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In odd space-time dimensions, the retarded solution of the massless wave equation has support not only
on the light cone, but also inside it. At the same time, a free massless field should propagate at the speed of
light. The mismatch of these two features is resolved by the fact that the emitted part of the field in the wave
zone depends on the history of motion up to the retarded moment of proper time. It is shown that in the case
of circular motion with an ultrarelativistic velocity, the main contribution to the radiation amplitude is made
by a small interval of proper time preceding the retarded time, and thus the tail term is effectively localized.

We obtain a tentative formula for scalar synchrotron radiation in D dimensions: P ¼ g2ðω0γ
2=

ffiffiffi
3

p ÞD−2,
which is explicitly verified in D ¼ 3, 4, 5.
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I. INTRODUCTION

Over the past two decades, interest has arisen in the
theory of radiation in space-time dimensions other than
four. This was due to the emergence of theories with large
extra dimensions [1], the development of a holographic
approach to the description of quark-gluon plasma [2,3],
the beginning of gravitational-wave astronomy, and other
reasons. The case of three-dimensional space-time became
relevant in connection with the development of field-
theoretical models in condensed matter physics, such as
the quantum Hall effect, high-temperature superconductiv-
ity, and graphene. Radiation is the main classical and
quantum process of the interaction of charged particles with
massless fields, which are basic ingredients of a number of
theories. Therefore, it seems to be of primary importance to
study the general laws of radiation in space-times other than
four-dimensional.
More than a hundred years ago, Ehrenfest [4] called

the features of radiation in four-dimensional electrodynam-
ics a unique manifestation of the dimensionality of space-
time, so different are the physical effects and the theoretical
description of radiation in other dimensions. General
features of wave propagation in arbitrary dimensions were
discussed in the classical collections of mathematical
physics, such as Courant and Hilbert [5], lectures of
Hadamard [6], the book by Ivanenko and Sokolov [7].

It was found that there is a fundamental difference between
even and odd dimensions consisting in the failure of the
Huygens principle in the odd case. In odd-dimensional
space-times, the signal from an instantaneous flash of
current reaches the observer through the time interval
necessary for the signal to propagate at the speed of light,
but then the tail is observed endlessly. In even-dimensional
spaces, this is not so: the instantaneous signal ends instantly
at the observation point. The mathematical reason is that
the retarded Green’s function of the d’Alembert equation in
odd dimensions has a support localized not only on the
light cone, but also inside it.
There is an intriguing opportunity to discover an addi-

tional dimension in the five-dimensional theory of Randal-
Sundrum and other similar theories by scanning it with
light signals [8]. The idea of a direct experimental search
for additional dimensions was discussed in anticipation of
the future development of the LISA [9]. The propagation
of gravitational waves in the presence of additional
dimensions and the possibility of observational effects
was discussed recently in Ref. [10]. The birth of gravita-
tional-wave astronomy has given a new impetus to the
search for opportunities to explore the dimensionality of
space-time. According to some theories, gravitational
waves will leak into extra dimensions, causing attenuation
of waves during propagation in the Universe. Although
such an effect was not detected in the event of the fusion of
neutron stars GW170817 [11], the possibility of using the
astronomical data of several messengers to limit the
curvature of additional dimensions is not ruled out [12],
further studies continue, see recent articles and links therein
[13–15]. We should also mention the connection between
the extra dimensions and the black hole shadows [16].
Motivation for studying radiation in various dimensions

comes also from holography, namely, the holographic
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modeling of quark-gluon plasma [2]. From the gravity side
it involves consideration of gravitational radiation in colli-
sions of ultrarelativistic particles or approximating them
shock gravitational waves on the background of higher-
dimensional anti–de Sitter [3]. Radiation in higher dimen-
sions is relevant to the problem of creation of black holes in
particle collisions in theories with large extra dimensions
[17–19]. Note also an interesting interplay of even- and odd-
dimensional features encountered in the black hole brane
[20] and the particle brane [21,22] systems.
As was said, the behavior of massless fields and radiation

features in even and odd dimensions is rather different, to
be more familiar in the even case. In most of the existing
literature the even-dimensional problems were considered
[18,23–27], while the case of odd dimensions was dis-
cussed only in the context of the radiation reaction problem
[28–36], see also the reviews [37,38]. In four [39] and
higher even dimensions, the subtraction of infinite terms
can be performed following the Gelfand and Shilov
distribution theory [40], which leads to a differential
equation with higher derivatives, that resembles the “rigid
particle” dynamics [41–43]. In odd dimensions, there is a
nonlocal tail term, as in the case of four-dimensional curved
space, as was discovered by DeWitt and Brehme [44] (for a
recent review see Ref. [45]). Tail in curved space-time is
due to the scattering of waves by the curvature of space-
time and its evaluation is rather complicated. In contrast,
the tail terms in odd dimensions are analytically known in
the closed form and they can be understood in terms of
dimensional reduction (see below). Note that in higher
even-dimensional curved space-times additional geometri-
cal terms appear [46].
As for genuine radiation processes, with the exception of

the problem of high-energy bremsstrahlung, insensitive to
whether the number of dimensions is even or odd [17,19],
and a brief note [47], where the use of fractional derivatives
for the Green’s functions was demonstrated, as far as we
know, this article is the first attempt to calculate radiation in
odd dimensions using the standard wave zone approach
[48], including an explicit calculation of synchrotron
radiation in three and five dimensions. We use the
Rohrlich definition of radiation [49,50] and its refinement
due to Teitelboim [51] (see also Refs. [23,52,53]) to prove
that the long-range component of the retarded potentials
corresponds to radiation in the same way as in the four
dimensions. This component, however, depends on the
history of the particle motion preceding the retarded time,
but not only at the retarded time, as in even-dimensional
space-time. Our results were double checked by calculating
the spectral distribution of radiation, which is insensitive to
whether the dimension is even or odd. We expect they can
be tested also within the framework of an effective field
theory approach developed in Refs. [54–56].
The paper is organized as follows. In the second section,

we briefly recall the derivation of the recurrent relations

between odd-dimensional Green’s functions of d’Alembert
equation by Ivanenko and Sokolov. We discuss the regu-
larization of the generalized functions involved following
the Gelfand and Shilov’s formalism and explain our method
of regularization considering them as the product of two
distributions. Section III is devoted to the calculation of
scalar synchrotron radiation in (2þ 1)-dimensional space-
time using both the coordinate representation for the
retarded Green’s function in the wave zone and the
Fourier spectral decomposition. In Sec. IV, we perform
similar calculations in (4þ 1)-dimensional space-time. We
find a universal formula for synchrotron radiation verified
in D ¼ 3, 4, 5 and supposedly valid in any D. In the last
section we briefly formulate our results and discuss relation
to other work.

