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We describe the properties of evanescent gravitational waves (EGWs)—wave solutions of Einstein
equations which decay exponentially in some direction while propagating in another. Evanescent waves are
well known in acoustics and optics and have recently received much attention due to their extraordinary
properties such as their transverse spin and spin-momentum locking. We show that EGWs possess similarly
remarkable properties, carrying transverse spin angular momenta and driving freely falling test masses
along in elliptical trajectories. Hence, test masses on a plane transverse to the direction of propagation
exhibit correlated vector and scalarlike deformation—correlations which can be used to distinguish it from
modified gravity. We demonstrate that EGWs are present and dominant in the vicinity of subwavelength
sources such as orbiting binaries.
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I. INTRODUCTION

Evanescent waves, or fields, are solutions to the wave
equation which instead of propagating away from the
source, decay exponentially. While evanescent waves have
been known for a very long time, only recently have they
been intensively studied, following the increased interest in
small scale physics. In nanophotonics, evanescent waves
play a dominant role [1]. Recent awareness of their
interesting properties has spurred huge interest: evanescent
fields were recently found to have a transverse spin [2–5],
and to exhibit spin-momentum locking [6–9], leading to
a myriad of practical applications in light nanorouting,
quantum optics, nonreciprocal devices, optical forces, and
polarimetry [10–17]. Beyond electromagnetism, evanes-
cent waves have now been found to exhibit analogous
properties in other wave fields, such as acoustics [18–20].
This work explores the existence of evanescent waves in
the framework of linearized gravity. Inspired by the
analogy to other wave fields, we discuss their remarkable
properties, which include the transverse spinning of free-
falling test masses. Evanescent gravitational waves also
imply the excitation of vector and longitudinal components
of the wave, which is noteworthy, as the presence of these
components in a vacuum is often assumed to signify a
deviation from general relativity [21]. We show that
evanescent gravitational waves are not a rare occurrence.
They are present and even dominant near any subwave-
length source of gravitational waves, such as compact
binary systems.

II. EVANESCENT WAVES

These can be described using a wave function that is
an eigenmode of the momentum and energy operators.
Therefore, they are mathematically identical to plane
waves, ψðt;xÞ ¼ Ψ expðik · x − iωtÞ, where x is the posi-
tion vector, t is the coordinate time, Ψ is the complex
amplitude of this field, k is the wave vector and ω is the
angular frequency. The only difference from traveling
plane waves is that the wave-vector, or momentum, will
be complex, k ¼ k0 þ ik00, with an imaginary component
in the direction of the exponential decay. In the case of a
vector field, such as the electromagnetic field, the math-
ematical form of evanescent waves is exactly as above, with
Ψ substituted by the electric field amplitude E. Maxwell
equations of electromagnetism impose two conditions on
its wave solutions [6,22]. First, as every solution to the
homogeneous Helmholtz wave-equation, the wave has to
be null-like, in other words it satisfies the dispersion
relation k20 ¼ k · k ¼ k2x þ k2y þ k2z . It is important to stress
that for complex-valued wave vector, the quantity k20 ¼
k · k ¼ jk0j2 − jk00j2 þ 2ik0 · k00 is not equal to the mag-
nitude of the wave vector jkj2 ¼ k · k� ¼ jk0j2 þ jk00j2
[6,9,22]. The dispersion relation shows that a wave may
surprisingly have jk0j > k0, as long as jk00j ≠ 0, demon-
strating the mathematical existence of evanescent waves as
valid solutions. In a vacuum, this condition can only be
satisfied if k0 · k00 ¼ 0, so the direction of decay is
necessarily transverse to the direction of propagation.
Second, the electric field must fulfil the transversality
condition k ·E ¼ 0 [6,22]. This condition restricts the
allowed polarization modes of the wave. It reduces, by one,
the three degrees of freedom of vector E, allowing us to
express it as a linear combination of two polarization basis
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vectors E ¼ E1ê1 þ E2ê2. For plane waves, the condition
restricts the electric field to lie on a plane transverse
to k, e.g., two orthogonal linearly polarized waves, or
two opposite handedness of circularly polarized waves.
For evanescent waves, the same mathematical formulation
for the basis vectors can be used, but they become complex-
valued [6,9] and, while still fulfilling the condition
k · E ¼ 0, the modes acquire longitudinal components
of the field ultimately resulting in the remarkable polari-
zation properties of evanescent waves.

III. GRAVITATIONAL WAVES

The theory of linearized gravity describes gravitational
plane waves in terms of the metric perturbation symmetric
second rank tensor,

hμνðt;xÞ ¼ Hμν expðik · x − iωtÞ: ð1Þ

The massless wave equation requires the null condition

kμkμ ¼ −k20 þ k2x þ k2y þ k2z ¼ 0 ð2Þ

which imposes the dispersion relation. Meanwhile, fixing
the gauge to be transverse-traceless implies that, in a
vacuum, only the spatial components hij of hμν are non-
vanishing for radiation. The transversality condition is

kihij ¼ 0; ð3Þ

in this gauge. That, together with the traceless condition
hii ¼ 0 gives a set of four equations which reduce the
original six degrees of freedom of the symmetric matrix hij
down to two, therefore restricting it to two allowed
polarization modes. For propagating gravitational plane
waves, the two modes may be chosen as the well-known
“plus” (þ) and “cross” (×) modes, but, in analogy to
electromagnetism, these two modes can be extended to the
case of complex k with the use of a complex basis, as
follows. Consider an energy and momentum eigenmode
gravitational wave, Eq. (1), traveling in the z-direction and
decaying in x (without loss of generality due to the fact
that k0 · k00 ¼ 0). This implies a complex wave-vector
k ¼ k0ðiα; 0; κÞ where α and κ are both real. The null
condition requires that 1 ¼ κ2 − α2. Any propagating mode
can then be expressed as a linear combination of two
complex polarization modes (see Appendix D):

