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In the framework of a general scalar-tensor theory, where the scalar field is nonminimally coupled to the
five-dimensional Ricci scalar curvature, we investigate the emergence of complete braneworld solutions.
By assuming a variety of forms for the coupling function, we solve the field equations in the bulk, and
determine in an analytic way the form of the gravitational background and scalar field in each case.
The solutions are always characterized by a regular scalar field, a finite energy-momentum tensor, and an
exponentially decaying warp factor even in the absence of a negative bulk cosmological constant. The
space-time on the brane is described by the Schwarzschild solution leading to either a nonhomogeneous
black-string solution in the bulk, when the mass parameter M is nonzero, or a regular anti-de Sitter space-
time, when M ¼ 0. We construct physically acceptable solutions by demanding in addition a positive
effective gravitational constant on our brane, a positive total energy density for our brane, and the validity of
the weak energy condition in the bulk. We find that, although the theory does not allow for all three
conditions to be simultaneously satisfied, a plethora of solutions emerge which satisfy the first two, and
most fundamental, conditions.
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I. INTRODUCTION

The first higher-dimensional formulation of the general
theory of relativity [1–3] by Kaluza [4] and Klein [5] is
almost as old as the original theory itself. In the 1980s, the
postulation of the existence of extra spacelike dimensions
in nature was combined with the string-inspired notion of
the brane, which plays the role of our four-dimensional
world [6,7]. At the turn of the last century, the modern
braneworld theories were proposed [8–12] in which
the extra spatial dimensions may be large compared to
the Planck scale or, even, infinite. This radical change in the
structure and topology of space-time has significantly
affected the properties of all gravitational solutions which
emerge in the framework of the new theories. In addition,
the phase space of solutions of a higher-dimensional
gravitational theory now contains a variety of black objects,

namely black holes, black strings, black branes, black
rings, or black saturns [13].
The warped braneworld model [11,12] admits an infi-

nitely long extra dimension which is nevertheless accom-
panied by the localization of the graviton close to our brane.
This is realized with the help of an exponentially decreas-
ing warp factor in the expression of the line element which
describes the higher-dimensional gravitational background.
However, the presence of this factor has proven to be an
insurmountable obstacle in the derivation of an analytical,
nonapproximate solution describing a regular, localized
close-to-our-brane black hole (see Refs. [14–46] for an
impartial list of works on this topic; for a number of
numerical solutions describing in principle regular brane-
world black holes, see [47–53]).
The aforementioned attempts to derive an analytical

solution of a localized braneworld black hole have in fact
proven that solutions describing a different type of a black
object, namely a black string, are much easier to construct.
Although the first such solution [14] in the context of the
warped braneworld models [11,12] was proven to be
unstable [54,55], a variety of higher-dimensional black
strings have since been derived in the context of different
theories in the literature—see, for example Refs. [56–74].
In [31,38], a braneworld model, that contained a bulk scalar
field with an arbitrary potential and a nonminimal coupling
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to gravity, was studied. Scalar-tensor theories of this type
are very popular and have been extensively studied in the
context of four-dimensional gravity, while braneworld
generalizations have been studied in the literature before,
both in static and nonstatic backgrounds [75–80]. The
objective of the analyses in [31,38] was to derive an
analytical solution describing a regular, localized black
hole; although no such solution was found, these studies
hinted that black-string solutions were in fact much easier
to emerge in the context of a nonminimally coupled scalar-
tensor braneworld model.
To demonstrate this, in [69] we launched a comprehen-

sive study of the types of black-string solutions that emerge
in the context of this theory. Solving analytically the
complete set of gravitational and scalar-field equations in
the bulk, we determined novel black-string solutions which
reduced to a Schwarzschild-(anti-)de Sitter space-time on
the brane. The sign of the effective cosmological constant
on the brane was shown to determine not only the topology
of our brane—leading to a de Sitter, anti-de Sitter, or
Minkowski four-dimensional background—but also the
properties of the coupling function between the bulk scalar
field and the five-dimensional Ricci scalar curvature. In
[69], we focused on the case of a positive cosmological
constant on the brane, and showed that, in order for the
scalar field to be real valued, the coupling function had to
be negative over a particular regime in the bulk.
Nevertheless, we were able to derive solutions which
had a robust four-dimensional effective theory on the brane
and a number of interesting, yet provocative, features in the
bulk. In a follow-up work [73], we considered the case of a
negative cosmological constant on the brane, which
allowed positive-definite coupling functions; by employing
two particular forms of the latter, we produced two
complete analytical solutions that were characterized by
a regular scalar field and a localized close-to-our brane
energy-momentum tensor. In addition, the solutions fea-
tured a negative-definite bulk potential which supported by
itself the warping of the space-time even in the absence of
the traditional, negative, bulk cosmological constant.
Having covered the cases of a de Sitter and anti-de Sitter

space-time on our brane in [69,73], in this third installment
we turn our attention to the case of a Minkowski brane, i.e.,
with a vanishing effective cosmological constant. The
objective would be the same, namely to perform a com-
prehensive study of the complete set of field equations and
derive analytical solutions for the gravitational background
and scalar field in the bulk. As we will demonstrate, this
case is the least restrictive and most flexible of the three,
and allows for a variety of profiles for the coupling function
and scalar field along the extra coordinate. In order to
construct physically acceptable solutions, we will demand
the finiteness of both the coupling function and scalar field
everywhere in the bulk; in fact, we will consider forms of
the coupling function that become trivial at large distances

from our brane thus leading to a minimally coupled scalar-
tensor theory in that limit. Even under the above assump-
tions, we will present a large number of solutions; they will
all be characterized by a regular scalar field and a finite
energy-momentum tensor localized near our brane. In
addition, the bulk potential of the scalar field may take a
variety of forms at our will, while supporting in all cases an
exponentially decaying warp factor even in the absence of a
negative bulk cosmological constant. Negative values of the
coupling function in the bulk will not be necessary in our
analysis, nevertheless, they will be allowed. The form of the
effective theory on the brane will thus be of primary
importance and a necessary ingredient of our analysis in
the study of each solution presented. We will naturally
demand a positive effective gravitational constant on our
brane, and investigate whether this demand may be simul-
taneously satisfied with the condition of a positive total
energy of our brane and the validity of the weak energy
conditions in the bulk. The gravitational background on the
brane will be described by the Schwarzschild solution
leading to either a nonhomogeneous black-string solution
in the bulk, when the mass parameter M is nonzero, or a
regular anti-de Sitter space-time, when M ¼ 0.
Our paper has the following outline: in Sec. II, we

present our theory, the field equations, and impose a
number of physical constraints on the scalar field and its
coupling function. In Sec. III to VIII, we present a large
number of complete braneworld solutions, and discuss in
detail their physical properties in the bulk, the junction
conditions, the effective theory on the brane and the
parameter space where the optimum solutions—from the
physical point of view—emerge in each case. We present
our conclusions in Sec. IX.

II. THE THEORETICAL FRAMEWORK

We consider the following action functional which
describes a five-dimensional scalar-tensor theory of gravity

SB ¼
Z

d4x
Z

dy
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q

×

�
fðΦÞ
2κ25

R − Λ5 −
1

2
∂LΦ∂LΦ − VBðΦÞ

�
: ð2:1Þ

The theory contains the five-dimensional scalar curvature
R, a bulk cosmological constant Λ5, and a five-dimensional
scalar field Φ. The latter is characterized by a self-
interacting potential VBðΦÞ and a nonminimal coupling
to R via a coupling function fðΦÞ. As in our previous
works [69,73], we will initially keep this function arbitrary
so that our formalism is applicable to a large class of
theories. In the above, κ25 ¼ 8πG5, where G5 is the five-

dimensional gravitational constant G5, and gð5ÞMN is the
metric tensor of the five-dimensional space-time.
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Embedded in this five-dimensional space-time is a
3-brane, our four-dimensional world, located at y ¼ 0
along the extra spatial dimension. The energy content of
our brane is described by the following action:

Sbr ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðbrÞ

q
ðLbr − σÞ

¼ −
Z

d4x
Z

dy
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðbrÞ

q
½VbðΦÞ þ σ�δðyÞ; ð2:2Þ

which should be added to the bulk action (2.1) to complete
the theory. The brane Lagrangian Lbr is assumed, for
simplicity, to contain only an interaction term VbðΦÞ of
the bulk scalar field with the brane, while σ is the constant

brane self-energy. Also, gðbrÞμν ¼ gð5Þμν ðxλ; y ¼ 0Þ is the
induced-on-the-brane metric tensor. In what follows, we
will denote five-dimensional indices with capital Latin
letters M;N; L;… and four-dimensional indices with
lower-case Greek letters μ; ν; λ;… as usual.
The field equations of the theory follow if we vary the

complete action S ¼ SB þ Sbr with respect to the metric

tensor gð5ÞMN and scalar field Φ. Then, we obtain the
gravitational field equations

fðΦÞGMN

ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q
¼ κ25

�
ðTðΦÞ

MN −gMNΛ5Þ
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q

− ½VbðΦÞþσ�gðbrÞμν δμMδ
ν
NδðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðbrÞ

q �
;

ð2:3Þ
with the energy-momentum tensor of the theory given by
the expression

TðΦÞ
MN ¼ ∂MΦ∂NΦþ gMN

�
−
∂LΦ∂LΦ

2
− VBðΦÞ

�

þ 1

κ25
½∇M∇NfðΦÞ − gMN□fðΦÞ�; ð2:4Þ

and the scalar-field equation

−
1ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

p ∂M

� ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q
gMN∂NΦ

�

¼ ∂Φf
2κ25

R − ∂ΦVB −

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðbrÞ

p
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

p ∂ΦVbδðyÞ; ð2:5Þ

respectively.
The form of the five-dimensional gravitational back-

ground needs to be specified next. As in [69,73], we
consider the following line element:

ds2 ¼ e2AðyÞ
�
−
�
1 −

2mðrÞ
r

�
dv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdφ2Þ
�
þ dy2; ð2:6Þ

which describes a five-dimensional space-time warped
along the fifth dimension due to the presence of the warp
factor e2AðyÞ. Its four-dimensional part has the form of a
generalized Vaidya line element: if mðrÞ is a constant M,
this reduces, after a coordinate transformation, to the
Schwarzschild solution. The four-dimensional observer
at y ¼ 0 would then see a black-hole line element on
the brane; however, its embedding in the extra dimension as
in Eq. (2.6) results in the context of the original Randall-
Sundrum model [11,12], in a black-string solution [14]
with an infinitely long singularity plagued by instabil-
ities [54,55].
By introducing a dependence of the mass function on the

extra coordinate y, it is possible to localize the black hole
close to the brane but this demands a form of bulk matter
that cannot be supported by ordinary fields [18,22]. A more
general ansatz for the mass function of the form
m ¼ mðv; r; yÞ, that was employed in subsequent works
[31,38], increased the flexibility of the model but failed,
too, to lead to localized black-hole solutions in the context
of a variety of scalar-field theories. Up to today, the
analytical determination—in a closed form—of regular,
localized black holes in warped braneworld models remains
an open problem.
However, the five-dimensional scalar-tensor theory of

gravity described by Eq. (2.1) was shown [31,38] to admit
novel black-string solutions that may be constructed
analytically. In our previous works [69,73], we performed
a comprehensive study of the types of black-string sol-
utions that emerge in the context of this theory when the
cosmological constant on the brane is positive or negative,
respectively. Here, we complete our study by considering
the case of a Minkowski brane. As we will demonstrate,
this case is the most flexible of all that allows for a larger
variety of profiles for the scalar field and its coupling
function while retaining all the attractive characteristics of
the previous two cases.
We will employ again the line element (2.6), and proceed

to derive the explicit form of the field equations (2.3)–(2.5).
We will focus on solving this set of equations first in the
bulk, and thus ignore for now all δðyÞ terms. The explicit
form of the gravitational equations follows by combining
the nonvanishing components of the Einstein GM

N and
energy-momentum TðΦÞM

N tensors. In mixed form, these
are

G0
0 ¼ G1

1 ¼ 6A02 þ 3A00 −
2e−2A∂rm

r2
;

G2
2 ¼ G3

3 ¼ 6A02 þ 3A00 −
e−2A∂2

rm
r

;

G4
4 ¼ 6A02 −

e−2Að2∂rmþ r∂2
rmÞ

r2
; ð2:7Þ

and
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TðΦÞ0
0 ¼ TðΦÞ1

1 ¼ TðΦÞ2
2 ¼ TðΦÞ3

3 ¼ A0Φ0∂ΦfþLΦ −□f;

TðΦÞ4
4 ¼ ð1þ ∂2

ΦfÞΦ02 þΦ00∂ΦfþLΦ −□f; ð2:8Þ

respectively, where a prime ( 0) denotes the derivative with
respect to the y coordinate. Above, we have made the
assumption that the scalar field depends only on the
coordinate along the fifth dimension, i.e., Φ ¼ ΦðyÞ, and
we have defined the quantities

LΦ ¼ −
1

2
∂LΦ∂LΦ − VBðΦÞ ¼ −

1

2
Φ02 − VBðΦÞ; ð2:9Þ

and

□f ¼ 4A0Φ0∂Φf þΦ02∂2
Φf þΦ00∂Φf: ð2:10Þ

Employing the above, and upon some simple manipulation
[69], we obtain three equations having the following form:

r∂2
rm − 2∂rm ¼ 0; ð2:11Þ

f

	
3A00 þ e−2A

∂2
rm
r



¼ ∂ΦfðA0Φ0 −Φ00Þ − ð1þ ∂2

ΦfÞΦ02;

ð2:12Þ

f
	
6A02 þ 3A00 −

2e−2A∂rm
r2



¼ A0Φ0∂ΦfþLΦ −□f −Λ5:

ð2:13Þ

Note that, for notational simplicity, we have absorbed the
gravitational constant κ25 in the expression of the general
coupling function fðΦÞ. Turning next to the scalar-field
equation in the bulk (2.5), this takes the explicit form

Φ00 þ 4A0Φ0 ¼ ∂Φf
	
10A02 þ 4A00 − e−2A

2∂rmþ r∂2
rm

r2



þ ∂ΦVB: ð2:14Þ

In order to increase the flexibility of the theory, the form
of the mass function m ¼ mðrÞ in the gravitational back-
ground (2.6) was left arbitrary. Nevertheless, this will be
duly determined via Eq. (2.11); by direct integration, we
obtain the unique solution

mðrÞ ¼ M þ Λr3=6; ð2:15Þ

where M and Λ are arbitrary integration constants. The
projected-on-the-brane gravitational background follows
by setting y ¼ 0 in the line element (2.6) and using the
above result for the mass function; then, we find the
expression

ds24 ¼ −
	
1 −

2M
r

−
Λr2

3



dv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdφ2Þ: ð2:16Þ

By employing an appropriate coordinate transformation,
the above Vaidya form of the four-dimensional line element
may be transformed to the usual Schwarzschild-(anti-)de
Sitter solution [69]. As a result, we may interpret the two
arbitrary parametersM and Λ as the mass of the black hole
on the brane and the cosmological constant on the brane.
The cases of positive and negative cosmological constant
on the brane (i.e., Λ > 0 and Λ < 0) were studied respec-
tively in our previous two works [69,73]; in the context of
the present analysis, we will focus on the case of a zero
four-dimensional cosmological constant (Λ ¼ 0).
Returning to the remaining field equations (2.12)–(2.14),

one may demonstrate that only two of them are independent
[69]. We may therefore ignore altogether the scalar field
equation (2.14) and work only with the gravitational
equations (2.12)–(2.13). The former equation will provide
the solution for the scalar field Φ while the latter will help
us to determine the scalar potential in the bulk VBðΦÞ. To
this end, we need also the expression of the warp function
AðyÞ for which we will use the well-known form AðyÞ ¼
−kjyj [11,12], with k a positive constant, as this ensures the
localization of gravity near the brane. Setting also the mass
function to be mðrÞ ¼ M (since Λ ¼ 0), Eq. (2.12) takes
the form1

ð1þ ∂2
ΦfÞΦ02 þ ∂ΦfðΦ00 þ kΦ0Þ ¼ 0; ð2:17Þ

or

Φ02 þ ∂2
yf þ k∂yf ¼ 0; ð2:18Þ

while Eq. (2.13), with the use of Eq. (2.18), can be solved
for VBðyÞ:

VBðyÞ ¼ −Λ5 − 6k2fðyÞ þ 7

2
k∂yf −

1

2
∂2
yf: ð2:19Þ

In the above, we have also used the relations

∂yf ¼ Φ0∂Φf; ∂2
yf ¼ Φ02∂2

Φf þΦ00∂Φf: ð2:20Þ

The topology of the five-dimensional bulk space-time
may be inferred from the form of the curvature invariant
quantities. Using the five-dimensional line element (2.6),
together with the relations mðrÞ ¼ M and A ¼ −kjyj, we
find the following expressions:

1We assume a Z2 symmetry in the bulk under the change y →
−y therefore, henceforth, we focus on the positive y regime.

