is described by the following action:

:/d4x
[ o[

which should be added to the bulk action (2.1) to complete
the theory. The brane Lagrangian L, is assumed, for
simplicity, to contain only an interaction term V,(®) of
the bulk scalar field with the brane, while o is the constant

—g(br) (’Cbr - U)

9"V (@) +alb(y).  (22)

brane self-energy. Also, g\’ = gt (x*,y = 0) is the
induced-on-the-brane metric tensor. In what follows, we
will denote five-dimensional indices with capital Latin
letters M,N,L,... and four-dimensional indices with
lower-case Greek letters u,v, 4, ... as usual.

The field equations of the theory follow if we vary the
complete action § = S + S, with respect to the metric

tensor ggjg\, and scalar field ®. Then, we obtain the
gravitational field equations

5)

f(®)Guyy —9<5>—K5 {(TM gunAs) g(

V(@) +olg 8 345(y) —g<br>] ,
(2.3)

with the energy-momentum tensor of the theory given by
the expression

0, PO D
MN = Oy POND + gun { Lf - VB(q’)]
1
T2 [VuVnf(®) — gunDf (@), (2.4)
5
and the scalar-field equation
1
- v/ =3 gMN
—g<5) aM( g g aNq))
o —g7)
;)fR 0oVp — 7gaq>vb5()’)’ (2:5)
K5 —g®)
respectively.

The form of the five-dimensional gravitational back-
ground needs to be specified next. As in [69,73], we
consider the following line element:

2
ds? = ezA(y){— [1 - M] dv* + 2dvdr
r

r(d6* + sinzedrpz)} + dy?,

which describes a five-dimensional space-time warped
along the fifth dimension due to the presence of the warp
factor ¢>(Y), Its four-dimensional part has the form of a
generalized Vaidya line element: if m(r) is a constant M,
this reduces, after a coordinate transformation, to the
Schwarzschild solution. The four-dimensional observer
at y =0 would then see a black-hole line element on
the brane; however, its embedding in the extra dimension as
in Eq. (2.6) results in the context of the original Randall-
Sundrum model [11,12], in a black-string solution [14]
with an infinitely long singularity plagued by instabil-
ities [54,55].

By introducing a dependence of the mass function on the
extra coordinate Yy, it is possible to localize the black hole
close to the brane but this demands a form of bulk matter
that cannot be supported by ordinary fields [18,22]. A more
general ansatz for the mass function of the form
m = m(v,r,y), that was employed in subsequent works
[31,38], increased the flexibility of the model but failed,
too, to lead to localized black-hole solutions in the context
of a variety of scalar-field theories. Up to today, the
analytical determination—in a closed form—of regular,
localized black holes in warped braneworld models remains
an open problem.

However, the five-dimensional scalar-tensor theory of
gravity described by Eq. (2.1) was shown [31,38] to admit
novel black-string solutions that may be constructed
analytically. In our previous works [69,73], we performed
a comprehensive study of the types of black-string sol-
utions that emerge in the context of this theory when the
cosmological constant on the brane is positive or negative,
respectively. Here, we complete our study by considering
the case of a Minkowski brane. As we will demonstrate,
this case is the most flexible of all that allows for a larger
variety of profiles for the scalar field and its coupling
function while retaining all the attractive characteristics of
the previous two cases.

We will employ again the line element (2.6), and proceed
to derive the explicit form of the field equations (2.3)—(2.5).
We will focus on solving this set of equations first in the
bulk, and thus ignore for now all 5(y) terms. The explicit
form of the gravitational equations follows by combining
the nonvanishing components of the Einstein G, and
energy-momentum T(®M,, tensors. In mixed form, these
are

27240, m
o
-24 52

GOO - G11 - 6A/2 + 3A// -

G% = GP3 = 64”2 + 347 =&
e 4(20,m + r0?m)

1"2 ’

G44 — 6A/2 -
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T(®0, = 7@ — T(@®2, — T(®3, = A® Dy f + L — LI
T®4, = (1 + 83 )% + D" Do f + Lo — O, (2.8)

respectively, where a prime (') denotes the derivative with
respect to the y coordinate. Above, we have made the
assumption that the scalar field depends only on the
coordinate along the fifth dimension, i.e., ® = ®(y), and
we have defined the quantities

Lo = —%aLopach — V(@) = —%CD’Z - Vp(®), (2.9)
and
Of = 44D Opf + D20%f + @00 f.  (2.10)

Employing the above, and upon some simple manipulation
[69], we obtain three equations having the following form:

rd*m —20,m = 0, (2.11)
2
f<3A” e a,r ’") = Do f(A'D — ") — (1 + O3 f) D2,
(2.12)
2 —2Aar
f<6A'2 134" —%> = A® o f + Lo —Of — As.

(2.13)

Note that, for notational simplicity, we have absorbed the
gravitational constant K‘% in the expression of the general
coupling function f(®). Turning next to the scalar-field
equation in the bulk (2.5), this takes the explicit form

2

2
0 440 = 0o (1047 a7 - LT
r

+ 09 V3. (2.14)
In order to increase the flexibility of the theory, the form
of the mass function m = m(r) in the gravitational back-
ground (2.6) was left arbitrary. Nevertheless, this will be
duly determined via Eq. (2.11); by direct integration, we
obtain the unique solution
m(r) =M + Ar3/6, (2.15)
where M and A are arbitrary integration constants. The
projected-on-the-brane gravitational background follows
by setting y = 0 in the line element (2.6) and using the
above result for the mass function; then, we find the
expression

2M  AF?
ds? = —(1 ———Tr)dy2 + 2dvdr
r

+ r?(d6* + sin*0dg?). (2.16)
By employing an appropriate coordinate transformation,
the above Vaidya form of the four-dimensional line element
may be transformed to the usual Schwarzschild-(anti-)de
Sitter solution [69]. As a result, we may interpret the two
arbitrary parameters M and A as the mass of the black hole
on the brane and the cosmological constant on the brane.
The cases of positive and negative cosmological constant
on the brane (i.e., A > 0 and A < 0) were studied respec-
tively in our previous two works [69,73]; in the context of
the present analysis, we will focus on the case of a zero
four-dimensional cosmological constant (A = 0).

Returning to the remaining field equations (2.12)—(2.14),
one may demonstrate that only two of them are independent
[69]. We may therefore ignore altogether the scalar field
equation (2.14) and work only with the gravitational
equations (2.12)—(2.13). The former equation will provide
the solution for the scalar field @ while the latter will help
us to determine the scalar potential in the bulk V(®). To
this end, we need also the expression of the warp function
A(y) for which we will use the well-known form A(y) =
—kl|y| [11,12], with k a positive constant, as this ensures the
localization of gravity near the brane. Setting also the mass
function to be m(r) = M (since A = 0), Eq. (2.12) takes
the form'

(1 4+ 0%4f)D? + O f(®" + k@) =0, (2.17)

or
O + 5 f + kdyf =0, (2.18)

while Eq. (2.13), with the use of Eq. (2.18), can be solved
for V(y):

7 1
In the above, we have also used the relations
6),f:<l>’8¢f, 8§f:<l>’28éf+cb”6¢,f. (2.20)

The topology of the five-dimensional bulk space-time
may be inferred from the form of the curvature invariant
quantities. Using the five-dimensional line element (2.6),
together with the relations m(r) = M and A = —k|y|, we
find the following expressions:

'We assume a Z, symmetry in the bulk under the change y —
—y therefore, henceforth, we focus on the positive y regime.
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R = —20k?, Ry nRMN = 80k*,

48 M2 ¥y
—_— .

RMNRSRMNRS == 4Ok4 + (221)

For M =0, the bulk space-time is characterized by a
constant negative curvature at every point, and is therefore
an AdS space-time. This holds despite the presence of a
nontrivial distribution of energy in the bulk, i.e., that of a
nonminimally coupled scalar field with a potential, and is
ensured through the field equations which, like Egs. (2.18)
and (2.19), relate the different bulk quantities among
themselves. It is for this reason that, as we will see, the
exponentially decaying warp factor will be supported even
in the absence of the negative bulk cosmological constant
As. In the case where M # 0, the above invariants describe
a five-dimensional black-string solution with an infinitely
long space-time singularity extending throughout the
extra dimension. The black-string singularity reaches
the boundary of space-time which is by itself a singular
hypersurface.
The solution for both the scalar field and the bulk
potential depends, through Egs. (2.18)—(2.19), on the form
of the nonminimal coupling function f(®). In our previous
work [73], we assigned the following constraints to the
scalar field ®(y) and its coupling function f[®(y)]:
(i) Both functions should be real and finite in their
whole domain and of class C*.

(i) At y —» £oo, both functions should satisfy the
following relations, otherwise the finiteness of the
theory at infinity cannot be ascertained:

im CYON o v (2.22)
y—=too dyn

im YOON o s )
y—+oo dyn

The second constraint amounts to considering profiles of
the scalar field and forms of the coupling function that both
reduce to a constant value far away from the brane.
Together with the first constraint, they ensure a physically
acceptable behavior for our scalar-tensor theory. The sign,
however, of the coupling function f(y) will not be fixed. In
[69], where the case of a positive cosmological constant on
the brane was studied, i.e., A > 0, the coupling function
had to be negative-definite away from our brane for the
reality of the scalar field to be ensured; nevertheless, the
effective theory on the brane could still be well defined. In
the case of A < 0 [73], no such requirement was necessary
and the coupling function was assumed to be everywhere
positive-definite in terms of the y coordinate; then, gravity
was normal over the entire five-dimensional space-time
leading to a well-defined effective field theory on the brane.

In the context of the present analysis, where A = 0, we
may consider coupling functions that are either positive- or

negative-definite for particular regions of the y coordinate.
As we will demonstrate, it is possible to obtain a positive
effective four-dimensional gravitational constant in every
case. This will hold even when five-dimensional gravity
behaves in an antigravitating way at particular regimes of
space-time—as it turns out, such a behavior is not physi-
cally forbidden as long as the effective theory on our brane
is well defined. To this end, the derivation of the effective
theory on the brane is going to play an important role in our
forthcoming analysis, and will thus supplement every bulk
solution we derive.

III. A LINEAR COUPLING FUNCTION

Choosing A = 0 on our brane simplifies the set of field
equations of the theory, but more importantly, relaxes
constraints that had to be imposed on the coupling function.
As a result, the latter is now allowed to adopt a variety of
physically acceptable forms, all obeying the criteria (i) and
(ii) of the previous section. These forms lead to viable
braneworld models (for M = 0) or black-string solutions
(for M # 0). In an effort to construct the most realistic
solutions, we will also study, in every case, the energy
conditions both in the bulk and on the brane.

We start our analysis with the case of the linear coupling
function:

F(®) = fo+ ®e®, G.1)
where f; and @, are arbitrary parameters of the theory. In
what follows, we will first solve the system of field
equations (2.17) and (2.19) in the bulk and then consider
the effective theory on the brane as well as the energy
conditions.

A. The bulk solution

Substituting the aforementioned coupling function in
Eq. (2.17) and solving the resulting second-order differ-
ential equation, we obtain the solution:

®(y) = Po[~ky + In(" +&)], (3:2)
where £ is an integration constant. Note that the gravita-
tional field equation (2.17) possesses a translational sym-
metry with respect to the scalar field ®(y). Hence, we are
free to fix the value of a second integration constant, that
should in principle appear additively on the right-hand side
of Eq. (3.2), to zero without loss of generality. Then, using
Eq. (3.2) in (3.1), we find

fO) = fo+®[—ky +In(e¥ +&).  (3.3)
As we mentioned earlier, both functions f(y) and ®(y)

should be real and finite; therefore £ € (—1,0) U (0, ),
and @, € R\{0}. It is clear from Egs. (3.2) and (3.3) that if
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(a)

FIG. 1.