Hij¼hþ

0
B@

κ2 0 −iακ
0 −1 0

−iακ 0 −α2

1
CAþh×

0
B@
0 κ 0

κ 0 −iα
0 −iα 0

1
CA: ð4Þ

The complex nature of these amplitudes accounts for the
amplitude and phase of each component. Note that these
two modes reduce to the usual gravitational transverse

“plus” and “cross” modes when κ → 1, and correspond-
inglyα → 0 due to the null condition.Crucially, in this basis,
components which are not transverse to the direction of
propagation given by k0 are present, even though the
transversality condition kihij ¼ 0 is satisfied. This is analo-
gous to the appearance of longitudinal fields in evanescent
electromagnetic waves. To show this clearly, we may
decompose our basis in terms of the real polarization basis
Hij ¼

P
HAeAij (see Appendix A), summed over A ∈

fþ;×; 0; 1; 2; 3g as shown in Table I. Thus, evanescent
waves in a vacuum can excite the vector and scalar modes
even in general relativity—complicating efforts to use the
detection of such modes as a smoking gun evidence for
modified gravity theories [21]. Nevertheless, we emphasize
that these are not additional modes as there are only two
effective propagating degrees of freedom—the key point is
that the components of these real modes are correlated.

IV. MOTION OF TEST MASSES AND
TRANSVERSE SPIN

To study the effects of the wave, we can consider a cloud
of freely falling test masses surrounding a fixed point. If the
cloud is small compared to the wavelength, the effect of the
wave on one of the particles of the cloud can be examined
using the geodesic deviation equation. ẍi ¼ −Ri

0j0ðtÞxj ¼
1
2
ℜ½ḧijðtÞ�xj, where xiðtÞ are coordinates representing

instantaneous proper positions of the free-falling mass
with respect to a fixed point, Rμ

νρσðtÞ is the Riemann
curvature tensor evaluated at the fixed point, and the dot
represents partial derivative with respect to time [23]. Given
initial positions xi0, this equation has a unique solution

xiðtÞ ¼ xi0 þ δxiðtÞ ¼ xi0 þ
1

2
ℜ½hijðtÞ�xj0: ð5Þ

The displacement, for eigenmode Eq. (1), can be written

δxiðtÞ ¼ 1

2
½ℜðHi

jÞ cosðωtÞ þ ℑðHi
jÞ sinðωtÞ�xj0;

which is the parametric equation of an ellipse. Therefore,
each test mass will move along a fixed ellipse with center at
xi0 and semiaxes defined by two conjugate diameter vectors
1
2
ℜðHi

jÞxj0 and 1
2
ℑðHi

jÞxj0. If we consider propagating

TABLE I. Real polarization basis decomposition.

Hþ hþð1þ α2=2Þ Plus mode
H× h×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
Cross mode

H1 −hþiακ Vector-x mode
H2 −h×iα Vector-y mode
H3 −hþα2 Longitudinal mode
H0 hþα2=2 Breathing mode
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nonevanescent plane waves with κ ¼ 1 in Eq. (4), the
elliptical orbit becomes a line segment perpendicular to the
propagation vector k. Thus, under the influence of non-
evanescent gravitational waves, test masses oscillate within
a fixed plane perpendicular to the direction of the wave
vector k, alternately stretching and squeezing along
perpendicular directions in the distinct þ and × pattern.
Under the influence of evanescent waves, test masses show
the same pattern but acquire an additional movement in the
longitudinal direction k0. When both movements are
combined coherently, the masses follow elliptical trajecto-
ries on planes parallel to k0. For high values of κ → ∞,
corresponding to more confined evanescent waves, some of
the trajectories become perfect circles. The net effect of this
motion is that the test masses carry out the usual þ and ×
oscillations, but they do so on a plane that is not
perpendicular to k0 at all times, and instead pivots—like
the rocking motion of a playground see-saw (Fig. 1 and
Supplemental Video 1 in Ref. [24]). Note that the imagi-
nary component of the wave vector breaks the rotational
symmetry of the two modes. The elliptical movement of
the masses is hugely reminiscent of the transverse spin of
evanescent electromagnetic and acoustic waves. As
described in Appendix C, one may calculate the spin
angular momentum density of a gravitational wave as

S ¼ W
ω

�
2σ

k0

jk0j þ 2
k0 × k00

jk0j2
�
; ð6Þ

where σ is the normalized third Stokes parameter or helicity
parameter, equal to �1 for purely circularly polarized
waves, defined as σ ¼ 2ℑfh�þh×g=ðjhþj2 þ jh×j2Þ and W
is the time-averaged energy density [25]

W ¼ c2

128πG
½∂th�ij∂thij þ c2ϵjmnϵ

jkl∂lh�ik∂mhin�: ð7Þ

From Eq. (6), the expected spin-2 nature of the longitudinal
intrinsic angular momentum of gravitational waves appears
in the first term—in clear analogy to the spin-1 nature of the
electromagnetic wave [5]. However, the novel second term
represents an intrinsic transverse spin with a value of
þ2α=κ. (Interestingly, this is identical to the transverse spin
of acoustic waves [20], and twice that of electromagnetic
waves). Spin-momentum locking is manifest because
reversing the direction of k0 also changes the sign of S.