NAKAS, KANTI, and PAPPAS PHYS. REV. D 101, 084056 (2020)

084056-4



R ¼ −20k2; RMNRMN ¼ 80k4;

RMNRSRMNRS ¼ 40k4 þ 48M2e4kjyj

r6
: ð2:21Þ

For M ¼ 0, the bulk space-time is characterized by a
constant negative curvature at every point, and is therefore
an AdS space-time. This holds despite the presence of a
nontrivial distribution of energy in the bulk, i.e., that of a
nonminimally coupled scalar field with a potential, and is
ensured through the field equations which, like Eqs. (2.18)
and (2.19), relate the different bulk quantities among
themselves. It is for this reason that, as we will see, the
exponentially decaying warp factor will be supported even
in the absence of the negative bulk cosmological constant
Λ5. In the case where M ≠ 0, the above invariants describe
a five-dimensional black-string solution with an infinitely
long space-time singularity extending throughout the
extra dimension. The black-string singularity reaches
the boundary of space-time which is by itself a singular
hypersurface.
The solution for both the scalar field and the bulk

potential depends, through Eqs. (2.18)–(2.19), on the form
of the nonminimal coupling function fðΦÞ. In our previous
work [73], we assigned the following constraints to the
scalar field ΦðyÞ and its coupling function f½ΦðyÞ�:

(i) Both functions should be real and finite in their
whole domain and of class C∞.

(ii) At y → �∞, both functions should satisfy the
following relations, otherwise the finiteness of the
theory at infinity cannot be ascertained:

lim
y→�∞

dn½fðyÞ�
dyn

¼ 0; ∀ n ≥ 1; ð2:22Þ

lim
y→�∞

dn½ΦðyÞ�
dyn

¼ 0; ∀ n ≥ 1: ð2:23Þ

The second constraint amounts to considering profiles of
the scalar field and forms of the coupling function that both
reduce to a constant value far away from the brane.
Together with the first constraint, they ensure a physically
acceptable behavior for our scalar-tensor theory. The sign,
however, of the coupling function fðyÞ will not be fixed. In
[69], where the case of a positive cosmological constant on
the brane was studied, i.e., Λ > 0, the coupling function
had to be negative-definite away from our brane for the
reality of the scalar field to be ensured; nevertheless, the
effective theory on the brane could still be well defined. In
the case of Λ < 0 [73], no such requirement was necessary
and the coupling function was assumed to be everywhere
positive-definite in terms of the y coordinate; then, gravity
was normal over the entire five-dimensional space-time
leading to a well-defined effective field theory on the brane.
In the context of the present analysis, where Λ ¼ 0, we

may consider coupling functions that are either positive- or

negative-definite for particular regions of the y coordinate.
As we will demonstrate, it is possible to obtain a positive
effective four-dimensional gravitational constant in every
case. This will hold even when five-dimensional gravity
behaves in an antigravitating way at particular regimes of
space-time—as it turns out, such a behavior is not physi-
cally forbidden as long as the effective theory on our brane
is well defined. To this end, the derivation of the effective
theory on the brane is going to play an important role in our
forthcoming analysis, and will thus supplement every bulk
solution we derive.

III. A LINEAR COUPLING FUNCTION

Choosing Λ ¼ 0 on our brane simplifies the set of field
equations of the theory, but more importantly, relaxes
constraints that had to be imposed on the coupling function.
As a result, the latter is now allowed to adopt a variety of
physically acceptable forms, all obeying the criteria (i) and
(ii) of the previous section. These forms lead to viable
braneworld models (for M ¼ 0) or black-string solutions
(for M ≠ 0). In an effort to construct the most realistic
solutions, we will also study, in every case, the energy
conditions both in the bulk and on the brane.
We start our analysis with the case of the linear coupling

function:

fðΦÞ ¼ f0 þΦ0Φ; ð3:1Þ

where f0 and Φ0 are arbitrary parameters of the theory. In
what follows, we will first solve the system of field
equations (2.17) and (2.19) in the bulk and then consider
the effective theory on the brane as well as the energy
conditions.

A. The bulk solution

Substituting the aforementioned coupling function in
Eq. (2.17) and solving the resulting second-order differ-
ential equation, we obtain the solution:

ΦðyÞ ¼ Φ0½−kyþ lnðeky þ ξÞ�; ð3:2Þ

where ξ is an integration constant. Note that the gravita-
tional field equation (2.17) possesses a translational sym-
metry with respect to the scalar field ΦðyÞ. Hence, we are
free to fix the value of a second integration constant, that
should in principle appear additively on the right-hand side
of Eq. (3.2), to zero without loss of generality. Then, using
Eq. (3.2) in (3.1), we find

fðyÞ ¼ f0 þΦ2
0½−kyþ lnðeky þ ξÞ�: ð3:3Þ

As we mentioned earlier, both functions fðyÞ and ΦðyÞ
should be real and finite; therefore ξ ∈ ð−1; 0Þ ∪ ð0;∞Þ,
andΦ0 ∈ Rnf0g. It is clear from Eqs. (3.2) and (3.3) that if
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we allow ξ to become equal to zero, then we nullify the
scalar field everywhere in the bulk and reduce the coupling
function to a constant, which makes our model trivial. The
allowed range of values for the parameter f0 will be
determined shortly.
In Fig. 1(a), we depict the warp factor e2AðyÞ ¼ e−2kjyj

and coupling function fðyÞ in terms of the coordinate y for
f0 ¼ 0, Φ0 ¼ 1, k ¼ 1, and ξ ¼ 1. We observe that,
similarly to the warp factor, the coupling function remains
localized close to our brane and reduces to zero at large
distances although with a smaller rate. According to this
behavior, the nonminimal coupling of the scalar field to the
five-dimensional Ricci scalar takes its maximum value at
the location of the brane whereas, for large values of y, this
coupling vanishes leading to a minimally coupled scalar-
tensor theory of gravity. The profile of the scalar field ΦðyÞ
itself is presented in Fig. 1(b) for Φ0 ¼ 1 and k ¼ 1. We
also display the dependence of this profile on the value of
the parameter ξ ¼ −0.8, −0.5, 0.5, 1, 3 (from bottom to
top). It is clear that also the scalar field exhibits a localized
behavior with the value of ξ determining the overall sign
and maximum value of Φ on our brane. The dependence of
the coupling function fðyÞ on the value of ξ is similar to
that of the scalar field, as one can easily deduce from the
relation (3.1).
The potential of the scalar field VBðyÞ in the bulk can be

determined from Eq. (2.19) using the expression of the
coupling function fðyÞ (3.3). Thus, we obtain

VBðyÞ ¼ −Λ5 − 6k2f0 þ
k2Φ2

0

2

�
12ky −

ξð8eky þ 7ξÞ
ðξþ ekyÞ2

�
− 6k2Φ2

0 lnðξþ ekyÞ: ð3:4Þ

Using Eq. (3.2), we can express the potential in terms of the
scalar field in a closed form, as follows:

VBðΦÞ ¼ −Λ5 − 6k2f0 − 6k2Φ0Φ − 4k2Φ2
0ð1 − e−Φ=Φ0Þ

þ k2Φ2
0

2
ð1 − e−Φ=Φ0Þ2: ð3:5Þ

We observe that the parameter f0 appearing in the
expression of the coupling function (3.3) gives a constant
contribution to the scalar bulk potential. Depending on the
value of f0, the asymptotic value of VB in the bulk (whenΦ
vanishes) can be either positive, zero, or negative. In the
latter case, this contribution may be considered to play the
role of the negative bulk cosmological constant Λ5, which
is usually introduced in an ad hoc way. Therefore, such a
quantity is not necessary any more in order to support the
exponentially decreasing warp factor á la Randall Sundrum
[11,12]. As mentioned earlier, it is the nonminimal cou-
pling of the scalar field combined with the form of the bulk
potential that supports the AdS bulk space-time and the
chosen form of the warp factor. To this end, we will
henceforth choose a vanishing value for Λ5 in any
numerical evaluation; however, for completeness, we will
retain it in our equations. The profile of the bulk potential
VB is presented in Fig. 2(a) for f0 ¼ 1, which leads to a
negative asymptotic value of VB. The figure depicts the
dependence of VB on the parameter ξ: the scalar potential
may be negative everywhere in the bulk or assume a
positive value on our brane depending on the value of ξ.
We may also compute the components of the energy-

momentum tensor of the theory in the bulk. Using the
relations ρ ¼ −T0

0, pi ¼ Ti
i, py ¼ Ty

y, we obtain the
following expressions:

(a) (b)

FIG. 1. (a) The warp factor e2AðyÞ ¼ e−2kjyj and coupling function fðyÞ in terms of the coordinate y for f0 ¼ 0, Φ0 ¼ 1, k ¼ 1, ξ ¼ 1,
and (b) the scalar field ΦðyÞ for different values of the parameter ξ ¼ −0.8, −0.5, 0.5, 1, 3 (from bottom to top).

NAKAS, KANTI, and PAPPAS PHYS. REV. D 101, 084056 (2020)

084056-6



ρðyÞ ¼ −ðTðΦÞ0
0 − Λ5Þ ¼ −6k2fðyÞ; ð3:6Þ

piðyÞ ¼ TðΦÞi
i − Λ5 ¼ 6k2fðyÞ; ð3:7Þ

pyðyÞ ¼ TðΦÞy
y − Λ5 ¼ 6k2fðyÞ: ð3:8Þ

The above relations hold in general, for an arbitrary form
of the coupling function and profile of the scalar field. From
the above expressions, we can immediately observe that
the energy-momentum tensor in the bulk is isotropic
(py ¼ pi ≡ p) and satisfies an equation of state of the
form p ¼ −ρ. The sign of all energy-momentum tensor
components depends on that of the coupling function: at
bulk regimes where fðyÞ is negative-definite, the energy
density ρðyÞ will be positive while the pressure pðyÞ
would have the opposite sign. At these regimes, the
weak energy conditions2 will be satisfied. We are pri-
marily interested in satisfying these on and close to our
brane. Thus, if we impose the condition that fð0Þ < 0 and
combine this inequality with the form of Eq. (3.3), we may
obtain the range of values for the parameter f0, with
respect to ξ and Φ0, for which the weak energy conditions
on our brane are satisfied. Hence, we get

f0
Φ2

0

< − lnð1þ ξÞ: ð3:9Þ

A particular indicative case where the weak energy
conditions are satisfied on our brane is depicted in

Fig. 2(b): it corresponds to the set of values Φ0 ¼ 1,
ξ ¼ −0.5, and f0 ¼ 0.6, which satisfy the above inequal-
ity. Both the bulk potential and energy density are positive
on our brane while the pressure components assume a
negative value of equal magnitude to that of ρ.

B. Junction conditions and effective theory

Let us now address the junction conditions that should be
imposed on our bulk solution due to the presence of the
brane at y ¼ 0. The energy content of the brane will be
given by the combination σ þ VbðΦÞ, where σ is the
constant self-energy of the brane and VbðΦÞ an interaction
term of the bulk scalar field with the brane. Since this
distribution of energy is located at a single point along the
extra dimension, i.e., at y ¼ 0, it creates a discontinuity in
the second derivatives of the warp factor, the coupling
function, and the scalar field at the location of the brane. We
may then write A00 ¼ Â00 þ ½A0�δðyÞ, f00 ¼ f̂00 þ ½f0�δðyÞ,
and Φ00 ¼ Φ̂00 þ ½Φ0�δðyÞ, where the hat quantities denote
the distributional (i.e., regular) parts of the second deriv-
atives and ½� � �� stand for the discontinuities of the corre-
sponding first derivatives across the brane [81]. Then, in the
complete field equations (2.12) and (2.14), we match the
coefficients of the δ-function terms3 and obtain the follow-
ing two conditions:

3fðyÞ½A0� ¼ −½Φ0�∂Φf − ðσ þ VbÞ; ð3:10Þ

(a) (b)

FIG. 2. (a) Scalar potential VB in terms of the coordinate y for different values of the parameter ξ ¼ −0.7, −0.3, 0.5, 1, 3 (from top to
bottom). (b) Energy density ρ, pressure components pi ¼ py ¼ p, and scalar potential VB in terms of the coordinate y for the case
f0 ¼ 0.6 and ξ ¼ −0.5.

2The weak energy conditions postulate that ρ ≥ 0, ρþ p ≥ 0.