(b)

(a) The warp factor ¢A(") = ¢=2kl"l and coupling function f(y) in terms of the coordinate y for fo =0, ®y = 1,k =1,& =1,

and (b) the scalar field ®(y) for different values of the parameter £ = —0.8, —0.5, 0.5, 1, 3 (from bottom to top).

we allow & to become equal to zero, then we nullify the
scalar field everywhere in the bulk and reduce the coupling
function to a constant, which makes our model trivial. The
allowed range of values for the parameter f; will be
determined shortly.

In Fig. 1(a), we depict the warp factor ¢?A0) = =2l
and coupling function f(y) in terms of the coordinate y for
fo=0, ®;=1, k=1, and £=1. We observe that,
similarly to the warp factor, the coupling function remains
localized close to our brane and reduces to zero at large
distances although with a smaller rate. According to this
behavior, the nonminimal coupling of the scalar field to the
five-dimensional Ricci scalar takes its maximum value at
the location of the brane whereas, for large values of y, this
coupling vanishes leading to a minimally coupled scalar-
tensor theory of gravity. The profile of the scalar field ®(y)
itself is presented in Fig. 1(b) for &y =1 and k = 1. We
also display the dependence of this profile on the value of
the parameter £ = —0.8, —0.5, 0.5, 1, 3 (from bottom to
top). It is clear that also the scalar field exhibits a localized
behavior with the value of £ determining the overall sign
and maximum value of ® on our brane. The dependence of
the coupling function f(y) on the value of & is similar to
that of the scalar field, as one can easily deduce from the
relation (3.1).

The potential of the scalar field Vz(y) in the bulk can be
determined from Eq. (2.19) using the expression of the
coupling function f(y) (3.3). Thus, we obtain

kK2®32 E(8ely +-7¢
V(y) = —As — 6k*fo + > ! lzky—M
— 6K*®@] In(& + €k). (3.4)

Using Eq. (3.2), we can express the potential in terms of the
scalar field in a closed form, as follows:

V(@) = —As — 6k2f0 - 6k2q)oq) _ 4k2q>%(1 _ e-@/cpo)
K207

5 (1 — e~ ®/®)2,

+ (3.5)

We observe that the parameter f, appearing in the
expression of the coupling function (3.3) gives a constant
contribution to the scalar bulk potential. Depending on the
value of f, the asymptotic value of Vp in the bulk (when ®
vanishes) can be either positive, zero, or negative. In the
latter case, this contribution may be considered to play the
role of the negative bulk cosmological constant A5, which
is usually introduced in an ad hoc way. Therefore, such a
quantity is not necessary any more in order to support the
exponentially decreasing warp factor d la Randall Sundrum
[11,12]. As mentioned earlier, it is the nonminimal cou-
pling of the scalar field combined with the form of the bulk
potential that supports the AdS bulk space-time and the
chosen form of the warp factor. To this end, we will
henceforth choose a vanishing value for A5 in any
numerical evaluation; however, for completeness, we will
retain it in our equations. The profile of the bulk potential
Vg is presented in Fig. 2(a) for f, = 1, which leads to a
negative asymptotic value of V. The figure depicts the
dependence of Vy on the parameter &: the scalar potential
may be negative everywhere in the bulk or assume a
positive value on our brane depending on the value of £.

We may also compute the components of the energy-
momentum tensor of the theory in the bulk. Using the
relations p = —T%, p' =T!;, p’ =T’,, we obtain the
following expressions: .
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(a)

FIG. 2.

(b)

(a) Scalar potential V in terms of the coordinate y for different values of the parameter £ = —0.7, —0.3, 0.5, 1, 3 (from top to

bottom). (b) Energy density p, pressure components p’ = p¥ = p, and scalar potential V in terms of the coordinate y for the case

fo=0.6and & = —0.5.

p(y) = =(T@% — As) = —6k>f(y).  (3.6)
Pi()’) = T((D)ii —As = 6k2f(y), (3.7)
pP(y) =T, — As = 6K*f(y). (3.8)

The above relations hold in general, for an arbitrary form
of the coupling function and profile of the scalar field. From
the above expressions, we can immediately observe that
the energy-momentum tensor in the bulk is isotropic
(p” = p' = p) and satisfies an equation of state of the
form p = —p. The sign of all energy-momentum tensor
components depends on that of the coupling function: at
bulk regimes where f(y) is negative-definite, the energy
density p(y) will be positive while the pressure p(y)
would have the opposite sign. At these regimes, the
weak energy conditions® will be satisfied. We are pri-
marily interested in satisfying these on and close to our
brane. Thus, if we impose the condition that f(0) < 0 and
combine this inequality with the form of Eq. (3.3), we may
obtain the range of values for the parameter f(, with
respect to £ and @, for which the weak energy conditions
on our brane are satisfied. Hence, we get

(3.9)

A particular indicative case where the weak energy
conditions are satisfied on our brane is depicted in

*The weak energy conditions postulate that p > 0, p + p > 0.

Fig. 2(b): it corresponds to the set of values ®y =1,
£ =-0.5, and f, = 0.6, which satisfy the above inequal-
ity. Both the bulk potential and energy density are positive
on our brane while the pressure components assume a
negative value of equal magnitude to that of p.

B. Junction conditions and effective theory

Let us now address the junction conditions that should be
imposed on our bulk solution due to the presence of the
brane at y = 0. The energy content of the brane will be
given by the combination ¢ + V,(®), where o is the
constant self-energy of the brane and V,,(®) an interaction
term of the bulk scalar field with the brane. Since this
distribution of energy is located at a single point along the
extra dimension, i.e., at y = 0, it creates a discontinuity in
the second derivatives of the warp factor, the coupling
function, and the scalar field at the location of the brane. We
may then write A” = A" + [A]6(y), " = f" + [f']6(y).
and @ = " 4 [@']6(y), where the hat quantities denote
the distributional (i.e., regular) parts of the second deriv-
atives and |[- - -] stand for the discontinuities of the corre-
sponding first derivatives across the brane [81]. Then, in the
complete field equations (2.12) and (2.14), we match the
coefficients of the 5-function terms’ and obtain the follow-
ing two conditions:

3f()A] = —[@]0f = (6 +V,).  (3.10)

*We note that the line element (2.6) satisfies the relation

V=g = \/=g®.
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(@] = 4[A'|0pf + 0oV, (3.11)
respectively, where all quantities are evaluated at y = 0.
The above expressions also hold in general for arbitrary
forms of the coupling function f(®). In the case of a linear
f(®), employing the form of the warp function A(y) =
—k|y| and the solution (3.2) for the scalar field ®(y), we
obtain the constraints

)

G+ Vy(®)],_o = 21"_5:1; +6kfo+6k@2In(1+E),  (3.12)
2k®y(4 + 3

9o Vly—o = (1](%56) (3.13)

In the above relations, we have used the assumed Z,
symmetry in the bulk.

The first constraint (3.12) relates the total energy density
of the brane with bulk parameters. It may be used to fix one
of the bulk parameters of our solution, for example, the
warping constant k; then, the warping of space-time is
naturally determined by the distribution of energy in the
bulk and on the brane. The second constraint (3.13) may in
turn be used to fix one parameter of the brane interaction
term V,, of the scalar field. Going further, we may demand
that, for physically interesting situations, the total energy
density of the brane should be positive; then, the right-hand
side of Eq. (3.12) leads to

fo ¢
o~ T3 (3.14)

The above is therefore an additional constraint that the bulk
parameters (fg, D, &) should satisfy which, as the one of
Eq. (3.9), follows not from the mathematical consistency of
the solution but from strictly physical arguments.

We now turn to the effective theory on the brane that
follows by integrating the complete five-dimensional
theory, given by S = S+ S,,, over the fifth coordinate
y. We would like to derive first the effective four-dimen-
sional gravitational constant that governs all gravitational
interactions on our brane. For this, it is of key importance to
express the five-dimensional Ricci scalar R in terms of the
four-dimensional projected-on-the-brane Ricci scalar R,
One can easily prove that the five-dimensional Ricci scalar
R of the following line element

ds> = e‘zk‘y‘g,(ﬁr) (x)dx*dx* + dy* (3.15)
can be written in the form
d
~20k% + 8k = |y L 2IR®. (3.16)
dy?

Equation (3.16) holds even if the projected-on-the-

(br)

brane four-dimensional metric ¢, ° leads to a zero

four-dimensional Ricci scalar R when the latter is
evaluated for particular solutions (as is the case for our
Vaidya induced metric). The part of the complete action
S =S8z+S,, that is relevant for the evaluation of the
effective gravitational constant is the following:

SD/d“xdy\/ f 2"‘V‘R

(3.17)

5) — o=4kD br)

Then, using also that —g< , where

g,S’;*> is the metric tensor of the projected-on-the-brane
space-time, the four-dimensional, effective gravitational

constant is given by the integral

1 ©
5 =2 A dy e 0 f(y)

Ky

=2 /°° dy e[y — ®2ky + D In(ed + &£)]. (3.18)
0

Using the relation 1/k = M%,/8z and calculating the
above integral, we obtain the following expression for
the effective Planck scale:

———+—[z§+(§2—1)1ﬂ(1+§)]}' (3.19)

Note, that, due to the localization of both the coupling
function and scalar field close to our brane, no need arises
for the introduction of a second brane in the model. The
above value for M3, is therefore finite as demanded,
however, it is not sign-definite. We should therefore
demand that the aforementioned expression is positive-
definite which leads to the third, and most, important
constraint on the values of (f, @, ), namely

fo E-2 1-£
0~ 22 T2

In(1 + &). (3.20)

The integral of all the remaining terms of the five-
dimensional action § = Sz + S,,, apart from the one
appearing in Eq. (3.17), will yield the effective cosmo-
logical constant on the brane. This is due to the fact that the
scalar field @ is only y dependent; therefore, when the
integration over the extra coordinate y is performed, no
dynamical degree of freedom remains in the four-dimen-
sional effective theory. The effective cosmological constant
is thus given by the expression
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1

ﬂh_/%@wﬂykmﬁﬂw—Ay5¢”—w@)

) (44— o+ w@)}a@)}

o0 1
=2 [T e |-10870) - 8y - 307 - V0]

+8kf(0) = [0+ V,(@)],—- (3.21)

In the above, we have also added the Gibbons-Hawking
term [82] due to the presence of the brane, that acts as a
boundary for the five-dimensional space-time. Substituting
the expressions for the coupling function and the bulk
potential of the scalar field, and employing the junction
condition (3.12), we finally obtain the result

Ay =0. (3.22)

As in our previous works for positive [69] and negative
cosmological constant [73] on the brane, it is clear that the
parameter A appearing in the expression of the mass
function (2.15), and in the projected-on-the-brane line
element (2.16) is indeed related to the four-dimensional
cosmological constant A4. Therefore, in the context of the
present analysis where we have set A =0, we derived a
vanishing A, as anticipated.

C. The energy conditions in the parameter space

We will now focus on the inequalities (3.9), (3.14), and
(3.20), and in particular investigate whether it is possible to
simultaneously satisfy all three of them. To this end, we
study the parameter space defined by the ratio f,/®3 and
the parameter ¢: this is depicted in Fig. 3, where we have
plotted the expressions of the right-hand sides of the
inequalities (3.9), (3.14), (3.20) with respect to the param-
eter £&. From a physical point of view, the most important
inequality to satisfy is (3.20), which ensures that the four-
dimensional effective gravitational constant on our brane is
positive: this demands that f;,/®3 should be always greater

than % + 1;—len(l + £) and corresponds to the area above

the red dashed curve in Fig. 3. The inequality (3.9) ensures
that the bulk energy-momentum tensor satisfies the weak
energy conditions at the location of our brane, and demands
that f,/®3 should be smaller than —In(1+ £); this
corresponds to the area below the purple continuous line
in Fig. 3. Finally, inequality (3.14) expresses the demand
that the total energy density of our brane is positive; this is

satisfied if f(/®j is greater than —In(1 + &) — ﬁ; this is

the area above the blue dashed curve in Fig. 3.