V. GENERATION OF EVANESCENT FIELDS

Having described evanescent gravitational waves as a
valid solution to the vacuum wave equation, we now
discuss their occurrence in nature. A straightforward
way to produce evanescent waves is to use the phenomenon
of total internal reflection. Consider an electromagnetic
plane wave incident on an interface between two media
with a different index of refraction. If the angle of incidence
is greater than the critical angle then, using conservation of
k parallel to the interface, i.e., Snell’s law, the wave vector

FIG. 1. Plot showing the behavior of a ring of free-falling test masses (red points) at four phases (separated by π=2) when an
evanescent wave of wave vector k ¼ k0 þ ik00 passes through the center in a direction k0 (red arrow). The wave is decaying in the
direction k00 (blue arrow). To study the local behavior of the wave, we assume the ring of test masses has a size smaller than the
wavelength, such that k · x0 ≈ 0. The test masses show not only the usual alternating stretching and squeezing along orthogonal
directions characteristic of plane waves, but also individual test masses move in the direction of k0, oscillating elliptically along a plane
parallel to k0, as shown by the red ellipse. The net effect is that the test masses are always contained on a plane that pivots along an axis
perpendicular or parallel to k00, corresponding to the þ (first row) and × (second row) polarizations respectively. See Supplemental
Video 1 in Ref. [24] for an animated version of this figure.
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of the refracted wave will be complex [1,22]. For gravi-
tational waves, even though theoretically conceivable, this
possibility seems to be physically unrealistic since scatter-
ing by matter [26] is negligible.1 As a consequence, the
medium which could refract or reflect gravitational waves
requires either exotic material with large shear modulus or
shear viscosity [27] or an array of tightly packed suffi-
ciently compact objects (like black holes or neutron
stars) [26]. However, we need not consider such exotic
scenarios to observe evanescent waves. Evanescent gravi-
tational fields, in analogy to any other type of wave, must
be present in the near-field zone of any subwavelength
source [1]. This fact can be understood via the position-
momentum Fourier properties of any wave ΔxΔk ≥ 1=2. A
localized subwavelength source with Δx < 1

2k0
¼ λ

4π neces-
sarily has a wide range of momentum values, i.e., range of
wave vectors, which extend beyond the wave number of
free spaceΔkx > k0. As discussed earlier jk0j > k0 implies,
from the dispersion relation in Eq. (2), that jk00j > 0,
constituting evanescent components. The decay of these
components when far from the source is responsible for the
diffraction limit in far-field imaging.

VI. MOMENTUM SPACE REPRESENTATION

To show that there are evanescent components near a
subwavelength source of gravitational radiation, we will
use the angular spectrum representation. This is a standard
tool for studying wave fields in homogeneous media and is
widely used in nanophotonics to study scattering, beam
propagation, focusing, holography, and many other phe-
nomena [28]. The main idea is that, in general, solutions to
the wave equation are not momentum eigenmodes with a
well-defined wave vector k as in Eq. (1), but rather a
distribution of them constituting a continuous spectrum.
The generalization of this representation to rank-2 tensor
gravitational waves can be made, as shown below. Suppose
we know a field hijðr; tÞ at any point. We may assume it is
time-harmonic without loss of generality as we can always
perform a temporal Fourier transform. We can consider this
field in a plane z ¼ constant which is transverse to an
arbitrary z-direction. In this plane, we can write the field as
a 2D inverse spatial Fourier transform [28]:

hijðr; tÞ ¼
ZZ∞

−∞

h̃ijðkx; kyÞeiðkxxþkyyþkzjzj−ωtÞdkxdky:

Since the wave satisfies the wave equation [and hence the
null condition Eq. (2)] and we consider these waves to be
time-harmonic, we can always uniquely (up to a sign) find

kz for each pair of kx and ky. By considering the tensor
h̃ijðkx; kyÞ as a momentum eigenmode we may express it as
a superposition of only two tensor modes as in Eq. (4):

h̃ijðkx; kyÞ ¼ hþðkx; kyÞeþijðkÞ þ h×ðkx; kyÞe×ijðkÞ; ð8Þ

where eþijðkÞ and e×ijðkÞ are the complex basis tensors
introduced in Eq. (4), generalized for arbitrary direction of
vector k (see Appendix A). Therefore, a pair of scalar
complex-valued angular spectra hþðkx; kyÞ and h×ðkx; kyÞ
completely describe the source in momentum (and also
real) space. In the region k2x þ k2y ≤ k20 these two spectra
correspond to real kz (plane waves propagating to the far-
field). The region k2x þ k2y > k20, corresponds to an imagi-
nary kz associated with evanescent near field components
whose amplitude decays exponentially as jzj is increased.
The space around a source where evanescent components
dominate is known in electromagnetism as the reactive
near-field zone (approximately r≲ λ=2π [29]), and will
also exist for gravitational waves. The linearized gravity
approximation can still apply in this region, as its validity
breaks much closer to the source (r ∼ 5RS [26], where RS is
Schwarzschild radius).
As the simplest example, in electromagnetism, we can