3We note that the line element (2.6) satisfies the relationffiffiffiffiffiffiffiffiffiffiffi
−gð5Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
−gð4Þ

p
.
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½Φ0� ¼ 4½A0�∂Φf þ ∂ΦVb; ð3:11Þ

respectively, where all quantities are evaluated at y ¼ 0.
The above expressions also hold in general for arbitrary
forms of the coupling function fðΦÞ. In the case of a linear
fðΦÞ, employing the form of the warp function AðyÞ ¼
−kjyj and the solution (3.2) for the scalar field ΦðyÞ, we
obtain the constraints

σþVbðΦÞjy¼0¼
2kξΦ2

0

1þξ
þ6kf0þ6kΦ2

0 lnð1þξÞ; ð3:12Þ

∂ΦVbjy¼0 ¼
2kΦ0ð4þ 3ξÞ

1þ ξ
: ð3:13Þ

In the above relations, we have used the assumed Z2

symmetry in the bulk.
The first constraint (3.12) relates the total energy density

of the brane with bulk parameters. It may be used to fix one
of the bulk parameters of our solution, for example, the
warping constant k; then, the warping of space-time is
naturally determined by the distribution of energy in the
bulk and on the brane. The second constraint (3.13) may in
turn be used to fix one parameter of the brane interaction
term Vb of the scalar field. Going further, we may demand
that, for physically interesting situations, the total energy
density of the brane should be positive; then, the right-hand
side of Eq. (3.12) leads to

f0
Φ2

0

> − lnð1þ ξÞ − ξ

3ð1þ ξÞ : ð3:14Þ

The above is therefore an additional constraint that the bulk
parameters (f0;Φ0; ξ) should satisfy which, as the one of
Eq. (3.9), follows not from the mathematical consistency of
the solution but from strictly physical arguments.
We now turn to the effective theory on the brane that

follows by integrating the complete five-dimensional
theory, given by S ¼ SB þ Sbr, over the fifth coordinate
y. We would like to derive first the effective four-dimen-
sional gravitational constant that governs all gravitational
interactions on our brane. For this, it is of key importance to
express the five-dimensional Ricci scalar R in terms of the
four-dimensional projected-on-the-brane Ricci scalar Rð4Þ.
One can easily prove that the five-dimensional Ricci scalar
R of the following line element

ds2 ¼ e−2kjyjgðbrÞμν ðxÞdxμdxν þ dy2 ð3:15Þ
can be written in the form

R ¼ −20k2 þ 8k
d2jyj
dy2

þ e2kjyjRð4Þ: ð3:16Þ

Equation (3.16) holds even if the projected-on-the-

brane four-dimensional metric gðbrÞμν leads to a zero

four-dimensional Ricci scalar Rð4Þ when the latter is
evaluated for particular solutions (as is the case for our
Vaidya induced metric). The part of the complete action
S ¼ SB þ Sbr that is relevant for the evaluation of the
effective gravitational constant is the following:

S ⊃
Z

d4xdy
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

q
fðΦÞ
2

e2kjyjRð4Þ: ð3:17Þ

Then, using also that
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

p
¼ e−4kjyj

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðbrÞ

p
, where

gðbrÞμν is the metric tensor of the projected-on-the-brane
space-time, the four-dimensional, effective gravitational
constant is given by the integral

1

κ24
≡ 2

Z
∞

0

dy e−2kyfðyÞ

¼ 2

Z
∞

0

dy e−2ky½f0 −Φ2
0kyþΦ2

0 lnðeky þ ξÞ�: ð3:18Þ

Using the relation 1=κ24 ¼ M2
Pl=8π and calculating the

above integral, we obtain the following expression for
the effective Planck scale:

M2
Pl ¼

8πΦ2
0

k

�
f0
Φ2

0

−
1

2
þ 1

ξ2
½ξþðξ2−1Þ lnð1þ ξÞ�

�
: ð3:19Þ

Note, that, due to the localization of both the coupling
function and scalar field close to our brane, no need arises
for the introduction of a second brane in the model. The
above value for M2

Pl is therefore finite as demanded,
however, it is not sign-definite. We should therefore
demand that the aforementioned expression is positive-
definite which leads to the third, and most, important
constraint on the values of (f0;Φ0; ξ), namely

f0
Φ2

0

>
ξ − 2

2ξ
þ 1 − ξ2

ξ2
lnð1þ ξÞ: ð3:20Þ

The integral of all the remaining terms of the five-
dimensional action S ¼ SB þ Sbr, apart from the one
appearing in Eq. (3.17), will yield the effective cosmo-
logical constant on the brane. This is due to the fact that the
scalar field Φ is only y dependent; therefore, when the
integration over the extra coordinate y is performed, no
dynamical degree of freedom remains in the four-dimen-
sional effective theory. The effective cosmological constant
is thus given by the expression
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−Λ4 ¼
Z

∞

−∞
dy e−4kjyj

�
−10k2fðyÞ − Λ5 −

1

2
Φ02 − VBðyÞ

þ fðyÞð−4A00Þjy¼0 − ½σ þ VbðΦÞ�δðyÞ
�

¼ 2

Z
∞

0

dy e−4ky
�
−10k2fðyÞ − Λ5 −

1

2
Φ02 − VBðyÞ

�
þ 8kfð0Þ − ½σ þ VbðΦÞ�y¼0: ð3:21Þ

In the above, we have also added the Gibbons-Hawking
term [82] due to the presence of the brane, that acts as a
boundary for the five-dimensional space-time. Substituting
the expressions for the coupling function and the bulk
potential of the scalar field, and employing the junction
condition (3.12), we finally obtain the result

Λ4 ¼ 0: ð3:22Þ
As in our previous works for positive [69] and negative
cosmological constant [73] on the brane, it is clear that the
parameter Λ appearing in the expression of the mass
function (2.15), and in the projected-on-the-brane line
element (2.16) is indeed related to the four-dimensional
cosmological constant Λ4. Therefore, in the context of the
present analysis where we have set Λ ¼ 0, we derived a
vanishing Λ4 as anticipated.

C. The energy conditions in the parameter space

We will now focus on the inequalities (3.9), (3.14), and
(3.20), and in particular investigate whether it is possible to
simultaneously satisfy all three of them. To this end, we
study the parameter space defined by the ratio f0=Φ2

0 and
the parameter ξ: this is depicted in Fig. 3, where we have
plotted the expressions of the right-hand sides of the
inequalities (3.9), (3.14), (3.20) with respect to the param-
eter ξ. From a physical point of view, the most important
inequality to satisfy is (3.20), which ensures that the four-
dimensional effective gravitational constant on our brane is
positive: this demands that f0=Φ2

0 should be always greater

than ξ−2
2ξ þ 1−ξ2

ξ2
lnð1þ ξÞ and corresponds to the area above

the red dashed curve in Fig. 3. The inequality (3.9) ensures
that the bulk energy-momentum tensor satisfies the weak
energy conditions at the location of our brane, and demands
that f0=Φ2

0 should be smaller than − lnð1þ ξÞ; this
corresponds to the area below the purple continuous line
in Fig. 3. Finally, inequality (3.14) expresses the demand
that the total energy density of our brane is positive; this is
satisfied if f0=Φ2

0 is greater than − lnð1þ ξÞ − ξ
3ð1þξÞ; this is

the area above the blue dashed curve in Fig. 3.
It is straightforward to see that it is impossible to satisfy

all three inequalities simultaneously. However, it is always
possible to satisfy two out of these three at a time—in
Fig. 3, we have highlighted the regions where the most
important inequality (3.20) is one of the two satisfied

conditions—we observe that this area covers a very large
part of the parameter space. Which one of the two
remaining inequalities is the second satisfied condition
depends on the value of the parameter ξ; therefore, we
distinguish the following cases:

(i) For ξ ∈ ð−1; 0Þ, it is easy to see that the following
sequence of inequalities holds:

ξ− 2

2ξ
þ 1− ξ2

ξ2
lnð1þ ξÞ< − lnð1þ ξÞ < − lnð1þ ξÞ

−
ξ

3ð1þ ξÞ : ð3:23Þ

Thus, we can simultaneously satisfy either the
inequalities (3.20) and (3.9) (green region in Fig. 3)
or (3.20) and (3.14) (brown region in Fig. 3). In the
former case, we have a physically acceptable four-
dimensional effective theory on the brane and the
weak energy conditions are satisfied on and close to
our brane; the total energy density of the brane
σ þ VbðΦÞjy¼0, however, is negative. In the latter
case, we still have a physically acceptable effective
theory and the total energy density of our brane is
now positive; the weak energy conditions though are
not satisfied by the bulk matter close to our brane.

(ii) For ξ > 0, it now holds

− lnð1þ ξÞ − ξ

3ð1þ ξÞ < − lnð1þ ξÞ

<
ξ − 2

2ξ
þ 1 − ξ2

ξ2
lnð1þ ξÞ: ð3:24Þ

FIG. 3. The parameter space between the ratio f0=Φ2
0 and the

parameter ξ. The graphs of the expressions of the right-hand side
of the inequalities (3.9), (3.14), (3.20) are depicted as well.
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In this case, we are able to simultaneously satisfy
only the inequalities (3.20) and (3.14) (brown region
in Fig. 3). Then, we can have a regular four-
dimensional effective theory and a positive total
energy density on our brane. However, in this range
of values for the parameter ξ, it is impossible to
satisfy the weak energy condition close to our brane
and have a well-behaved effective theory.

Going back to Figs. 2(a) and 2(b), we observe that the
solution depicted in Fig. 2(b) as well as the solution for
ξ ¼ −0.7 in Fig. 2(a) fall in the green area of Fig. 3 and
thus respect the energy conditions—indeed VB and ρ are
positive on and close to the brane. In contrast, the
remaining solutions of Fig. 2(a) belong to the brown area
of Fig. 3, and thus violate the weak energy conditions; they
have, however, a positive total energy density through the
junction condition (3.12). We stress that all depicted
solutions have a well-defined four-dimensional effective
theory, i.e., a positive effective gravitational constant.

IV. A QUADRATIC COUPLING FUNCTION

In this section, we proceed to consider the case of the
quadratic coupling function, and thus we write

fðΦÞ ¼ f0 þΦ0Φþ λΦ2; ð4:1Þ

where again (f0, Φ0, λ) are arbitrary parameters.
Throughout this section, it will be assumed that λ ≠ 0
otherwise the analysis reduces to the one of the linear case
studied in the previous section. As before, we start with the
derivation of the bulk solution and then turn to the effective
theory on the brane.

A. The bulk solution and the effective theory
on the brane

Substituting the aforementioned form of the coupling
function in Eq. (2.17) we obtain the equation:

ð1þ 2λÞΦ02 þ ð2λΦþΦ0ÞðΦ00 þ kΦ0Þ ¼ 0: ð4:2Þ

Integrating, we find the following solution for the scalar
field:

ΦðyÞ ¼
� 1

2λ ½Φ1ðμþ e−kyÞ 2λ
1þ4λ −Φ0�; λ ∈ Rnf− 1

4
; 0g

2Φ0 þΦ1eμe
−ky
; λ ¼ − 1

4

�
;

ð4:3Þ

where μ and Φ1 are integration constants. We note that the
case with Φ0 ¼ 0 was studied in [76]; here, we generalize
the aforementioned analysis by assuming that Φ0 ≠ 0. We
also perform a more comprehensive analysis of the ensuing
solutions by studying the different profiles of the coupling
function, scalar field, and bulk potential, which emerge as

the values of the parameters of the model vary. In addition,
we supplement our analysis with the study of the effective
theory on the brane and of the physical constraints imposed
on the solutions. In order to simplify our notation, we set
Φ1 ¼ ξΦ0, where ξ is a new integration constant. Then,
Eq. (4.3) is written as

ΦðyÞ¼
�Φ0

2λ ½ξðμþe−kyÞ 2λ
1þ4λ−1�; λ∈Rnf−1

4
;0g

Φ0ð2þξeμe
−kyÞ; λ¼−1

4

�
: ð4:4Þ

Substituting the above expression in Eq. (4.1), we obtain
the following profile for the coupling function in terms of
the extra coordinate

fðyÞ ¼
�
f0 þ Φ2

0

4λ ½ξ2ðμþ e−kyÞ 4λ
1þ4λ − 1�; λ ∈Rnf− 1

4
;0g

f0 þΦ2
0ð1− ξ2

4
e2μe

−kyÞ; λ¼ − 1
4

�
:

ð4:5Þ

The theory seems to contain five independent parame-
ters: f0, Φ0, λ, μ, and ξ. However, the range of values for
two of these will be constrained by the physical demands
imposed on the model. To start with, both the scalar field
ΦðyÞ and the coupling function fðyÞmust be real and finite
in their whole domain, according to the discussion in
Sec. II. From Eq. (4.4), we observe that the allowed range
of values of the parameter μ depends on the values that the
parameter λ assumes. In Appendix A, we consider in detail
all possible values for λ and the ensuing allowed ranges of
values for μ; the different cases and corresponding results
are summarized in Table I.4

In addition, from the analysis of the previous section, it
became clear that the theory is not robust unless a positive
effective gravitational constant is obtained on the brane.
This demand will impose a constraint on one of the
remaining parameters of the theory: we choose this
parameter to be f0. Thus, in order to appropriately choose
the values of f0 to study the profile of the scalar field and
coupling function, at this point we turn to the effective
theory and compute the effective gravitational constant. We
will employ Eq. (3.17), and consider separately the cases
with λ ≠ −1=4 and λ ¼ −1=4. In the first case, using also
Eq. (4.5), we obtain

1

κ24
¼2

Z
∞

0

dye−2kyfðyÞ

¼1

k

	
f0−

Φ2
0

4λ



þΦ2

0ξ
2

2λ

Z
∞

0

dye−2kyðμþe−kyÞ 4λ
1þ4λ: ð4:6Þ

4The symbol ∧ that was used in Table I simply denotes the
logical AND. For example, the statement A ∧ B is true if A and B
are both true; else it is false.
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In order to evaluate the integral on the right-hand side of
the above equation, we perform the change of variable
t ¼ e−ky. If we also use the integral representation of the
hypergeometric function [83]

2F1ða; b; c; zÞ

¼ ΓðcÞ
ΓðbÞΓðc − bÞ

Z
1

0

dt tb−1ð1 − tÞc−b−1ð1 − ztÞ−a;

ReðcÞ > ReðbÞ > 0; ð4:7Þ

we finally obtain the result:

1

κ24
¼M2

Pl

8π

¼Φ2
0

k

�
f0
Φ2

0

−
1

4λ
þξ2μ

4λ
1þ4λ

4λ 2F1

	
−

4λ

1þ4λ
;2;3;−

1

μ


�
: ð4:8Þ

We can further simplify the above expression using the
following relations:

2F1ða; 2; 3; zÞ ¼

8>>><
>>>:

2ð1−zÞ−a½zðaþz−azÞþð1−zÞa−1�
ða−2Þða−1Þz2 ; a ∈ Rnf1; 2g

2
z2 ½−z − lnð1 − zÞ�; a ¼ 1

2
z2ð1−zÞ ½zþ lnð1 − zÞ − z lnð1 − zÞ�; a ¼ 2

9>>>=
>>>;
: ð4:9Þ

Then, for λ ≠ −1=4, the four-dimensional effective Planck scale may be written in terms of elementary functions as follows:

M2
Pl ¼

8>>>>><
>>>>>:

8πΦ2
0

k ff0
Φ2

0

− 1
4λ þ ð1þ4λÞ2ξ2

4λð1þ6λÞð1þ8λÞ ½μ
2þ12λ
1þ4λ − ð1þ μÞ1þ8λ

1þ4λðμ − 1þ8λ
1þ4λÞ�g; λ ∈ Rnf− 1

4
;− 1

6
;− 1

8
; 0g

8πΦ2
0

k ff0
Φ2

0

þ 2 − 4ξ2½1 − μ lnð1þμ
μ Þ�g; λ ¼ − 1

8

8πΦ2
0

k ff0
Φ2

0

þ 3
2
− 3ξ2

1þμ ½−1þ ð1þ μÞ lnð1þμ
μ Þ�g; λ ¼ − 1

6

9>>>>>=
>>>>>;
: ð4:10Þ

On the other hand, for λ ¼ −1=4, we readily obtain

M2
Pl ¼

8π

κ24
¼ 8πΦ2

0

k

�
f0
Φ2

0

þ 1 −
ξ2

8μ2
½1þ e2μð2μ − 1Þ�

�
: ð4:11Þ

Since the effective four-dimensional gravitational scale M2
Pl should be a positive number, Eqs. (4.10) and (4.11) impose

the following constraints on the values of the ratio f0=Φ2
0:

f0
Φ2

0

>
1

4λ

�
1 −

ð1þ 4λÞ2ξ2
ð1þ 6λÞð1þ 8λÞ

�
μ

2þ12λ
1þ4λ − ð1þ μÞ1þ8λ

1þ4λ

	
μ −

1þ 8λ

1þ 4λ


��
; λ ∈ Rn

�
−
1

4
;−

1

6
;−

1

8
; 0

�
f0
Φ2

0

> −2
�
1 − 2ξ2

�
1 − μ ln

	
1þ μ

μ


��
; λ ¼ −

1

8
;

f0
Φ2

0

> −
3

2

�
1 −

2ξ2

1þ μ

�
−1þ ð1þ μÞ ln

	
1þ μ

μ


��
; λ ¼ −

1

6
;

f0
Φ2

0

> −1þ ξ2

8μ2
½1þ e2μð2μ − 1Þ�; λ ¼ −

1

4
: ð4:12Þ

TABLE I. Range of values for all parameters of the model.