It is straightforward to see that it is impossible to satisfy
all three inequalities simultaneously. However, it is always
possible to satisfy two out of these three at a time—in
Fig. 3, we have highlighted the regions where the most
important inequality (3.20) is one of the two satisfied

6

[ -2 1-¢

5. | |- :

I: 2% + e In(1+¢)

4l —— —In(1+¢)

[ 3

3’|‘ """ _ln(1+€)—m
3
<

-0.5 0.0 0.5 1.0 1.5 2.0

FIG. 3. The parameter space between the ratio f,/®} and the
parameter &£ The graphs of the expressions of the right-hand side
of the inequalities (3.9), (3.14), (3.20) are depicted as well.

conditions—we observe that this area covers a very large
part of the parameter space. Which one of the two
remaining inequalities is the second satisfied condition
depends on the value of the parameter &; therefore, we
distinguish the following cases:
(i) For £ € (—1,0), it is easy to see that the following
sequence of inequalities holds:

E-2 1-&
2—5"‘ 52 1n(1-|-§)<—ln(1+§)<—ln(1+§)
__¢ (3.23)
3(1+8) '

Thus, we can simultaneously satisfy either the
inequalities (3.20) and (3.9) (green region in Fig. 3)
or (3.20) and (3.14) (brown region in Fig. 3). In the
former case, we have a physically acceptable four-
dimensional effective theory on the brane and the
weak energy conditions are satisfied on and close to
our brane; the total energy density of the brane
o+ V,(®)],—y, however, is negative. In the latter
case, we still have a physically acceptable effective
theory and the total energy density of our brane is
now positive; the weak energy conditions though are
not satisfied by the bulk matter close to our brane.
@i1) For & > 0, it now holds

—1n(1+§)—ﬁ< —In(1+¢)

E-2 1-&
< T2

In(1 + &). (3.24)
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In this case, we are able to simultaneously satisfy
only the inequalities (3.20) and (3.14) (brown region
in Fig. 3). Then, we can have a regular four-
dimensional effective theory and a positive total
energy density on our brane. However, in this range
of values for the parameter £, it is impossible to
satisfy the weak energy condition close to our brane
and have a well-behaved effective theory.

Going back to Figs. 2(a) and 2(b), we observe that the
solution depicted in Fig. 2(b) as well as the solution for
& =—0.7 in Fig. 2(a) fall in the green area of Fig. 3 and
thus respect the energy conditions—indeed V and p are
positive on and close to the brane. In contrast, the
remaining solutions of Fig. 2(a) belong to the brown area
of Fig. 3, and thus violate the weak energy conditions; they
have, however, a positive total energy density through the
junction condition (3.12). We stress that all depicted
solutions have a well-defined four-dimensional effective
theory, i.e., a positive effective gravitational constant.

IV. A QUADRATIC COUPLING FUNCTION

In this section, we proceed to consider the case of the
quadratic coupling function, and thus we write
(@) = fo + @@ + 10, (4.1)

where again (f), Py, 4) are arbitrary parameters.
Throughout this section, it will be assumed that A # 0
otherwise the analysis reduces to the one of the linear case
studied in the previous section. As before, we start with the

derivation of the bulk solution and then turn to the effective
theory on the brane.

A. The bulk solution and the effective theory
on the brane

Substituting the aforementioned form of the coupling
function in Eq. (2.17) we obtain the equation:
(1+20)@"? + (24D + @) (D" + kD) =0.  (4.2)

Integrating, we find the following solution for the scalar
field:

L@ (u+ e — @], 2eR\{-1,0}
O(y) = ,

2(I>0 + CDleﬂe_ky, /1 = —%

(4.3)

where u and @, are integration constants. We note that the
case with @, = 0 was studied in [76]; here, we generalize
the aforementioned analysis by assuming that @, # 0. We
also perform a more comprehensive analysis of the ensuing
solutions by studying the different profiles of the coupling
function, scalar field, and bulk potential, which emerge as

the values of the parameters of the model vary. In addition,
we supplement our analysis with the study of the effective
theory on the brane and of the physical constraints imposed
on the solutions. In order to simplify our notation, we set
O, = &Py, where £ is a new integration constant. Then,
Eq. (4.3) is written as

P —kyyii — 1
(D(y):{g[é(we k) 1], 2eR\{ LO}}_ (4.4)
Dy(2+ e, A=-1

Substituting the above expression in Eq. (4.1), we obtain
the following profile for the coupling function in terms of
the extra coordinate

o) {fo + R+ ey 1), 2eR\{-1.0} }

2 —ky
for @g(1 =5 &™), A=—g

(4.5)

The theory seems to contain five independent parame-
ters: fo, ®@g, 4, 4, and £. However, the range of values for
two of these will be constrained by the physical demands
imposed on the model. To start with, both the scalar field
®(y) and the coupling function f(y) must be real and finite
in their whole domain, according to the discussion in
Sec. II. From Eq. (4.4), we observe that the allowed range
of values of the parameter ;¢ depends on the values that the
parameter A assumes. In Appendix A, we consider in detail
all possible values for 4 and the ensuing allowed ranges of
values for y; the different cases and corresponding results
are summarized in Table 1.*

In addition, from the analysis of the previous section, it
became clear that the theory is not robust unless a positive
effective gravitational constant is obtained on the brane.
This demand will impose a constraint on one of the
remaining parameters of the theory: we choose this
parameter to be f,. Thus, in order to appropriately choose
the values of f, to study the profile of the scalar field and
coupling function, at this point we turn to the effective
theory and compute the effective gravitational constant. We
will employ Eq. (3.17), and consider separately the cases
with 1 # —1/4 and A = —1/4. In the first case, using also
Eq. (4.5), we obtain

1 ®? <I>2§2 o NS
=z<f°‘47°>+ 2 / dye ™ (ute ), (4.6)

“The symbol A that was used in Table I simply denotes the
logical AND. For example, the statement A A B is true if A and B
are both true; else it is false.
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TABLE I. Range of values for all parameters of the model.

Range of values for all parameters

£ e R\{0}, ®, € R\{0}, 1> 0
fo is given by Eq. (4.12). A€ (=1.0) A #nnezs
Ae(=3.0)Ag=nnez
a=—1/4

>
/1<——/\1+4/1;én nez

A< =1 /\liﬂu n,nez>

n=0
u>0
u € (—o0,—1) U (0, +00)
U € (—00,0) U (0, +0)
u>0
neR

In order to evaluate the integral on the right-hand side of
the above equation, we perform the change of variable

t = e If we also use the integral representation of the 1 M}

hypergeometric function [83] g—g

,F (a,b;c;z2) q)z &__
Tk @} 42

— F(C) : — c—b— —a
mA drt’=' (1 = 1)e=b=1(1 = z1)7¢,

Re(c) > Re(b) > 0, (4.7)

2(1=z)*[z(a+z—az)+(1—2)*—1]
(a=2)(a—1)z? ’

2~z —In(1-2)],

F(a,2;3;z) =

2
Z(1-2)

[z+1In(l —z) —zIn(1 = 2)],

we finally obtain the result:

By - 42
200\ ™ ’
42 1+44

2;3;—&)} (4.8)

We can further simplify the above expression using the
following relations:

a € R\{1,2}
a=1 (4.9)
a=2

Then, for A # —1/4, the four-dimensional effective Planck scale may be written in terms of elementary functions as follows:

8 d? f (1+42) 282 24122 1482
0 0 vy
anrm = (L )T (e~

My = S 12— 4201 - pin (2]},

87r<1>o{ __m[ 1+(1+/¢)ln(l,,ﬂ)]}’

On the other hand, for 1 = —1/4, we readily obtain

52

2
MPI_

8z 8xdj {fo -

Ki k @3

S erea- ).

)l 2eR\{-7.-5.—5.0}

a=-1 . (4.10)

(4.11)

Since the effective four-dimensional gravitational scale M3, should be a positive number, Eqgs. (4.10) and (4.11) impose

the following constraints on the values of the ratio f,/®3:
(1 +42)%&

Jo o L[ B (14 )i (- O
o 4 (+en+sy # 1+ 42
fo ) 1+u 1
oo 212 In . A=-—o,
(D(z)> ¢ |1 —pun p 2

fo 3 222 1+ 4 i
Jo - 1 )1 L A=,
@ 2\ 1+x 4w — 6

Soo 1+ 8 nyemu-n), -
o 8u®
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We choose to use the above constraints in order to limit
the range of values of the parameter f;. The remaining
parameters @, 4, and £ may then take values in almost the
entire set of real numbers, specifically @, € R\{0},
£ e R\{0}, and 1 € R\{0}. These ranges of values are
also summarized in Table I. We finally note that the above
constraints for the positivity of the effective four-dimen-
sional gravitational constant allow for both positive and
negative values of the parameter f,.

We now proceed to study the profile of our solution. In
Fig. 4(a), we depict the form of the warp factor e~ and
the coupling function f(y) in terms of the coordinate y
along the fifth dimension, for ®, =1, 1=1/7, £=1,
u=1, k=1, and f, =0, which, as one can verify, is
allowed by Eq. (4.12). The warp factor is always localized
close to the brane and vanishes at the boundary of space-
time independently of the values of the parameters.
The behavior of the coupling function though depends
strongly on the values of the parameters of the model. For
A >0 and u > 0, the qualitative behavior of the coupling
function is the same as the one that is illustrated in Fig. 4(a).
In Fig. 4(b), we present the behavior of the coupling
function for various values of the parameters u and @
while 4 is now in the regime (—1/4,0). We note that, for
generic values of the parameters, the asymptotic value of
f(y), as y = o0, is not zero: if so desired, one may choose
fo to be equal to C, which indicates the value that f
should have in order to get a vanishing coupling function at
infinity; from Eq. (4.5), we can immediately calculate that

2 / .
Co = %‘f (1- éz,wiw). In Fig. 4(b), one can clearly see the
strong dependence of the profile of the coupling function
also on the value of the parameter p. As yu approaches zero,

-4

(a)

the coupling function is characterized by a plateau around
our brane; the closer the value of y is to zero, the wider the
plateau. On the contrary, ®, does not significantly affect
the behavior of f(y); it just scales the function as a whole.
The behavior depicted in Fig. 4(b) holds for all values of 4
in the regime (— 1, 0) as long as 4 > 0. A different behavior

appears in the case where % =-2n, n€ Z>, and
1 < —1; in this case the behavior of the coupling function
is exactly the same as the one for 4 < — i and % # n, with
n € Z~, which will be discussed next.

In Fig. 5(a), we display the behavior of the coupling
function f(y) for®y =1, u =1, k=1, & =1, and values
of 1 in the regime A < —1/4. Since it holds that % #n,
with n € Z~, the parameter u is constrained to values
greater than or equal to zero. For easy comparison, the
parameter f, has been taken to be equal to Cy, which is the
value that leads to f(0) = 0; again, from Eq. (4.5), we find

that Cy = %2’ [1 — &(u + 1)79). In such a model, the non-
minimal coupling of the scalar field to the five-dimensional
scalar curvature is nonvanishing in the bulk but disappears
at the location of the brane. In this range of values for the
parameter A, the behavior of the coupling function, as
depicted in Fig. 5(a), does not change regardless of the
values of all the other parameters. In contrast, when A
satisfies the condition li—fu = n, the profile of the coupling
function is extremely sensitive to changes in the parameter
u. Indeed, Fig. 5(b) shows the behavior of the coupling
function f(y) for k=1, £=1 and fy, = Cy, while 1 =
—1/3 or % = 2. In this figure, we focus on values of
that are smaller than or equal to —1/2. We observe that, as u

approaches and exceeds —1, the behavior of the coupling

4_,

-10 -5 0 5 10

(b)

FIG. 4. (a) Warp factor ¢240) = ¢=2Pland coupling function f (y) in terms of the coordinate y for 4 = 1/7, and (b) the coupling

function for 4 = —1/5 in the regime (—1/4, 0) which satisfies % =

—2 and different values of parameters x and ®,. C,, indicates the

value that the parameter f;, should have in order to get a vanishing coupling function f(y) at y — oo.
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A=-15 fo=Col|
0.20¢ By = 1
A= -2 p=1
0.15 —
k=1
>
< o010 A=-3 E=1 1]
A=—4
0.05f )\=_7
0.00
~10 -5 0 5 10
Yy
(a)

FIG 5.

equal or lower than —1/2.

function becomes similar to the one in Figs. 4(a) and 4(b).
Here, we have chosen again f, = C,,; therefore, the non-
minimal coupling takes its maximum value on or close to
our brane while it vanishes at infinity. On the other hand, as
u approaches zero and takes on positive values, the profile
of f(y) resembles more the one depicted in Fig. 5(a).
Finally, in the case where A= —1/4, the coupling
function, as presented in Eq. (4.5), is given by a double
exponential expression. It is not hard to realize that the
qualitative behavior of f(y) in this case is similar to the one
|

3k <1>2

0.20f ‘ R
n= —1.5 ) ‘|
—— =
Oy =023 F1% fo=Coo
I' l‘
R, ,'l iy )\ S _1/3
e N P e [t
1 I k=1
—
= o.10f
Yy
0.05} 1
0.00
-6 -4 -2 0 2 4 6
)
(b)

(a) Coupling function f(y) in terms of the coordinate y for @, = 1, /4 =1,k =1,& =1, and values of 1 smaller than —}—1 with
1+4,1 # n,n € Z~. (b) Coupling function f(y) for A = —1/3, which satisfies - 1+4A =2,k=1,¢6=1,and f, =

C.,, while u takes values

in Fig. 4(b) when u <0 and similar to Fig. 5(a) when
u > 0. It is also necessary to stress that the behavior of the
scalar field ®(y) is similar to that of the coupling function
(), as one may easily conclude by observing Egs. (4.4)
and (4.5). Therefore, it is redundant to present any graphs
of the scalar field as a function of the y coordinate.