find evanescent fields near a radiating electric dipole
[1,30,31]. Due to the quadrupolar nature of gravitational
waves, we expect there will be evanescent fields near a
radiating gravitational quadrupole. We consider a binary
system of compact objects with same massM separated by
a distance d in a stable circular orbit with frequency Ω
around a common center of mass (Fig. 2). Furthermore, we
assume that the speed of the masses is not relativistic v ≪ c
(note that this directly implies that this is a subwavelength
source k · d ≪ 1 ⇔ d ≪ λ=2π). For such source, there is
always a region (d ≪ r≲ λ=2π) which is within the near-
field region r≲ λ=2π, but is far enough from the two
masses that they can be taken together as a localized point
source r ≫ d. In this region, the well-known quadrupole
solution to the linearized Einstein equation applies. This
solution, in frequency space, is given by:

h̄ijðω; rÞ ¼
G
4c4

ω2

r
eiωr=cqij;

where the frequency ω ¼ k0c ¼ 2Ω and

qij ¼ Md2
1

2

0
B@

−1 0 −i
0 0 0

−i 0 1

1
CA

is a constant tensor. This form allows us to reproduce
identical mathematical steps as taken in Picardi et al. [32]
for an electromagnetic dipole to find the angular spectra
of the gravitational quadrupole, details of this calculation
are shown in the Appendix H. As a result, we present

1We note that for gravitational waves in matter, the angle
between k0 and k00 will be determined by the dispersion relation-
ship which will no longer be the null condition.
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expressions for the two scalar amplitudes which represent
separately the two polarization mode angular spectra of the
gravitational quadrupole;

hþðkx; kyÞ ¼
iG

16πc2
k20
kz

qije
ij
þðkx; kyÞ; ð9aÞ

h×ðkx; kyÞ ¼
iG

16πc2
k20
kz

qije
ij
×ðkx; kyÞ: ð9bÞ

These amplitudes contain all the information necessary
to reconstruct the fields of the quadrupole source at every
location in space, including its near field. The complex
amplitudes of the two spectra jhþj and jh×j are plotted in
Fig. 2 after propagating them to a plane z ¼ −λ=2π via the
transfer function e−ikzz. We see that for the considered
subwavelength distance, there is a strong presence of waves
with k in the region k2x þ k2y > k20, corresponding to
evanescent waves. A similar procedure can be repeated
for any other source of gravitational waves, to show that in
the near field of any source there will be a full spectrum of
evanescent waves.

VII. CONCLUSIONS

In recent years, evanescent waves and their properties
have raised considerable interest in optics and acoustics.
This paper is the first work dedicated to the study of these

in the context of gravity. This required extending the
formalism from vector to tensor modes. We have found
not only that evanescent gravitational waves can exist, but
also that they are not exotic phenomena and one can expect
them in the near zone of any source of gravitational waves.
In analogy with electromagnetic and acoustic waves,
gravitational waves also possess nontrivial polarizations
associated with a transverse spin and spin-momentum
locking. Another implication of the existence of evanescent
gravitational waves is that, even if nontensorial modes of
gravitational waves in a vacuum are detected, this does not
necessarily contradict general relativity as they may origi-
nate from an evanescent field: one can check whether the
polarization modes are correlated. Non-tensorial modes
may also originate from the coherent superposition of
two propagating plane waves arriving simultaneously at a
detector, whose combined polarization can be locally
identical to that of an evanescent wave (see Appendix D),
in analogy to the transverse spin that appears in electro-
magnetic two-wave interference [5]. Direct detection of near
field evanescent gravitational waves is unlikely—e.g., the
near zone for LIGO and LISA type detectors would be 10−7

and 10−2 A.U. respectively. In the meantime, due to the
effect of evanescent gravitational waves on test particles,
there are some potential options for indirect detection. For
example, charged particlesmoving on an elliptical trajectory
due to the evanescent fields near the source of gravitational
waves should radiate electromagnetic radiation whose
polarization signature we could detect.
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APPENDIX A: POLARIZATION BASIS OF
EVANESCENT FIELDS

In linearized gravity, gravitational waves are often
expressed in the transverse-traceless (TT) gauge in terms
of the traceless symmetric metric perturbation

hμνðt;xÞ ¼ Hμν expðik · x − iωtÞ ðA1Þ
where k is a three vector pointing in the spatial dimensions
and ω is the frequency, and the Greek indices run from 0
to 3. In the TT gauge, there always exist an appropriate
gauge transformation such that h0μ ¼ 0 (even in the
presence of evanescent waves), hence in vacuum one
can represent the perturbation in its spatial components
hij (i, j ¼ 1, 2, 3) in the Cartesian coordinate basis.
In vacuum, it is well known that gravitational wave

solutions of the Einstein equation possess two polarization
modes,

FIG. 2. Momentum space (angular spectrum) representation of
the quadrupole radiation as felt on the plane z ¼ −λ=2π. The top
(bottom) color-map represents the complex amplitude of the plus
(cross) polarization mode in momentum space. Notice that the
spectra show a near-field directionality similar to a circularly
polarized electric dipole described in Picardi et al. [32], a
signature of spin-momentum locking.