Range of values for all parameters

ξ ∈ Rnf0g, Φ0 ∈ Rnf0g,
f0 is given by Eq. (4.12).

λ > 0 μ ≥ 0

λ ∈ ð− 1
4
; 0Þ ∧ 2λ

1þ4λ ≠ n, n ∈ Z< μ > 0

λ ∈ ð− 1
4
; 0Þ ∧ 2λ

1þ4λ ¼ n, n ∈ Z< μ ∈ ð−∞;−1Þ ∪ ð0;þ∞Þ
λ ¼ −1=4 μ ∈ ð−∞; 0Þ ∪ ð0;þ∞Þ

λ < − 1
4
∧ 2λ

1þ4λ ≠ n, n ∈ Z> μ ≥ 0

λ < − 1
4
∧ 2λ

1þ4λ ¼ n, n ∈ Z> μ ∈ R
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We choose to use the above constraints in order to limit
the range of values of the parameter f0. The remaining
parameters Φ0, λ, and ξ may then take values in almost the
entire set of real numbers, specifically Φ0 ∈ Rnf0g,
ξ ∈ Rnf0g, and λ ∈ Rnf0g. These ranges of values are
also summarized in Table I. We finally note that the above
constraints for the positivity of the effective four-dimen-
sional gravitational constant allow for both positive and
negative values of the parameter f0.
We now proceed to study the profile of our solution. In

Fig. 4(a), we depict the form of the warp factor e−2kjyj and
the coupling function fðyÞ in terms of the coordinate y
along the fifth dimension, for Φ0 ¼ 1, λ ¼ 1=7, ξ ¼ 1,
μ ¼ 1, k ¼ 1, and f0 ¼ 0, which, as one can verify, is
allowed by Eq. (4.12). The warp factor is always localized
close to the brane and vanishes at the boundary of space-
time independently of the values of the parameters.
The behavior of the coupling function though depends
strongly on the values of the parameters of the model. For
λ > 0 and μ ≥ 0, the qualitative behavior of the coupling
function is the same as the one that is illustrated in Fig. 4(a).
In Fig. 4(b), we present the behavior of the coupling
function for various values of the parameters μ and Φ0

while λ is now in the regime ð−1=4; 0Þ. We note that, for
generic values of the parameters, the asymptotic value of
fðyÞ, as y → ∞, is not zero: if so desired, one may choose
f0 to be equal to C∞, which indicates the value that f0
should have in order to get a vanishing coupling function at
infinity; from Eq. (4.5), we can immediately calculate that

C∞ ¼ Φ2
0

4λ ð1 − ξ2μ
4λ

1þ4λÞ. In Fig. 4(b), one can clearly see the
strong dependence of the profile of the coupling function
also on the value of the parameter μ. As μ approaches zero,

the coupling function is characterized by a plateau around
our brane; the closer the value of μ is to zero, the wider the
plateau. On the contrary, Φ0 does not significantly affect
the behavior of fðyÞ; it just scales the function as a whole.
The behavior depicted in Fig. 4(b) holds for all values of λ
in the regime ð− 1

4
; 0Þ as long as μ > 0. A different behavior

appears in the case where 2λ
1þ4λ ¼ −2n, n ∈ Z>, and

μ < −1; in this case the behavior of the coupling function
is exactly the same as the one for λ < − 1

4
and 2λ

1þ4λ ≠ n, with
n ∈ Z>, which will be discussed next.
In Fig. 5(a), we display the behavior of the coupling

function fðyÞ for Φ0 ¼ 1, μ ¼ 1, k ¼ 1, ξ ¼ 1, and values
of λ in the regime λ < −1=4. Since it holds that 2λ

1þ4λ ≠ n,
with n ∈ Z>, the parameter μ is constrained to values
greater than or equal to zero. For easy comparison, the
parameter f0 has been taken to be equal to C0, which is the
value that leads to fð0Þ ¼ 0; again, from Eq. (4.5), we find

that C0 ¼ Φ2
0

4λ ½1 − ξ2ðμþ 1Þ 4λ
1þ4λ�. In such a model, the non-

minimal coupling of the scalar field to the five-dimensional
scalar curvature is nonvanishing in the bulk but disappears
at the location of the brane. In this range of values for the
parameter λ, the behavior of the coupling function, as
depicted in Fig. 5(a), does not change regardless of the
values of all the other parameters. In contrast, when λ
satisfies the condition 2λ

1þ4λ ¼ n, the profile of the coupling
function is extremely sensitive to changes in the parameter
μ. Indeed, Fig. 5(b) shows the behavior of the coupling
function fðyÞ for k ¼ 1, ξ ¼ 1 and f0 ¼ C∞, while λ ¼
−1=3 or 2λ

1þ4λ ¼ 2. In this figure, we focus on values of μ
that are smaller than or equal to −1=2. We observe that, as μ
approaches and exceeds −1, the behavior of the coupling

(a) (b)

FIG. 4. (a) Warp factor e2AðyÞ ¼ e−2kjyjand coupling function fðyÞ in terms of the coordinate y for λ ¼ 1=7, and (b) the coupling
function for λ ¼ −1=5 in the regime ð−1=4; 0Þ which satisfies 2λ

1þ4λ ¼ −2 and different values of parameters μ and Φ0. C∞ indicates the
value that the parameter f0 should have in order to get a vanishing coupling function fðyÞ at y → ∞.
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function becomes similar to the one in Figs. 4(a) and 4(b).
Here, we have chosen again f0 ¼ C∞; therefore, the non-
minimal coupling takes its maximum value on or close to
our brane while it vanishes at infinity. On the other hand, as
μ approaches zero and takes on positive values, the profile
of fðyÞ resembles more the one depicted in Fig. 5(a).
Finally, in the case where λ ¼ −1=4, the coupling

function, as presented in Eq. (4.5), is given by a double
exponential expression. It is not hard to realize that the
qualitative behavior of fðyÞ in this case is similar to the one

in Fig. 4(b) when μ < 0 and similar to Fig. 5(a) when
μ > 0. It is also necessary to stress that the behavior of the
scalar field ΦðyÞ is similar to that of the coupling function
fðyÞ, as one may easily conclude by observing Eqs. (4.4)
and (4.5). Therefore, it is redundant to present any graphs
of the scalar field as a function of the y coordinate.
The scalar potential VB can be determined in terms

of the extra dimension y from Eq. (2.19) by substituting
the function fðyÞ given in Eq. (4.5). Consequently, we
obtain

VBðyÞ ¼

8>>><
>>>:

−Λ5 − 6k2f0 þ 3k2Φ2
0

2λ − ξ2k2Φ2
0
ðμþe−kyÞ−

2þ4λ
1þ4λ

6λð1þ4λÞ2

×f½e−kyð3þ 16λÞ þ 3ð1þ 4λÞμ�2 − λð3þ 16λÞe−2kyg; λ ∈ Rnf− 1
4
; 0g

−Λ5 − 6k2ðf0 þΦ2
0Þ þ ξ2Φ2

0
k2

2
e2μe

−kyð3þ 4μe−ky þ μ2e−2kyÞ; λ ¼ − 1
4

9>>>=
>>>;
: ð4:13Þ

As in the linear case, it is possible to express the potential in terms of the scalar field Φ in closed form and obtain

VBðΦÞ ¼

8>>>>>><
>>>>>>:

−Λ5 − 6k2f0 þ 3k2Φ2
0

2λ þ ξ2k2Φ2
0

6λð1þ4λÞ2 ð2λΦξΦ0
þ 1

ξÞ−
1þ2λ
λ f3μ2λ

þ6λð3þ 16λÞμð2λΦξΦ0
þ 1

ξÞ
1þ4λ
2λ − ð3þ 16λÞð3þ 15λÞð2λΦξΦ0

þ 1
ξÞ

1þ4λ
λ g; λ ∈ Rnf− 1

4
; 0g

−Λ5 − 6k2ðf0 þΦ2
0Þ þ Φ2

0
k2

2
ðΦΦ0

− 2Þ2×
×f3þ 4 ln ½1ξ ðΦΦ0

− 2Þ� þ ln2½1ξ ðΦΦ0
− 2Þ�g; λ ¼ −1=4

9>>>>>>=
>>>>>>;
: ð4:14Þ

In Figs. 6(a), 6(b), and 7(a), we display the behavior of the
scalar potential VB as a function of the extra coordinate y
using the same values for the parameters as in Figs. 4(b),
5(a), and 5(b), respectively. It is worth observing the variety

of forms that one may achieve for VB by varying the values
of the parameters of the model. In Fig. 6(a), constructed for
λ ∈ ð−1=4; 0Þ, the scalar potential adopts a negative value
around the location of our brane, thus mimicking locally a

(a) (b)

FIG. 5. (a) Coupling function fðyÞ in terms of the coordinate y for Φ0 ¼ 1, μ ¼ 1, k ¼ 1, ξ ¼ 1, and values of λ smaller than − 1
4
with

2λ
1þ4λ ≠ n, n ∈ Z>. (b) Coupling function fðyÞ for λ ¼ −1=3, which satisfies 2λ

1þ4λ ¼ 2, k ¼ 1, ξ ¼ 1, and f0 ¼ C∞, while μ takes values
equal or lower than −1=2.
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negative bulk cosmological constant Λ5, while it vanishes
away from our brane. In Fig. 6(b), constructed for values of
λ in the regime ð−∞;−1=4Þ, the scalar potential has a
positive value on and close to our brane and then decreases

rapidly to a constant negative value, which depends on the
values of the parameters of the theory. Finally, Fig. 7(a),
constructed for λ ¼ −1=3 and 2λ

1þ4λ ¼ 2, shows the sensi-
tivity of the scalar potential to the value of parameter μ with

(a) (b)

FIG. 6. The scalar potential VB in terms of the extra dimension y for Λ5 ¼ 0, k ¼ 1, ξ ¼ 1, and (a) λ ¼ −1=5, f0 ¼ C∞, and variable μ
and Φ0, while in (b) Φ0 ¼ 1, μ ¼ 1, f0 ¼ C0, and λ ¼ −1.5, −2, −3, −4, −7. In each case, C∞ and C0 should be evaluated separately.

(a) (b)

FIG. 7. (a) Scalar potential VB in terms of the extra dimension y for Λ5 ¼ 0, λ ¼ −1=3, k ¼ 1, ξ ¼ 1, and f0 ¼ C∞. The varying
parameters are Φ0 and μ. (b) Energy density ρ and pressure p of the system together with the scalar potential VB in terms of the
coordinate y for Λ5 ¼ 0, f0 ¼ 10, Φ0 ¼ 1, μ ¼ 1, k ¼ 1, ξ ¼ 1, and λ ¼ −1=3.
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local minima and maxima appearing in its profile. It should
be, however, stressed that the warp factor adopts its
exponentially decaying form for all aforementioned pro-
files of the bulk potential and independently of whether
Λ5 ¼ 0 or not.
The components of the energy-momentum tensor of the

theory may be finally computed by employing Eqs. (3.6)–
(3.7). As in the linear case, we obtain

ρðyÞ¼−pðyÞ¼−6k2fðyÞ; pðyÞ¼piðyÞ¼pyðyÞ: ð4:15Þ

We discussed thoroughly in the previous section, that in
order to satisfy the weak energy conditions on and close to
the brane, we should allow the coupling function fðyÞ to
take negative values at these regimes. Thus, demanding that
fð0Þ < 0 and using Eq. (4.5), we obtain the constraints:

8<
:

f0
Φ2

0

< 1
4λ ½1 − ξ2ðμþ 1Þ 4λ

1þ4λ�; λ ∈ Rnf− 1
4
; 0g

f0
Φ2

0

< ξ2

4
e2μ − 1; λ ¼ − 1

4

9=
;: ð4:16Þ

In Fig. 7(b), we present the energy density ρðyÞ, the
pressure pðyÞ ¼ piðyÞ ¼ pyðyÞ, and the scalar potential
VBðyÞ in terms of the coordinate y. It is obvious that, for
this particular set of parameters, chosen to satisfy the above
constraints, the weak energy conditions are satisfied by the
bulk matter on and close to the brane.
We should complete our bulk solution with the junction

conditions introduced in the model due to the presence of

the brane at y ¼ 0. As discussed in the previous section, the
energy content of the brane is given by the combination
σ þ VbðΦÞ, and it creates a discontinuity in the second
derivatives of the warp factor, coupling function, and scalar
field at the location of the brane. Using Eqs. (3.10) and
(3.11), for λ ≠ f− 1

4
; 0g and λ ¼ −1=4, we obtain

σ þ VbðΦÞjy¼0 ¼ 6k

	
f0 −

Φ2
0

4λ



þ Φ2

0ξ
2k

2λð1þ 4λÞ
× ½3ð1þ μÞð1þ 4λÞ þ 4λ�ð1þ μÞ− 1

1þ4λ;

ð4:17Þ

∂ΦVbjy¼0 ¼
2kξΦ0

1þ 4λ
ð1þ μÞ−1þ2λ

1þ4λ½4ð1þ μÞð1þ 4λÞ − 1�;
ð4:18Þ

and

σþVbðΦÞjy¼0¼6kðf0þΦ2
0Þ−

Φ2
0ξ

2ke2μ

2
ð3þ2μÞ; ð4:19Þ

∂ΦVbjy¼0 ¼ −2Φ0kξμeμðμþ 2Þ; ð4:20Þ

respectively. Using the constraints (4.17) and (4.19), it is
easy to deduce that in order to have a positive total energy
density on the brane, namely σ þ VbðΦÞjy¼0 > 0, we
should have, respectively

8<
:

f0
Φ2

0

> 1
4λ f1 − ξ2½ð1þ μÞ 4λ

1þ4λ þ 4λ
3ð1þ4λÞ ð1þ μÞ− 1

1þ4λ�g; λ ∈ Rnf− 1
4
; 0g

f0
Φ2

0

> −1þ ξ2

12
e2μð3þ 2μÞ; λ ¼ −1=4

9=
;: ð4:21Þ

Let us also note that, from the constraint (4.20), we see that
the brane interaction term Vb can be a constant, and thus
absorbed into the brane tension σ, under the condition
μ ¼ −2. A similar fixing of the parameter μ follows from
Eq. (4.18), which leads to the result μ ¼ − 3þ4λ

4ð1þ4λÞ. How-
ever, in this case, care should be taken so that the resulting
values of μ, in terms of λ, are allowed by Table I.
The effective four-dimensional gravitational scale on the

brane has already been calculated and is given in
Eqs. (4.10) and (4.11). The effective cosmological constant
on the brane Λ4 can be calculated from Eq. (3.21), and is
found to be zero also in this case, as anticipated.