The scalar potential Vy can be determined in terms
of the extra dimension y from Eq. (2.19) by substituting
the function f(y) given in Eq. (4.5). Consequently, we
obtain

_2444
52/(2@% (ﬂ+efk,v) T+41

—As — 6k%f +
Vi(y) =

2(1)2](2
— 6K3(fy + BR) + 2K

64(1142)?

x{[e™ (3 + 16/1) +3(1 44> — A(3 + 162)e20),

ez"e*k"(?s + due™ + ek,

2eR\{-1,0} (4.13)

p=-1

As in the linear case, it is possible to express the potential in terms of the scalar field ® in closed form and obtain

3k c1>2 S
—As — 6k* fo + =2 e (s%g;
+64(3 + 162)u (21@ DR

-m—wm+%wg
x{3 +4In %(%

In Figs. 6(a), 6(b), and 7(a), we display the behavior of the
scalar potential V as a function of the extra coordinate y
using the same values for the parameters as in Figs. 4(b),
5(a), and 5(b), respectively. It is worth observing the variety

(3+162)(3 + 152) (35 +

=2 + I’z (g - 2)]}

1422

+3)77 {362

1+4}

b AeR\{-}.0} (4.14)

A=—1/4

of forms that one may achieve for V by varying the values
of the parameters of the model. In Fig. 6(a), constructed for
A € (—=1/4,0), the scalar potential adopts a negative value
around the location of our brane, thus mimicking locally a
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FIG. 6. The scalar potential V in terms of the extra dimension y for As =0,k =1, = 1,and (a) A = —1/5, fy = C, and variable u
and @, while in (b) Dy =1, u =1, fy = Cy, and A = —1.5, =2, =3, —4, —7. In each case, C, and C, should be evaluated separately.

negative bulk cosmological constant As, while it vanishes
away from our brane. In Fig. 6(b), constructed for values of
A in the regime (—oo,—1/4), the scalar potential has a
positive value on and close to our brane and then decreases

rapidly to a constant negative value, which depends on the
values of the parameters of the theory. Finally, Fig. 7(a),

constructed for 4 = —1/3 and % = 2, shows the sensi-

tivity of the scalar potential to the value of parameter y with

=0, $p=0.2
o5 M 0 : N
pe = g TR 100}
717 \ q ‘\
0.0 K
-0.5 10] N\ /
—_ n=—— l‘ ,' A:) =0 50t
> 13 \ ]
= dy = 0.95 ' ! Jo=Cx
> -1.01 'l‘ 'l A= 71/3
p=—1 :
-15; |[®0=06 ) 3 b=l 0
) J g=1
L] 1
pw=-15 S Ao
-2.01 =-3
®y = 0.29 V| i I
l")/ CDO —0.08 -50
-2.5 : : : :
-6 -4 -2 0 2 4 6
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FIG. 7. (a) Scalar potential V in terms of the extra dimension y for As =0, A =—1/3, k=1, £ =1, and f; = C,. The varying

parameters are ®, and u. (b) Energy density p and pressure p of the system together with the scalar potential V in terms of the
coordinate y for As =0, fo =10, &y =1, u=1,k=1,(=1,and 1 = —1/3.
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local minima and maxima appearing in its profile. It should
be, however, stressed that the warp factor adopts its
exponentially decaying form for all aforementioned pro-
files of the bulk potential and independently of whether
As = 0 or not.

The components of the energy-momentum tensor of the
theory may be finally computed by employing Eqgs. (3.6)—
(3.7). As in the linear case, we obtain

p(y)==p(y)==6k*f(y). p(y)=p'(y)=p"().

We discussed thoroughly in the previous section, that in
order to satisfy the weak energy conditions on and close to
the brane, we should allow the coupling function f(y) to
take negative values at these regimes. Thus, demanding that
f(0) < 0 and using Eq. (4.5), we obtain the constraints:

(4.15)

<0 -Eu+1m] 1eR\{-1.0}
f 2o (4.16)
cIT§<Ze”—1,

)=
In Fig. 7(b), we present the energy density p(y), the
pressure p(y) = p'(y) = p*(y), and the scalar potential
V(y) in terms of the coordinate y. It is obvious that, for
this particular set of parameters, chosen to satisfy the above
constraints, the weak energy conditions are satisfied by the
bulk matter on and close to the brane.

We should complete our bulk solution with the junction
conditions introduced in the model due to the presence of
|

the brane at y = 0. As discussed in the previous section, the
energy content of the brane is given by the combination
6+ V,(®), and it creates a discontinuity in the second
derivatives of the warp factor, coupling function, and scalar
field at the location of the brane. Using Egs. (3.10) and
(3.11), for A # {—%,0} and A = —1/4, we obtain

(I)Z (I)2§2k
Vi (®D)],—9 = 6k -9 __0 7
o Vi@ = 6k(fo = 50 ) 4 5,0
X [B(L+ ) (1 +44) +42)(1 + ) 7,
(4.17)
2kED o
DoVl = 145 (1 + 1) TR+ ) (1+42) - 1],
(4.18)
and
(DZ Zk 2u
o+ V(@) =6k(fo + F) =T 3 42, (4.19)
o Vply—g = —2@okEue (1 +2), (4.20)

respectively. Using the constraints (4.17) and (4.19), it is
easy to deduce that in order to have a positive total energy
density on the brane, namely o+ V,(®)|,_o >0, we
should have, respectively

4 1
8> (1= €10+ 0 + thay (14078}, A€ R\(-1,0)

fs 1+ 8623+ 2p),

0

Let us also note that, from the constraint (4.20), we see that
the brane interaction term V, can be a constant, and thus
absorbed into the brane tension o, under the condition

u = —2. A similar fixing of the parameter y follows from
Eq. (4.18), which leads to the result y = — 4(311%). How-

ever, in this case, care should be taken so that the resulting
values of y, in terms of 4, are allowed by Table 1.

The effective four-dimensional gravitational scale on the
brane has already been calculated and is given in
Egs. (4.10) and (4.11). The effective cosmological constant
on the brane A4 can be calculated from Eq. (3.21), and is
found to be zero also in this case, as anticipated.

B. The energy conditions in the parameter space

We will now study the inequalities (4.12), (4.16), and
(4.21) and investigate again whether these may be simul-
taneously satisfied. In particular, we will study the param-
eter space between the ratio f/ d% and the parameters 4, g,

(4.21)
A=—1/4

|

and &. Given the large number of parameters, we will
present three-dimensional graphs of the parameter space of
the ratio fo/®3 with two of the three parameters A, u, &,
while keeping the remaining one fixed. Before we continue,
we eclucidate that, in the forthcoming analysis, we will
denote the right-hand side of inequality (4.12) with
Feir(A,u, &), since it is associated with the -effective
gravitational constant, the right-hand side of inequality
(4.16), which refers to the energy conditions in the bulk,
with Fg(4, u, £), and finally, the right-hand side of inequal-
ity (4.21), which involves the total energy density on the
brane, with Fy (4, pu, ).

While pursuing to satisfy simultaneously all the afore-
mentioned inequalities, we have performed a comprehen-
sive study of the parameter space of the quantities f(,/®3, 4,
4, and & following the classification of cases, regarding the
values of the free parameters, presented in Table I. We
present the corresponding results below:
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£=1
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FIG. 8.
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§
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32115
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(a) Parameter space of the quantities f,/®Z, A and u, for £ = 1 and A > 0. (b) Parameter space of the quantities f,/®Z, u and &,

for A = —1/5 or 124- = —2 and u < —1. The graphs depict the functions Feg(A, s, &), For( A, &), and Fg(A, p, &).

1+44 —

(1) For A > 0, we have u > 0, while the parameter £ can
take values in the whole set of real numbers except
zero. In Fig. 8(a), we depict the parameter space of
the quantities f,/®3, 4, and y, for E =1 and A > 0.
Although the surfaces representing the functions
Fe(Ap. &), Fpp(Ap, &), and Fg(Ad,pu,&) change
significantly for different values of the parameter
&, their relative positions remain the same satisfying
always the relation

Foe(A,p, &) > Fp(A,p. &) > Fop(A, . §).

This means that there is no point in the parameter
space for 4 > 0 at which all three inequalities are
satisfied simultaneously. It is possible though to
satisfy simultaneously the inequalities (4.12) and
(4.21). Particularly, for every value of the ratio
fo/®3 which is greater than the value of the function
Foi (4, u, €) at any given point in the parameter space
the aforementioned two inequalities will be satisfied.
This means that the positivity of both the effective
four-dimensional gravitational constant and the total
energy density on the brane is ensured. In contrast,
there is no point in the parameter space at which we
can satisfy the inequality (4.16) because the surface
of the function Fy(4,pu, &) lies always below the
surface of the function Fg (4, u, £); as a result, the
weak energy conditions are always violated by the
bulk matter close to the brane.

(ii) For A € (—4.0), 125 # n, n € Z~, we have u > 0,
and we obtain the same qualitative behavior as in the
previous case. However, when % = n, we have

U € (—o0,—1) U (0, 00). In this case, the position of

the surfaces Fog (4, i, &), Fp (4, 1, &), and Fg (A, u, &)

are different in the region of the parameter space

where y < —1 and in the region where u > 0.
Specifically, in this case we find that

Foe(Ap1,8) > Fg(A, &) > Fee (A1, §),
Feff(ﬂ’ﬂvé) > FB(/L/J’Z.;:) > Fbr(ﬂ’ﬂvf)a

u<-1,
u>0.

Again, there is no point in the parameter space at
which we can satisfy simultaneously all inequalities.
For u > 0, the situation is similar to the one of case (i)
depicted in Fig. 8(a). In this case, we may easily obtain
a positive effective gravitational constant and a
positive total energy density on the brane. For
u < —1, though, as Fig. 8(b) also reveals, we have
the choice of supplementing the positivity of the
effective gravitational constant by either a positive
total energy density on the brane or by a bulk matter
that satisfies the energy conditions close to our brane.

(iii) ForA = —1/4, due to the different form of the solution,
the functions Fog(—1/4,u,&), Fo(—1/4,u,&), and
Fp(=1/4,u,&) are given by different expressions.
Now, these are found to satisfy the relations

Feff(_1/4’ﬂv£) > FB(_1/47”7€) >Fbr(_1/4’/’lﬂ£),
u <0,

Foe(=1/4,1,8) > Fp(=1/4,1,8) > Foir(=1/4,11,£),
u>0.

