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We investigate the thermodynamics of Gauss–Bonnet black holes in asymptotically de Sitter spacetimes
embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and
uncharged black holes, working in the extended phase space where the cosmological constant is treated as a
thermodynamic pressure. We examine the phase structure of these black holes through their free energy.
In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose
character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the
presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole
transition occurs.
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I. INTRODUCTION

Nearly half a century after Hawking famously discov-
ered that black holes radiate, the thermodynamics of black
holes continues to serve as a lamppost guiding research into
quantum gravity. Like ordinary substances, black holes
possess temperature, entropy, and other thermodynamic
potentials with variations between equilibrium configura-
tions being captured by the first law of thermodynamics.
Remarkably, this similarity with ordinary substances
extends also to phase transitions—Hawking and Page
demonstrated the existence of a first-order phase transition
between thermal radiation and a large anti–de Sitter (AdS)
black hole [1].
The last decade has seen a resurgence of interest in the

thermodynamics—and in particular, the phase structure—
of black holes in the presence of a cosmological constant.
This interest is due in large part to the observations of
Kastor et al. that a new thermodynamic potential enters into
the derivation of the Smarr formula in the presence
of a nonzero cosmological constant: the thermodynamic
volume [2]. The thermodynamic volume can be understood
as the quantity conjugate to the cosmological constant,
interpreted in this context as a pressure, and appears as such
in the first law of thermodynamics when variations of the
cosmological constant are included. There has since been
considerable development of these ideas including a

proposed bound on the black hole entropy in terms of
the thermodynamic volume [3], the notion of holographic
heat engines [4], extensions to include acceleration, going
beyond black holes to spacetimes with nontrivial topology
[5–7], and connections with holography [7–10]. Perhaps
most actively investigated has been the subject of black
hole phase transitions where examples of van der Waals
behavior [11], triple points [12] (like that of water),
(multiple) reentrant phase transitions [13,14] (like those
occurring in certain gels), and even lambda transitions (like
those marking the onset of superfluidity) [15] have been
observed. We refer the reader to the review [16] where a
number of these developments are summarized.
Most of these investigations pertain to anti–de Sitter

black holes, while the case of de Sitter black holes
has seen comparatively little development [17–19].
Notwithstanding the inherent difficulties, there are good
reasons for exploring these ideas in the de Sitter realm.
Not only could such results be relevant theoretically
within the dS=CFT correspondence [20], but it is widely
accepted that our own Universe possesses a positive
cosmological constant. More pragmatically, it is of inter-
est to understand how general a feature the phase structure
of anti–de Sitter black holes is: do the same types of phase
transitions manifest for de Sitter black holes, or are there
new examples?
The study of thermodynamics of de Sitter black holes

faces an immediate problem due to the presence of
the cosmological horizon: with a temperature generically
different from the black hole horizon, the system is
manifestly out of equilibrium. However, there are ways
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in which progress can still be made.1 One method is to fix
various parameters of the system to set the two horizon
temperatures to be equal—see, e.g., [23]. A second method,
and the one we will be concerned with here, involves
confining the black hole within a perfectly reflecting cavity,
a method originally developed in the asymptotically flat
setting [24,25]. The cavity approach was first applied to
de Sitter black holes in [26], though that analysis did
not consider aspects of the extended thermodynamics.
Recently, generalizations of this approach to include
considerations of the extended thermodynamics have been
used to uncover examples of compact van der Waals-like
transitions for charged de Sitter black holes [27] and
reentrant phase transitions for de Sitter black holes with
nonlinear electrodynamics [28].
Here we further pursue the cavity approach and explore

the role of higher-curvature corrections to de Sitter black
hole thermodynamics. Higher-curvature corrections are
ubiquitous in approaches to quantum gravity where they
arise as quantum corrections to the Einstein-Hilbert action.
Here we consider Lovelock theory [29], and in particular
Gauss–Bonnet gravity, which is the simplest member
of the Lovelock class beyond Einstein gravity. Lovelock
gravity is in many ways a natural generalization of Einstein
gravity to higher dimensions, maintaining the property of
having second-order field equations for all backgrounds.
Moreover, the boundary terms for Lovelock theory have
long been known [30–32], which is advantageous for the
present study. In the realm of AdS black holes, higher-
curvature theories have resulted in a number of interesting
observations [4,8,10,14,15,33–60], most notably being
(multiple) reentrant phase transitions, triple points, and
λ-type superfluid transitions [14,15]. One of our goals here
is to explore to what extent these interesting features carry
over to the de Sitter case. Additionally, older [61] and more

recent [62] works have considered the thermodynamics of
asymptotically flat Gauss–Bonnet black holes in cavities—
our work can be considered the natural generalization of
these setups to de Sitter space.
Our paper is organized as follows: in Sec. II, we present

the Gauss–Bonnet theory of gravity, defining the action,
metric function, and relevant boundary terms. In Sec. III,
we consider uncharged black holes. The on-shell action is
evaluated and all relevant thermodynamic quantities are
calculated. We use the first law to derive the conjugate
variables. We also construct the free energy of the space-
time and study its phase structure. In Sec. IV, we repeat this
analysis for charged black holes. We conclude with a
summary of the results in Sec. V.