EVANESCENT GRAVITATIONAL WAVES PHYS. REV. D 101, 084046 (2020)

084046-5



Hij ¼ hþeþijðkÞ þ h×e×ijðkÞ ðA2Þ

where eþijðkÞ and e×ijðkÞ are the þ and × polarization
modes, which depend on the wave vector k. Given
any k with components ki¼ðkx;ky;kzÞ and k0 ≡

ffiffiffiffiffiffiffiffiffiffi
k · k

p
,

one can construct these basis modes via the following
construction

eþijðkÞ ¼ eϕi ðkÞeϕj ðkÞ − eθi ðkÞeθjðkÞ;
e×ijðkÞ ¼ eϕi ðkÞeθjðkÞ þ eϕi ðkÞeθjðkÞ: ðA3Þ

Unit covectors eϕi and eθi are transverse to the wave vector
(eϕi ðkÞki ¼ eθi ðkÞki ¼ 0). They can be written in terms of
components of the wave vector as

eθi ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y
q ð−ky; kx; 0 Þ⊺;

eϕi ðkÞ ¼
1

k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ð kxkz; kykz; −k2x − k2y Þ⊺;

which, when k is real, correspond to the usual basis
vectors in spherical coordinates. For any arbitrary k vector,
including complex valued ones, we can still use Eq. (A3) to
construct the polarization basis as

eþijðkÞ ¼
1

k20

0
BBBB@

k2xk2z−k2yk20
k2xþk2y

k2
0
þk2z

k2xþk2y
kxky −kxkz

k2
0
þk2z

k2xþk2y
kxky

k2yk2z−k2xk20
k2xþk2y

−kykz

−kxkz −kykz k2x þ k2y

1
CCCCA; ðA4Þ

e×ijðkÞ ¼
1

k0

0
BBBB@

2kxky
k2xþk2y

kz
k2x−k2y
k2xþk2y

kz ky

k2x−k2y
k2xþk2y

kz
2kxky
k2xþk2y

kz −kx
ky −kx 0

1
CCCCA: ðA5Þ

When waves are evanescent, the wave vector ki is
complex in general, and the transversality condition also
implies that the basis vectors eθi ðkÞ and eϕi ðkÞ are also
complex. Hence, the polarization modes Eq. (A4) and
Eq. (A5) are also in general complex. However, it is easy to
show that both polarization modes are still solutions of the
gravitational wave equation as long as the null condition
ω2=c2 ¼ k20 ¼ k2x þ k2y þ k2z is satisfied, and therefore form
a valid basis in general. In Table I in the main text we
decomposed the wave into a real polarization basis Hij ¼P

HAeAijðk ¼ k0Þ, summed over A ∈ fþ;×; 0; 1; 2; 3g.
Note that it is decomposed along k0 which is the real part
of the wave vector,HA is an amplitude of the corresponding
mode A and eAij are basis tensors with only real components
(see Table II).

APPENDIX B: MOTION OF TEST MASSES
UNDER EVANESCENT WAVES

In this section, we calculate the motion of test masses in
the presence of a single mode of evanescent gravitational
wave, and show that the loci of test masses are ellipses
(as opposed to straight lines in plane waves). In vacuum
k0 · k00 ¼ 0, so without loss of generality we may orient our
axes to consider a wave vector

k ¼ k0

0
B@

κx

0

κz

1
CA; 1 ¼ κ2x þ κ2z ; ðB1Þ

where the second equation imposes the null-like condition.
Using Eqs. (A4) and (A5), the polarization modes for this
wave are then

eþij ¼

0
B@

κ2z 0 −κxκz
0 −1 0

−κxκz 0 κ2x

1
CA; ðB2Þ

e×ij ¼

0
B@

0 κz 0

κz 0 −κx
0 −κx 0

1
CA: ðB3Þ

When κz > 1, κx becomes imaginary, and the wave
becomes evanescent. In the main text we define κz ¼ κ
and κx ¼ iα to keep the variables real.
The effect of the wave on freely falling test masses can be

examined using the geodesic deviation equation

∂2xρ

∂t2 ¼ −Rρ
0ν0ðtÞxν ¼

1

2

∂2

∂t2 ðh
ρ
νÞTTðtÞxν; ðB4Þ

where xν are vectors representing the proper positions of
the test masses with respect to a fixed point. These
equations have the solutions

xρðtÞ ¼ xρ0 þℜ½hρνðtÞ�xν0 ðB5Þ

TABLE II. Definition of the real polarization basis, here k̂0i are
the components of a unit vector in the direction of k0 [33].

eþijðk0Þ ¼ eϕi ðk0Þeϕj ðk0Þ − eθi ðk0Þeθjðk0Þ Plus mode

e×ijðk0Þ ¼ eϕi ðk0Þeθjðk0Þ þ eϕi ðk0Þeθjðk0Þ Cross mode

e1ijðk0Þ ¼ eϕi ðk0Þk̂0j þ k̂0ie
ϕ
j ðk0Þ Vector-x mode

e2ijðk0Þ ¼ eθi ðk0Þk̂0j þ k̂0ieθjðk0Þ Vector-y mode

e3ijðk0Þ ¼ k̂0ik̂
0
j Longitudinal mode

e0ijðk0Þ ¼ eϕi ðk0Þeϕj ðk0Þ þ eθi ðk0Þeθjðk0Þ Breathing mode
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where xρ0 is the initial condition (i.e., initial positions of the
masses). If the waves are evanescent, hρTTν has complex
coefficients, and we can express the solution as a sum of its
real and imaginary components

xρ ¼ xρ0 þ
1

2
ℜðHρ

νÞxν0 cosðωtÞ þ
1

2
ℑðHρ

νÞxν0 sinðωtÞ.