In this case, for y <0, we may obtain only the
combination of a positive effective gravitational scale
and a positive total energy density on the brane, in the
region of the parameter space in which the value of the
ratio f/®3 is greater than the value of the function
Fo(—1/4, u, £); the relative positions of the different
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surfaces are the same as in Fig. 8(a). On the other hand,
for p > 0, we again have the choice of satisfying
either Egs. (4.12) and (4.16), in the region
where Fop(=1/4..8) < fo/®} < Fy(~1/4,p.8),
or Egs. (4.12) and (4.21), in the region where
fo/®@3 > Fuor(—1/4,p,&). This situation is in turn
similar to the one depicted in Fig. 8(b).

(iv) For A < —1/4, %#n,neZi and for every

allowed value of the parameters u >0 and
& € R\{0}, we always have

Fbr(/l’”vé) > FB(/L/’"é) > Feff(/17ﬂ7§)'

In this case, the situation is similar to the one
depicted in Fig. 8(b), and we have again the choice
of combining a positive effective gravitational con-
stant with either a positive energy density on the
brane or a bulk matter that satisfies the weak energy
conditions close to and on our brane.

(v) For A < —1/4 and %~ = n,n € Z>, the parameter

1+47 —
u is free to take values in the whole set of real

numbers. In Figs. 9(a) and 9(b), we depict the
parameter space of the ratio f,/®3 and p together
with the curves of the functions Fg(4,u,&),
Fpe(A, u, &), and Fg(4,p,&). Note that, for clarity
of the graph, we have fixed the values of two
parameters, i.e., A=—1/3 and £=1, and thus
present a two-dimensional graph. However, the
situation remains the same for every other allowed
value of the parameters 1 and £. We observe that

30

_____ Fepy(—1/3,p,1)
2L Fp(=1/3,m1)
20l |- Fy(—1/3,p,1)

(a)

there always exists a region in the parameter space in
which we can have a positive value for the effective
four-dimensional gravitation scale and satisfy the
weak energy conditions close to the brane (green
region) and a region in which both the four-dimen-
sional gravitational constant and the total energy
density on the brane are positive (brown region).
Since there is no overlapping between the green and
brown regions, as Fig. 9(b) reveals, there is no point in
the parameter space where all three conditions are
satisfied. For comparison, we note that the parameters
in Fig. 7(b) have been chosen so that the depicted
solution falls into the green area of Fig. 9(a).

V. AN INVERSE-POWER COUPLING
FUNCTION IN TERMS OF y

In this and the following two sections, we will consider
explicit forms of the coupling function f(y) in terms of the
coordinate y. These forms cannot be easily expressed in
terms of the scalar field @ in a closed form; they are
however legitimate choices that satisfy the reality and
finiteness conditions imposed in Sec. II. We start with
the following expression:

@5
K (y + yo)*’

where (fo, @) € R\{0} while (4,y) € (0,40c0). The
factor k* in the denominator was introduced to make the
product k(y + yy) dimensionless.

f)=fo+ (5.1)

s Feff(fl/?)v,uvl) I FB<71/37/L71) o Fbr<71/3>.u7 1)

1
)
1
-0.68 \
1
1

-

.
1
1
[}
1
1
L}
1
I
1
-0.70} !
1
(]
1

-0.72¢

-0.74}

_____

-1.2 -1.0 -0.8 -0.6 -0.4

(b)

FIG.9. (a)Parameter space of the quantities f/ d>(2) and p, for £ = 1, 4 = —1/3. (b) Magnification of a particular region of the previous
figure in order to get a clear picture of the behavior of the functions Fey(—1/3,p,1), Fy.(—=1/3,u,1), and Fp(—1/3,u,1)

close to 4 = —0.8.
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A. The bulk solution

Substituting the aforementioned coupling function in
Eq. (2.18) we obtain the differential equation:

prs

(@' (y)]* = W

[k(y +y0) —4=1].  (5.2)

The right-hand side of the above equation should be always
positive; evaluating at y = 0, the above yields the following
constraint on the parameters of the model:

kyo
A+1

> 1. (5.3)

The function [@'(y)]* could, in principle, be zero at the
point where ®(y) has an extremum. However, from
Eq. (5.2) this may happen only at y = yo(’{+1 1) which,
upon using the constraint (5.3), turns out to be negative.
Therefore, the scalar field does not have an extremum in the
whole domain y € [0, +00), which also means that ®(y) is
an one-to-one function in the same regime. In addition,
from Eq. (5.2) it is straightforward to deduce that, as
y = +o0, the physical constraint (2.23) is satisfied, thus,
the scalar field does not diverge at infinity.

Let us now determine the explicit expression of the scalar
field ®(y) from Eq. (5.2). For simplicity and without loss of
generality, we will assume that @y € (0, +o0). Then, after
taking the square root of Eq. (5.2), we have

Do/A(A+1) — k(y+yo) ]2
(5.4)
Setting u = k(ﬁf‘” and then w = 1 — 1, the above integral

takes the form

(5.5)

3-135
Fil—.5:53l————— ) = . 0
2‘(2 2°2 k(y+y0)> T EL/ERI q+2)(q+){1_/1+1]7 4> 1

where in the last line we have made the change of variable
¢ = L. Using the integral representation of the hypergeo-
metric function (4.7), Eq. (5.4) leads to the following
expression for the scalar field ®(y):

20, yl A+1 73
D (y) =0 -
+0) =+ <z+1>ﬁ-l[ k<y+yo>}
3 135 A+1
2F1<2 222 k<y+yo>>' 56

In the above, we have also used the translational symmetry
of the gravitational field equations with respect to the scalar
field, discussed also in Sec. III A, to set C; = 0.

A solution for the scalar field similar to Eq. (5.6) was
derived in the context of our previous analysis [73] for an
exponential coupling function f(y) and an anti-de Sitter
brane (A < 0). The mathematical properties of the solution
were studied there in detail; therefore, here we adapt those
results in the present case and present our solutions for
the scalar field without repeating the analysis—we refer
the interested reader to our previous work for further
information.

Trying to simplify Eq. (5.6), we first note that for every

value of the coordinate y, the argument 1 — (’iii 3 of the

hypergeometric function is positive and smaller than unity.
Therefore, one can expand the hypergeometric function in
power series as [73,83]

I+1
k(y+yo

tn) 3 { )Y' (5.7)

There are two interesting categories of values for the
parameter A which lead to even simpler and more elegant
expressions for the hypergeometric function and sub-
sequently for the scalar field. These are as follows:
(1) If A=1+2q with g € Z~, then, from Eq. (5.7),
we have

1, q=

(2n+3)n! k(y+yo)
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The solution for the scalar field then easily follows
by using Eqgs. (5.6) and (5.8) and substituting the
selected values for the parameter 1 (or g). As
indicative cases, we present below the form of the
scalar field for’ 1 =3 G.e,qg=1

@, 4 13
®“”:imﬁb‘mwmﬂ’

and 1 =5 (ie., g =2)

B q)o\/g ~ 6 3/2
¢“”is4[1k@+mﬂ

5[l

(ii) If A =2g with ¢ € Z~, we can always express the
hypergeometric function in Eq. (5.6) in terms of
elementary functions, namely arcsin, square roots,
and powers of its argument. For 1 =2 (i.e.. ¢ = 1),
it is

P 135 , _31 arcsin u 1 2
222" ) T2\ “

Therefore, from Eq. (5.6), the scalar field for A = 2
can be written in the form

O (y)= i%;ﬁ [1 _k(yiyo)]% K] ‘ﬁ) _%

For larger values of 4 (i.e., for ¢ =1+ ¢, with
¢ € Z7), the following relation holds:

1 3.5. 2 2
2F1 (E—f,i,i,u )I/t

arcsinu
=a -V 1=u?
u

V= (B +fout BV - fou),
(5.10)

*For completeness, we present here also the solution for the
limiting case with A =1 (i.e., for ¢ = 0); this has the form

2 2
wetanh (\/1 Ky +yo)> - \/1 k(v + o)

20
@, (y) :iTO

where a, f;, ..., are constant coefficients, which
satisfy a system of £+ 1 linear algebraic equa-
tions [73]—the solution of this system readily
determines the unknown coefficients a, 3y, ..., f¢.
For example, for # =1 (i.e., for ¢ = 2, or equiv-
alently 4 = 4), this set of equations gives a = 3/8
and f, = 3/4. Upon substituting these in (5.10), the
solution for the scalar field follows from Eq. (5.6)
and has the form

=)= isq)% [1 _k(y—swo)]é

()

5
X arcsin ]l——-——
( k(y + )’0)>

VG i Yo) G k(y Jsr )’0)>

X

(5.11)

In Fig. 10, we depict the coupling function f(y) and the
scalar field ®(y) for the indicative set of parameters
fo=0, ®&g=15, yg=1, k=25, and 1= 1.5. For
comparison, we also display the exponentially decreasing
warp factor. The coupling function remains localized near
the brane and asymptotically decreases to the constant
value f(, which here has been taken to be zero. The scalar
field starts from a constant value at the location of the
brane, which for this set of parameters turns out to be zero,
and goes asymptotically to a constant value that depends on
the values of @, and 1. Although this is not very clear from

1.5 L4
"’
'O
4
4
4
'l
1.01 e fo=0
V4
/. Py =1.5
4
'I

, Yo=1

0.57 "\‘ ’
2 . II k = 25

» [1\Y
P A N A=15
__-’ v | ! L T
------- - Y L
0.0f B~
-4 -2 0 2 4
Yy

FIG. 10. Warp factor e2A0) = =2k the coupling function
f(y) and the scalar field ®(y) in terms of the coordinate y for
fo=0 @ =15, yo=1, k=25, and 2= 1.5.
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Fig. 10, it easily follows from Eq. (5.6) with the asymptotic
value of the scalar field, as y — +o0, coming out to be

[NSIE

LV LI
2 (a+ 1)1

)
1

lim @, (y) = .
Jim @ (y) )

(5.12)

NS1E

It is worth noting that the profiles of both f(y) and ®(y) do
not change with the variation of the values of the
parameters.

The potential of the scalar field Vz(y) in the bulk can be
determined from Eq. (2.19) using the expression of the
coupling function f(y). Thus, we find

@3
Ve(y)=—As =6k fo——— 0
B(y) 5 fO 2kj(y+yo)l+2

x [12K2(y+0)> + Tk(y+yo) +AA+1)].  (5.13)
Since 4 > 0, the last term in the above expression is
negative-definite; it also vanishes as y — 4oo leaving
the parameters As and f to determine its asymptotic
value. Depending on the values of the parameters, the
potential may be either positive or negative at the location
of the brane or asymptotically far away. In Fig. 11, one can
observe the aforementioned behavior of the scalar potential
Vg (y). The values of the fixed parameters As, fo, @, yo, k
are the same as in Fig. 10, while the parameter A varies.

The energy density p(y) and pressure p(y) = p'(y) =
p’(y) may be finally computed by employing Egs. (3.6)
and (3.7). Then, we are led to the result

p(y) = =p(y) = —6k*f(y) = 6k {fo ’ ﬁ]

(5.14)

Vi(y)

FIG. 11. Scalar potential V in terms of the extra dimension y
for As =0, fo=0, &3=1.5, yo=1, k=25, and 1=
0.5,1,1.5,2.5 (from bottom to top).