B. The energy conditions in the parameter space

We will now study the inequalities (4.12), (4.16), and
(4.21) and investigate again whether these may be simul-
taneously satisfied. In particular, we will study the param-
eter space between the ratio f0=Φ2

0 and the parameters λ, μ,

and ξ. Given the large number of parameters, we will
present three-dimensional graphs of the parameter space of
the ratio f0=Φ2

0 with two of the three parameters λ; μ; ξ,
while keeping the remaining one fixed. Before we continue,
we elucidate that, in the forthcoming analysis, we will
denote the right-hand side of inequality (4.12) with
Feffðλ; μ; ξÞ, since it is associated with the effective
gravitational constant, the right-hand side of inequality
(4.16), which refers to the energy conditions in the bulk,
with FBðλ; μ; ξÞ, and finally, the right-hand side of inequal-
ity (4.21), which involves the total energy density on the
brane, with Fbrðλ; μ; ξÞ.
While pursuing to satisfy simultaneously all the afore-

mentioned inequalities, we have performed a comprehen-
sive study of the parameter space of the quantities f0=Φ2

0, λ,
μ, and ξ following the classification of cases, regarding the
values of the free parameters, presented in Table I. We
present the corresponding results below:
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(i) For λ > 0, we have μ ≥ 0, while the parameter ξ can
take values in the whole set of real numbers except
zero. In Fig. 8(a), we depict the parameter space of
the quantities f0=Φ2

0, λ, and μ, for ξ ¼ 1 and λ > 0.
Although the surfaces representing the functions
Feffðλ; μ; ξÞ, Fbrðλ; μ; ξÞ, and FBðλ; μ; ξÞ change
significantly for different values of the parameter
ξ, their relative positions remain the same satisfying
always the relation

Feffðλ; μ; ξÞ > FBðλ; μ; ξÞ > Fbrðλ; μ; ξÞ:

This means that there is no point in the parameter
space for λ > 0 at which all three inequalities are
satisfied simultaneously. It is possible though to
satisfy simultaneously the inequalities (4.12) and
(4.21). Particularly, for every value of the ratio
f0=Φ2

0 which is greater than the value of the function
Feffðλ; μ; ξÞ at any given point in the parameter space
the aforementioned two inequalities will be satisfied.
This means that the positivity of both the effective
four-dimensional gravitational constant and the total
energy density on the brane is ensured. In contrast,
there is no point in the parameter space at which we
can satisfy the inequality (4.16) because the surface
of the function FBðλ; μ; ξÞ lies always below the
surface of the function Feffðλ; μ; ξÞ; as a result, the
weak energy conditions are always violated by the
bulk matter close to the brane.

(ii) For λ ∈ ð− 1
4
; 0Þ, 2λ

1þ4λ ≠ n, n ∈ Z<, we have μ > 0,
and we obtain the same qualitative behavior as in the
previous case. However, when 2λ

1þ4λ ¼ n, we have
μ ∈ ð−∞;−1Þ ∪ ð0;∞Þ. In this case, the position of
the surfaces Feffðλ; μ; ξÞ, Fbrðλ; μ; ξÞ, and FBðλ; μ; ξÞ
are different in the region of the parameter space

where μ < −1 and in the region where μ > 0.
Specifically, in this case we find that

Fbrðλ;μ;ξÞ> FBðλ;μ; ξÞ> Feffðλ;μ; ξÞ; μ< −1;

Feffðλ;μ;ξÞ> FBðλ;μ; ξÞ> Fbrðλ;μ; ξÞ; μ> 0:

Again, there is no point in the parameter space at
which we can satisfy simultaneously all inequalities.
For μ > 0, the situation is similar to the one of case (i)
depicted inFig. 8(a). In this case,wemay easily obtain
a positive effective gravitational constant and a
positive total energy density on the brane. For
μ < −1, though, as Fig. 8(b) also reveals, we have
the choice of supplementing the positivity of the
effective gravitational constant by either a positive
total energy density on the brane or by a bulk matter
that satisfies the energy conditions close to our brane.

(iii) For λ ¼ −1=4, due to thedifferent formof the solution,
the functions Feffð−1=4; μ; ξÞ, Fbrð−1=4; μ; ξÞ, and
FBð−1=4; μ; ξÞ are given by different expressions.
Now, these are found to satisfy the relations

Feffð−1=4;μ;ξÞ>FBð−1=4;μ;ξÞ>Fbrð−1=4;μ;ξÞ;
μ< 0;

Fbrð−1=4;μ;ξÞ>FBð−1=4;μ;ξÞ>Feffð−1=4;μ;ξÞ;
μ> 0:

In this case, for μ < 0, we may obtain only the
combination of a positive effective gravitational scale
and a positive total energy density on the brane, in the
region of the parameter space in which the value of the
ratio f0=Φ2

0 is greater than the value of the function
Feffð−1=4; μ; ξÞ; the relative positions of the different

(a) (b)

FIG. 8. (a) Parameter space of the quantities f0=Φ2
0, λ and μ, for ξ ¼ 1 and λ > 0. (b) Parameter space of the quantities f0=Φ2

0, μ and ξ,
for λ ¼ −1=5 or 2λ

1þ4λ ¼ −2 and μ < −1. The graphs depict the functions Feffðλ; μ; ξÞ, Fbrðλ; μ; ξÞ, and FBðλ; μ; ξÞ.

NAKAS, KANTI, and PAPPAS PHYS. REV. D 101, 084056 (2020)

084056-16



surfaces are the same as in Fig. 8(a). On the other hand,
for μ > 0, we again have the choice of satisfying
either Eqs. (4.12) and (4.16), in the region
where Feffð−1=4; μ; ξÞ < f0=Φ2

0 < FBð−1=4; μ; ξÞ,
or Eqs. (4.12) and (4.21), in the region where
f0=Φ2

0 > Fbrð−1=4; μ; ξÞ. This situation is in turn
similar to the one depicted in Fig. 8(b).

(iv) For λ < −1=4, 2λ
1þ4λ ≠ n; n ∈ Z>, and for every

allowed value of the parameters μ ≥ 0 and
ξ ∈ Rnf0g, we always have

Fbrðλ; μ; ξÞ > FBðλ; μ; ξÞ > Feffðλ; μ; ξÞ:

In this case, the situation is similar to the one
depicted in Fig. 8(b), and we have again the choice
of combining a positive effective gravitational con-
stant with either a positive energy density on the
brane or a bulk matter that satisfies the weak energy
conditions close to and on our brane.

(v) For λ < −1=4 and 2λ
1þ4λ ¼ n; n ∈ Z>, the parameter

μ is free to take values in the whole set of real
numbers. In Figs. 9(a) and 9(b), we depict the
parameter space of the ratio f0=Φ2

0 and μ together
with the curves of the functions Feffðλ; μ; ξÞ,
Fbrðλ; μ; ξÞ, and FBðλ; μ; ξÞ. Note that, for clarity
of the graph, we have fixed the values of two
parameters, i.e., λ ¼ −1=3 and ξ ¼ 1, and thus
present a two-dimensional graph. However, the
situation remains the same for every other allowed
value of the parameters λ and ξ. We observe that

there always exists a region in the parameter space in
which we can have a positive value for the effective
four-dimensional gravitation scale and satisfy the
weak energy conditions close to the brane (green
region) and a region in which both the four-dimen-
sional gravitational constant and the total energy
density on the brane are positive (brown region).
Since there is no overlapping between the green and
brown regions, as Fig. 9(b) reveals, there is no point in
the parameter space where all three conditions are
satisfied. For comparison, we note that the parameters
in Fig. 7(b) have been chosen so that the depicted
solution falls into the green area of Fig. 9(a).

V. AN INVERSE-POWER COUPLING
FUNCTION IN TERMS OF y

In this and the following two sections, we will consider
explicit forms of the coupling function fðyÞ in terms of the
coordinate y. These forms cannot be easily expressed in
terms of the scalar field Φ in a closed form; they are
however legitimate choices that satisfy the reality and
finiteness conditions imposed in Sec. II. We start with
the following expression:

fðyÞ ¼ f0 þ
Φ2

0

kλðyþ y0Þλ
; ð5:1Þ

where ðf0;Φ0Þ ∈ Rnf0g while ðλ; y0Þ ∈ ð0;þ∞Þ. The
factor kλ in the denominator was introduced to make the
product kðyþ y0Þ dimensionless.

(a) (b)

FIG. 9. (a) Parameter space of the quantities f0=Φ2
0 and μ, for ξ ¼ 1, λ ¼ −1=3. (b) Magnification of a particular region of the previous

figure in order to get a clear picture of the behavior of the functions Feffð−1=3; μ; 1Þ, Fbrð−1=3; μ; 1Þ, and FBð−1=3; μ; 1Þ
close to μ ¼ −0.8.

INCORPORATING PHYSICAL CONSTRAINTS IN BRANEWORLD … PHYS. REV. D 101, 084056 (2020)

084056-17



A. The bulk solution

Substituting the aforementioned coupling function in
Eq. (2.18) we obtain the differential equation:

½Φ0ðyÞ�2 ¼ λΦ2
0

kλðyþ y0Þλþ2
½kðyþ y0Þ − λ − 1�: ð5:2Þ

The right-hand side of the above equation should be always
positive; evaluating at y ¼ 0, the above yields the following
constraint on the parameters of the model:

ky0
λþ 1

> 1: ð5:3Þ

The function ½Φ0ðyÞ�2 could, in principle, be zero at the
point where ΦðyÞ has an extremum. However, from
Eq. (5.2) this may happen only at y ¼ y0ðλþ1

ky0
− 1Þ which,

upon using the constraint (5.3), turns out to be negative.
Therefore, the scalar field does not have an extremum in the
whole domain y ∈ ½0;þ∞Þ, which also means that ΦðyÞ is
an one-to-one function in the same regime. In addition,
from Eq. (5.2) it is straightforward to deduce that, as
y → þ∞, the physical constraint (2.23) is satisfied, thus,
the scalar field does not diverge at infinity.
Let us now determine the explicit expression of the scalar

fieldΦðyÞ from Eq. (5.2). For simplicity and without loss of
generality, we will assume that Φ0 ∈ ð0;þ∞Þ. Then, after
taking the square root of Eq. (5.2), we have

Φ�ðyÞ¼�Φ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ1Þp
kλ=2

Z
dyðyþy0Þ−λ

2
−1
�
kðyþy0Þ
λþ1

−1

�1
2

:

ð5:4Þ

Setting u ¼ kðyþy0Þ
λþ1

and then w ¼ 1 − 1
u, the above integral

takes the form

Z
dyðyþ y0Þ−λ

2
−1
�
kðyþ y0Þ
λþ 1

− 1

�1
2

¼
	

k
λþ 1


λ
2

Z
dwð1 − wÞλ2−3

2w
1
2

¼
	

k
λþ 1


λ
2

Z
w

0

dt t
1
2ð1 − tÞλ2−3

2 þ C1

¼
	

k
λþ 1


λ
2

w
3
2

Z
1

0

dt0 t012ð1 − wt0Þλ2−3
2 þ C1; ð5:5Þ

where in the last line we have made the change of variable
t0 ¼ t

w. Using the integral representation of the hypergeo-
metric function (4.7), Eq. (5.4) leads to the following
expression for the scalar field ΦðyÞ:

Φ�ðyÞ ¼ � 2Φ0

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

ðλþ 1Þλ−1
s �

1 −
λþ 1

kðyþ y0Þ
�3

2

× 2F1

	
3

2
−
λ

2
;
3

2
;
5

2
; 1 −

λþ 1

kðyþ y0Þ


: ð5:6Þ

In the above, we have also used the translational symmetry
of the gravitational field equations with respect to the scalar
field, discussed also in Sec. III A, to set C1 ¼ 0.
A solution for the scalar field similar to Eq. (5.6) was

derived in the context of our previous analysis [73] for an
exponential coupling function fðyÞ and an anti-de Sitter
brane (Λ < 0). The mathematical properties of the solution
were studied there in detail; therefore, here we adapt those
results in the present case and present our solutions for
the scalar field without repeating the analysis—we refer
the interested reader to our previous work for further
information.
Trying to simplify Eq. (5.6), we first note that for every

value of the coordinate y, the argument 1 − λþ1
kðyþy0Þ of the

hypergeometric function is positive and smaller than unity.
Therefore, one can expand the hypergeometric function in
power series as [73,83]

2F1

	
3

2
−
λ

2
;
3

2
;
5

2
;1−

λþ1

kðyþy0Þ



¼
X∞
n¼0

Γð3
2
− λ

2
þnÞ

Γð3
2
− λ

2
Þ

3

ð2nþ3Þn!
�
1−

λþ1

kðyþy0Þ
�
n
: ð5:7Þ

There are two interesting categories of values for the
parameter λ which lead to even simpler and more elegant
expressions for the hypergeometric function and sub-
sequently for the scalar field. These are as follows:

(i) If λ ¼ 1þ 2q with q ∈ Z>, then, from Eq. (5.7),
we have

2F1

	
3 − λ

2
;
3

2
;
5

2
; 1 −

λþ 1

kðyþ y0Þ



¼
8<
:

1; q ¼ 1

1þPq−1
n¼1

3ð−qþ1Þð−qþ2Þ���ð−qþnÞ
ð2nþ3Þn!

h
1 − λþ1

kðyþy0Þ
i
n
; q > 1

9=
;: ð5:8Þ
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The solution for the scalar field then easily follows
by using Eqs. (5.6) and (5.8) and substituting the
selected values for the parameter λ (or q). As
indicative cases, we present below the form of the
scalar field for5 λ ¼ 3 (i.e., q ¼ 1)

Φ�ðyÞ ¼ � Φ0

2
ffiffiffi
3

p
�
1 −

4

kðyþ y0Þ
�
3=2

;

and λ ¼ 5 (i.e., q ¼ 2)

Φ�ðyÞ ¼ �Φ0

ffiffiffi
5

p

54

�
1 −

6

kðyþ y0Þ
�
3=2

×

�
1 −

3

5

�
1 −

6

kðyþ y0Þ
��

:

(ii) If λ ¼ 2q with q ∈ Z>, we can always express the
hypergeometric function in Eq. (5.6) in terms of
elementary functions, namely arcsin, square roots,
and powers of its argument. For λ ¼ 2 (i.e.. q ¼ 1),
it is

2F1

	
1

2
;
3

2
;
5

2
; u2



¼ 3

2

1

u2

	
arcsin u

u
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p 

:

ð5:9Þ

Therefore, from Eq. (5.6), the scalar field for λ ¼ 2
can be written in the form

Φ�ðyÞ¼�Φ0

ffiffiffi
2

p

3

�
1−

3

kðyþy0Þ
�1

2

�	
1−

3

kðyþy0Þ



−1
2

×arcsin

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

3

kðyþy0Þ

s 

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

kðyþy0Þ

s �
:

For larger values of λ (i.e., for q ¼ 1þ l, with
l ∈ Z>), the following relation holds:

2F1

	
1

2
−l;

3

2
;
5

2
;u2


u2

¼α

	
arcsinu

u
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−u2

p 


þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−u2

p
ðβ1u2þβ2u4þ���þβl−1u2ðl−1Þþβlu2lÞ;

ð5:10Þ

where α; β1;…; βl are constant coefficients, which
satisfy a system of lþ 1 linear algebraic equa-
tions [73]—the solution of this system readily
determines the unknown coefficients α; β1;…; βl.
For example, for l ¼ 1 (i.e., for q ¼ 2, or equiv-
alently λ ¼ 4), this set of equations gives α ¼ 3=8
and β1 ¼ 3=4. Upon substituting these in (5.10), the
solution for the scalar field follows from Eq. (5.6)
and has the form

Φ�ðyÞ ¼ � Φ0

5
ffiffiffi
5

p
�
1 −

5

kðyþ y0Þ
�1

2

×

"
1

2

	
1 −

5

kðyþ y0Þ



−1
2

× arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

5

kðyþ y0Þ

s !

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

kðyþ y0Þ

s 	
1

2
−

5

kðyþ y0Þ

#

: ð5:11Þ

In Fig. 10, we depict the coupling function fðyÞ and the
scalar field ΦðyÞ for the indicative set of parameters
f0 ¼ 0, Φ0 ¼ 1.5, y0 ¼ 1, k ¼ 2.5, and λ ¼ 1.5. For
comparison, we also display the exponentially decreasing
warp factor. The coupling function remains localized near
the brane and asymptotically decreases to the constant
value f0, which here has been taken to be zero. The scalar
field starts from a constant value at the location of the
brane, which for this set of parameters turns out to be zero,
and goes asymptotically to a constant value that depends on
the values of Φ0 and λ. Although this is not very clear from

FIG. 10. Warp factor e2AðyÞ ¼ e−2kjyj, the coupling function
fðyÞ and the scalar field ΦðyÞ in terms of the coordinate y for
f0 ¼ 0, Φ0 ¼ 1.5, y0 ¼ 1, k ¼ 2.5, and λ ¼ 1.5.