II. THE SETUP

We write the action of the massive relativistic particle
interacting with the massless scalar field in D ¼ nþ 1-
dimensional Minkowski space-time as

S ¼ −
Z

ðmþ gφðzÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηαβ _zα _zβ

q
dτ

þ 1

2Ω

Z
ημν∂μφðxÞ∂νφðxÞdnþ1x;

where m is the particle’s mass, g is the scalar charge, zμðτÞ
is the particle’s worldline, _zμðτÞ ¼ dzμðτÞ=dτ. HereΩ is the
area of the (n − 1)-dimensional sphere of unit radius:

Ω ¼ 2πn=2

Γðn=2Þ : ð2:1Þ

The Minkowski metric is ημν ¼ diagð1;−1;…;−1Þ. Our
choice of the scalar coupling constant g differs from a more
frequent definition f ¼ g=m (see, e.g., Ref. [57]) in a way
to make it nonzero in the massless limit m → 0.
This action leads to the following wave equation for the

scalar field

□φðxÞ ¼ −ΩjðxÞ; ð2:2Þ

jðxÞ ¼ g
Z

dτð_zα _zαÞ1=2δnþ1ðx − zðτÞÞ; ð2:3Þ

where jðxÞ is the current and □ ¼ ∂μ∂μ is d’Alembert
operator. The canonical energy-momentum tensor of the
scalar field is

TμνðxÞ ¼
1

Ω

�
∂μφ∂νφ −

1

2
gμν∂αφ∂αφ

�
: ð2:4Þ
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A. Green functions in odd dimensions

For reader’s conveniences, we recall here Ivanenko and
Sokolov’s derivation of the recurrent relation for odd-
dimensional Green functions of the scalar d’Alembert
equation. We present the retarded solution of the
Eq. (2.2) as

φðxÞ ¼ −Ω
Z

dnþ1x0Gnþ1
ret ðx − x0Þjðx0Þ; ð2:5Þ

□Gnþ1
ret ðx − x0Þ ¼ δnþ1ðx − x0Þ; ð2:6Þ

where the retarded Green’s function of the d’Alembert
equation is

Gnþ1
ret ðx − x0Þ ¼ −

Z
dnþ1k
ð2πÞnþ1

e−ikðx−x0Þ

k2 þ iεk0
;

with k2 ¼ kμkμ and ε ¼ þ0 defining the correct shift of a
pole in the complex plane k0. After integration over k0, we
obtain an integral over the Euclidean n-dimensional space:

Gnþ1
ret ðx − x0Þ ¼

Z
dnk
ð2πÞn

sinωT
ω

eikR; ð2:7Þ

R ¼ r − r0; T ¼ x0 − x00; ω ¼ jkj: ð2:8Þ

One can introduce the hyperspherical coordinates [58] and
integrate over the cyclic angles, obtaining

Gnþ1
ret ðx − x0Þ ¼ 2πðn−1Þ=2

Γððn − 1Þ=2Þ
Z

dωdθn−2
ð2πÞn ωn−2 sinðωTÞ

× sinn−2ðθn−2ÞeiωR cos θn−2 :

The remaining angular integral can be expressed through
the Bessel function of the order ν − 1, with n ¼ 2ν [59,60]:

G2νþ1
ret ðx − x0Þ ¼ R

ð2πRÞν
Z

∞

0

dωων−1Jν−1ðωRÞ sinωT:

Using the recurrent relations between the Bessel
functions

�
d
xdx

�
m JnðxÞ

xn
¼ ð−1Þm JnþmðxÞ

xnþm ;

we obtain the following generating formula:

G2νþ1
ret ðXÞ ¼ ð−1Þν−1

ð2πÞν−1
dν−1

ðRdRÞν−1 G
2þ1
ret ðXÞ:

For ν ¼ 1 one has

G2þ1
ret ðx − x0Þ ¼ 1

2π

Z
∞

0

dωJ0ðωRÞ sinωT: ð2:9Þ

This integral gives the Heaviside function [7,60], so we
obtain

G2þ1
ret ðXÞ ¼ θðX0Þ

2π

θðX2Þffiffiffiffiffiffi
X2

p ; ð2:10Þ

where Xμ ¼ xμ − x0μ. This function is localized inside
the future light cone X2 ¼ 0. It can be considered as a
λ ¼ −1=2 member of the family of generalized functions
xλþ [40] defined as a linear continuous functional on the
space of test functions ψðxÞ infinitely differentiable and
zero outside some bounded region. It is defined as

xλþ ¼
�
xλ; if x > 0;

0; if x < 0;
ð2:11Þ

for any complex λ (here we assume λ real). For test
functions which are zero in a small vicinity of the origin
x ¼ 0 the functional is defined by the usual integration.
For − 1 < λ < 0 the integral is finite for any test ψðxÞ,
so one defines the contraction as

ðxλþ;ψðxÞÞ ¼
Z

∞

0

xλψðxÞdx:

Differentiation according to the rule

d
dx

xλþ ¼ λxλ−1þ ; λ ≠ −1;−2;…;

increases the degree of singularity, but we can define the
regularization differentiating in the sense of distributions,

ððxλþÞ0;ψðxÞÞ ¼ −ðxλþ;ψ 0ðxÞÞ ¼ −lim
ϵ→0

Z
∞

ϵ
xλψ 0ðxÞdx;

and then integrating by parts with ψ 0ðxÞdx ¼ du;
xλ ¼ v; u ¼ ψðxÞ þ C to get

ððxλþÞ0;ψðxÞÞ ¼ −lim
ϵ→0

�
xλðψðxÞ þ CÞj∞ϵ

−
Z

∞

ϵ
λxλ−1ðψðxÞ þ CÞ

�
dx:

The substitution becomes zero if one chooses C ¼ −ψð0Þ,
which can be considered as regularization of the infinite
integral. Then we obtain the derivative as the regularized
functional

ððxλþÞ0;ψðxÞÞ ¼
Z

∞

0

λxλ−1ðψðxÞ − ψð0ÞÞdx;
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which actually defines the functional (2.11) for −2 <
λ < −1. Similarly, for −ðnþ 1Þ < λ < −n, we get the
regularized functional as

ðxλþ;ψðxÞÞ ¼
Z

∞

0

xλ
�
ψðxÞ − ψð0Þ − xψ 0ð0Þ − � � �

−
xn−1

ðn − 1Þ!ψ
ðn−1Þð0ÞÞ

�
dx:

For negative integer λ, a proper definition of the regular
functional is the derivative of the delta function [40],

lim
λ→−n

xλþ
Γðλþ 1Þ ¼ δðn−1ÞðxÞ:

Using these definitions one can construct the Green’s
functions as regularized functionals for any dimension.
In practical calculations, however, it is more convenient

to present xλþ as a singular product of two distributions, as it
stands in Eq. (2.10), xλþ ¼ θðxÞxλ, and differentiate it using
the Leibnitz rule

d
dx

ðθðxÞxλÞ ¼ δðxÞxλ þ λxλ−1θðxÞ: ð2:12Þ

For negative λ this is the sum of two singular expressions,
but if we regularize them by shifting x → xþ ϵ in delta and
theta functions, the divergences in two terms can be shown
to cancel, so the derivative will be a good distribution which
can be checked to correspond to the definitions in Ref. [40].
In what follows we will use this second prescription
demonstrating cancellation of divergences explicitly.