If we wish to satisfy the weak energy conditions close and
on the brane, we should have p(0) > 0, which in turn
means f(0) < 0; in that case, the parameters of the model
should satisfy the following inequality:

fo 1

o <o (5.15)

B. Junction conditions and the effective theory

From the field equations (2.12) and (2.14), we obtain the
following junction conditions for the matter on the brane:

3fWIAT ===

(@] = 4[A"]0pf + 0oV,

(0+ V), (5.16)

(5.17)

where all quantities are again evaluated at y = 0. The only
difference in this case is that we have used the derivatives of
the coupling function with respect to the coordinate y rather
than the one with respect to the scalar field. This is due to
the fact that the explicit expression of the function f(®) is
not known—although ®(y) is a one-to-one function, it
cannot in general be inverted. Taking advantage of the Z,
symmetry in the bulk, we can easily evaluate the total
energy density on the brane by Eq. (5.17), which is given by

2(I)2
0+ Vy(®@)],—g = 6kfo + 7 ﬂyHl (3kyo + 1)
0
fo 3kyg —|—ﬂ]

s [
If we demand the total energy density on the brane to be
positive, namely ¢ + V,(®)|,_o > 0, then we straightfor-
wardly deduce the constraint

Jo, kil (5.19)
i 3(kyo)**

In order to evaluate the first jump condition (5.16), we
write dpf = O,f/®" and 0¢V) = 0,V,/®'. We are
allowed to do this since, as we mentioned previously,
the function ®(y) does not possess any extrema in the bulk;
therefore, @’(y) never vanishes. Then, multiplying both
sides of Eq. (5.16) by @’ and using Eq. (5.2), we obtain the
condition

202
~ O (3kyg + A+ 1).
0

WVily—o = (5.20)

Due to the fact that 4 > 0, k > 0, and y, > 0, the right-hand
side of the above equation never vanishes, which means
that V;, # const.

Let us now focus on the effective four-dimensional
theory on the brane. Using Eq. (3.17) and the expression
for the coupling function, from Eq. (5.1) we obtain
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1 202 [ e~y
2:f0_|_OA dy<7

Ky kK y + o)
fo 2@(2) e2kvo /oo e~ 2k(y+y0)
=t —— y—————. 5.21)
k K 0 (v + y0)* (

Setting 7 = 2k(y + yy), the above relation takes the form

1 22 e2kvo )
—2—&+L(2k)'1"/ dtte!
2

Ky k k/1 kyo
2/1(1)2 2kyq
:f—ko+°Ter(1 — 1. 2kyp). (5.22)

Above, we have used the upper incomplete gamma
function I'(s, x), defined as

(s, x) = / Tdrrle, (5.23)

The properties of the incomplete gamma function as well as
the expressions giving its numerical values are discussed in

Appendix B. With the use of Eq. (5.22) and the relation
1/k3 = M3%,/(87), we finally obtain

87D
M2, = 10&%+y&an42@w} (5.24)
0

Demanding the positivity of the effective four-dimensional
gravitational scale M%l, we are led to the additional
constraint

% S Z0ke200T(1 = A, 2kyy). (5.25)

0

Finally, substituting the total energy density on the brane

from Eq. (5.18) and the expressions of the functions f(y),

®(y)® and Vg(y) in Eq. (3.21), we can verify that the

effective four-dimensional cosmological constant on the
brane is zero, as expected.

C. Energy conditions and the parameter space

In this subsection, we will study the parameter space of
the ratio f,/®3 and the dimensionless parameter ky. The
value of the parameter 1 may be also varied; however, once
fixed, it determines the allowed values of the parameter ky,
through the constraint (5.3). As usual, we will investigate
the parameter regimes where the inequalities (5.15), (5.19),
and (5.25) are satisfied.

In Fig. 12, we depict the aforementioned parameter space
for the value 4 =3. We also depict the curves of the

®For the calculation of the effective four-dimensional cosmo-
logical constant on the brane Ay, it is more convenient to use the
relation (5.2) instead of the explicit form of the scalar field ®(y)
as given by Eq. (5.6).

-0.002f
-0.004}
-0.006}
C\Illello
< -0.008F S A=3
L " A 2kyo
K e =22 (1 — X, 2kyo)
-o0.010t/ 1
, I
K (kyo)*
-0-012'," _____ Skyo + A
v 3(ky0))‘+1
-0.014}

50 55 60 65 7.0 7.5 8.0
kyo

FIG. 12. Parameter space between the ratio f,/ d)% and the
parameter ky,, for 1 = 3. The figure depicts also the plots of the
expressions appearing on the right-hand sides of the inequalities
(5.15), (5.19), and (5.25).

expressions on the right-hand sides of the inequalities
(5.15), (5.19), and (5.25). Although the corresponding
curves have been drawn for a particular value of 4, it turns
out that their relative position remains the same for any
allowed value of the parameters A and ky,; namely we
always have

. 1 3kyo+4
_92,2kyoT(1 — - _ - )
2ol (1=4.263,) (kyo)* ™ 3(kyo)**!
Clearly, this means that only the inequalities (5.19) and
(5.25) can be simultaneously satisfied. Therefore, we may
easily obtain a model with a positive four-dimensional
gravitational constant and a positive total energy density on
the brane. However, in that case, we will not be able to
satisfy the weak energy conditions by the bulk matter close
and on the brane. This means that the energy density p will
be negative at the location of the brane with the pressure
having the exact opposite value.

VI. A LINEAR-EXPONENTIAL COUPLING
FUNCTION IN TERMS OF y

In this case, we consider the following coupling function
f(y) in terms of the coordinate y:

F) = fo+ frkye™.

We also assume that f; € R\{0} and 1 € (0, +o0) in order
for f(y) to satisfy the physical constraints discussed at the
end of Sec. II.

Let us start by deriving first the bulk solution.
Substituting the aforementioned coupling function in
Eq. (2.18), we obtain

(6.1)
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@ )P = ik Ra-1-2A- Dhy]. (6.2)

Since the scalar field ®(y) should be a real-valued function,
it is obvious that [®(y)]?> > 0 for all values of y which
are greater or equal to zero. Let us first assume that
f1 < 0; then, demanding that [®’ (0)]2 > 0, we obtain the
constraint A < 1/2. On the other hand, for large values of
the y coordinate (i.e., at y =y, > 1), demanding that
[®'(vy)]? >0 leads to 4> 1.7 However, these two con-
straints are incompatible, which leads us to deduce that the
parameter f; should be strictly positive. In that case,
a similar argument as above leads to the allowed regime
= [% 1]. Moreover, since f; is positive, we may set
f1 = @3, and assume for simplicity that @, € (0, +o0).

For A = 1, we can easily integrate Eq. (6.2) with respect
to y, and determine the expression of the function of the
scalar field ®(y). Then, we obtain

D, (y) = 2dje k72, (6.3)

Above, we have used again the translational symmetry of
the gravitational field equations with respect to the value of
the scalar field in order to eliminate an additive integration
constant. By inverting the above function, we can express
the coupling function in terms of the scalar field ®, namely

®? 0]
D) =fo——Inl — .
f(®@) = fo > n<2q)0>
Equation (6.2) is more difficult to solve in the remaining

A-parameter regime, i.e., for 1€ [%1) In that case,
Eq. (6.2) leads to

(6.4)

O (y) = iCDok/dy e 220 — 1= 24— 1)ky

20
= j:TO [—e—lky/z‘\/zﬂ —1—2(2—1)ky

+/dye"1k»"/2afly(\/2/1—l—i(/l—])ky) .
(6.5)

Focusing on the second term of the right-hand side of the
above relation, and due to the factthat A € [%, 1), we can write

/dye—%diy(\/u—l—/l(x—l)ky)

2A—1=A(A=1)ky

291 _2-1-AG-Dky (]
=e20-04/2(1 =4 d 200 —
VA )/ ve o\ 20-2)

B n(1-2) 2icl 2A—1=A(A=1)ky
— > e >erf<\/ 2(1_/1) >, (6.6)

7Here, we have used the fact that, for large values of y, only the
term proportional to ky mainly contributes to the value of

[@' ().

where we have used the error function, defined as

2 X
erf(x) = 77,[% dte™",

and its property

_ 2 apdy(x)
Eerf(g(x))—\/—;re ) s

Combining Egs. (6.5) and (6.6) we obtain

Q. (y) =+—

w(1=2) 2 2—1—=AMA—=1)ky
2 “ )enc<\/ 2(1-2) )]

(6.7)

—e™ 2 20— 1= A(A=1)ky

In this case, it is not possible to invert the function ®(y) in
order to find the form of the coupling function f(®).
However, from Eq. (6.2) and for A € [3, 1), it is straightfor-
ward to deduce that @'(y) # 0 for all y > 0; this, again,
means that ®(y) does not have any extremum, and is
therefore a one-to-one function. This property will be of use
in the evaluation of the junction conditions on the brane.

In Figs. 13(a) and 13(b), we present the warp factor, the
coupling function, and the scalar field for particular choices
of values for the parameters of the model. The coupling
function f(y) adopts the same constant value f, at the
location of our brane and at asymptotic infinity while
reaching a maximum value at some intermediate distance
off our brane, as depicted in Fig. 13(a). In Fig. 13(b), the
scalar field presents two distinct profiles, for A =1 and
A€[}.1) due to the two different solutions given by
Egs. (6.3) and (6.7), respectively. In all cases, though,
®_ (y) remains everywhere finite approaching a constant
value at asymptotic infinity: for A = 1 this constant is zero,
while for 4 € [%, 1) this is given by the expression

. 20, [z(1-2) 2! 1
= _— (1-4) —
ykrinoo(bi(y) + 7 \/ 5 re 2,1 . (6.8)

In the above, we have used the fact that the limit of the error
function appearing in Eq. (6.7), as y — 400, is unity. Due
to the Z, symmetry imposed on our model, the same limit
will hold for the scalar field also for y - —oo.

From Eq. (2.19), we may now determine the potential of
the scalar field Vz(y) in the bulk by using the expression of
the coupling function f(y). Then, we find
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FIG. 13. (a) Coupling function f(y) and the warp factor ¢~2A0) in terms of the y coordinate for fo = 0, ®y = 1, k = 3, and 1 = 0.5.

(b) Scalar field ®_ (y) for ®, =1, k =3, and 1 = 1,0.5,0.7.

2

7 2212
V(y) =—As—6k>fo+ DFk> e~ {E—H—ky <—+?+ 6)] ,

L€

%, 1] . (6.9)

On the other hand, the energy density p(y) and pressure

p(y) = p'(y) = p’(y) may be computed by employing
Egs. (3.6) and (3.7); then, we obtain

p(y) = —p(y) = —6k>f(y)

= —6k*(fo + DPgkye ™). (6.10)

In order to satisfy the weak energy conditions close and on
the brane, we should have again p(0) > 0, or equivalently
f(0) < 0; hence, we are led to the following inequality:

% <0. (6.11)
0
In Fig. 14, we present the energy density and pressure as
well as the profile of the bulk potential for the same values
of parameters as in Fig. 13 for easy comparison. We
observe that both components and the bulk potential are
everywhere finite, reach their maximum values at a finite
distance from our brane, and reduce to a constant value
(which here is taken to be zero) at large distances.
Let us now turn to the junction conditions introduced in
the theory at the location of the brane. From Eqgs. (5.16) and
(5.17), we obtain in a similar way the conditions

0+ Vy(®)|y—o = 2k(3fo — ©7). (6.12)

5
D,V = 81203 </12 —A+ Z) , (6.13)

for 2 € [5. 1]. The total energy density on the brane will be

positive if and only if ¢ + V;,(®)],_, > 0, which results to

FIG. 14. Energy density p and pressure p of the system together
with the scalar potential V in terms of the coordinate y for
As =0, fo=0,0y=1,k=3,and 1 =0.5.
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(6.14)

Next, we are going to evaluate the effective four-dimen-
sional gravitational constant on the brane. Using Eq. (3.17),
we obtain

M_%z_@%[fo 2 ]
8

==+ 6.15
r  k |[®F (2+2)? (6.15)

1
2
K

For a robust effective theory on the brane, it is imperative to
have a positive four-dimensional gravitational constant;
thus, we must satisfy the following constraint:

fo 2
— > - .
2 (24 1)

(6.16)

Once again, as expected, the effective four-dimensional
cosmological constant on the brane may be found to be zero
with the use of Eq. (3.21).