5For completeness, we present here also the solution for the
limiting case with λ ¼ 1 (i.e., for q ¼ 0); this has the form

Φ�ðyÞ¼�2Φ0

3

"
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2

kðyþy0Þ

s !
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2

kðyþy0Þ

s #
:
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Fig. 10, it easily follows from Eq. (5.6) with the asymptotic
value of the scalar field, as y → �∞, coming out to be

lim
y→�∞

Φ�ðyÞ ¼ �
ffiffiffi
π

p
Φ0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

ðλþ 1Þλ−1
s

Γðλ
2
− 1

2
Þ

Γðλ
2
þ 1Þ : ð5:12Þ

It is worth noting that the profiles of both fðyÞ andΦðyÞ do
not change with the variation of the values of the
parameters.
The potential of the scalar field VBðyÞ in the bulk can be

determined from Eq. (2.19) using the expression of the
coupling function fðyÞ. Thus, we find

VBðyÞ¼−Λ5−6k2f0−
Φ2

0

2kλðyþy0Þλþ2

× ½12k2ðyþy0Þ2þ7λkðyþy0Þþλðλþ1Þ�: ð5:13Þ

Since λ > 0, the last term in the above expression is
negative-definite; it also vanishes as y → þ∞ leaving
the parameters Λ5 and f0 to determine its asymptotic
value. Depending on the values of the parameters, the
potential may be either positive or negative at the location
of the brane or asymptotically far away. In Fig. 11, one can
observe the aforementioned behavior of the scalar potential
VBðyÞ. The values of the fixed parameters Λ5; f0;Φ0; y0; k
are the same as in Fig. 10, while the parameter λ varies.
The energy density ρðyÞ and pressure pðyÞ ¼ piðyÞ ¼

pyðyÞ may be finally computed by employing Eqs. (3.6)
and (3.7). Then, we are led to the result

ρðyÞ ¼ −pðyÞ ¼ −6k2fðyÞ ¼ −6k2
�
f0 þ

Φ2
0

kλðyþ y0Þλ
�
:

ð5:14Þ

If we wish to satisfy the weak energy conditions close and
on the brane, we should have ρð0Þ > 0, which in turn
means fð0Þ < 0; in that case, the parameters of the model
should satisfy the following inequality:

f0
Φ2

0

< −
1

ðky0Þλ
: ð5:15Þ

B. Junction conditions and the effective theory

From the field equations (2.12) and (2.14), we obtain the
following junction conditions for the matter on the brane:

3fðyÞ½A0� ¼ −½f0� − ðσ þ VbÞ; ð5:16Þ

½Φ0� ¼ 4½A0�∂Φf þ ∂ΦVb; ð5:17Þ

where all quantities are again evaluated at y ¼ 0. The only
difference in this case is that we have used the derivatives of
the coupling function with respect to the coordinate y rather
than the one with respect to the scalar field. This is due to
the fact that the explicit expression of the function fðΦÞ is
not known—although ΦðyÞ is a one-to-one function, it
cannot in general be inverted. Taking advantage of the Z2

symmetry in the bulk, we can easily evaluate the total
energy density on the brane by Eq. (5.17), which is given by

σ þ VbðΦÞjy¼0 ¼ 6kf0 þ
2Φ2

0

kλyλþ1
0

ð3ky0 þ λÞ

¼ 6kΦ2
0

�
f0
Φ2

0

þ 3ky0 þ λ

3ðky0Þλþ1

�
: ð5:18Þ

If we demand the total energy density on the brane to be
positive, namely σ þ VbðΦÞjy¼0 > 0, then we straightfor-
wardly deduce the constraint

f0
Φ2

0

> −
3ky0 þ λ

3ðky0Þλþ1
: ð5:19Þ

In order to evaluate the first jump condition (5.16), we
write ∂Φf ¼ ∂yf=Φ0 and ∂ΦVb ¼ ∂yVb=Φ0. We are
allowed to do this since, as we mentioned previously,
the functionΦðyÞ does not possess any extrema in the bulk;
therefore, Φ0ðyÞ never vanishes. Then, multiplying both
sides of Eq. (5.16) by Φ0 and using Eq. (5.2), we obtain the
condition

∂yVbjy¼0 ¼ −
2λΦ2

0

kλyλþ2
0

ð3ky0 þ λþ 1Þ: ð5:20Þ

Due to the fact that λ > 0, k > 0, and y0 > 0, the right-hand
side of the above equation never vanishes, which means
that Vb ≠ const.
Let us now focus on the effective four-dimensional

theory on the brane. Using Eq. (3.17) and the expression
for the coupling function, from Eq. (5.1) we obtain

FIG. 11. Scalar potential VB in terms of the extra dimension y
for Λ5 ¼ 0, f0 ¼ 0, Φ0 ¼ 1.5, y0 ¼ 1, k ¼ 2.5, and λ ¼
0.5; 1; 1.5; 2.5 (from bottom to top).
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1

κ24
¼ f0

k
þ 2Φ2

0

kλ

Z
∞

0

dy
e−2ky

ðyþ y0Þλ

¼ f0
k
þ 2Φ2

0e
2ky0

kλ

Z
∞

0

dy
e−2kðyþy0Þ

ðyþ y0Þλ
: ð5:21Þ

Setting t ¼ 2kðyþ y0Þ, the above relation takes the form

1

κ24
¼ f0

k
þ 2Φ2

0e
2ky0

kλ
ð2kÞλ−1

Z
∞

2ky0

dt t−λe−t

¼ f0
k
þ 2λΦ2

0e
2ky0

k
Γð1 − λ; 2ky0Þ: ð5:22Þ

Above, we have used the upper incomplete gamma
function Γðs; xÞ, defined as

Γðs; xÞ≡
Z

∞

x
dt ts−1e−t: ð5:23Þ

The properties of the incomplete gamma function as well as
the expressions giving its numerical values are discussed in
Appendix B. With the use of Eq. (5.22) and the relation
1=κ24 ¼ M2

Pl=ð8πÞ, we finally obtain

M2
Pl ¼

8πΦ2
0

k

�
f0
Φ2

0

þ 2λe2ky0Γð1 − λ; 2ky0Þ
�
: ð5:24Þ

Demanding the positivity of the effective four-dimensional
gravitational scale M2

Pl, we are led to the additional
constraint

f0
Φ2

0

> −2λe2ky0Γð1 − λ; 2ky0Þ: ð5:25Þ

Finally, substituting the total energy density on the brane
from Eq. (5.18) and the expressions of the functions fðyÞ,
ΦðyÞ6 and VBðyÞ in Eq. (3.21), we can verify that the
effective four-dimensional cosmological constant on the
brane is zero, as expected.

C. Energy conditions and the parameter space

In this subsection, we will study the parameter space of
the ratio f0=Φ2

0 and the dimensionless parameter ky0. The
value of the parameter λ may be also varied; however, once
fixed, it determines the allowed values of the parameter ky0
through the constraint (5.3). As usual, we will investigate
the parameter regimes where the inequalities (5.15), (5.19),
and (5.25) are satisfied.
In Fig. 12, we depict the aforementioned parameter space

for the value λ ¼ 3. We also depict the curves of the

expressions on the right-hand sides of the inequalities
(5.15), (5.19), and (5.25). Although the corresponding
curves have been drawn for a particular value of λ, it turns
out that their relative position remains the same for any
allowed value of the parameters λ and ky0; namely we
always have

−2λe2ky0Γð1−λ;2ky0Þ>−
1

ðky0Þλ
>−

3ky0þ λ

3ðky0Þλþ1
:

Clearly, this means that only the inequalities (5.19) and
(5.25) can be simultaneously satisfied. Therefore, we may
easily obtain a model with a positive four-dimensional
gravitational constant and a positive total energy density on
the brane. However, in that case, we will not be able to
satisfy the weak energy conditions by the bulk matter close
and on the brane. This means that the energy density ρ will
be negative at the location of the brane with the pressure
having the exact opposite value.

VI. A LINEAR-EXPONENTIAL COUPLING
FUNCTION IN TERMS OF y

In this case, we consider the following coupling function
fðyÞ in terms of the coordinate y:

fðyÞ ¼ f0 þ f1kye−λky: ð6:1Þ

We also assume that f1 ∈ Rnf0g and λ ∈ ð0;þ∞Þ in order
for fðyÞ to satisfy the physical constraints discussed at the
end of Sec. II.
Let us start by deriving first the bulk solution.

Substituting the aforementioned coupling function in
Eq. (2.18), we obtain

FIG. 12. Parameter space between the ratio f0=Φ2
0 and the

parameter ky0, for λ ¼ 3. The figure depicts also the plots of the
expressions appearing on the right-hand sides of the inequalities
(5.15), (5.19), and (5.25).

6For the calculation of the effective four-dimensional cosmo-
logical constant on the brane Λ4, it is more convenient to use the
relation (5.2) instead of the explicit form of the scalar field ΦðyÞ
as given by Eq. (5.6).
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½Φ0ðyÞ�2 ¼ f1k2e−λky½2λ − 1 − λðλ − 1Þky�: ð6:2Þ
Since the scalar fieldΦðyÞ should be a real-valued function,
it is obvious that ½Φ0ðyÞ�2 ≥ 0 for all values of y which
are greater or equal to zero. Let us first assume that
f1 < 0; then, demanding that ½Φ0ð0Þ�2 ≥ 0, we obtain the
constraint λ ≤ 1=2. On the other hand, for large values of
the y coordinate (i.e., at y ¼ y0 ≫ 1), demanding that
½Φ0ðy0Þ�2 ≥ 0 leads to λ ≥ 1.7 However, these two con-
straints are incompatible, which leads us to deduce that the
parameter f1 should be strictly positive. In that case,
a similar argument as above leads to the allowed regime
λ ∈ ½1

2
; 1�. Moreover, since f1 is positive, we may set

f1 ¼ Φ2
0, and assume for simplicity that Φ0 ∈ ð0;þ∞Þ.

For λ ¼ 1, we can easily integrate Eq. (6.2) with respect
to y, and determine the expression of the function of the
scalar field ΦðyÞ. Then, we obtain

Φ�ðyÞ ¼ �2Φ0e−ky=2: ð6:3Þ
Above, we have used again the translational symmetry of
the gravitational field equations with respect to the value of
the scalar field in order to eliminate an additive integration
constant. By inverting the above function, we can express
the coupling function in terms of the scalar field Φ, namely

fðΦÞ ¼ f0 −
Φ2

2
ln

	
Φ
2Φ0



: ð6:4Þ

Equation (6.2) is more difficult to solve in the remaining
λ-parameter regime, i.e., for λ ∈ ½1

2
; 1Þ. In that case,

Eq. (6.2) leads to

Φ�ðyÞ ¼ �Φ0k
Z

dy e−λky=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1 − λðλ − 1Þky

p
¼ � 2Φ0

λ

�
−e−λky=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1 − λðλ − 1Þky

p

þ
Z

dy e−λky=2
d
dy

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ − 1 − λðλ − 1Þky

p
Þ
�
:

ð6:5Þ
Focusing on the second term of the right-hand side of the
above relation, anddue to the fact that λ ∈ ½1

2
; 1Þ, we canwriteZ

dye−
λky
2
d
dy

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ−1−λðλ−1Þky

p
Þ

¼e
2λ−1
2ð1−λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−λÞ

p Z
dye−

2λ−1−λðλ−1Þky
2ð1−λÞ

d
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ−1−λðλ−1Þky

2ð1−λÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1−λÞ

2

r
e

2λ−1
2ð1−λÞerf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ−1−λðλ−1Þky

2ð1−λÞ

s !
; ð6:6Þ

where we have used the error function, defined as

erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

dt e−t
2

;

and its property

d
dx

erfðgðxÞÞ ¼ 2ffiffiffi
π

p e−gðxÞ2
dgðxÞ
dx

:

Combining Eqs. (6.5) and (6.6) we obtain

Φ�ðyÞ ¼ �2Φ0

λ

"
−e−λky=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ− 1− λðλ− 1Þky

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1− λÞ

2

r
e

2λ−1
2ð1−λÞerf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ− 1− λðλ− 1Þky

2ð1− λÞ

s !#
:

ð6:7Þ

In this case, it is not possible to invert the function ΦðyÞ in
order to find the form of the coupling function fðΦÞ.
However, from Eq. (6.2) and for λ ∈ ½1

2
; 1Þ, it is straightfor-

ward to deduce that Φ0ðyÞ ≠ 0 for all y > 0; this, again,
means that ΦðyÞ does not have any extremum, and is
therefore a one-to-one function. This property will be of use
in the evaluation of the junction conditions on the brane.
In Figs. 13(a) and 13(b), we present the warp factor, the

coupling function, and the scalar field for particular choices
of values for the parameters of the model. The coupling
function fðyÞ adopts the same constant value f0 at the
location of our brane and at asymptotic infinity while
reaching a maximum value at some intermediate distance
off our brane, as depicted in Fig. 13(a). In Fig. 13(b), the
scalar field presents two distinct profiles, for λ ¼ 1 and
λ ∈ ½1

2
; 1Þ due to the two different solutions given by

Eqs. (6.3) and (6.7), respectively. In all cases, though,
Φ�ðyÞ remains everywhere finite approaching a constant
value at asymptotic infinity: for λ ¼ 1 this constant is zero,
while for λ ∈ ½1

2
; 1Þ this is given by the expression

lim
y→�∞

Φ�ðyÞ¼�2Φ0

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð1−λÞ

2

r
e

2λ−1
2ð1−λÞ; λ∈

�
1

2
;1



: ð6:8Þ

In the above, we have used the fact that the limit of the error
function appearing in Eq. (6.7), as y → þ∞, is unity. Due
to the Z2 symmetry imposed on our model, the same limit
will hold for the scalar field also for y → −∞.
From Eq. (2.19), we may now determine the potential of

the scalar field VBðyÞ in the bulk by using the expression of
the coupling function fðyÞ. Then, we find

7Here, we have used the fact that, for large values of y, only the
term proportional to ky mainly contributes to the value of
½Φ0ðyÞ�2.
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VBðyÞ¼−Λ5−6k2f0þΦ2
0k

2e−λky
�
7

2
þλ−ky

	
λ2

2
þ7λ

2
þ6


�
;

λ∈
�
1

2
;1

�
: ð6:9Þ

On the other hand, the energy density ρðyÞ and pressure
pðyÞ ¼ piðyÞ ¼ pyðyÞ may be computed by employing
Eqs. (3.6) and (3.7); then, we obtain

ρðyÞ ¼ −pðyÞ ¼ −6k2fðyÞ
¼ −6k2ðf0 þΦ2

0kye
−λkyÞ: ð6:10Þ

In order to satisfy the weak energy conditions close and on
the brane, we should have again ρð0Þ ≥ 0, or equivalently
fð0Þ ≤ 0; hence, we are led to the following inequality:

f0
Φ2

0

≤ 0: ð6:11Þ

In Fig. 14, we present the energy density and pressure as
well as the profile of the bulk potential for the same values
of parameters as in Fig. 13 for easy comparison. We
observe that both components and the bulk potential are
everywhere finite, reach their maximum values at a finite
distance from our brane, and reduce to a constant value
(which here is taken to be zero) at large distances.
Let us now turn to the junction conditions introduced in

the theory at the location of the brane. From Eqs. (5.16) and
(5.17), we obtain in a similar way the conditions

σ þ VbðΦÞjy¼0 ¼ 2kð3f0 −Φ2
0Þ; ð6:12Þ

∂yVbjy¼0 ¼ 8k2Φ2
0

	
λ2 − λþ 5

4



; ð6:13Þ

for λ ∈ ½1
2
; 1�. The total energy density on the brane will be

positive if and only if σ þ VbðΦÞjy¼0 > 0, which results to

(a) (b)

FIG. 13. (a) Coupling function fðyÞ and the warp factor e−2AðyÞ in terms of the y coordinate for f0 ¼ 0, Φ0 ¼ 1, k ¼ 3, and λ ¼ 0.5.
(b) Scalar field ΦþðyÞ for Φ0 ¼ 1, k ¼ 3, and λ ¼ 1; 0.5; 0.7.