Notice that for plane waves, ℑðHρ
νÞTT ¼ 0, and we recover

the usual solution where test masses oscillate
along a straight line with frequency ω. The presence of
the imaginary component which is off-phase to the real
component means that the locus of test particles become
ellipses as we asserted in the main text.
Also, masses which are initially at xi0 ¼ ðx0; y0; z0Þ with

z0 ¼ 0 or y0 ¼ 0 will move on a trajectory which is
confined to a plane parallel to k0. To prove this we find
the normal vector of this plane which is a × b, where
ai ¼ 1

2
ℜðHj

iÞTTxi0 and bi ¼ 1
2
ℑðHj

iÞTTxi0 and take a
dot product with k0. Without loss of generality we use
k ¼ k0ðiα; 0; κÞ and Eq. (4) from the main text

k0 · ða × bÞ ¼ −ðh2þ þ h2×Þκ2αy0z0; ðB6Þ

note that this makes sense only if α ≠ 0, because otherwise
vector a × b does not exist.

APPENDIX C: TRANSVERSE SPIN
ANGULAR MOMENTUM

In this section we briefly discuss the transverse spin of
evanescent gravitational waves. Transverse spin is a sig-
nature property of evanescent waves. It is extensively
studied for electromagnetic waves [4,5] but it has also
been recently discovered in acoustic waves [20].

The most convenient way to study the spin of gravita-
tionalwaves is using aMaxwellian form of linearized gravity
as proposed in Barnett [25]. This formalism introduces
gravitational analogues of the electric and magnetic fields
which can be expressed in terms of hij in TT gauge as

Eij ¼ −∂thTTij ðC1Þ

Bij ¼ ϵjlm∂lhTTim : ðC2Þ

This treatment of the gravitational field is possible as long as
we consider the weak field limit in a flat, Minkowski,
background. One can then find the expression for spin
angular momentum (SAM) density by calculating the
Noether charge associated with rotations and isolating the
spin part. The time averaged SAM is

Si ¼ c2

64πGiω
½E�

jmEkm þ c2B�
jmBkm�ϵijk; ðC3Þ

noting that the complex conjugates come from the time
average (here Eij and Bij are considered to be phasors) with
c andG kept explicit. In analogywithBliokh andNori [5,20]
we normalize the spin using the time-averaged energy
density

W ¼ c2

128πG
½E�

ijE
ij þ c2B�

ijB
ij�: ðC4Þ

Now one can examine the transverse spin in evanescent
gravitational waves. Assuming an evanescent wave with
k ¼ k0 þ ik00 and arbitrary polarization as Eq. (4) in the
main text leads to

TABLE III. The extension of (Table I) published in Bliokh and Nori [20]. This table compares gravity, electromagnetism and
acoustics. Here h̄μν is a trace-reversed metric perturbation and hTTij is its transverse traceless part. Aν is an electromagnetic four-potential
and A⊥ is its transverse part. For the gravitational field we define ε ¼ ε0εr and μ ¼ μ0μr (in analogy to electromagnetism), where
1=ε0 ¼ c2μ0 ¼ 32πGc−2. Quantities W and S are averaged over a period.

Linearized Gravity Electromagnetism Acoustics

Potentials h̄μν Aν φ

Wave equation □h̄μν ¼ 0 □Aν ¼ 0 □φ ¼ 0

Gauge condition ∂μh̄
μ
ν ¼ 0 ∂νAν ¼ 0 −

Fields Eij ¼ −∂thTTij E ¼ −∂tA⊥ p ¼ ρ∂tφ

μHij ¼ ϵjlm∂lðhTTÞim μH ¼ ∇ ×A⊥ v ¼ ∇φ
Constraints ∂iEij ¼ ∂iHij ¼ 0 ∇ ·E ¼ ∇ ·H ¼ 0 ∇ × v ¼ 0

Medium parameters ε, μ ε, μ ρ, β
Energy density W 1

4
ðεE�

ijE
ij þ μH�

ijH
ijÞ 1

4
ðεjEj2 þ μjHj2Þ 1

4
ðβjpj2 þ ρjvj2Þ

SAM density S ϵijk

2iω ½εE�
jmEkm þ μE�

jmEkm� 1
4iω ½εE� × Eþ μH� ×H� 1

2iω ½ρv� × v�
Transverse spin density ωS⊥

W ¼ 2 k0×k00
jk0 j2

ωS⊥
W ¼ k0×k00

jk0 j2
ωS⊥
W ¼ 2 k0×k00

jk0 j2

Longitudinal spin density ωSk
W ¼ 2 σ

κ
k0
jk0 j

ωSk
W ¼ σ

κ
k0
jk0 j

ωSk
W ¼ 0
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S ¼ W
ω

�
2
σ

κ

k0

jk0j þ 2
α

κ

k0 × k00

jk0 × k00j
�

¼ W
ω

�
2σ

ω

c
k0

jk0j2 þ 2
k0 × k00

jk0j2
�
; ðC5Þ

where σ is a normalized third Stokes parameter, or helicity
parameter, which is defined as

σ ≡ 2ℑfh�þh×g
jhþj2 þ jh×j2

:

As onemight expect, it is manifest that for linearly polarized
travelling plane waves, the longitudinal spin vanishes (as
h�ij ¼ hij). Eq. (C5) shows that evanescent gravitational
waves will acquire a transverse spin

ωS⊥
W

¼ 2
k0 × k00

jk0j2 ðC6Þ

which will be present for any polarization and which is
momentum locked (if the direction of k0 is reversed so will
the direction of this spin).
Note the factor of 2 in Eq. (C5) arises when Noether’s

theorem is applied to find Eq. (C3) Table III presents a
comparison between gravitational, electromagnetic and
acoustic waves. One can see that the transverse spin for
an acoustic field also has the factor of two but in the case of
an acoustic field this is due to the uneven contribution of the
acoustic pressure p and velocity v (these fields play the role
of E and H fields in acoustics) to the SAM [20].