It is straightforward to study whether the inequalities
(6.11), (6.14), and (6.16) can be simultaneously satisfied.
By merely observing the first two of them, it is easy to
deduce that they are incompatible since the value of f,/ CID%
can be either positive or negative. Additionally, as we
already mentioned, the parameter A takes values in the
range [% 1]. In this case, it holds that

8 2 2
LA S 6.17
257 2427 9 (6.17)

Hence, we can simultaneously satisfy either the inequalities
(6.11) and (6.16), or (6.14) and (6.16). In particular, a
positive four-dimensional gravitational scale M?%, can be
combined with the bulk matter satisfying the weak energy
conditions close to the brane, for

fo
<0,
9 @2_

or with a positive total energy density on the brane, for

The particular solution depicted in Fig. 14 corresponds to
the value f(, = 0O; therefore, it is characterized by a negative
energy density inside the bulk, which violates the energy
conditions. Note, however, that at the location of our brane,
both the energy density and pressure are zero while the bulk
potential is positive.

VII. A DOUBLE-EXPONENTIAL SCALAR
FIELD IN TERMS OF y

In this section, we follow an alternative approach and
consider the following expression for the scalar field in
terms of the coordinate y:

D(y)

Although this expression seems similar to the subcase of
the quadratic coupling function with 1 = —1/4, it differs
significantly as it will become clear from the expressions of
the coupling function f(®) and the scalar potential V z(®).
Moreover, it is obvious that both parameters ®, and u can
now take values in the entire set of real numbers except
zero. With the form of the scalar field already known, it is
straightforward to derive the corresponding forms of the
coupling function, bulk potential, and components of the
energy-momentum tensor. Starting with the coupling func-
tion, upon substituting the aforementioned expression of
the scalar field in Eq. (2.18), we readily obtain

= Qe ", (7.1)

@ : :
) = fo=f1e™ =25 (2 + 7).

(7.2)
In the above result, the parameter f| is allowed to take
values in the whole set of real numbers, while the allowed
values for the parameter f, will be examined shortly.
Inverting the function ®(y), the expression of the coupling
function in terms of the scalar field reads

fim? @2 1
n(@/®y) 4 (1‘ln<d>/d>o>>‘ (73)

The scalar potential V z(y) can then be evaluated employing
Egs. (2.19) and (7.2). Then, we find

f(q)):fo+

V(y) = =As — 6k* fo + 10k fre7*
Dk’ o2 —k 4k 6,2k
+2,uz 1 (Se7hy TP 4 dptely + p0e?),
(7.4)
in terms of the y coordinate, or
10k%f1 > DZK? 5
Vg(®) = —As — 6k>f — o -
o @)= A= /g T2 T In(@/ay)
0] (ORNE
+7—-4In|— In , (7.5)
@, @,

in terms of the scalar field. In Figs. 15(a) and 15(b), we
display the profiles of the coupling function and scalar
potential in terms of the y coordinate, for particular values
of the parameters of the model. The varying parameter here
is f1, which is clearly the decisive one for the form of both
functions. We observe that for positive f;, the coupling
function takes its lowest value at the location of the brane
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FIG. 15. (a) Coupling function in terms of the y coordinate for fy=1, ®,=2, k=1, u=1, and f,;=

—1,-0.7,-0.4,-0.25,-0.15,0.6 (from top to bottom). (b) Scalar potential V in terms of the coordinate y for As; =0, f, =1,

®y=2k=1pu=1and f, = 1.1,

while, as f; gradually takes larger negative values, the
coupling function eventually exhibits a peak at the location
of the brane. The bulk potential has almost the exact opposite
profile of the coupling function: it acquires a maximum,
positive value at the location of our brane for | > 0 while it
turns to globally negative values for f; < 0. For every set of
values of the parameters, though, both functions are every-
where finite and reduce to a constant value at large distances
—this value, when A5 = 0, is determined by f,.

Finally, the energy density p(y) and pressure p(y) =
p'(y) = p*(y) components may be computed as usual by
employing Egs. (3.6) and (3.7), in which case we are led to
the results

p(y)==p(y) =—=6k>f(y)

®? .
=—6k2| fo—frek —4—02e—2ﬂ26k’ (U2 4e~*)|. (7.6)
u
In order to satisfy the weak energy conditions close and
on the brane, we demand again that f(0) < 0; hence, we

obtain the following inequality:

fO f] 6_2”2.
d)z 4/4

(7.7)

Turning now to the junction conditions, from Eqgs. (5.16),
(5.17) and using also the relations (7.1)—(7.3), we obtain

2k 24

0+ V()| =6kfo—8kf - 7(4"'5# +2u),

(7.8)

-0.9,-0.7,-0.5,-0.3,0.6 (from bottom to top).

203 k?
Vplyo =8k f1+ ¢

e (14242 +-2p* +-46). (7.9)

In the second of the above equations, we have used the
relation 0,V), = @04,V ,. In order to have a positive total
energy density on the brane, we should have

&iﬁ
073

(4+5M + 2%, (7.10)

2#

In the context of the effective theory on the brane, we may
evaluate the four-dimensional gravitational scale using
Egs. (3.17) and (7.2). Then,

L fo 2fi 2‘1%/‘” 20 _
- JYvy_ =1 _ =70 d —2uce® =2ky (,,2 —ky
2k 3k 42 )y P (W™ te™)

fo 2f1 2®%u* (e ’ 2 / © 4 -
A il Ay - dtt o, (7.11
Kk k \sa H L) G

where, in the second line, we first set ¢™¥ = w and then
25—2 = t. The integral in the above expression is the upper
incomplete gamma function I'(=3, 244%) as one may easily
conclude from Eq. (B1). The latter quantity, through
Eq. (B4), may be written as

1 [e2

s (1= +2u%) -10(0,24%) |, (7.12)

where
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(a) 3D parameter space of the quantities f/®3, f|/®3, and p. (b) 2D parameter space of the quantities f/®3 and u for

f1/®@3 = —5. The figures also present the corresponding surfaces or curves of Fp(f;/®3,u), Fp,(f1/P3, 1), and Fog(f1/ D3, 1)

o) m2m 2m
1(0,24%) = —y —In (24?) Z (7.13)
-1
Hence, we finally obtain
1 M _Jo_2/i e~ 5
— — -2
< 8tk 3k 12k2(+” #)
‘Doﬂ
(0, 2u 7.14
VT(0.24). (7.14)

Demanding as usual a positive four-dimensional gravita-
tional constant, we find that the following inequality must
be satisfied:

fo 2
307 2ﬂ

4
(2 +u? —2ut) +%r(o, 242). (7.15)

As before, the evaluation of the effective four-dimensional
cosmological constant gives A, = 0.

Finally, we investigate the parameter space of the
quantities fo/®3, f1/®3, and p, in an attempt to simulta-
neously satisfy the inequalities (7.7), (7.10), and (7.15). In
Fig. 16(a), we depict the aforementioned parameter space
as well as the surfaces which correspond to the right-hand
sides of these inequalities. We observe that there is no point
in the parameter space at which all three inequalities can be
satisfied. It is possible though to satisfy two out of these
three inequalities simultaneously; which two are satisfied
depends on the values of the parameters. For f|/®} = 5,
for example, the situation is simple as the relative position
of the three surfaces remains the same independently
of the value of y: thus, we may have a positive effective
cosmological constant and a positive total energy density

on the brane for low values of f,/®3 whereas for large
values of fo/¢>2 we have a positive M p; and the weak
energy conditions are satisfied close to our brane. For
f1/®% = =5, the situation changes and the pair of con-
ditions satisfied depends on the values of all three param-
eters—the exact situation is depicted in Fig. 16(b) where
the green region corresponds to the area where the inequal-
ities (7.7) and (7.15) are satisfied, and the brown region to
the area where (7.10) and (7.15) are satisfied.

In Fig. 17, we present the graphs of the energy density
p(y) and pressure p(y) as well as the potential of the scalar

40

307

207

n
1
]
1
1
1
1
1
1
)
1
1

FIG. 17. Energy density p and pressure p of the system together
with the scalar potential V in terms of the coordinate y for
ANs =0, fo=4,Dy=1,f, =0, k=1, and p =0.2.
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field V(y) in terms of the y coordinate for As = 0, f, = 4,
Oy=1, f1 =0, k=1, and g =0.2. As we can see in
the figure, the values of the parameters are appropriately
chosen to satisfy the weak energy conditions close to
the brane.

VIII. A HYPERBOLIC-TANGENT
SCALAR FIELD IN TERMS OF y

Following the same line of thinking as in the previous
section, we now consider the following expression for the
scalar field in terms of the coordinate y:

®(y) = @, tanh(ky), (8.1)

where @, € R\{0}. Substituting the above expression of
the scalar field in Eq. (2.18), we obtain the form of the
coupling function
D (e —1)
3(e*+1)?
(8.2)

f()=fo—f1e7® +®e* arctan(ek) —

Again, the parameter f; is allowed to take values in the
whole set of real numbers, while the allowed values for
the parameter f, will be examined shortly. By inverting the
function ®(y), we may express the coupling function in
terms of the scalar field to get

Dy+ @\ DD+ D)
Dy — D 6
(8.3)

Similarly, the scalar potential V(y) can be evaluated
from Eq. (2.19) with the use of (8.2); then, we find

Vs(y) = =As — 6k2fo + 10k%e ™ [f, — @ arctan(e)]
22D 6 + 1920 + 19y — 36k 38k
3 (e +1)* ’

(8.4)

In terms of the scalar field, the scalar potential is alter-
natively written as

Vp(®)=—As—6k*f,
Oy—D D)+
0 | — @3 arctan ot

Dy 1 @ Dy—D
2

k
+@(3q>4 + 8D D) +4D> D] — 140D] + 11D}).
0

+10k?

(8.5)

The profiles of the coupling function and scalar potential in
this case are qualitatively the same as the ones in the
double-exponential case of the previous section depicted in
Figs. 15(a) and 15(b). Again, as the parameter f; changes
from positive to negative values, the coupling function
acquires an increasingly larger positive value at the location
of our brane; with the same variation, the scalar potential
changes from globally positive-definite to globally neg-
ative-definite values. As before, both functions remain
finite everywhere in the bulk and adopt constant values
at large distances.

The energy density p(y) and pressure p(y) = p'(y) =
p’(y) may be computed by employing Egs. (3.6) and (3.7),
and we are led to the result

p(y) = —p(y) = =6k f(y)

= —6k> [ o — f1e™® + ®3e™" arctan(e*”)

(1)2 2ky ( ,2ky _ 1
_ M] (8.6)

3(e® +1)2
In order to satisfy the weak energy conditions close and

on the brane, we impose the condition that p(0) > 0, or
f(0) < 0; hence, we obtain the following inequality:

fo fi =

The junction conditions (5.16), (5.17), employing the
relations (8.1)—(8.3), now yield

1

7
D,Vy|,_o = 8K + 2203 (5 - 71') . (8.9)

Therefore, in order to have a positive total energy density
on the brane, we demand the condition

fo _4fi 1 7

— 8.10
o 307 (8.10)

Let us also evaluate the effective four-dimensional gravi-
tational constant on the brane. Using Eq. (3.17), we obtain

1 © o o L
EZZA dy e [fo—fﬂf b+ @Fe ™ arctan(eh)

DFe?r (2R — 1)]

e (8.11)

Evaluating the above integral, we obtain the result
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FIG. 18. Parameter space of the quantities f,/®3 and f,/®3.
The curves corresponding to the expressions on the right-hand
sides of the inequalities (8.7), (8.10), and (8.13) are
depicted as well.

1
S =A=C 0 (8.12)

Since it is imperative to have a positive four-dimensional
gravitational constant, we must satisfy also the following
constraint:

Jo _2f1 =
>t 8.13
®” 30 6 (8.13)

In Fig. 18, we present the parameter space of the
quantities f,/®3 and f,/®3, in an attempt to satisfy
simultaneously the inequalities (8.7), (8.10), and (8.13).
As it is clear, there is again no point where all three
inequalities can be satisfied. The green area defines the part
of the parameter space where M3, is positive and the weak
energy conditions are satisfied by the bulk matter close to
our brane, while the brown area defines the part of the
parameter space where both the effective gravitational
constant and the total energy density of the brane are
positive.