B. Cancellation of divergences in the static limit

Let us verify the absence of divergences in the field of a
static particle in the case of (4þ 1) dimensions, which is
the most transparent illustration.
From Eq. (2.9), performing differentiation according to

Eq. (2.12), we find the retarded (4þ 1)-dimensional Green
function as a sum of two terms

G4þ1
ret ðXÞ ¼ θðX0Þ

2π2

�
δðX2Þ
ðX2Þ1=2 −

1

2

θðX2Þ
ðX2Þ3=2

�
;

each of which has zero in the denominator on the light
cone X2 ¼ 0. We will use the “finite lifetime” trick to
demonstrate cancellation of divergences between two terms
in the static limit. For this, first assume that the source
is switched on for a finite interval of the proper time
τ ∈ ½a; b�, with a < 0 and b > 0. On this interval one has
zμðτÞ ¼ ½τ; 0; 0; 0; 0�, so from the Eqs. (2.3) and (2.5) with
account for Eq. (2.1) we obtain

φðxÞ ¼ g
2

Z
b

a
dτ

�
θðt − τ − r − εÞ
½ðt − τÞ2 − r2�3=2 −

δðt − τ − r − εÞ
r½ðt − τÞ2 − r2�1=2

�
;

where we introduced a regularizing parameter ε > 0,
shifting the singularities from the light cone. Performing
an integration, one finds

φðt;rÞ¼ g
2

8>>><
>>>:

0; t<aþr;

− ðt−aÞ
r2½ðt−aÞ2−r2�1=2 ; t∈ ½aþr;bþrÞ;

ðt−bÞ
r2½ðt−bÞ2−r2�1=2−

ðt−aÞ
r2½ðt−aÞ2−r2�1=2 ; t≥bþr:

Passing to the limit of an eternal particle worldline
a → −∞; b → ∞, one gets at any t a finite result

φ ¼ −
g
2r2

:

Similarly, divergences in the sum representation of
higher ν odd-dimensional Green’s functions are expected
to mutually cancel and not only in the static case. We will
show this explicitly for D ¼ 3, 5.

C. Retarded field in the wave zone

Recall that in four dimensions the retarded electromag-
netic field of a point charge consists of two parts: one
proportional to 1=r2 and representing the deformed
Coulomb field, and another, acceleration dependent, which
falls down as 1=r. The second gives a nonzero flux of the
field energy-momentum (Pointing vector) through the
distant sphere, and thus represents radiation. To argue that
this is radiation indeed, Rohrlich [49,50] and Teitelboim
[51] (see also Refs. [23,37,38,52]), computed the most
long-range part of the on shell energy-momentum tensor,
showing that it exhibits special properties, meaning that the
corresponding part of the field energy-momentum prop-
agates at the speed of light. Similar decomposition and
reasoning holds for the gradient of the retarded scalar field
of the scalar charge. All this remains valid in any space-
time dimensions, with the difference that in D dimensions
the area of the far sphere grows with distance as rD−2, so the
relevant asymptotic behavior of the field gradient in the
wave zone is 1=rD=2−1. Note that in odd dimensions this
power is half-integer.
In the Rohrlich-Teitelboim construction the use of

certain covariantly defined quantities seems essential, so
we briefly recall their definition. Consider a pointlike scalar
charge moving along a worldline zμðτÞ with the D velocity
vμ ¼ dzμ=dτ, and denote the coordinates of the observation
point as xμ. Consider the observation point as a top of the
light cone in the past, and denote the intersection point of
the light cone with the world line of a particle as ẑμ ¼ zμðτ̂Þ,
where τ̂ is the moment of proper time corresponding to the
emission of a signal propagating to the observation point at
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the speed of light. The quantity τ̂ is called the retarded
proper time; it is determined by the equation

ðxμ − zμðτ̂ÞÞ2 ¼ 0: ð2:13Þ

In what follows, all hatted quantities will correspond to the
retarded proper time τ̂. We then introduce two space-time
vectors: a lightlike vector R̂μ ¼ xμ − ẑμ directed from ẑμ to
the observation point, and a spacelike unit vector ûμ,
orthogonal to v̂μ. The sum of the vectors v̂μ and ûμ forms
a lightlike vector ĉμ ¼ v̂μ þ ûμ. These vectors have the
following properties:

v̂2 ¼ −û2 ¼ 1; ĉ2 ¼ 0; ĉv̂¼ −ĉû¼ 1; v̂û¼ 0;

ð2:14Þ

R̂μ ¼ ρ̂ĉμ; ρ̂ ¼ v̂R̂; R̂2 ¼ 0: ð2:15Þ

It is worth noting that ρ̂, being the scalar product of two
space-time vectors, is a Lorentz-invariant distance, equal
to the distance in the Lorentz frame comoving with the
charge at the retarded moment τ̂. Note also that for a point
charge, moving along the world line zμðτÞ for an infinite
proper time −∞ < τ < ∞, certain care is needed to
correctly define the asymptotic conditions for acceler-
ation, for details see Ref. [51]. Here we will not discuss
this subtlety, considering the simple case of periodic
motion along a circle. Far from the circle, ρ̂ ∼ r, so the
Lorentz-invariant definition of the distance is equivalent
to the naive definition. But in order to obtain Lorentz
covariant expansions of tensors, one has to use 1=ρ̂ as an
expansion parameter in even dimensions and 1=ρ̂1=2

in odd.
Now we come back to an asymptotic structure of the

on-shell energy-momentum tensor computed with the
retarded solutions of the wave equation. Recall that in
four-dimensional electrodynamics Teitelboim [51] demon-
strated that the following decomposition holds (here we use
slightly different notation):

Tμν ¼ Tμν
Coul þ Tμν

mix þ Tμν
rad;

where the Coulomb part falls down at infinity as ρ̂−4,
the mixed part—as ρ̂−3, and the last part as ρ̂−2. Teitelboim
found that in four dimensions the most long-range term of
the on-shell energy-momentum tensor has the following
properties:

(i) It is separately conserved ∂νT
μν
rad ¼ 0.

(ii) It is proportional to the direct product of two null
vectors cμcν, and therefore cμT

μν
rad ¼ 0.

(iii) It falls down as 1=ρ̂2 and gives positive definite
energy-momentum flux through the distant sphere.