II. GAUSS–BONNET GRAVITY

Our aim is to study the phase structure of de Sitter black
holes including higher-curvature corrections to the action.
The phase structure is obtained via an analysis of the free
energy which can in turn be obtained from the Euclidean
on-shell action for general theories of gravity. To leading
order in the semiclassical approximation, the on-shell
Euclidean action, IE is directly related to the free energy by

F ¼ −T log Z ¼ TIE: ð2:1Þ

As in [24–28], we shall impose that the black hole resides
in a perfectly reflecting cavity which necessitates a
Dirichlet boundary condition at the location of the cavity.
The temperature of the cavity will be held fixed and will
generically be different than the temperature associated
with the cosmological horizon. As a prototypical model for
higher-curvature corrections, we use Gauss–Bonnet gravity
which has the following (Euclidean) action:

IE ¼ −
Z
M

dDx
ffiffiffi
g

p �
1

16πG

�
R − 2Λþ λGBX 4

ðD − 3ÞðD − 4Þ
�
−
1

4
FμνFμν

�

−
1

8πG

Z
∂M

dD−1x
ffiffiffi
γ

p �
K þ 2λGB

ðD − 3ÞðD − 4Þ ½J − 2GijKij�
�
−
Z
∂M

dD−1x
ffiffiffi
γ

p
FijniAj; ð2:2Þ

where we have included a Maxwell field in addition to the
gravitational terms. Here, R is the Ricci scalar, Λ is the
cosmological constant, λGB is the Gauss–Bonnet coupling
(which has units of inverse length squared), X4 is the Euler
density, and Fμν is the electromagnetic field strength tensor.
The terms appearing in the first line are the usual bulk terms
from which the equations of motion are derived. The
boundary terms ensuring a well-posed Dirichlet problem

appear in the second line. Finally, the third line contains the
relevant boundary term for the Maxwell field to ensure that
the system is in the fixed charge ensemble. Here gμν is the
full spacetime metric, while γij is the induced metric on the
boundary. The vector nμ is the outward pointing normal to
the constant r hypersurface. For a constant r surface in a
(Euclidean) spherically symmetric geometry, this boundary
metric takes the form

γijdxidxj ¼ fðrÞdt2E þ r2dΣk;D−2: ð2:3Þ1See also [21,22] for other recent developments on this subject.
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The object that appears in the boundary action—
ffiffiffi
γ

p
—is the

square root of the determinant of this metric. J is the trace
of the boundary tensor,

J ij ¼
1

3
ð2KKikKk

j þ KklKklKij − 2KikKklKlj − K2KijÞ;
ð2:4Þ

withKij the extrinsic curvature andK ¼ hijKij its trace, Gij

is the Einstein tensor computed for the boundary metric γij,
and the Euler density X4 is given by

X4 ¼ RμνσρRμνσρ − 4RμνRμν þ R2: ð2:5Þ

For the (Lorentzian) metric and gauge field, we have that2

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð2:6Þ

Aμ ¼ −
1

2
ffiffiffiffiffiffiffiffiffi
2πG

p
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 2

D − 3

r �
q

rD−3 −
q

rD−3þ

�
dt

¼ ½ϕðrÞ − ϕðrþÞ�dt; ð2:7Þ

and the field equations reduce to a polynomial equation that
determines the metric function fðrÞ,

h

�ðfðrÞ − 1Þ
r2

�
¼ ωD−3

rD−1 −
q2

r2ðD−2Þ ; ð2:8Þ

with hðxÞ given by the polynomial function

hðxÞ ¼ −
2Λ

ðD − 1ÞðD − 2Þ − xþ λGBx2: ð2:9Þ

In these expressions, q and ω are two integration constants
that are related to the mass M and charge Q of the black
hole according to

ωD−3 ¼
16πGM

ðD − 2ÞΩD−2
; ð2:10Þ

q ¼ Q
ΩD−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG

ðD − 2ÞðD − 3Þ

s
: ð2:11Þ

Note that when λGB ¼ 0, we get

fðrÞ ¼ 1 −
ωD−3

rD−3 þ q2

r2ðD−3Þ −
2Λr2

ðD − 1ÞðD − 2Þ ; ð2:12Þ

which is the ordinary charged (A)dS black hole solution in
Einstein gravity. However, here we will be interested in the
case where λGB ≠ 0 and will work with D ≥ 5. In this case,
the metric function is the solution of a quadratic equation,
and we pick the root that has a smooth limit as λGB → 0.

A. Calculating the on-shell action

In this section, we will compute the on-shell action.
Working quite generally, we consider a metric of the
following (Euclidean) form:

ds2 ¼ fðrÞdt2 þ dr2

fðrÞ þ r2dΣk;D−2; ð2:13Þ

where dΣ is the line element on a space of constant
curvature with k ∈ f−1; 0; 1g denoting negative, zero,
and positive curvature. The specific form of the line
element can be found, for example, in Eq. (4) of [46].
Using the methods of [63], it is quite straightforward to
perform a direct computation of the on-shell action in any
spacetime dimension. The following terms contribute to the
bulk action:

R¼−
�
f00 þ2ðD−2Þf0

r
−
ðD−2ÞðD−3Þðk−fÞ

r2

�
;

R2 ¼
�
f00 þ2ðD−2Þf0

r
−
ðD−2ÞðD−3Þðk−fÞ

r2

�
2

;

RμνRμν ¼ 1

2

�
f00 þ ðD−2Þf0

r

�
2

þðD−2Þ
�
−
f0

r
þðD−3Þðk−fÞ

r2

�
2

;

RμνσρRμνσρ ¼ðf00Þ2þ2ðD−2Þ
�
f0

r

�
2

þ2ðD−2ÞðD−3Þ
�
k−f
r2

�
2

: ð2:14Þ

Some algebra allows us to recognize that the bulk gravi-
tational action is a total derivative,