FIG. 14. Energy density ρ and pressure p of the system together
with the scalar potential VB in terms of the coordinate y for
Λ5 ¼ 0, f0 ¼ 0, Φ0 ¼ 1, k ¼ 3, and λ ¼ 0.5.
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f0
Φ2

0

>
1

3
: ð6:14Þ

Next, we are going to evaluate the effective four-dimen-
sional gravitational constant on the brane. Using Eq. (3.17),
we obtain

1

κ24
¼ M2

Pl

8π
¼ Φ2

0

k

�
f0
Φ2

0

þ 2

ð2þ λÞ2
�
: ð6:15Þ

For a robust effective theory on the brane, it is imperative to
have a positive four-dimensional gravitational constant;
thus, we must satisfy the following constraint:

f0
Φ2

0

> −
2

ð2þ λÞ2 : ð6:16Þ

Once again, as expected, the effective four-dimensional
cosmological constant on the brane may be found to be zero
with the use of Eq. (3.21).
It is straightforward to study whether the inequalities

(6.11), (6.14), and (6.16) can be simultaneously satisfied.
By merely observing the first two of them, it is easy to
deduce that they are incompatible since the value of f0=Φ2

0

can be either positive or negative. Additionally, as we
already mentioned, the parameter λ takes values in the
range ½1

2
; 1�. In this case, it holds that

−
8

25
≤ −

2

ð2þ λÞ2 ≤ −
2

9
: ð6:17Þ

Hence, we can simultaneously satisfy either the inequalities
(6.11) and (6.16), or (6.14) and (6.16). In particular, a
positive four-dimensional gravitational scale M2

Pl can be
combined with the bulk matter satisfying the weak energy
conditions close to the brane, for

−
2

9
≤

f0
Φ2

0

≤ 0;

or with a positive total energy density on the brane, for

f0
Φ2

0

>
1

3
:

The particular solution depicted in Fig. 14 corresponds to
the value f0 ¼ 0; therefore, it is characterized by a negative
energy density inside the bulk, which violates the energy
conditions. Note, however, that at the location of our brane,
both the energy density and pressure are zero while the bulk
potential is positive.

VII. A DOUBLE-EXPONENTIAL SCALAR
FIELD IN TERMS OF y

In this section, we follow an alternative approach and
consider the following expression for the scalar field in
terms of the coordinate y:

ΦðyÞ ¼ Φ0e−μ
2eky : ð7:1Þ

Although this expression seems similar to the subcase of
the quadratic coupling function with λ ¼ −1=4, it differs
significantly as it will become clear from the expressions of
the coupling function fðΦÞ and the scalar potential VBðΦÞ.
Moreover, it is obvious that both parameters Φ0 and μ can
now take values in the entire set of real numbers except
zero. With the form of the scalar field already known, it is
straightforward to derive the corresponding forms of the
coupling function, bulk potential, and components of the
energy-momentum tensor. Starting with the coupling func-
tion, upon substituting the aforementioned expression of
the scalar field in Eq. (2.18), we readily obtain

fðyÞ ¼ f0 − f1e−ky −
Φ2

0

4μ2
e−2μ

2ekyðμ2 þ e−kyÞ: ð7:2Þ

In the above result, the parameter f1 is allowed to take
values in the whole set of real numbers, while the allowed
values for the parameter f0 will be examined shortly.
Inverting the function ΦðyÞ, the expression of the coupling
function in terms of the scalar field reads

fðΦÞ ¼ f0 þ
f1μ2

lnðΦ=Φ0Þ
−
Φ2

4

	
1 −

1

lnðΦ=Φ0Þ


: ð7:3Þ

The scalar potential VBðyÞ can then be evaluated employing
Eqs. (2.19) and (7.2). Then, we find

VBðyÞ ¼ −Λ5 − 6k2f0 þ 10k2f1e−ky

þΦ2
0k

2

2μ2
e−2μ

2ekyð5e−ky þ 7μ2 þ 4μ4eky þ μ6e2kyÞ;

ð7:4Þ
in terms of the y coordinate, or

VBðΦÞ ¼ −Λ5 − 6k2f0 −
10k2f1μ2

lnðΦ=Φ0Þ
þΦ2

0k
2

2

�
−

5

lnðΦ=Φ0Þ

þ 7 − 4 ln

	
Φ
Φ0



þ
�
ln

	
Φ
Φ0


�
2
�
; ð7:5Þ

in terms of the scalar field. In Figs. 15(a) and 15(b), we
display the profiles of the coupling function and scalar
potential in terms of the y coordinate, for particular values
of the parameters of the model. The varying parameter here
is f1, which is clearly the decisive one for the form of both
functions. We observe that for positive f1, the coupling
function takes its lowest value at the location of the brane
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while, as f1 gradually takes larger negative values, the
coupling function eventually exhibits a peak at the location
of the brane. The bulk potential has almost the exact opposite
profile of the coupling function: it acquires a maximum,
positive value at the location of our brane for f1 > 0 while it
turns to globally negative values for f1 < 0. For every set of
values of the parameters, though, both functions are every-
where finite and reduce to a constant value at large distances
—this value, when Λ5 ¼ 0, is determined by f0.
Finally, the energy density ρðyÞ and pressure pðyÞ ¼

piðyÞ ¼ pyðyÞ components may be computed as usual by
employing Eqs. (3.6) and (3.7), in which case we are led to
the results

ρðyÞ¼−pðyÞ¼−6k2fðyÞ

¼−6k2
�
f0−f1e−ky−

Φ2
0

4μ2
e−2μ

2ekyðμ2þe−kyÞ
�
: ð7:6Þ

In order to satisfy the weak energy conditions close and
on the brane, we demand again that fð0Þ < 0; hence, we
obtain the following inequality:

f0
Φ2

0

<
f1
Φ2

0

þ μ2 þ 1

4μ2
e−2μ

2

: ð7:7Þ

Turning now to the junction conditions, from Eqs. (5.16),
(5.17) and using also the relations (7.1)–(7.3), we obtain

σþVbðΦÞjy¼0¼ 6kf0−8kf1−
Φ2

0ke
−2μ2

2μ2
ð4þ5μ2þ2μ4Þ;

ð7:8Þ

∂yVbjy¼0¼8k2f1þ
2Φ2

0k
2

μ2
e−2μ

2ð1þ2μ2þ2μ4þμ6Þ: ð7:9Þ

In the second of the above equations, we have used the
relation ∂yVb ¼ Φ0∂ΦVb. In order to have a positive total
energy density on the brane, we should have

f0
Φ2

0

>
4

3

f1
Φ2

0

þ e−2μ
2

12μ2
ð4þ 5μ2 þ 2μ4Þ: ð7:10Þ

In the context of the effective theory on the brane, we may
evaluate the four-dimensional gravitational scale using
Eqs. (3.17) and (7.2). Then,

1

κ24
¼ f0

k
−
2f1
3k

−
2Φ2

0

4μ2

Z
∞

0

dye−2μ
2eky−2kyðμ2þe−kyÞ

¼ f0
k
−
2f1
3k

−
2Φ2

0μ
2

k

	
e−2μ

2

8μ4
−μ2

Z
∞

2μ2
dtt−4e−t



; ð7:11Þ

where, in the second line, we first set e−ky ¼ w and then
2μ2

w ¼ t. The integral in the above expression is the upper
incomplete gamma function Γð−3; 2μ2Þ as one may easily
conclude from Eq. (B1). The latter quantity, through
Eq. (B4), may be written as

Γð−3;2μ2Þ¼ 1

6

�
e−2μ

2

4μ6
ð1−μ2þ2μ4Þ−Γð0;2μ2Þ

�
; ð7:12Þ

where

(a) (b)

FIG. 15. (a) Coupling function in terms of the y coordinate for f0 ¼ 1, Φ0 ¼ 2, k ¼ 1, μ ¼ 1, and f1 ¼
−1;−0.7;−0.4;−0.25;−0.15; 0.6 (from top to bottom). (b) Scalar potential VB in terms of the coordinate y for Λ5 ¼ 0, f0 ¼ 1,
Φ0 ¼ 2, k ¼ 1, μ ¼ 1, and f1 ¼ −1.1;−0.9;−0.7;−0.5;−0.3; 0.6 (from bottom to top).
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Γð0; 2μ2Þ ¼ −γ − ln ð2μ2Þ −
X∞
m¼1

ð−1Þm2mμ2m
mðm!Þ : ð7:13Þ

Hence, we finally obtain

1

κ24
¼ M2

Pl

8π
¼ f0

k
−
2f1
3k

−
Φ2

0e
−2μ2

12kμ2
ð2þ μ2 − 2μ4Þ

−
Φ2

0μ
4

3k
Γð0; 2μ2Þ: ð7:14Þ

Demanding as usual a positive four-dimensional gravita-
tional constant, we find that the following inequality must
be satisfied:

f0
Φ2

0

>
2

3

f1
Φ2

0

þ e−2μ
2

12μ2
ð2þ μ2 − 2μ4Þ þ μ4

3
Γð0; 2μ2Þ: ð7:15Þ

As before, the evaluation of the effective four-dimensional
cosmological constant gives Λ4 ¼ 0.
Finally, we investigate the parameter space of the

quantities f0=Φ2
0, f1=Φ2

0, and μ, in an attempt to simulta-
neously satisfy the inequalities (7.7), (7.10), and (7.15). In
Fig. 16(a), we depict the aforementioned parameter space
as well as the surfaces which correspond to the right-hand
sides of these inequalities. We observe that there is no point
in the parameter space at which all three inequalities can be
satisfied. It is possible though to satisfy two out of these
three inequalities simultaneously; which two are satisfied
depends on the values of the parameters. For f1=Φ2

0 ¼ 5,
for example, the situation is simple as the relative position
of the three surfaces remains the same independently
of the value of μ: thus, we may have a positive effective
cosmological constant and a positive total energy density

on the brane for low values of f0=Φ2
0 whereas for large

values of f0=Φ2
0 we have a positive M2

Pl and the weak
energy conditions are satisfied close to our brane. For
f1=Φ2

0 ¼ −5, the situation changes and the pair of con-
ditions satisfied depends on the values of all three param-
eters—the exact situation is depicted in Fig. 16(b) where
the green region corresponds to the area where the inequal-
ities (7.7) and (7.15) are satisfied, and the brown region to
the area where (7.10) and (7.15) are satisfied.
In Fig. 17, we present the graphs of the energy density

ρðyÞ and pressure pðyÞ as well as the potential of the scalar

(a) (b)

FIG. 16. (a) 3D parameter space of the quantities f0=Φ2
0, f1=Φ2

0, and μ. (b) 2D parameter space of the quantities f0=Φ2
0 and μ for

f1=Φ2
0 ¼ −5. The figures also present the corresponding surfaces or curves of FBðf1=Φ2

0; μÞ, Fbrðf1=Φ2
0; μÞ, and Feffðf1=Φ2

0; μÞ.

FIG. 17. Energy density ρ and pressure p of the system together
with the scalar potential VB in terms of the coordinate y for
Λ5 ¼ 0, f0 ¼ 4, Φ0 ¼ 1, f1 ¼ 0, k ¼ 1, and μ ¼ 0.2.
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field VBðyÞ in terms of the y coordinate for Λ5 ¼ 0, f0 ¼ 4,
Φ0 ¼ 1, f1 ¼ 0, k ¼ 1, and μ ¼ 0.2. As we can see in
the figure, the values of the parameters are appropriately
chosen to satisfy the weak energy conditions close to
the brane.

VIII. A HYPERBOLIC-TANGENT
SCALAR FIELD IN TERMS OF y

Following the same line of thinking as in the previous
section, we now consider the following expression for the
scalar field in terms of the coordinate y:

ΦðyÞ ¼ Φ0 tanhðkyÞ; ð8:1Þ
where Φ0 ∈ Rnf0g. Substituting the above expression of
the scalar field in Eq. (2.18), we obtain the form of the
coupling function

fðyÞ¼f0−f1e−kyþΦ2
0e

−kyarctanðekyÞ−Φ2
0e

2kyðe2ky−1Þ
3ðe2kyþ1Þ2 :

ð8:2Þ
Again, the parameter f1 is allowed to take values in the
whole set of real numbers, while the allowed values for
the parameter f0 will be examined shortly. By inverting the
function ΦðyÞ, we may express the coupling function in
terms of the scalar field to get

fðΦÞ ¼ f0 − f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0 −Φ
Φ0 þΦ

s

þΦ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0 −Φ
Φ0 þΦ

s
arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0 þΦ
Φ0 −Φ

s !
−
ΦðΦþΦ0Þ

6
:

ð8:3Þ
Similarly, the scalar potential VBðyÞ can be evaluated

from Eq. (2.19) with the use of (8.2); then, we find

VBðyÞ ¼ −Λ5 − 6k2f0 þ 10k2e−ky½f1 −Φ2
0 arctanðekyÞ�

þ 2k2Φ2
0

3

6þ 19e2ky þ 19e4ky − 3e6ky þ 3e8ky

ðe2ky þ 1Þ4 :

ð8:4Þ
In terms of the scalar field, the scalar potential is alter-
natively written as

VBðΦÞ¼−Λ5−6k2f0

þ10k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0−Φ
Φ0þΦ

s �
f1−Φ2

0arctan
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φ0þΦ
Φ0−Φ

s 
�

þ k2

6Φ2
0

ð3Φ4þ8Φ3Φ0þ4Φ2Φ2
0−14ΦΦ3

0þ11Φ4
0Þ:

ð8:5Þ

The profiles of the coupling function and scalar potential in
this case are qualitatively the same as the ones in the
double-exponential case of the previous section depicted in
Figs. 15(a) and 15(b). Again, as the parameter f1 changes
from positive to negative values, the coupling function
acquires an increasingly larger positive value at the location
of our brane; with the same variation, the scalar potential
changes from globally positive-definite to globally neg-
ative-definite values. As before, both functions remain
finite everywhere in the bulk and adopt constant values
at large distances.
The energy density ρðyÞ and pressure pðyÞ ¼ piðyÞ ¼

pyðyÞmay be computed by employing Eqs. (3.6) and (3.7),
and we are led to the result

ρðyÞ ¼ −pðyÞ ¼ −6k2fðyÞ

¼ −6k2
�
f0 − f1e−ky þΦ2

0e
−ky arctanðekyÞ

−
Φ2

0e
2kyðe2ky − 1Þ

3ðe2ky þ 1Þ2
�
: ð8:6Þ

In order to satisfy the weak energy conditions close and
on the brane, we impose the condition that ρð0Þ > 0, or
fð0Þ < 0; hence, we obtain the following inequality:

f0
Φ2

0

<
f1
Φ2

0

−
π

4
: ð8:7Þ

The junction conditions (5.16), (5.17), employing the
relations (8.1)–(8.3), now yield

σ þ VbðΦÞjy¼0 ¼ 6kf0 − 8kf1 þ 2kΦ2
0

	
π −

1

3



; ð8:8Þ

∂yVbjy¼0 ¼ 8k2f1 þ 2k2Φ2
0

	
7

3
− π



: ð8:9Þ

Therefore, in order to have a positive total energy density
on the brane, we demand the condition

f0
Φ2

0

>
4

3

f1
Φ2

0

þ 1

9
−
π

3
: ð8:10Þ

Let us also evaluate the effective four-dimensional gravi-
tational constant on the brane. Using Eq. (3.17), we obtain

1

κ24
¼ 2

Z
∞

0

dy e−2ky
�
f0 − f1e−ky þΦ2

0e
−ky arctanðekyÞ

−
Φ2

0e
2kyðe2ky − 1Þ

3ðe2ky þ 1Þ2
�
: ð8:11Þ

Evaluating the above integral, we obtain the result
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1

κ24
¼ M2

Pl

8π
¼ f0

k
−
2

3

f1
k
þ π

6

Φ2
0

k
: ð8:12Þ

Since it is imperative to have a positive four-dimensional
gravitational constant, we must satisfy also the following
constraint:

f0
Φ2

0

>
2

3

f1
Φ2

0

−
π

6
: ð8:13Þ

In Fig. 18, we present the parameter space of the
quantities f0=Φ2

0 and f1=Φ2
0, in an attempt to satisfy

simultaneously the inequalities (8.7), (8.10), and (8.13).
As it is clear, there is again no point where all three
inequalities can be satisfied. The green area defines the part
of the parameter space where M2

Pl is positive and the weak
energy conditions are satisfied by the bulk matter close to
our brane, while the brown area defines the part of the
parameter space where both the effective gravitational
constant and the total energy density of the brane are
positive.