It is clear that this tensor corresponds to propagation of
the field energy momentum with the speed of light. Thus,

the radiation power can be computed as the flux of the
energy, associated with Tμν

rad. Similar structure holds in the
scalar theory.
Now we pass to our theory of the scalar radiation in D

dimensions. We substitute the retarded solution of the wave
equation into the bilinear functional (2.4) and expand this
quantity in inverse powers of ρ̂. The result is as follows.
The most short-range term decays as ρ̂4−2D in all dimen-
sions, the mixed part is absent for D ¼ 3 and consists of
more than one term for D > 4, varying from ρ̂5−2D to ρ̂1−D,
the most long-range part decays as ρ̂2−D, as expected for
radiation. All the listed properties of the last term Tμν

rad of
this expansion hold in any D.
This remains true both in even and odd dimensions. An

essential difference, however, is that the radiated field in
the even-dimensional case depends on the particle kin-
ematic quantities (velocity, acceleration and possibly
higher derivatives of the velocity) at the retarded moment
of the proper time τ̂ only, while in the odd case it depends
on the entire history of motion before this moment.
Nevertheless, due to the above properties of the on-shell
stress tensor, the energy-momentum associated with the
long range component of the field will propagate at the
speed of light.
It is worth noting once again that the retarded field in odd

dimensions, in accordance with the explicit form of the
Green’s functions (2.9), will have asymptotically an
expansion in terms of the half-integer powers of 1=ρ̂.
A deeper discussion of the concept of asymptotic flatness
in arbitrary dimensions, the definitions of null infinity by
Penrose and Bondi and the Bondi-Metzner-Sachs group
can be found in Refs. [61,62]. Half-integer powers of 1=ρ̂
make Penrose conformal infinity ill defined in odd dimen-
sions, while Bondi definitions are still applicable [61]. Here
we will concentrate on the practical side of calculating
radiation in odd dimensions, so we will not go into this
interesting area.
The flux of the radiated energy-momentum passing

per unit time through the (2ν − 1)-dimensional sphere of
radius r will be given by the integral

Wμ
2νþ1 ¼

Z
Tμi
radn

ir2ν−1dΩ2ν−1; i ¼ 1; 2ν; ð2:16Þ

where dΩ2ν−1 is an angular element, and n is a unit
spacelike vector in the direction of observation.
Using this approach, we calculate scalar synchrotron

radiation from a circularly moving particle in (2þ 1)
and (4þ 1) dimensions. To verify the correctness of this
calculation, we also compute the total radiation power
using Fourier spectral decomposition, bearing in mind that
this second method of does not depend on whether the
dimension of space-time is even or odd.
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D. Spectral decomposition

Spectral representation can be introduced in a universal
way in any dimensions, either even or odd. In terms of the
Fourier transforms defined as

φðxÞ ¼
Z

dnþ1k
ð2πÞnþ1

e−ikxφ̃ðkÞ; ð2:17Þ

jðxÞ ¼
Z

dnþ1k
ð2πÞnþ1

e−ikxj̃ðkÞ; ð2:18Þ

where kx ¼ kμxμ with the (nþ 1) dimensional wave vector
kμ, the retarded or advanced solutions of the d’Alembert
equation read

φ̃�ðkÞ ¼
Ωj̃ðkÞ

k2 � iεk0
¼ Ωj̃ðkÞ

�
P
k2

∓ iπsgnðk0Þδðk2Þ
�
:

The total loss of the energy-momentum due to radiation
can be presented as the work done by the current in the
field presented by the half difference of the retarded and
advanced solutions of the wave equation [39]:

Pμ ¼
i
2

Z
dnþ1k
ð2πÞnþ1

½φ̃þðkÞ − φ̃−ðkÞ�j̃ð−kÞkμ

¼ Ω
ð2πÞn

Z
dnþ1kkμjj̃ðkÞj2θðk0Þδðk2Þ: ð2:19Þ

Inserting the Fourier transform of the scalar current into the
Eq. (2.19) and passing to integration over t ¼ τγ instead of
τ we find the following representation for the spectral-
angular distribution of the total energy radiated:

dP0

dωdΩ
¼ Ωωn−1g2

2ð2πÞnγ2
����
Z þ∞

−∞
dteiðωt−kzðtÞÞ

����
2

; ð2:20Þ

where ω ¼ jkj. This generalizes the well-known D ¼ 4
formula [63] to arbitrary dimensions.

III. ð2 + 1Þ THEORY

A. Coordinate representation

The retarded solution of the Eq. (2.2) is given by
Eq. (2.5):

φretðxÞ ¼ −2π
Z

G2þ1
ret ðXÞjðx0Þd2þ1x0; ð3:1Þ

G2þ1
ret ðXÞ ¼ θðX0Þ

2π

θðX2Þffiffiffiffiffiffi
X2

p ; ð3:2Þ

with the current Eq. (2.3). Therefore we obtain

φretðxÞ ¼ −g
Z

dτ
θðX0ðzÞÞθðX2ðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi

X2ðzÞ
p ;

where the vector XμðzÞ ¼ xμ − zμðτÞ joins the observation
point and an instantaneous position of a particle. In fact, we
need the gradient of the retarded field with respect to the
observation point:

φret
μ ≡∂φret

∂xμ
¼2g

Z
dτθðX0ðzÞÞ

�
1

2

θðX2ðzÞÞ
ðX2ðzÞÞ3=2−

δðX2ðzÞÞ
ðX2ðzÞÞ1=2

�
XμðzÞ:

To see the asymptotic behavior of this quantity at large
distances r ≫ R0, it is convenient to present Xμ as

Xμ ¼ xμ − zμðτÞ ¼ wμ þ ρ̂ĉμ; wμ ¼ zμðτ̂Þ − zμðτÞ;

and then expand all quantities in terms of the small ratio
wμ=ρ̂. In the leading approximation, X2 ∼ 2wμĉμ ¼ 2ðwĉÞ.
Using also the relation

θðX0ÞδðX2Þ ¼ δðτ − τ̂Þ
2ρ̂

; ð3:3Þ

we arrive at the following expression for the leading term
φrad
μ of the asymptotic expansion of φret

μ in ð1=ρ̂Þ1=2:

φrad
μ ¼ gĉμ

21=2ρ̂1=2

Z
τ̂

−∞
dτ

�
1

2ðwĉÞ3=2 −
δðτ − τ̂Þ
ðwĉÞ1=2

�
: ð3:4Þ

One can see that it is given by an integral over all the past
worldline prior to the retarded time τ ≤ τ̂. This is what
happens in all odd dimensions: the radiation field in the
wave zone is collected from the entire history of motion
preceding τ̂. This is similar to the tail in the radiation
amplitude in four-dimensional curved space-time [44],
where it is due to scattering of radiation on the space-time
curvature. But, in the odd-dimensional flat space-time, the
origin of tail is different. As was explained in Ref. [28], one
can think of the D theory as dimensionally reduced Dþ 1
theory of parallel charged rods, whose projections are seen
as point particles in D. Then, the radiation signal at infinity
of the D world will be collected from all pieces of rods of
the Dþ 1 world, in which the propagation occurs at the
speed of light, but the spatial distance from the given
segment of the rod to an observation point is greater (or
equal at the limiting point) than its projection onto the
Dworld. Integration over the wires will produce a tail in the
D theory.
Each of two integrals in Eq. (3.4) diverges when

ðwĉÞ ¼ 0. This happens in the limit τ → τ̂, where
ðwμĉμÞ → ðuμĉμÞðτ̂ − τÞ ¼ ðτ̂ − τÞ. To regularize the
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integral with the delta function, we shift τ → τ þ ε with
ε → 0þ, obtaining

Z
τ̂

−∞
dτ

δðτ − τ̂ þ εÞ
ðwĉÞ1=2 ¼ 1

ε1=2
; ð3:5Þ

that can be rewritten as

1

ε1=2
¼ 1

2

Z
τ̂−ε

−∞

dτ

ðτ̂ − τÞ3=2 : ð3:6Þ

Using this representation of the delta-function term, we
arrive at the finite quantity