IbulkE ¼ −
ΩD−2β

16πG
d
dr

�
−
2ðD − 2Þq2

rD−3 þ ðD − 2ÞωD−3

− rD−2f0
�
1 −

2ðD − 2ÞλGB
D − 4

ðf − kÞ
r2

��
: ð2:15Þ

In producing this expression, we have made use of the field
equations. Specifically, we have replaced the appearance of
a rD−1h term with the corresponding factors of ω and q.
Note that, in the above, β is the periodicity of the Euclidean
time enforced by demanding no conical singularities at the
zero of f.
Let us now focus on computing the boundary term. The

Euclidean solution is a smooth manifold at the horizon with

2Note that the one-form dt diverges on the horizon. We have
chosen a gauge for A such that this divergence does not lead to an
ill-defined gauge field on the horizon.
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topology R2 × SD−2. We therefore consider a boundary
term only at the location of the cavity. To compute the
boundary term, we use the convenient notation of [63]
which introduces the orthonormal projectors

τμ
ν¼ δμ

tδt
ν ρμ

ν¼ δμ
rδr

ν σμ
ν¼

XD−2

i¼1

δμ
iδi

ν ð2:16Þ

to decompose the curvature into temporal, radial, and
angular parts (in the last term the sum extends over the
angular directions). These orthogonal projectors satisfy the
following relations:

τμ
λτλ

ν¼ τμ
ν; ρμ

λρλ
ν ¼ ρμ

ν; σμ
λσλ

ν¼ σμ
ν ð2:17Þ

and

τμ
ντν

μ ¼ ρμ
νρν

μ ¼ 1; σμ
νσν

μ ¼ D − 2: ð2:18Þ

The boundary term is composed of various traces and
contractions of the extrinsic curvature tensor Kij. For a
constant r surface, the extrinsic curvature computed for the
outward-pointing unit normal vector is

Kj
i ¼

f0

2
ffiffiffi
f

p τji þ
ffiffiffi
f

p
r

σji ; ð2:19Þ

and the curvature tensor of the boundary is

Rij
kl ¼ 2k

r2
σk½iσ

l
j�; ð2:20Þ

where k characterizes the curvature of the constant time
slices of the boundary, as mentioned above. From the
Riemann tensor, we compute the Ricci tensor and Ricci
scalar of the boundary to be

Rj
i ¼

ðD − 3Þk
r2

σji ; R ¼ ðD − 3ÞðD − 2Þk
r2

: ð2:21Þ

We then note that the Einstein tensor of the boundary
geometry is just given by

Gj
i ¼ Rj

i −
1

2
δjiR ¼ ðD − 3Þk

r2

�
σji −

D − 2

2
δji

�
: ð2:22Þ

Using these results, some simple manipulations yield the
following results:

K ¼ 1

2
ffiffiffi
f

p
�
f0 þ 2ðD − 2Þ

r
f

�
;

Kj
iK

i
j ¼

�
f0

2
ffiffiffi
f

p
�

2

þ ðD − 2Þ
� ffiffiffi

f
p
r

�
2

;

Kj
iK

l
jK

i
l ¼

�
f0

2
ffiffiffi
f

p
�

3

þ ðD − 2Þ
� ffiffiffi

f
p
r

�
3

: ð2:23Þ

Putting these together, we obtain

J ¼1

3

�
3

2
ffiffiffi
f

p
�
f0þ2ðD−2Þ

r
f

���
f0

2
ffiffiffi
f

p
�

2

þðD−2Þ
� ffiffiffi

f
p
r

�
2
�

−2

��
f0

2
ffiffiffi
f

p
�

3

þðD−2Þ
� ffiffiffi

f
p
r

�
3
�

−
�

1

2
ffiffiffi
f

p
�
f0þ2ðD−2Þ

r
f

��
3
�

ð2:24Þ

and

GijKij ¼ −
ðD − 2ÞðD − 3Þk

2r2

�
ðD − 4Þ

� ffiffiffi
f

p
r

�
þ f0

2
ffiffiffi
f

p
�
;

ð2:25Þ

where primes denote derivatives with respect to r. With this
in place, we can calculate explicitly the on-shell action for
the Gauss–Bonnet black hole.
In the following sections, we will consider the uncharged

case and the charged cases separately. We will work in
the fixed charge ensemble, which requires the addition of
the Maxwell boundary term appearing in the last line of
Eq. (2.2). Noting that the outward pointing normal one-
form is

nμdxμ ¼
drffiffiffiffiffiffiffiffiffi
fðrÞp ð2:26Þ

and taking care to work with the Euclideanized gauge
potential3 it can easily be shown that

Z
∂M

ffiffiffi
γ

p
FijniAj ¼

ðD − 2ÞβΩD−2

8πG

�
q2

rD−3
c

−
q2

rD−3þ

�

¼ ðD − 2ÞβΩD−2

8πG

�
q2

rD−3

�
r¼rc

r¼rþ

: ð2:27Þ

From the expression for the bulk action in (2.15), it is then
obvious that when this term is subtracted from the bulk
action the explicit charge dependence completely drops
out. In the fixed charge ensemble, the charge appears in the
action only through its appearance in fðrÞ.