APPENDIX D: LOCAL DESCRIPTION
AS A LINEAR COMBINATION

OF TRAVELING WAVES

In analogy with electromagnetism, it is possible to
locally describe the polarization of an evanescent wave
as that of two interfering plane waves traveling in mutually
orthogonal directions. Without loss of generality, for any
evanescent wave it is possible to find a frame where

eþijðk0 þ ik00Þ ¼

0
B@

κ2 0 −iακ
0 −1 0

−iακ 0 −α2

1
CA; ðD1Þ

e×ijðk0 þ ik00Þ ¼

0
B@

0 κ 0

κ 0 −iα
0 −iα 0

1
CA; ðD2Þ

with κ2 ¼ 1þ α2 being the null condition. Now one can
see that

0
B@

κ2 0 −iακ
0 −1 0

−iακ 0 −α2

1
CA¼

0
B@
1 0 0

0 −1 0

0 0 0

1
CAþ

0
B@

α2 0 −iακ
0 0 0

−iακ 0 −α2

1
CA;

which is a linear combination of a plus polarized wave in
the direction of k0 and an elliptically polarized wave in the
direction of k0 × k00

eþijðk0 þ ik00Þ¼eþijðk0Þþðα2eþijðk0×k00Þ− iακe×ijðk0×k00ÞÞ:

Similarly for the cross polarization

0
B@

0 κ 0

κ 0 −iα
0 −iα 0

1
CA ¼ κ

0
B@

0 1 0

1 0 0

0 0 0

1
CA − iα

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

which is a linear combination of a cross polarized wave in
the direction of k0 and an out-of-phase cross polarized
wave in the direction of k00

e×ijðk0 þ ik00Þ ¼ κe×ijðk0Þ − iαe×ijðk00Þ:

APPENDIX E: ANGULAR SPECTRUM
REPRESENTATION

To show that there are evanescent components near a
subwavelength source of gravitational radiation, we will
use the angular spectrum representation. This is a standard
tool for studying wave-fields in homogeneous media and is
widely used in nanophotonics to study scattering, beam
propagation, focusing, holography, and many other phe-
nomena [28]. The main idea is that, in general, solutions to
the wave equation are not momentum eigenmodes with a
well-defined wave-vector k as in Eq. (1), but rather a
distribution of them constituting a continuous spectrum.
The generalization of this representation to higher ranked
tensors such as vectors and rank-2 tensor gravitational
waves can be made, as shown below. Suppose we know a
field hijðr; tÞ at any point. We may assume it is time-
harmonic without loss of generality as we can always
perform a temporal Fourier transform. We can consider this
field in a plane z ¼ constant which is transverse to an
arbitrary z-direction. In this plane, we can write the field as
a 2D inverse spatial Fourier transform [28]:

hijðx; y; z; tÞ ¼
ZZ

∞

−∞
h̃ijðkx; ky; zÞeiðkxxþkyy−ωtÞdkxdky:

Since the wave satisfies the wave equation and hence
the null condition Eq. (2) it is possible to “propagate”
the field from the source plane to any other plane with
different z ¼ constant via a simple multiplicative transfer
function [28]:
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h̃ijðkx; ky; zÞ ¼ h̃ðþÞ
ij ðkx; ky; 0Þeþikzz þ h̃ð−Þij ðkx; ky; 0Þe−ikzz:

where the two terms (þ) and (−), not to be confused with
the þ and × modes, account for the two possible signs of
�kz ¼ �ðk20 − k2x − k2yÞ1=2. When the fields originate from
a localized source at z ¼ 0, only the sign of kz propagating
away from the source needs to be considered; hence we use
the plus representation for z > 0 and the minus represen-
tation for z < 0. This means that a complete knowledge of
the fields in the entirety of space can be gained from one
single plane. A key simplification can be made by realizing

that the integrand becomes h̃ð�Þ
ij ðkx; ky; 0Þeiðkxxþkyy�kzz−ωtÞ,

which has exactly the same form as Eq. (1) in the main text,
and therefore, for each value of transverse momentum
ðkx; kyÞ, it must fulfil Eqs. (2) and (3), and can thus be
reduced to a superposition of only two tensor modes as in
Eq. (4):

h̃ð�Þ
ij ðkx; ky; 0Þ ¼ hð�Þ

þ eþij þ hð�Þ
× e×ij; ðE1Þ

where eþijðkx; ky;�kzÞ and e×ijðkx; ky;�kzÞ are the same
complex basis tensors introduced in Eq. (4), but generalized
for arbitrary directions (see Appendix A). Therefore, a pair

of scalar complex-valued angular spectra hð�Þ
þ ðkx; kyÞ and

hð�Þ
× ðkx; kyÞ completely describe the source in momentum

space, and hence in all of real space via the spectral
representation. These two spectra include all information of
the amplitude and phase of the two polarization modes of
the propagating far field plane waves in every direction
(the momentum representation in the region k2x þ k2y ≤ k20,
corresponding to real kz) and also tell us about all the
evanescent near fields components (in the region
k2x þ k2y > k20, corresponding to imaginary kz) whose ampli-
tude decays exponentially as jzj is increased.