φrad
μ ¼ lim

ε→0

gĉμ
23=2ρ̂1=2

Z
τ̂−ε

−∞
dτ

�
1

ðwĉÞ3=2 −
1

ðτ̂ − τÞ3=2
�
;

where, for brevity, we can omit the symbol ε at the top point
of integration, remembering that we need to perform some
transformation of the integrand (usually integrating by
parts) to make its finiteness manifest. It can be shown
that, for the particle motion with constant velocity, the
radiated part of the field gradient vanishes, as expected.
The long range energy-momentum tensor Trad

μν can be
found substituting the obtained expression into the bilinear
form (2.4), leading to

Trad
μν ¼ g2ĉμĉν

16πρ̂
A2ðxÞ; ð3:7Þ

where an integral radiation amplitude is introduced

A ¼
Z

τ̂

−∞

�
1

ðwĉÞ3=2 −
1

ðτ̂ − τÞ3=2
�
:

All physical information is contained in its first term,
depending on the zðτÞ, while the second term just subtracts
the divergence of the first on the upper limit. Clearly,
the energy-momentum tensor obtained satisfies all the
requirements of the Teitelboim definition in the (2þ 1)-
dimensional space-time.

B. Synchrotron radiation

Now we proceed to calculate radiation from the circu-
larly moving charge. The particle’s worldline zμðτÞ in terms
of the proper time τ will read

zμðτÞ ¼ ½γτ; R0 cosðω0γτÞ; R0 sinðω0γτÞ�; ð3:8Þ

where γ ¼ E=m is the Lorentz factor of particle, R0 is the
radius of a circle, and ω0 is the frequency of rotation. The
corresponding three velocity is

vμðτÞ ¼ γ½1;−v sinðω0γτÞ; v cosðω0γτÞ�;

where v ¼ R0ω0, so that γ ¼ ð1 − v2Þ−1=2.
It will be convenient to express the retarded proper time τ̂

as a function of the coordinate time t and the distance to the
observation point from the center of the particle trajectory,
which will be denoted as R. Using Eq. (2.13) we find

τ̂ ¼ t − R
γ

:

Substituting this into the Eq. (2.15), we arrive at the
following expressions for ρ̂ and ĉμ:

ρ̂ ¼ γRð1þ v sinðω0γτ̂ − ϕÞÞ; ð3:9Þ

ĉμ ¼ R
ρ̂
½1; cosϕ; sinϕ�; ð3:10Þ

where we have introduced the polar coordinates for the
observation point: xμ ¼ ½t; R cosϕ; R sinϕ�. Using the
parametrization of the worldline (3.8) and introducing a
new angular variable and the integration parameter

a ¼ ω0γτ̂ − ϕþ π=2; s ¼ ω0γðτ̂ − τÞ;

we can present the contraction wμĉμ, entering the amplitude
as follows:

wĉ ¼ s − v sin a − v sinðs − aÞ
ω0γð1 − v cos aÞ :

This gives the following representation:

A¼ðω0γÞ1=2
Z þ∞

0

ds

� ð1−vcosaÞ3=2
ðs−vsina−vsinðs−aÞÞ3=2−

1

s3=2

	
:

ð3:11Þ

C. The ultrarelativistic case

It can be expected that, as in the case of synchrotron
radiation in four dimensions, the radiation will be beamed
and the integral amplitude can be simplified in the ultra-
relativistic case γ ≫ 1. Indeed, from the Eqs. (3.9) and
(3.11) with account for definitions of s and a we can see
that the main part of radiation is then formed during a small
interval of proper time before the retarded time τ̂ (in our
new notation this corresponds to small s). One can also
notice that in this case radiation is beamed in the direction
of the particle velocity which corresponds to a ¼ 0 or
ϕ ¼ ω0γτ̂ þ π=2. This can be shown analyzing an equation
for τ̂, similarly to an analysis in Ref. [33]. Namely, from the
Eq. (2.13) we find the relation
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γ
dτ̂
dϕ

¼ R0 sinðω0γτ̂ − ϕÞ
1þ v sinðω0γτ̂ − ϕÞ ;

which in the new variables reads

da
dϕ

¼ −
1

1 − v cos a
: ð3:12Þ

This indicates that for v → 1 radiation is beamed within an
angle δϕ ∼ δa=γ2. Expanding the denominator of the first
term of the integrand in Eq. (3.11) in Taylor series at
s ¼ a ¼ 0, we find that it has minimum of width
δs ∼ δa ∼ 1=γ. We can therefore find the amplitude in
the leading-γ approximation similarly to the case of the
four-dimensional theory. The leading contribution to the
radiation integral (3.11) will be

A ¼ γω1=2
0

Z þ∞

0

dxFðxÞ;

FðxÞ ¼ 1

x3=2

� ðâ2 þ 1Þ3=2
ðx2=3 − âxþ â2 þ 1Þ3=2 − 1

�
; ð3:13Þ

where we rescaled the variables as x ¼ γs and â ¼ γa. The
angular distribution of the radiation power, according to
general expression (2.16) in (2þ 1) dimensions will be

dW2þ1

dϕ
¼ RTrad

0i ni;

where the unit vector directed to the observation point is
n ¼ ½cosϕ; sinϕ�. From the Eqs. (3.7), (3.9), and (3.10) we
obtain the angular distribution of the radiation power

dW2þ1

dϕ
¼ g2ω0γA2

4πð1 − v cos aÞ3 :

Passing to an angular integration variable a instead of ϕ via
Eq. (3.12) and taking into account the leading-γ behavior:

da
dϕ

≈ −
γ2

â2 þ 1
;

we come to the leading γ approximation for the total
synchrotron scalar radiation power

W2þ1 ¼
g2ω0γ

2

4π

Z þ∞

−∞
dâ

A2

ðâ2 þ 1Þ2 : ð3:14Þ

The integral here is nothing but a numerical factor
independent of any physical parameters.
Now we can show that the divergences in the Eq. (3.14)

coming from the lower integration point in A mutually
cancel. To demonstrate this, we have to integrate twice the
first term in the integral (3.13) by parts. As a result we
arrive at the following convergent integral:

Z þ∞

0

dxFðxÞ ¼
Z þ∞

0

dx
x1=2

ðx2=3 − âxþ â2 þ 1Þ5=2

×

�
4 −

15ð2x=3 − âÞ2
x2=3 − âxþ â2 þ 1

	
:

Numerical integration in Eq. (3.14) gives the value 4π=
ffiffiffi
3

p
up to the 5 digits for the integral in Eq. (3.14). As a
result, we find the final expression for the scalar (2þ 1)-
dimensional synchrotron radiation power:

W2þ1 ¼
g2ω0γ

2ffiffiffi
3

p : ð3:15Þ

D. Spectral decomposition

To double check the validity of the above calculation,
we now calculate the spectral-angular distribution of total
radiated energy using the Fourier decomposition (2.20).
Taking into account the beaming of radiation in the
instantaneous direction of the particle’s velocity and the
fact that the contribution of the particle history, coming
from the tail part of the Green’s function is limited by the
proper time interval δs ∼ 1=γ, we understand that the
instantaneous intensity of radiation in a given direction
is determined by the short arc of the circular trajectory of
the order of δl ∼ R0=γ (see, for example, Ref. [63]). In view
of this we can simplify the spectral-angular distribution of
radiated energy Eq. (2.20) starting with

dP0

dωdΩ
¼ ωg2

4πγ2

Z þ∞

−∞
dt1

Z þ∞

−∞
dt2eiωðt1−t2Þ−ikðzðt1Þ−zðt2ÞÞ;

where we put n ¼ 2 and used the formula (2.1) for n ¼ 2.
Transforming the integration variables as

t1 ¼ t − t0=2; t2 ¼ tþ t0=2; ð3:16Þ
we obtain the instantaneous spectral-angular distribution of
the radiation power:

dW
dωdΩ

¼dP0=dt
dωdΩ

¼ ωg2

4πγ2

Z þ∞

−∞
dt0e−iωt0−ikðzðt−t0=2Þ−zðtþt0=2ÞÞ:

In the ultrarelativistic case, the main contribution to this
integral is given by an interval δt0 ∼ 1=γ near t0 ¼ 0.
Expanding the exponent in the Taylor series at t0 ¼ 0,
we find to the leading order in γ

− iωt0 − ikðzðt − t0=2Þ − zðtþ t0=2ÞÞ

∼ −iωt0
�
1

2

�
a2 þ 1

γ2

�
þ ω2

0t
2
0

24

�
;

where k ¼ ω½cosϕ; sinϕ�, zðtÞ ¼ R0½cosω0t; sinω0t� and
we introduced an angular variable a ¼ ω0t − ϕþ π=2.
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Then the leading-γ asymptotic of the spectral distribution of
radiation intensity takes the form

dW2þ1

dω
¼ ωg2

4πγ2

Z
2π

0

dϕ

×
Z þ∞

−∞
dt0 exp

�
−iωt0

�
1

2
ða2þ 1=γ2Þþω2

0t
2
0

24

�	
:

Similarly to the four-dimensional theory [63], after
rescaling of the integration variables â ¼ aγ and
t0 ¼ 1

2
ðω=ω0Þ1=3ω0t0, one can express the integral through

the Airy function [64]

AiðuÞ ¼ 1

2π

Z þ∞

−∞
dt0 exp

�
i

�
ut0 þ t03

3

�	
; ð3:17Þ

as follows

dW2þ1

dω
¼

�
ω

ω0

�
2=3 g2

γ3

Z þ∞

−∞
dâAi

��
ω

ω0γ
3

�
2=3

ðâ2 þ 1Þ
�
:

ð3:18Þ

Now introduce s ¼ xðâ2 þ 1Þ, where x ¼ ðω=ω0γ
3Þ2=3,

and using the formula [65]

Z þ∞

x
ds

AiðsÞ
ðs − xÞ1=2 ¼ 22=3πAi2

�
x

22=3

�
;

we perform integration in Eq. (3.18) arriving at the spectral
distribution

dW2þ1

dω
¼

�
ω

ω0

�
2=3 g2

x1=2γ3
22=3πAi2

�
x

22=3

�
: ð3:19Þ

We can integrate Eq. (3.19) over the spectrum passing to
an integration variable x ¼ ðω=ω0γ

3Þ2=3, leading to

W2þ1 ¼
3

2
22=3πg2ω0γ

2

Z þ∞

0

dxxAi2
�

x

22=3

�
:

Finally, using the integral of the squared Airy function [65],

Z þ∞

0

dssAi2ðsÞ ¼ 1

6
ffiffiffi
3

p
π
;

we obtain the total radiation power

W2þ1 ¼
g2ω0γ

2ffiffiffi
3

p ;

coinciding with Eq. (3.15).

IV. ð4 + 1Þ THEORY

Calculations in the (4þ 1)-dimensional theory concep-
tually are the same, so we just briefly describe the
main steps.

A. Coordinate representation

The retarded solution of the wave equation (2.2) reads

φ4þ1
ret ðxÞ ¼ −2π2

Z
G4þ1

ret ðx − x0Þjðx0Þd4þ1x0; ð4:1Þ

G4þ1
ret ðXÞ ¼ θðX0Þ

2π2

�
δðX2Þ
ðX2Þ1=2 −

1

2

θðX2Þ
ðX2Þ3=2

	
: ð4:2Þ

The corresponding field gradient takes the following form:

φret
μ ðxÞ ¼ −g

Z
dτθðX0ðzÞÞXμðzÞ

�
3

2

θðX2ðzÞÞ
ðX2ðzÞÞ5=2

þ 2
δ0ðX2ðzÞÞ
ðX2ðzÞÞ1=2 − 2

δðX2ðzÞÞ
ðX2ðzÞÞ3=2

	
;

where δ0ðxÞ ¼ dδðxÞ=dx. Using the relation

dX2ðτÞ
dτ

¼ −2ðvðτÞXðzÞÞ;

we can integrate the δ0 term by parts, arriving at

φret
μ ðxÞ ¼ −g

Z
τ̂

−∞
dτ

1

2ðX2ðzÞÞ1=2
�

3

ðX2ðzÞÞ2 XμðzÞ

−
δðτ − τ̂Þ
ρ̂X2ðzÞ XμðzÞ

−
δðτ − τ̂Þ

ρ̂ðvðτÞXðzÞÞ2 ðaðτÞXðzÞ − 1ÞXμðzÞ

−
δðτ − τ̂Þ
ρ̂vðτÞXðzÞ vμðτÞ

	
;

where we have used the relation (3.3) and introduced an
acceleration five-vector aμðτÞ ¼ d2zμðτÞ=dτ2. Expanding
this in terms of half-integer powers of the inverse distance
1=ρ̂ we obtain the radiated field

φrad
μ ðxÞ ¼ −

gĉμ
25=2ρ̂3=2

Z
τ̂

−∞
dτ

�
3

2

1

ðwĉÞ5=2

−
δðτ − τ̂Þ
ðwĉÞ3=2 −

2aĉδðτ − τ̂Þ
ðwĉÞ1=2ðvĉÞ2

	
:

One can simplify this expression taking into account the
relations (2.14) and transformations similar to Eqs. (3.5)
and (3.6):
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Z
τ̂

−∞
dτ

δðτ − τ̂Þ
ðwĉÞ3=2 ¼ 3

2

Z
τ̂

−∞

dτ

ðτ̂ − τÞ5=2 ; ð4:3Þ

Z
τ̂

−∞
dτ

2aĉδðτ − τ̂Þ
ðwĉÞ1=2ðvĉÞ2 ¼

Z
τ̂

−∞
dτ

â ĉ

ðτ̂ − τÞ3=2 : ð4:4Þ

This gives

φrad
μ ðxÞ ¼ −

gĉμ
25=2ρ̂3=2

Z
τ̂

−∞
dτ

�
3

2

1

ðwĉÞ5=2

−
3

2

1

ðτ̂ − τÞ5=2 −
â ĉ

ðτ̂ − τÞ3=2
	
:

Now we have the sum of three integrals whose divergences
at the upper limit mutually cancel: the second term is the
counterterm for the first eliminating its leading divergence,
while the third one is the counterterm eliminating the
remaining divergence.
The (4þ 1)-dimensional on shell energy-momentum

tensor evaluated with the radiated part of the field, with
account for relations (2.14), will read

Trad
μν ðxÞ ¼

g2ĉμĉν
64π2ρ̂3

A2ðxÞ;

where the (4þ 1)-dimensional integral radiation
amplitude is

AðxÞ ¼
Z

τ̂

−∞
dτ

�
3

2

1

ðwĉÞ5=2 −
3

2

1

ðτ̂ − τÞ5=2 −
â ĉ

ðτ̂ − τÞ3=2
	
:

Again, the energy-momentum tensor obtained satisfies
all Teitelboim’s requirements and therefore describes the
radiated energy-momentum indeed.