3In other words, requiring that q → iq so that Atdt ¼ AtEdtE—
see, e.g., [25] for additional details.
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III. UNCHARGED GAUSS–BONNET
BLACK HOLES

We begin with a study of the thermodynamic properties
of D-dimensional uncharged Gauss–Bonnet–de Sitter
black holes. Computing the full on-shell Euclidean action
is straightforward since the bulk action is a total derivative.
Upon integration it gives two contributions: one at the
horizon rþ and one at the location of the cavity, rc. We will
also specialize to the case k ¼ 1, so that the transverse
sections are spheres. The boundary term contributes only at
the cavity. Performing the action calculation, followed by
some simplification, we arrive at the following general
result:

IE ¼ ðD − 2ÞΩD−2βfðrcÞrD−5
c

24πG
ð−3r2c þ 2λGBðfðrcÞ − 3ÞÞ

−
ΩD−2rD−2þ

4G

�
1þ 2ðD − 2ÞλGB

ðD − 4Þr2þ

�
: ð3:1Þ

Here β is the periodicity of the Euclidean time, which is
redshifted to a value

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
β at the cavity. We wish to

physically fix the temperature of the boundary to be this
value, so that βc ¼

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
β, thereby ensuring thermo-

dynamic equilibrium within the cavity.
The answer above is not quite complete. It is customary

to normalize the action such that flat, empty spacetime
has zero action and energy. To achieve this, we must
subtract from the action the boundary term evaluated for an
identical cavity in flat spacetime. This subtraction term has
the form

I0 ¼ −
ðD − 2ÞΩD−2βcrD−5

c

8πG

�
r2c þ

4

3
λGB

�
; ð3:2Þ

and the complete action is then IE − I0. In the present work,
especially in the context of uncharged black holes, we will
be interested in comparing the free energy of the black hole
solutions with the free energy of an identical cavity filled
with radiation. The free energy of the latter configuration is
obtained from setting the metric function fðrÞ to be the one
for a pure de Sitter solution in IE − I0.

4 For convenience,
we then consider the difference between these two actions
which is equal to

I�≡ΔðIEþ I0Þ

¼ ðD−2ÞΩD−2βcrD−5
c

24πG
½

ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
ð−3r2cþ2λGBðfðrcÞ−3ÞÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrcÞ

p
ð−3r2cþ2λGBðf0ðrcÞ−3ÞÞ�

−
ΩD−2rD−2þ

4G

�
1þ2ðD−2ÞλGB

ðD−4Þr2þ

�
; ð3:3Þ

where f0ðrÞ denotes the metric function with the mass
parameter set to zero and fðrÞ is the full solution for the
physical Gauss–Bonnet–de Sitter black hole,

fðrÞ ¼ 1þ r2

2λGB
−
r2−D=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rD þ 4λGBðrωD−3 þ rD=L2Þ

p
2λGB

;

ð3:4Þ

where we have defined

Λ≡ ðD − 1ÞðD − 2Þ
2L2

ð3:5Þ

in the above. It is this branch that reduces appropriately
to the Einstein gravity solution when the Gauss–Bonnet
coupling is turned off. However, note also that when the
mass parameter is set to zero the metric function becomes

f0ðrÞ ¼ 1þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λGB=L2

p
2λGB

�
r2; ð3:6Þ

which corresponds to the pure dS vacuum of the theory.
Note that the higher-curvature corrections “renormalize”
the cosmological constant. The asymptotics will be sensible
provided that λGB=L2 > −1=4. This will be the case in the
bulk of this work where we focus primarily on positive
coupling. If this bound is violated, then the solution will
terminate at some value of r and will not extend all the
way r → ∞.
From the above, it is now possible to compute the

entropy and energy of the solutions in the standard way.
We find

E ¼ ∂I�
∂βc

¼ ðD − 2ÞΩD−2rD−5
c

24πG

h ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
ð−3r2c þ 2λGBðfðrcÞ − 3ÞÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrcÞ

p
ð−3r2c þ 2λGBðf0ðrcÞ − 3ÞÞ

i
;

S ¼ βcE − I� ¼
ΩD−2rD−2þ

4G

�
1þ 2ðD − 2ÞλGB

ðD − 4Þr2þ

�
; ð3:7Þ

where we note that, since I� is the difference in actions of
the black holes and the cavity filled with thermal gas, E
here corresponds to difference in energies between those

4Note that, in the case of flat asymptotics, the action and
energy for an empty cavity are set to zero simply by subtracting a
boundary term for an identical cavity embedded in flat spacetime.
However, in the dS case, a subtraction of the boundary term for an
identical cavity in pure dS will not accomplish this—the reason is
that when the cosmological constant is nonzero the bulk action
contributes also to the total action.
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solutions. Note also that since we are working on-shell, the
computation of these quantities needs to account for the
fact that ω is not independent of β. The entropy here is
exactly the Iyer-Wald entropy computed for Gauss–Bonnet
black holes with spherical horizons. The energy has
received “self-energy” corrections due to the presence of
the cavity.5 Note that the energy implicitly depends on rþ
due to the appearance of the mass parameter ωD−3 in the
metric function.
The temperature T ¼ β−1 is obtained by demanding that

the variation of I� with respect to rþ vanishes. This is
accomplished by first rewriting fðrcÞ in terms of rþ, by
isolating for M in fðr ¼ rþÞ ¼ 0 and substituting back
into f. We find that

∂I�
∂rþ ¼ 0 → β−1 ¼ T ¼ f0ðrÞjrþ

4π
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p ; ð3:8Þ

where again the prime indicates a derivative with respect to
r. This result is consistent with our expectation that the
temperature required for equilibrium in the cavity should
coincide with the redshifted Hawking temperature at the
location of the cavity. From here on, we work in natural
units where G ¼ c ¼ 1. In this way, all lengths are
measured in units of lp.