IX. DISCUSSION AND CONCLUSIONS

In the context of this work, we have investigated the
emergence of braneworld solutions in the framework of a
general scalar-tensor theory where the scalar field is non-
minimally coupled to the five-dimensional Ricci scalar. In
the bulk, these solutions are characterized by a Randall-
Sundrum type, exponentially decaying warp factor, and a y-
dependent scalar field with a bulk potential. On the brane,
the space-time takes in general the form of a

Schwarzschild-(anti-)de Sitter solution. The present work
completes our previous two analyses [69,73], where the
cases of a de Sitter and an anti-de Sitter brane were
considered, and focuses on the case of a flat, Minkowski
brane with Λ ¼ 0. The complete five-dimensional solution
for the gravitational background in this case may describe
either a nonhomogeneous black string, when the metric
parameter M is nonzero, or a regular anti-de Sitter space-
time, when M ¼ 0.
The above features characterize our solutions irrespec-

tively of the form of the coupling function between the bulk
scalar field and the five-dimensional Ricci scalar. In this
work, we have performed a comprehensive study of the
types of braneworld solutions that emerge in the context of
this theory by considering a plethora of forms of the
coupling function, all supported by physical arguments
regarding the reality and finiteness of its value everywhere
in the bulk. We have thus considered the cases of a linear
and quadratic coupling function in terms of the scalar field
Φ, but also an inverse-power and a linear-exponential form
in terms of the y coordinate. From a different perspective,
we also considered given forms for the scalar field which
again satisfied the finiteness condition, namely a double-
exponential and a hyperbolic-tangent form in terms of the y
coordinate, and determined subsequently the form of the
coupling function. In all cases, the profile of the coupling
function remains finite along the fifth coordinate as
expected, reducing either to zero or to a constant value
far away from our brane—in both cases, the coupling
between the scalar field and the bulk Ricci scalar becomes
trivial and as a result the scalar-tensor theory naturally
reduces to a purely gravitational theory at large distances.
Gravity by itself is also localized due to the exponentially
decaying warp factor.
In each case, we have also determined in an analytical

way the corresponding solutions for the profiles of the
scalar field and scalar bulk potential. These also remain
finite over the entire bulk for every solution found, and their
behavior resembles the one of the coupling function
reducing either to zero or to a constant value away from
our brane. Depending on the values of the parameters of the
solutions, the bulk potential in particular could adopt a
variety of forms being nontrivial close to our brane and
reducing to a constant, positive or negative, value at
asymptotic infinity. What was of particular importance is
the fact that the Randall-Sundrum-type, exponentially
decaying warp factor is supported independently of the
presence of the negative bulk cosmological constant Λ5,
which is usually introduced in an ad hocway in braneworld
models.
The case of a zero effective cosmological constant,

studied in the context of this work, allowed for the
maximum flexibility regarding the form and characteristics
of the coupling function, when compared to the cases of a
positive or negative effective cosmological constant

FIG. 18. Parameter space of the quantities f0=Φ2
0 and f1=Φ2

0.
The curves corresponding to the expressions on the right-hand
sides of the inequalities (8.7), (8.10), and (8.13) are
depicted as well.
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[69,73]. For Λ > 0, the coupling function had to be
negative-definite at large distances from our brane, while
for Λ < 0, a fast localized profile was necessary in order to
avoid an ill-defined behavior for the scalar field at the bulk
boundaries. For Λ ¼ 0, though, no such requirements are
necessary. In order, however, to derive physically accept-
able braneworld solutions, we have imposed three addi-
tional conditions: the positivity of the effective gravitational
constant κ24 on our brane defined as

1

κ24
≡ 2

Z
∞

0

dy e−2kyfðyÞ; ð9:1Þ

the positivity of the total energy density of our brane, which
follows from the junction condition (3.10) and may be
rewritten as

σ þ Vb ¼ 6kfð0Þ − 2f0ð0Þ; ð9:2Þ

and the validity of the weak energy conditions by the bulk
matter in the vicinity of our brane; the latter, using
Eqs. (3.6)–(3.8), may be expressed as

fð0Þ < 0: ð9:3Þ

In each solution found, we have thus performed a careful
study of the effective theory on the brane, the junction
conditions introduced by the presence of the brane, and the
profiles of the energy density and pressure of the bulk
matter. Subsequently, we conducted a thorough investiga-
tion of the corresponding parameter space in order to
deduce whether it is possible to simultaneously satisfy all
three aforementioned conditions.
We have found that, for all solutions presented, this is not

possible. The aforementioned three constraints are not
a priori incompatible: Eq. (9.3) constrains the value of
the coupling function fðyÞ at the location of the brane,
Eq. (9.2) dictates that its first derivative must be also
negative and decreasing fast at the same point, while
Eq. (9.1) imposes a constraint on its integral over the
entire bulk. Note that if we had demanded the validity of the
weak energy condition everywhere in the bulk, i.e.,
ρðyÞ > 0, that would imply fðyÞ < 0, for ∀ y. This would
be in obvious contradiction with the positivity of the
effective gravitational constant through Eq. (9.1).
Demanding the validity of the weak energy condition only
at the vicinity of our brane, as in Eq. (9.3), allows the
coupling function to be negative close to our brane and
become positive at some distance off it, so that the integral
in Eq. (9.1) turns out to be positive-definite. That was
indeed realized for some of our solutions but the parameter
space corresponding to those solutions was always severely
restricted. Imposing the third constraint (9.2) on the value
of f0ð0Þ, on top of the previous two constraints, in an
attempt to make the energy density of the brane also

positive, we were led to contradictions for all the analytical
solutions we have found.
These contradictions are translated to the absence of a

single point in the parameter space in which all the above
constraints can be simultaneously satisfied. In contrast,
relaxing the weak energy condition, which involves bulk
quantities, and demanding instead the validity of Eqs. (9.1)
and (9.2), which are relevant for the four-dimensional
observer on the brane, has led to a plethora of analytic
solutions with an extended parameter space. The question
of whether a solution satisfying all three constraints could
be constructed, either analytically or numerically, naturally
emerges, and could be pursued in a future work. That
solution, however, would have to be not only a mathemati-
cally consistent solution of the set of field equations
satisfying the constraints (9.1)–(9.3) but to be also char-
acterized by a physically acceptable behavior throughout
the bulk—the analytical solutions presented in this work
were carefully constructed in order to have a physically
acceptable behavior regarding the profiles of the scalar
field, its coupling function, and potential throughout
the bulk.
The question of the stability of the solutions found in this

work is also an important one. The presence of the scalar
field, which is nonminimally coupled to gravity in the
context of our theory, considerably complicates the stability
analysis of the solutions found. Such an analysis will
inevitably involve a coupled system of gravitational and
scalar-field equations with the particular form of the
coupling function, characterizing each solution, playing
perhaps a decisive role in the outcome of the analysis. We
note that, in all solutions presented in this work, the
coupling function becomes trivial at large distances from
the brane and the scalar field acquires a constant value. As a
result, the nonminimally coupled scalar-tensor theory
reduces there to a pure gravitational theory. Thus, at large
distances from the brane, our solutions reduce to the black-
string solutions derived in [14] and are shown to be
unstable in [55]. However, the nontrivial configurations
of both the coupling function and the scalar field as we
approach the brane may significantly alter the stability
behavior of our solutions compared to that of the black
string of [14]. It is quite likely that each of the obtained
solutions has its own stability behavior under perturbations,
and their future study may provide valuable restrictions on
the exact form of the coupling function, bulk potential, and
profile of the scalar field itself.
In conclusion, the well-known generalized gravitational

theory of a scalar field nonminimally coupled to the Ricci
scalar admits, upon embedded in a five-dimensional brane-
world context, a variety of solutions with a number of
attractive features, such as the support of an exponentially
decaying warp factor, and thus of graviton localization,
without the need for a negative bulk cosmological constant.
In the particular case of Λ ¼ 0 studied here, this is always
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supplemented by a regular scalar field, a finite coupling
function, which becomes naturally trivial at the outskirts of
the bulk, a physically acceptable brane with a positive total
energy density, and a robust effective four-dimensional
theory on our brane.
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APPENDIX A: RESTRICTIONS ON THE
ALLOWED VALUES OF THE PARAMETER

μ IN QUADRATIC CASE

We shall now determine the range of values for the
parameter μ in the case of the quadratic coupling function
(4.1). The allowed values of μ will be obtained by
demanding that the scalar field (4.4) remains real and
finite, and depend primarily on the assumed value of the
parameter λ. In what follows, we will consider in detail
every possible case:

(i) λ > 0:
Using Eq. (4.4) we get

lim
y→þ∞

ΦðyÞ ¼ Φ0

2λ
ðξμ 2λ

1þ4λ − 1Þ:

Thus, demanding the functions ΦðyÞ, fðyÞ to be real
valued in their whole domain, it is necessary to
have μ ≥ 0.

(ii) λ ∈ ð− 1
4
; 0Þ ∧ 2λ

1þ4λ ≠ n; n ∈ Z<:
In this case 2λ

1þ4λ is a negative rational number.
Hence, one may write

lim
y→þ∞

ΦðyÞ¼Φ0

2λ
ðξμ 2λ

1þ4λ−1Þ¼−
Φ0

2jλj
�
1−ξ

	
1

μ


j 2λ
1þ4λj
�
:

Therefore, in order to avoid having a complex scalar
field we should demand μ > 0.

(iii) λ ∈ ð− 1
4
; 0Þ ∧ 2λ

1þ4λ ¼ n; n ∈ Z<:
In this case we have 2λ

1þ4λ ¼ n or λ ¼ n
2ð1−2nÞ. Thus,

one may write

ΦðyÞ ¼ Φ0

2λ
½ξðμþ e−kyÞ 2λ

1þ4λ − 1�

¼ Φ0ð1 − 2nÞ
n

�
ξ

	
1

μþ e−ky


jnj
− 1

�
:

It is clear that the parameter μ is allowed to take
negative values. However, we should not allow
values in the range ½−1; 0�, because then at y0 ¼
− 1

k lnð−μÞ > 0 we would encounter infinities re-
garding both the scalar field and the coupling
function in a finite distance away from the brane.
Thus, μ ∈ ð−∞;−1Þ ∪ ð0;∞Þ.

(iv) λ ¼ − 1
4
:

In this particular case it is obvious from Eqs. (4.4)
and (4.5) that the parameter μ is allowed to take any
value in the set of the real numbers except zero.
Thus, μ ∈ ð−∞; 0Þ ∪ ð0;þ∞Þ.

(v) λ < − 1
4
∧ 2λ

1þ4λ ≠ n; n ∈ Z>:
In this case 2λ

1þ4λ is a positive rational number.
Thus, we have

lim
y→þ∞

ΦðyÞ ¼ Φ0

2λ
ðξμ 2λ

1þ4λ − 1Þ:

Therefore, μ ≥ 0 to avoid a complex-valued sca-
lar field.

(vi) λ < − 1
4
∧ 2λ

1þ4λ ¼ n; n ∈ Z>:
In this case, it is 2λ

1þ4λ ¼ n and λ ¼ n
2ð1−2nÞ. Thus,

from Eq. (4.4) we have

ΦðyÞ ¼ Φ0

2λ
½ξðμþ e−kyÞ 2λ

1þ4λ − 1�

¼ Φ0ð1 − 2nÞ
n

½ξðμþ e−kyÞn − 1�;

which allows μ to take values in the whole set of the
real number: μ ∈ R.

The aforementioned results are summarized in Table I.

APPENDIX B: THE UPPER AND LOWER
INCOMPLETE GAMMA FUNCTIONS

The upper incomplete gamma function Γðs; xÞ is defined
as follows:

Γðs; xÞ≡
Z

∞

x
dt ts−1e−t ¼ ΓðsÞ − γðs; xÞ; ðB1Þ

where

γðs; xÞ≡
Z

x

0

dt ts−1e−t ðB2Þ

is the lower incomplete gamma function. Both upper and
lower incomplete gamma functions, as defined above, are
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valid for real and positive s and x. However, both functions
can be extended for almost all combinations of complex s
and x. One can show that, for all complex s and z, the lower
incomplete gamma function can be expanded in the
following power series:

γðs; zÞ ¼ zsΓðsÞe−z
X∞
k¼0

zk

Γðsþ kþ 1Þ : ðB3Þ

Locally, the sum in the right-hand side of the previous
relation converges uniformly for all s ∈ C and z ∈ C.
Using the relation Γðs; zÞ ¼ ΓðsÞ − γðs; zÞ we obtain the
values of the upper incomplete gamma function for com-
plex s and z, but only for the points ðs; zÞ in which the right-
hand side exists. The numerical value of the upper
incomplete gamma function can be given by the following
expressions:

Γðs; xÞ ¼

8>>><
>>>:

ΓðsÞ − xsΓðsÞe−xP∞
k¼0

xk
Γðsþkþ1Þ; s ≠ −n; n ∈ Z>

−γ − lnðxÞ −P∞
k¼1

ð−xÞk
kðk!Þ ; s ¼ 0

1
n! ½e

−x

xn
P

n−1
k¼0ð−xÞkðn − k − 1Þ!þ ð−1ÞnΓð0; xÞ�; s ¼ −n; n ∈ Z>

9>>>=
>>>;
; ðB4Þ

where γ is the Euler-Mascheroni constant. In our case, for s ¼ 1 − λ, namely s ∈ ð−∞; 1Þ and x ¼ 2ky0 > 0, we obtain the
expressions

Γð1 − λ; 2ky0Þ ¼

8>>>>>>>><
>>>>>>>>:

Γð1 − λÞ½1 − ð2ky0Þ1−λe2ky0
P∞

m¼0
ð2ky0Þm

Γð2þm−λÞ�; λ ≠ nþ 1;

n ∈ Z>

−γ − lnð2ky0Þ −
P∞

m¼1
ð−2ky0Þm
mðm!Þ ; λ ¼ 1

1
n! ½ e

−2ky0
ð2ky0Þn

P
n−1
m¼0ð−2ky0Þmðn −m − 1Þ!þ ð−1ÞnΓð0; 2ky0Þ�; λ ¼ nþ 1;

n ∈ Z>

9>>>>>>>>=
>>>>>>>>;
: ðB5Þ
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