B. Synchrotron radiation

Assuming the wordline to lie in the equatorial plane,

zμðτÞ ¼ ½γτ; R0 cosω0γτ; R0 sinω0γτ; 0; 0�;

and using for the retarded proper time τ̂ ¼ ðt − RÞ=γ,
we find

ρ̂ ¼ γRð1þ v sinðω0γτ̂ − ϕÞ cos θ cos ζÞ;

ĉμ ¼ R
ρ̂
½1; cosϕ cos θ cos ζ; sinϕ cos θ cos ζ;

− sin θ cos ζ;− sin ζ�;

where we used the hyperspherical coordinates for the
observation point

xμ ¼ ½t; R cosϕ cos θ cos ζ; R sinϕ cos θ cos ζ;

− R sin θ cos ζ;−R sin ζ�:

Calculating the contractions wĉ and â ĉ, we then pass to
the integration variable s ¼ ω0γðτ̂ − τÞ and introduce the
angular variable a ¼ ω0γτ̂ − ϕþ π

2
. Zero values of the

angular variables correspond to the particle’s instant
direction of motion at the retarded moment of proper
time τ̂. After some algebra, we arrive at the following
representation of the integral amplitude of radiation:

AðxÞ ¼ ðω0γÞ3=2
Z þ∞

0

dsGðsÞ;

GðsÞ ¼ 3

2

��
δΔ

s − vΔðsin aþ sinðs − aÞÞ
�
5=2

−
1

s5=2

�

−
vΔ sin a

s3=2ð1 − vΔ cos aÞ ; ð4:5Þ

where we denoted Δ ¼ cos θ cos ζ and δ ¼ 1 − v cos a.
One can see that in the ultrarelativistic case v → 1 the main
part of the energy is radiated in a narrow cone around the
instantaneous direction of velocity a ¼ 0, θ ¼ 0, ζ ¼ 0
within δa ∼ 1=γ, δθ ∼ 1=γ, δζ ∼ 1=γ. Using the leading-γ
relation between the angular variables following from the
equation for τ̂ (2.13),

da
dϕ

¼ −
1

1 − vΔ cos a
≈ −

1

2γ2
ðâ2 þ θ̂2 þ ζ̂2 þ 1Þ;

and rescaling the integration variables fs; a; θ; ζg →
fx ¼ sγ; â ¼ aγ; θ̂ ¼ θγ; ζ̂ ¼ ζγg, we obtain from the
Eq. (4.5) in the leading order:

GðxÞ ¼ γ5=2

x3=2

�
3

2x

��
Â

x2=3 − âxþ Â

�5=2
− 1

�
−
2â

Â

	
;

ð4:6Þ

where we denoted Â ¼ â2 þ θ̂2 þ ζ̂2 þ 1.
Divergences in the different terms of the radiation

integral (4.6) at s ∼ 0 at the upper limit are canceled after
the triple integration by parts of the first term in the
integrand. Doing these integrations one can use different
regularization parameters ε ¼ þ0 absorbing in them some
numerical factors.
The total radiation power now will be given by the

integral

W4þ1 ¼
Z

dϕdθdζR3 sin θ sin2 ζTrad
0i ni:

After triple integration by parts in the radiation amplitude,
the angular distribution of the radiation power will read
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dW4þ1

dâdθ̂dζ̂
¼ g2ω3

0γ
6

4π2
Â

�Z þ∞

0

dx
315x1=2Φ
2Λ9=2

�
Φ2

Λ
−
140

315

�	
2

;

where we denoted Φ ¼ 2x=3 − â and Λ ¼ x2=3 − âxþ Â.
In the leading-γ approximation, the angular distribution is
beamed, this is used similarly to the previous section.
Integration over the angles is relegated to the Appendix.
The resulting factor is obtained by numerical integration
after some analytic transformations and has the value
1=

ffiffiffiffiffi
27

p
up to 5 digits. The total radiation power of the

(4þ 1)-dimensional scalar synchrotron radiation will read

W4þ1 ¼
g2ω3

0γ
6ffiffiffiffiffi

27
p : ð4:7Þ

C. Spectral decomposition

Now from Eq. (2.20) we get

dP0

dωdΩ
¼ ω3g2

16π2γ2

Z þ∞

−∞
dt1

Z þ∞

−∞
dt2eiωðt1−t2Þ−ikðzðt1Þ−zðt2ÞÞ:

After the transformation (3.16), we present the radiation
power as

dW
dωdΩ

¼ dP0=dt
dωdΩ

¼ ω3g2

16π2γ2

Z þ∞

−∞
dt0e−iωt0−kðzðt−t0=2Þ−zðtþt0=2ÞÞ:

The main contribution to the integral comes from the region
δt0 ∼ 1=γ near t0 ¼ 0. Thus one can expand an expression
in the exponent of the integrand into Taylor series at t0 ¼ 0
up to the leading order in γ as

− iωt0 − ikðzðt − t0=2Þ − zðtþ t0=2ÞÞ

¼ −
iωt0
2γ2

�
â2 þ θ̂2 þ ζ̂2 þ 1þ ω2

0t
2
0γ

2

12

�
;

where the angular variables are chosen in accordance
with the wave zone calculations. We also rescaled the
angular variables multiplying on γ to stretch the limits â, θ̂,
ζ̂ ∈ ð−∞;þ∞Þ. After that we arrive at the spectral dis-
tribution of the radiation power in the form

dW4þ1

dω
¼ ω3g2

16π2γ5

Z
R3

dâdθ̂dζ̂
Z þ∞

−∞
dt0 exp

�
−
iωt0
2γ2

�
1þ â2 þ θ̂2 þ ζ̂2 þ ω2

0t
2
0γ

2

12

�	
:

Using the spherical coordinates for integration over the
rescaled angular variables