A. The first law

The (extended) first law of thermodynamics for
uncharged Gauss–Bonnet black holes reads

dE ¼ TdSþ VdPþ σdAþΦGBλGB: ð3:9Þ

Here, the pressure-volume term VdP appears since we are
considering variations in the cosmological constant in the
extended phase space, where the pressure is related to Λ
through

P ¼ −
Λ
8π

¼ ðD − 1ÞðD − 2Þ
16πL2

; ð3:10Þ

and V is the thermodynamic volume of the system, which
in general differs from the geometric volume of the black
hole. Additionally, a work term σdA associated with
changes in the cavity area A is present, where σ is
interpreted as the surface tension of the cavity. Finally,
theΦGBλGB term must be included to account for variations
in the Gauss–Bonnet coupling. Having determined the
energy E, temperature T, and entropy S, we can determine

what the conjugate variables fV; λ;ΦGBg must be for the
first law to hold. Expressions for the conjugate variables
are lengthy and can be found in the Appendix. The first
law (3.9) thus holds by construction.
One can also show that these variables satisfy the Smarr

relation, which in this case reads

ðD − 3ÞE ¼ ðD − 2ÞTS − 2PV þ 2ΦGBλGB: ð3:11Þ

This relation is broadly applicable as it holds for both
asymptotically AdS and dS spacetimes, is valid in any
dimension, and is also satisfied by more exotic objects like
black rings and black branes [2].
In Fig. 1, we plot regions where the thermodynamic

volume is positive, as a function of rþ and rc with Λ and
λGB held fixed. The volume is positive in the blue shaded
region. There are two boundaries enclosing this region. The
diagonal line marks the boundary where rc > rþ; since we
are restricting the cavity to lie outside the event horizon, we
are automatically on the upper-left side of this line. The
second, curved boundary represents the line along which
rc ¼ rcosmo. Again, we are restricting our cavity to lie
within the cosmological horizon; therefore, the thermody-
namic volume is positive in all regions of interest. This
picture is qualitatively identical in higher dimensions.

B. Five-dimensional black holes

Having derived the general results for the uncharged
Gauss–Bonnet black holes, we turn to the study of their
phase structure, starting with D ¼ 5. The quantity of

0 1 2 3 4 5
0

1

2

3

4

5

r+

rc

FIG. 1. Thermodynamic volume of the uncharged Gauss–
Bonnet black hole in D ¼ 5 with λGB ¼ 0.1 and Λ ¼ 0.3. The
blue shaded region indicates positivity of the volume V. The
diagonal and curved boundaries mark, respectively, where
rc ¼ rþ and rc ¼ rcosmo.

5In the case where Λ ¼ 0, we can easily see that, in the limit
rc → ∞,

lim
rc→∞

E ¼ ðD − 2ÞΩD−2ωD−3

16πG
¼ M;

which matches precisely our expectations.
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interest is the free energy F ¼ E − TS, the quantity that is
minimized by the equilibrium state of the system.
One way to examine the behavior of this system is to

realize that for a phase transition to occur at a given
temperature T, the function rþðTÞ with fixed frc; λGB; Pg
must be multi-valued.6 The interpretation of this is the
existence of multiple thermodynamically competing states
with equal temperature but different horizon radii rþ, which
will in general have different free energies. The transition of
the horizon radius being a single valued function of the
temperature to multivalued thus (typically) corresponds to
the free energy becoming multivalued at fixed temperature.
This will not, however, tell us about the stability of the
phases or nature of the transition, which must be deter-
mined from the free energy itself. An analytic study of the
roots of TðrþÞ is not possible in this case since the
expression does not admit a closed form solution for rþ.
In Fig. 2, we plot the temperature as a function of x≡
rþ=rc for fixed coupling λGB and varying pressure P, as
well as fixed P and varying λGB, showing the transition
from the single to multivalued regime.
On the left in Fig. 2, one can see that at fixed coupling

there is a compact region ½Pmin; Pmax� between the red
dashed lines where T is not a monotonically increasing
function of x, in which case the horizon radius is a
multivalued function of the temperature. Below the mini-
mum and above the maximum pressure, there is only one
thermodynamically allowed state. In contrast, on the right,
we see that at fixed pressure, there is a maximum value of
the Gauss–Bonnet coupling below which the horizon radius
is multivalued. However, there is no minimum and the

phase transition (if it exists for a given choice of parameters
at fixed pressure) always persists in the limit λGB → 0. This
type of analysis gives hints as to which regions in parameter
space may have multiple competing phases, but only the
free energy F can tell the whole story. The free energy of
empty de Sitter space is F ¼ 0, so even if multiple black
hole phases exist, they may not be thermodynamically
preferred, as we will see.
In Fig. 3, we plot the free energy F ¼ E − TS para-

metrically as a function of T with rþ as the parameter. The
thermodynamically preferred state is the one that globally
minimizes the free energy. As the temperature of the system
increases, the system will follow the line with lowest free
energy whenever a crossing is reached. On the left of Fig. 3,
we plot the free energy at fixed value of the Gauss–Bonnet
coupling and varying pressure. There is a crossing of the
black hole free energy with itself, corresponding to a first-
order small-to-large black hole phase transition. However,
since this crossing is above the free energy of thermal de
Sitter space (F ¼ 0), the relevant transition occurs at the red
dots where the black hole free energy line crosses F ¼ 0.
This represents a Hawking-Page phase transition from
radiation, or thermal de Sitter space, to a large black hole,
and is generically seen in asymptotically AdS black holes.
We briefly clarify the notion of the Hawking-Page

transition in de Sitter space. Here the transition is between
a thermal gas confined to the cavity (this is what we mean by
“thermal de Sitter”) and a black hole confined to the cavity.
The temperature of both the gas and the black hole will
generically be different from the temperature associated with
the cosmological horizon. This is justified by the presence of
the cavity: the boundary conditions imposed by the cavity
allow for the control of the temperature of the cavity and its
contents independently of the cosmological horizon.
On the right side of Fig. 3, we plot the free energy at

fixed pressure for varying coupling λGB. Here we see that
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FIG. 2. Temperature T as a function of x ¼ rþ=rc for fixed cavity radius rc ¼ 2 andD ¼ 5, showing regions where rþ is multivalued,
signaling a possible phase transition. Left: varying pressure with λGB ¼ 0.3. The red dashed horizontal lines demarcate the region in
which T is not a monotonically increasing function of x. Right: varying Gauss–Bonnet coupling with P ¼ −0.02. Above the red dashed
line T is not a monotonically increasing function of x.