IX. DISCUSSION AND CONCLUSIONS

In the context of this work, we have investigated the
emergence of braneworld solutions in the framework of a
general scalar-tensor theory where the scalar field is non-
minimally coupled to the five-dimensional Ricci scalar. In
the bulk, these solutions are characterized by a Randall-
Sundrum type, exponentially decaying warp factor, and a y-
dependent scalar field with a bulk potential. On the brane,
the space-time takes in general the form of a

Schwarzschild-(anti-)de Sitter solution. The present work
completes our previous two analyses [69,73], where the
cases of a de Sitter and an anti-de Sitter brane were
considered, and focuses on the case of a flat, Minkowski
brane with A = 0. The complete five-dimensional solution
for the gravitational background in this case may describe
either a nonhomogeneous black string, when the metric
parameter M is nonzero, or a regular anti-de Sitter space-
time, when M = 0.

The above features characterize our solutions irrespec-
tively of the form of the coupling function between the bulk
scalar field and the five-dimensional Ricci scalar. In this
work, we have performed a comprehensive study of the
types of braneworld solutions that emerge in the context of
this theory by considering a plethora of forms of the
coupling function, all supported by physical arguments
regarding the reality and finiteness of its value everywhere
in the bulk. We have thus considered the cases of a linear
and quadratic coupling function in terms of the scalar field
@, but also an inverse-power and a linear-exponential form
in terms of the y coordinate. From a different perspective,
we also considered given forms for the scalar field which
again satisfied the finiteness condition, namely a double-
exponential and a hyperbolic-tangent form in terms of the y
coordinate, and determined subsequently the form of the
coupling function. In all cases, the profile of the coupling
function remains finite along the fifth coordinate as
expected, reducing either to zero or to a constant value
far away from our brane—in both cases, the coupling
between the scalar field and the bulk Ricci scalar becomes
trivial and as a result the scalar-tensor theory naturally
reduces to a purely gravitational theory at large distances.
Gravity by itself is also localized due to the exponentially
decaying warp factor.

In each case, we have also determined in an analytical
way the corresponding solutions for the profiles of the
scalar field and scalar bulk potential. These also remain
finite over the entire bulk for every solution found, and their
behavior resembles the one of the coupling function
reducing either to zero or to a constant value away from
our brane. Depending on the values of the parameters of the
solutions, the bulk potential in particular could adopt a
variety of forms being nontrivial close to our brane and
reducing to a constant, positive or negative, value at
asymptotic infinity. What was of particular importance is
the fact that the Randall-Sundrum-type, exponentially
decaying warp factor is supported independently of the
presence of the negative bulk cosmological constant As,
which is usually introduced in an ad hoc way in braneworld
models.

The case of a zero effective cosmological constant,
studied in the context of this work, allowed for the
maximum flexibility regarding the form and characteristics
of the coupling function, when compared to the cases of a
positive or negative effective cosmological constant
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[69,73]. For A > 0, the coupling function had to be
negative-definite at large distances from our brane, while
for A < 0, a fast localized profile was necessary in order to
avoid an ill-defined behavior for the scalar field at the bulk
boundaries. For A = 0, though, no such requirements are
necessary. In order, however, to derive physically accept-
able braneworld solutions, we have imposed three addi-
tional conditions: the positivity of the effective gravitational
constant k3 on our brane defined as

1 Ly )
5=2 / dy e (y), 9.1)

the positivity of the total energy density of our brane, which
follows from the junction condition (3.10) and may be
rewritten as
o+ V,=6kf(0)—-2f(0), (9.2)
and the validity of the weak energy conditions by the bulk
matter in the vicinity of our brane; the latter, using
Egs. (3.6)—(3.8), may be expressed as
f(0) <0. (9.3)
In each solution found, we have thus performed a careful
study of the effective theory on the brane, the junction
conditions introduced by the presence of the brane, and the
profiles of the energy density and pressure of the bulk
matter. Subsequently, we conducted a thorough investiga-
tion of the corresponding parameter space in order to
deduce whether it is possible to simultaneously satisfy all
three aforementioned conditions.

We have found that, for all solutions presented, this is not
possible. The aforementioned three constraints are not
a priori incompatible: Eq. (9.3) constrains the value of
the coupling function f(y) at the location of the brane,
Eq. (9.2) dictates that its first derivative must be also
negative and decreasing fast at the same point, while
Eq. (9.1) imposes a constraint on its integral over the
entire bulk. Note that if we had demanded the validity of the
weak energy condition everywhere in the bulk, i.e.,
p(y) > 0, that would imply f(y) < 0, for V y. This would
be in obvious contradiction with the positivity of the
effective gravitational constant through Eq. (9.1).
Demanding the validity of the weak energy condition only
at the vicinity of our brane, as in Eq. (9.3), allows the
coupling function to be negative close to our brane and
become positive at some distance off it, so that the integral
in Eq. (9.1) turns out to be positive-definite. That was
indeed realized for some of our solutions but the parameter
space corresponding to those solutions was always severely
restricted. Imposing the third constraint (9.2) on the value
of f/(0), on top of the previous two constraints, in an
attempt to make the energy density of the brane also

positive, we were led to contradictions for all the analytical
solutions we have found.

These contradictions are translated to the absence of a
single point in the parameter space in which all the above
constraints can be simultaneously satisfied. In contrast,
relaxing the weak energy condition, which involves bulk
quantities, and demanding instead the validity of Egs. (9.1)
and (9.2), which are relevant for the four-dimensional
observer on the brane, has led to a plethora of analytic
solutions with an extended parameter space. The question
of whether a solution satisfying all three constraints could
be constructed, either analytically or numerically, naturally
emerges, and could be pursued in a future work. That
solution, however, would have to be not only a mathemati-
cally consistent solution of the set of field equations
satisfying the constraints (9.1)—(9.3) but to be also char-
acterized by a physically acceptable behavior throughout
the bulk—the analytical solutions presented in this work
were carefully constructed in order to have a physically
acceptable behavior regarding the profiles of the scalar
field, its coupling function, and potential throughout
the bulk.

The question of the stability of the solutions found in this
work is also an important one. The presence of the scalar
field, which is nonminimally coupled to gravity in the
context of our theory, considerably complicates the stability
analysis of the solutions found. Such an analysis will
inevitably involve a coupled system of gravitational and
scalar-field equations with the particular form of the
coupling function, characterizing each solution, playing
perhaps a decisive role in the outcome of the analysis. We
note that, in all solutions presented in this work, the
coupling function becomes trivial at large distances from
the brane and the scalar field acquires a constant value. As a
result, the nonminimally coupled scalar-tensor theory
reduces there to a pure gravitational theory. Thus, at large
distances from the brane, our solutions reduce to the black-
string solutions derived in [14] and are shown to be
unstable in [55]. However, the nontrivial configurations
of both the coupling function and the scalar field as we
approach the brane may significantly alter the stability
behavior of our solutions compared to that of the black
string of [14]. It is quite likely that each of the obtained
solutions has its own stability behavior under perturbations,
and their future study may provide valuable restrictions on
the exact form of the coupling function, bulk potential, and
profile of the scalar field itself.

In conclusion, the well-known generalized gravitational
theory of a scalar field nonminimally coupled to the Ricci
scalar admits, upon embedded in a five-dimensional brane-
world context, a variety of solutions with a number of
attractive features, such as the support of an exponentially
decaying warp factor, and thus of graviton localization,
without the need for a negative bulk cosmological constant.
In the particular case of A = 0 studied here, this is always
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supplemented by a regular scalar field, a finite coupling
function, which becomes naturally trivial at the outskirts of
the bulk, a physically acceptable brane with a positive total
energy density, and a robust effective four-dimensional
theory on our brane.
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APPENDIX A: RESTRICTIONS ON THE
ALLOWED VALUES OF THE PARAMETER
1 IN QUADRATIC CASE

We shall now determine the range of values for the
parameter y in the case of the quadratic coupling function
(4.1). The allowed values of p will be obtained by
demanding that the scalar field (4.4) remains real and
finite, and depend primarily on the assumed value of the
parameter A. In what follows, we will consider in detail
every possible case:

i 41> 0:

Using Eq. (4.4) we get

lim ®(y) = (&7 — 1).
y—+oo

Thus, demanding the functions @(y), f(y) to be real
valued in their whole domain, it is necessary to
have u > 0.
(i) 1€ (=}.0) A2 #n neZs:
In thls case =7; is a negative rational number.
Hence, one may write

lim ®(y)

. :g s 1__& 1_5 1 |1+4/1 ‘
yorrso 22 202 u

(gﬂwu — ) —

Therefore, in order to avoid having a complex scalar
field we should demand u > 0.
(i) 1€ (-1, 00 A =nnez:

T+42 0
In thlS case we have =nori=

T+47 Thus,

(1 2n)
one may write

q>0 —ky Vi _
En [E(u + e — 1]

_ <1>0(1n— 2n) [5 <ﬂ +1e_ky) - ]] |

It is clear that the parameter u is allowed to take
negative values. However, we should not allow
values in the range [—1,0], because then at y, =

D(y) =

—+In(—p) > 0 we would encounter infinities re-
garding both the scalar field and the coupling
function in a finite distance away from the brane.
Thus, p € (=00, —1) U (0, 0).

@iv) A= —i:

In this particular case it is obvious from Egs. (4.4)
and (4.5) that the parameter u is allowed to take any
value in the set of the real numbers except zero.
Thus, u € (—oo 0) U (0, +).

I
v) /1<—7 1+4/17é” nez:
{247 is a positive rational number.
Thus, we have
. (ON 2
1 D = — 7 —1).
Jm ©(y) = - (Eu )

Therefore, ;4 > 0 to avoid a complex-valued sca-

lar field.
- 1A 2 .
(vi) /1<—1/\]+—4/1—n,n€Z>
In this case, it is 24~ =n and 1 = Thus,

1+47
from Eq. (4.4) we have

2(1 Zn)

() = S0 felu+ e - 1
(1 —2n)

=[S+ e —1],

which allows p to take values in the whole set of the
real number: u € R.
The aforementioned results are summarized in Table 1.

APPENDIX B: THE UPPER AND LOWER
INCOMPLETE GAMMA FUNCTIONS

The upper incomplete gamma function I'(s, x) is defined
as follows:

s, x) = / P dtrlet = T(s) —y(s,x), (B)
where

y(s,x) = /x drr=te™! (B2)
0

is the lower incomplete gamma function. Both upper and
lower incomplete gamma functions, as defined above, are

084056-30



INCORPORATING PHYSICAL CONSTRAINTS IN BRANEWORLD ...

PHYS. REV. D 101, 084056 (2020)

valid for real and positive s and x. However, both functions
can be extended for almost all combinations of complex s
and x. One can show that, for all complex s and z, the lower
incomplete gamma function can be expanded in the
following power series:

0 Zk
r(s.2) = 2T(s)e™ Yy ="

2tsrkrny B

L(s) = T(s)e™ 320 miarrmy:

(=x)*

P(s.0) = 9 =y =In(x) = 2%, e

n!

LIS = (=x)k(n = k = 1)1 + (=1)"T(0, x)],

Locally, the sum in the right-hand side of the previous
relation converges uniformly for all s € C and z € C.
Using the relation I'(s, z) =I'(s) — y(s,z) we obtain the
values of the upper incomplete gamma function for com-
plex s and z, but only for the points (s, z) in which the right-
hand side exists. The numerical value of the upper
incomplete gamma function can be given by the following
expressions:

s#*—-nn€Z”

s=-nne€z>

where y is the Euler-Mascheroni constant. In our case, for s = 1 — 1, namely s € (—o0, 1) and x = 2ky, > 0, we obtain the

expressions

(1 = A, 2ky,) =

n! [2kyg)" £em=0

T(1=2)[1 = (2ky)' &0 370

—y = In(2ky,) - Yo, o,
L[ Son (=2kyo)™ (n — m — 1)1 + (=1)"T(0, 2ky,)].

2kyo)"
m=0 rgzﬁ%)_aﬂ’ A#En+1,
nez>
A=1 (BS)
A=n+1,
nez>
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