â ¼ ρ cos α sin β; θ̂ ¼ ρ sin α sin β; ζ̂ ¼ ρ cos β;

where ρ ∈ ½0;þ∞Þ, α ∈ ½0; 2πÞ and β ∈ ½0; π�, we find the
following integral representation of the spectral distribution
of radiation intensity

dW4þ1

dω
¼ ω3g2

4πγ5

Z þ∞

0

dρρ2

×
Z þ∞

−∞
dt0 exp

�
−
iωt0
2γ2

�
1þ ρ2 þ ω2

0t
2
0γ

2

12

�	
:

Integration over t0 could be performed in terms of the Airy
function (3.17)

dW4þ1

dω
¼ω3g2

ω0γ
5

�
ω0

ω

�
1=3
Z þ∞

0

dρρ2Ai

��
ω

γ3ω0

�
2=3

ðρ2þ1Þ
�
:

We can rescale an integration variable r ¼ ρðω=ω0γ
3Þ1=3

and introduce a dimensionless parameter x ¼ ðω=ω0γ
3Þ2=3

to simplify this to

dW4þ1

dω
¼

�
ω0

ω

�
1=3 ω2g2

γ2

Z þ∞

0

drr2Aiðr2 þ xÞ:

Integration over r can be performed using the integral [65]

Z þ∞

0

drr2Aiðr2 þ xÞ ¼ π

22=3
ðAi0ðx=22=3ÞÞ2

−
πx

24=3
Ai2ðx=22=3Þ:

Passing to new dimensionless parameter s ¼ ðω=2ω0γ
3Þ2=3

we finally obtain

dW4þ1

dω
¼ 2πg2γ3ω2

0s
5=2ððAi0ðsÞÞ2 − sAi2ðsÞÞ:

The total power of synchrotron radiation in (4þ 1)
dimensions will read

W4þ1 ¼ 6πg2ω3
0γ

6

Z þ∞

0

dss3ððAi0ðsÞÞ2 − sAi2ðsÞÞ:

Using the integrals [65]

Z þ∞

0

dss3ðAi0ðsÞÞ2 ¼ 5

18
ffiffiffi
3

p
π
;

Z þ∞

0

dss4Ai2ðsÞ ¼ 2

9
ffiffiffi
3

p
π
;
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we find for the total power

W4þ1 ¼
g2ω3

0γ
6ffiffiffiffiffi

27
p ; ð4:8Þ

which coincides with the result of calculation in the wave
zone Eq. (4.7).

D. Arbitrary D

Combining Eq. (3.15) with Eq. (4.8) and with the known
result for D ¼ 4 [66], we can conjecture that the power of
the scalar synchrotron radiation in D ¼ nþ 1 dimensions
is given by the following formula:

Wsc
nþ1 ¼ g2

�
ω0γ

2ffiffiffi
3

p
�

n−1
: ð4:9Þ

V. CONCLUSION

In this article, we showed that despite the violation of the
Huygens principle in odd dimensions, radiation from an
accelerated charge can be calculated by integrating the
energy-momentum flux in the asymptotic wave zone in a
standard way. However, an important difference with the
even-dimensional case is that the distant component of the
gradient of the retarded field depends on the entire history
of motion preceding the retarded proper time. Another
unusual feature is that the amplitude is initially represented
by the sum of divergent integrals, whose divergences are
mutually canceled. This is due to the nature of the odd-
dimensional Green’s functions, which should be defined as
regularized distributions. Integrating by parts, you can
make the cancellation explicit and get the final result.
We explicitly calculated the synchrotron radiation power

in the dimensions D ¼ 3, 5 showing that the integral over
history (tail) is effectively localized in the ultrarelativistic
limit, so the obtained expression can be found analytically.
In addition, we found that, together with the previously
known result for D ¼ 4 [66], the total radiation power is
described by the universal formula (4.9). We conjecture that
this might be valid in any D.
Our results were double checked by the method of

spectral decomposition, based on expansion of all quan-
tities into Fourier integrals. This second method is closer
to the calculations of quantum theory, and it does not
distinguish between even and odd dimensions. Note that
the spectral-angular distributions have similar features in
the ultrarelativistic case (beaming) in both odd and even
dimensions.
Now we briefly discuss the relationship to other works.

Our formula agrees with the calculation of Shuryak et al.
[33] of the synchrotron radiation power in 2þ 1 dimen-
sions by means of the radiation reaction, but disagrees with
their result in D ¼ 5. We also disagree with the results of

Yaremko obtained through the radiation reaction. We agree
with the qualitative estimates of the power of Mironov et al.
[67] and with the results obtained by Cardoso et al. [26]
for even-dimensional space-time.
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APPENDIX: TOTAL RADIATION POWER IN 4+ 1

The computation below belongs to Bogush [68].
Consider the integral

J ¼ 1

4π2

Z
R3

dâdθ̂dζ̂ðÂþ 1ÞI2;

I ¼
Z þ∞

0

dx
ffiffiffi
x

p f0

f9=2

�
315

2

f02

f
− 70

�
;

fðxÞ ¼ x2=3 − axþ Âþ 1;

where Â ¼ â2 þ θ̂2 þ ζ̂2. Introducing cylindrical coordi-
nates in the space of ðâ; θ̂; ζ̂Þ by use of b2 ¼ θ̂2 þ ζ̂2, we
obtain

J ¼ 1

2π

Z þ∞

−∞
dâ

Z þ∞

0

dbbðâ2 þ b2 þ 1ÞI2;

fðxÞ ¼ 3

4
ð2x=3 − âÞ2 þ 1

4
â2 þ b2 þ 1:

Passing to the integration variable y ¼ 2x=3 − â and
denoting c2 ¼ â2 þ 4ðb2 þ 1Þ, we find

fðxÞ¼1

4
ð3y2þc2Þ; f0ðxÞ¼y;

I¼70×29
�
3

2

�
3=2

Z þ∞

−â
dy

y
ffiffiffiffiffiffiffiffiffiffi
yþâ

p
ð3y2þc2Þ9=2

�
9y2

3y2þc2
−1

�
:

This integral can be evaluated in terms of the complete
elliptic integrals EðdÞ and KðdÞ
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I ¼ 1

4 × 31=4C
ðAð2EðdÞ þ KðdÞÞ þ BKðdÞÞ;

A ¼ −288âðb2 þ 1Þðâ2 þ 3b2 þ 3Þ;
B ¼

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2 þ b2 þ 1

p
ð28â4 þ 44â2ðb2 þ 1Þ − 80ðb2 þ 1Þ2Þ;

C ¼ ðâ2 þ 4ðb2 þ 1ÞÞ2ðâ2 þ b2 þ 1Þ15=4;

d ¼ 1

2

� ffiffiffi
3

p
â

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â2 þ b2 þ 1

p þ 1

�
:

As a result, we obtain the amplitude of radiation intensity in the form of double integral

J ¼ 1

32
ffiffiffi
3

p
π

Z þ∞

−∞
dâ

Z þ∞

0

db
bðAð2EðdÞ þ KðdÞÞ þ BKðdÞÞ2

ðâ2 þ 4ðb2 þ 1ÞÞ4ðâ2 þ b2 þ 1Þ13=2 ;

which can be easily evaluated numerically, giving J ¼ 1=
ffiffiffiffiffi
27

p
up to 5 digits.
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