6This is true throughout most of the parameter space; however,
there are some points where the temperature may be single valued
but at an inflection point, signaling a second-order phase
transition.
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below a critical value of the coupling (in this case
λGB ∼ 1.3), a crossing forms in the black hole free energy,
though because it is always above F ¼ 0, we again only
have a Hawking-Page phase transition where the large
black hole branch crosses F ¼ 0. In the limit λGB → 0,
corresponding to Einstein gravity, we recover the results of
[27]. Note that while the Hawking-Page transition is
present for any choice of λGB, three situations are distin-
guished by the number of unstable phases available to the
system. When λGB ¼ 0, there are two black hole phases,
when 0 < λGB < 1.3 there are three black hole phases, and
when λGB > 1.3 there is only one. The presence of the
Gauss–Bonnet correction also gives rise to unstable black
hole phases down to T ¼ 0, while in the Einstein limit
λGB → 0 there is a minimum temperature black hole where
the free energy reaches a point.

C. Higher-dimensional black holes

When D > 5, there are two cases of interest. When
λGB > 0, there is again only a Hawking-Page transition
from thermal de Sitter space to a large black hole, with a
minimum black hole temperature as in the Einstein limit
of the D ¼ 5 case. This is encoded in the fact that the
temperature is never more than double valued as a function
of x ¼ rþ=rc. When λGB < 0 however, we observe a small-
large black hole phase transition, since the small black hole
branch now has lower free energy than the radiation phase,
and is the preferred state of the system at low temperatures.
We demonstrate this in Fig. 4, plotting the free energy for
fixed pressure and varying coupling for D ¼ 6. Note that
unlike in the D ¼ 5 cases, when the coupling is negative,
the small black hole branch (represented by the near-
horizontal lines) has free energy less than that of radiation,
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FIG. 3. Free energy of the Gauss–Bonnet–de Sitter black hole in D ¼ 5 with rc ¼ 2, showing a Hawking-Page phase transition from
radiation to a large black hole, where the free energy crosses F ¼ 0. Left: varying pressure with λGB ¼ 0.3. Right: varying Gauss–Bonnet
coupling with P ¼ −0.03. For very small values of λGB, the free energy limits to the Einstein case where there is a Hawking-Page phase
transition with a minimum black hole temperature.
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FIG. 4. Free energy of the Gauss–Bonnet–de Sitter black hole with D ¼ 6, rc ¼ 2, P ¼ −0.03, and varying Gauss–Bonnet coupling.
Left: with λGB > 0, there is a first-order phase transition from thermal de Sitter to a large black hole. Right: with λGB < 0, there is a first-
order small-large black hole phase transition. Note the free energy of the small black hole branch is below that of radiation in this case.
This behavior is qualitatively the same in higher dimensions.
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and is not continuously connected to the large black hole
branch. The phase structure is qualitatively identical for
higher dimensions, with only the precise value of the
critical temperature differing for a given choice of cavity
size, pressure, and coupling.
As is well-known, at sufficiently negative coupling

Gauss–Bonnet gravity exhibits pathological behavior such
as naked singularities or negative string tension (if viewed
as arising from α0 corrections in string theory) [64].
However, small negative couplings cannot be completely
ruled out via analysis of physicality conditions [65]. Note
also that when one considers the dynamical stability of
these black holes, the coupling is further constrained [66],
and that these black holes will be dynamically unstable in
higher dimensions [67]. Here, we remark only on the fact
that a change in sign of the coupling leads to very different
phase structure.

IV. CHARGED GAUSS–BONNET BLACK HOLES

We next consider the inclusion of a Uð1Þ gauge field in
the action (2.2), and study the resulting thermodynamics.
In general, the presence of a Maxwell-like field leads to
reentrant phase transitions and van der Waals-like behavior.
This is tied to the r6−2D falloff of the charge term that
appears in the metric function when such a field is present,
leading to additional roots in the temperature. The action is
the same as before,

I� ¼
ðD−2ÞΩD−2βcrD−5

c

24πG

h ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
ð−3r2cþ2λGBðfðrcÞ−3ÞÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrcÞ

p
ð−3r2cþ2λGBðf0ðrcÞ−3ÞÞ

i
−
ΩD−2rD−2þ

4G

�
1þ2ðD−2ÞλGB

ðD−4Þr2þ

�
; ð4:1Þ

however, now the metric function takes the form

fðrÞ ¼ 1þ r2

2λGB

−
r2−D=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rD þ 4λGBðrωD−3 − q2r4−D − rD=L2Þ

p
2λGB

:

ð4:2Þ
The energy E, temperature T, and entropy S therefore take
the same functional form as in the uncharged case, namely,
(3.6)–(3.8), differing only by the form of the metric
function fðrÞ. The free energy F ¼ E − TS thus also takes
the same general form as in the uncharged case.

A. The first law

When charge is present, the first law must be supple-
mented by an additional ϕdQ term, with ϕ representing the
electric potential of the spacetime measured at the cavity
and Q the total charge,

dE ¼ TdSþ VdPþ σdAþ ϕdQþΦGBλGB: ð4:3Þ

We can again derive the conjugate quantities fV;ϕ; σ; λGBg
by enforcing the first law. We omit the expressions here
since they are long and offer no particular insight. They are
structurally similar to those in Sec. III.1, with the addition
of a number of q-dependent terms. One can also verify that
with these quantities the Smarr relation holds, which in the
presence of charge reads

ðD − 3ÞE ¼ ðD − 2ÞTSþ ðD − 3ÞϕQ − 2PV þ 2ΦGBλGB:

ð4:4Þ

As before, we examine the thermodynamic volume to
check for positivity. In Fig. 5, we plot regions where V > 0
for varying charge q.
When q ¼ 0, we reproduce Fig. 1. With nonzero q,

regions where the thermodynamic volume is positive are
smaller than in the uncharged case. The inner boundary
of the shaded regions corresponds to the location of the
inner horizon r− of the charged black hole. Outside of
these regions, the volume is not negative, but rather
imaginary. Since we are restricting the cavity to lie within
r− < rc < rcosmo, we have an everywhere positive thermo-
dynamic volume as in the uncharged case.

B. Phase structure

We again turn to an analysis of the free energy
F ¼ E − TS to uncover the phase structure, this time for
charged Gauss–Bonnet–de Sitter black holes. Figure 6
shows a plot of the free energy of the black hole both
for varying pressure and varying coupling. While the free
energy of Fig. 6 looks identical to the uncharged case, the
interpretation is different in an important way. Since we are
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FIG. 5. Thermodynamic volume of the charged Gauss–Bonnet
black hole in D ¼ 5 with λGB ¼ 0.1, Λ ¼ 0.25, and varying
charge. The shaded regions indicate positivity of the volume V.
The diagonal boundary marks where rc ¼ rþ.
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working in the canonical ensemble, the charge q of the
black hole is fixed. This means that there is no Hawking-
Page phase transition at the crossing of the black hole free
energy with the F ¼ 0 line, because a black hole cannot
evaporate while its charge is held fixed. Instead, we have a
small-large black hole phase transition where the black hole
free energy line crosses itself. The system will follow the
branch with lowest free energy, so the black hole suffers a
jump from small rþ to large rþ at the crossing. With the
cavity present, there is not only a minimum critical pressure

Pmin below which a kink forms in the free energy, but also a
maximum pressure Pmax. These critical pressures coincide
with the values of ½Pmin; Pmax� at which x becomes multi-
valued at a given temperature. At these critical pressures, a
cusp forms in the free energy where a second-order phase
transition occurs, as in the red lines of Fig. 6. Outside of the
range ½Pmin; Pmax�, the free energy is monotonic and there is
no phase transition.
On the right side of Fig. 6, we vary instead the Gauss–

Bonnet coupling with pressure held fixed. For couplings
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FIG. 6. Free energy of the charged Gauss–Bonnet–de Sitter black hole with D ¼ 5 and rc ¼ 2, showing a first-order phase transition
from a small black hole to a large black hole. Left: varying pressure with λGB ¼ 0.3. Right: varying Gauss–Bonnet coupling with
P ¼ −0.03. Note that in the λ → 0 limit we have a small-large phase transition, as opposed to the Hawking-Page transition that emerges
in this limit in the uncharged case.

FIG. 7. Free energy of the Gauss–Bonnet–de Sitter black hole in D ¼ 5 with rc ¼ 2 and λGB ¼ 0.3, showing the formation of a
swallowtube corresponding to a compact region of first-order phase transitions from a small to large black hole. Each line corresponds
to a constant-pressure slice, while red dots mark the location of the critical temperature within each slice. The red line is the
coexistence line.
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above a certain value (in this case λGB ¼ 1.3), there is only
one phase. Below this value, a crossing forms and we have
a small-large phase transition. Notably, in the Einstein
limit λGB → 0, this small-large transition persists, unlike in
the uncharged case considered previously. Unlike the
uncharged case, when charge is present all of the qualitative
features of the D ¼ 5 black hole remain the same in higher
dimensions; only the precise values of the free energy and
critical points change, but all other phase structure and
limiting behavior is identical.
Unlike the typical “swallowtail” behavior seen in asymp-

totically AdS black holes (see for example [68]), the free
energy here forms a tube in F − T − P space, as shown in
Fig. 7. This “swallowtube” behavior, first observed in [27],
is in stark contrast to the swallowtails that arise in black
hole systems without cavities. In those systems, there is
only a maximum pressure Pmax below which the phase

transition is present. Here, there is also a minimum pressure
jPminj > 0 that is reached where another second-order
phase transition occurs, and only between these two
pressures is there a small-large black hole phase transition.
In Fig. 8, we plot the coexistence curve for the black hole
and compare it to a typical AdS black hole. These curves
are lines in P − T space along which the small and large
black hole phases simultaneously exist and have equal free
energy. Note the striking difference: when a cavity is
present, the coexistence line terminates at two second-
order phase transitions as opposed to one. One can also
vary the charge q at fixed values of the pressure and
coupling, as shown in Fig. 9. Here we see a single critical
value of the charge qc for a given choice of Λ and λGB,
below which there exists a small-large black hole phase
transition, persisting down to q ¼ 0. Notice that swallow-
tubes only exist in F − T − P space: both in F − T − q and
F − T − λGB space we see a swallowtail instead, with just
one critical value of the respective parameters q or λGB.

V. CONCLUSIONS

We have studied the phase structure of both charged and
uncharged de Sitter black holes in Gauss–Bonnet gravity in
the canonical ensemble. The presence of an isothermal
cavity, equivalent to fixing boundary value data on a finite
surface in the spacetime, allows us to have a notion
of thermodynamic equilibrium in these asymptotically
de Sitter spacetimes, which normally are not in equilibrium
due to the two horizons present. What we have seen is a
host of interesting phenomena. In the uncharged case, there
exist Hawking-Page-like phase transitions throughout most
of the parameter space, with a number of unstable black
hole phases present. In the special case of λGB < 0, we find
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FIG. 9. Free energy of the charged Gauss–Bonnet–de Sitter
black hole with D ¼ 5, rc ¼ 2, and Λ ¼ 0.3, showing a first-
order phase transition from a small black hole to a large black
hole below a critical value of the charge q. In this case, qc ∼ 0.8.
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FIG. 8. Coexistence curves for black holes, along which the small and large black hole phases coexist. Left: the uncharged Gauss–
Bonnet black hole with rc ¼ 2 and varying λGB. The large dots mark the critical pressures Pmin (Pmax), above (below) which there is no
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a region of first-order small-large black hole phase
transitions, where the free energy of the small black
hole branch becomes smaller than that of radiation.
Interestingly, while exotic reentrant phase transitions and
triple points are seen in six-dimensional uncharged Gauss–
Bonnet black holes in AdS spacetimes, here we see only a
Hawking-Page phase transition in the six-dimensional case.
This touches on an important point: that while anti–
de Sitter space acts like a “box” that confines radiation
much like a cavity does (allowing the black hole to reach
thermodynamic equilibrium), these two methods of achiev-
ing equilibrium leave their imprint on the phase structure.
One cannot understand the thermodynamic behavior of a
black hole without also considering how it is being
maintained at equilibrium, for the exact method by which
this is achieved affects significantly the resulting behavior,
even if the mechanisms seem qualitatively alike.
When charge is present, the story is considerably differ-

ent. We generically see first-order small-large black hole
phase transitions encoded in the presence of a swallowtube
in the F − T − P space, with second-order phase transitions
at the minimum and maximum pressures representing the
end points of the tube. This swallowtube behavior appears
to be a characteristic feature of black holes embedded in
isothermal cavities [27]. Interestingly, such tubes only exist
in F − T − P space. When either the charge q or coupling
λGB is varied, only a swallowtail emerges. These parameters
do however control the size of the swallowtube in F−T−P
space, and for any particular choice of P for which a tube
exists, one can find values of q and λGB such that the two
ends of the tube (corresponding to a second-order phase

transition) meet. Based on previous works [42], we would
expect that the merging of two critical exponents would
yield novel critical exponents. However, the investigation
of this expectation is difficult here as there is no first-order
phase transition present in the case where the “merged”
critical exponent occurs—it is a truly isolated second-order
phase transition. It is an open question as to whether
different critical exponents emerge at this point and how
universal such behavior is when a cavity is present.
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APPENDIX

Here we present expressions for the conjugate variables
derived from the first law for both uncharged and charged
Gauss–Bonnet–de Sitter black holes. The first law takes the
general form

dE ¼ TdSþ VdPþ σdAþ ϕdQþΦGBλGB: ðA1Þ

For convenience, we define

γ ¼ −2Λ
ðD − 1ÞðD − 2Þ ðA2Þ

and let fðrÞ → f and f0ðrÞ → f0, though note that these
functions depend on ðrþ; rc; γ; λGB; qÞ. Using (3.7) and
(3.8) in the first law, we can determine the following:

V ¼
2ΩD−3½ðλGBðf0 − 1ÞrDc − 1

2
rDþ2
c Þ ∂f0∂γ

ffiffiffi
f

p
− ðrDc λGBðf − 1Þ − 1

2
rDþ2
c Þ ∂f∂γ

ffiffiffiffiffi
f0

p �
r5c

ffiffiffiffiffiffiffiffi
f0f

p ðD − 1Þ ; ðA3Þ

σ ¼ ðD − 2ÞΩD−3

96π2
ffiffiffiffiffiffiffiffi
f0f

p
r7c

�
rDc

ffiffiffiffiffi
f0

p �
f

�
λGBðd − 5Þf þ 3

2
ð3 −DÞr2c − 3λGBðD − 5Þ

�

þ 3

2

�
λGBf −

1

2
r2c − λGB

�
rc

∂f
∂rc

�
þ
�
rDþ2
c

�
3

4

�∂f0
∂rc

�
rc þ

3

2
f0ðD − 3Þ

�� ffiffiffi
f

p

− rDc

�
3

2
rcðf0 − 1Þ ∂f0∂rc þ f0ðD − 5Þðf0 − 3Þ

�
λGB

�
; ðA4Þ

ΦGB ¼ ðD − 2ÞΩD−3

12π
ffiffiffiffiffiffiffiffi
f0f

p
r5c

��
3

2

�
rDc λGBð1 − f0Þ þ

1

2
rDþ2
c

� ∂f0
∂λGB − rDc f0ðf0 − 3Þ

� ffiffiffi
f

p

þ
�
3

2

�
fλGB −

1

2
r2c − λGB

� ∂f
∂λGB þ f2 − 3f

�
rD−5
c

ffiffiffiffiffi
f0

p
r5c

�
; ðA5Þ

ϕ ¼
ðD − 2ÞΩD−3rD−5

c ðλGBðf − 1Þ − 1
2
r2cÞ ∂f∂q

8π
ffiffiffi
f

p : ðA6Þ

The uncharged case differs from the charged case only in the functional forms of f and f0 that appear in these
expressions, as well as the lack of ϕdQ term in the first law.
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