APPENDIX F: GENERAL SOLUTION OF
LINEARIZED EINSTEIN EQUATION FOR

BINARY SYSTEM

Consider a compact binary system, modeled as two
point masses m1 ¼ m2 ¼ M, orbiting around a common
center of mass with angular frequency Ω (see Fig. 3). We
can describe locations in space-time using the coordinates
xμ ¼ ðct; xiÞ of an observer who is located outside the
source in a region where the gravitational field is linear
gμν ¼ ημν þ hμν, where ημν is the Minkowski metric used to
raise and lower Greek indices because it is the background
metric in this setting. Each of the masses moves along its
world-line which can be represented by a parametric curve
Xμ
sðτsÞ, where s ∈ f1; 2g labels the mass and τs is the

proper time of the respective mass. We assume trajectories
of these masses in the coordinates of the outside observer to
be perfect circles

Xμ
sðtÞ ¼

�
ct; ð−1Þs d

2
cosðΩtÞ; ð−1Þs d

2
sinðΩtÞ; 0

�
⊺

ðF1Þ

The matter action for this system is a sum of the actions for
two point masses

S½g; X1; X2� ¼ −
X2
s¼1

Z
Mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ
s
_Xν
s

q
dτs: ðF2Þ

Here we used the fact that world-lines are submanifolds of
space-time and the metric can be pulled back onto each of
the world-lines

ds2 ¼ gμνdxμdxν ↦ gμν _X
μ
s
_Xν
sdτ2s ; ðF3Þ

where dot denotes derivativewith respect to the proper time,
hence _Xμ

s is a four-velocity. The mass can be written asM¼R
d4xMδð4Þðxμ−Xμ

sðτsÞÞ¼
R
d4xMδðt−τsÞδð3Þðxi−Xi

sðτsÞÞ.
This, togetherwith the fact that dτs ¼ dτs=dt dt, allows us to
write Eq. (F2) as

S ¼ −
X2
s¼1

Mc
Z

d4x
dτs
dt

δð3Þðxi − Xi
sðtÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ
s
_Xν
s

q

Using this action one can find the Hilbert stress-energy
tensor Tμν using the definition

Tμν ¼
−2ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p δS
δgμν

: ðF4Þ

By plugging in the action and recognizing that the magni-
tude of the four-velocity is always c and det ημν ¼ −1,

FIG. 3. Compact binary system modeled as two point masses,
m1 ¼ m2 ¼ M orbiting around common center of mass with
angular frequency Ω.
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Tμν ¼
X2
s¼1

M
dτs
dt

_Xs
μ
_Xs
νδ

ð3Þðxi − Xi
sðtÞÞ: ðF5Þ

Given Eq. (F1) it is more convenient to write this as

Tμνðt; xiÞ ¼
X2
s¼1

MγðvÞvsμvsνδð3Þðxi − Xi
sðtÞÞ; ðF6Þ

where vμs ¼ dXμ
s=dt is the velocity observed by the observer

and γðvÞ ¼ dt=dτs is the usual Lorentz factor for the orbital
speed v ¼

ffiffiffiffiffiffiffiffi
vivi

p
¼ Ωd=2.

Now we want to solve the linearized Einstein equation,

h̄μν ¼ −
16πG
c4

Tμν; ðF7Þ

using the retarded Green’s function [34]

h̄μνðt; xiÞ ¼
4G
c4

Z
d4x0

Tμνðt0; x0iÞ
jx − x0j δðct0 − ctþ jx − x0jÞ:

At this point, people conventionally assume the far-field
limit to simplify this integral, but since we are interested in
the near-field behavior we shall take no such limit. Instead,
we consider the full analytical solution for this problem.
For our compact binary with energy momentum tensor
Eq. (F6) we will have

h̄μν ¼
4GMγðvÞ

c4

Z
d4x0

X2
s¼1

vsμðt0Þvsνðt0Þ
jx − x0j

× δð3Þðx0i − Xi
sðt0ÞÞδðct0 − ctþ jx − x0jÞ;

note that γðvÞ is the same for both masses since v ¼ Ωd=2
is a constant of the system. Also, d4x0 ¼ dct0d3x0 so we can
perform integration over the spatial coordinates separately

h̄μν ¼
4GMγðvÞ

c4

Z
cdt0

X2
s¼1

vsμðt0Þvsνðt0Þ
jx −Xsðt0Þj

× δðct0 − ctþ jx −Xsðt0ÞjÞ:

We cannot now simply use the delta function to integrate
since the argument of this delta function is not a linear
function of ct0. This can be bypassed using the following
identity

δðgðxÞÞ ¼ δðx − x0Þ
jg0ðx0Þj

ðF8Þ

which holds provided that g is a continuously differentiable
function with a real root at x0 and with nowhere vanishing
derivative g0. This allows us to convert

δðct0 − ctþ jx −Xsðt0ÞjÞ ¼
δðct0 − ctþ jx −XsðtsÞjÞ����1 − x−XsðtsÞ

jx−XsðtsÞj ·
vsðtsÞ
c

����
where ts is a retarded time at which a signal from a source s
is received by the observer, defined by the implicit relation

ts ¼ t −
jx −XsðtsÞj

c
: ðF9Þ

Now we can use this new delta function which only linearly
depends on t0 to finally arrive at the solution

h̄μν ¼
4GMγðvÞ

c4
X2
s¼1

vsμðtsÞvsνðtsÞ
jx −XsðtsÞj − ½x −XsðtsÞ� · vsðtsÞc

:

Until this point we have considered a rather general
solution, only assuming that we are in a weak-field zone.
According to Thorne [26], the weak-field zone starts at five
Schwarzschild radii (RS ¼ 2GM=c2), as depicted in Fig. 4.

FIG. 4. Regions of space around a source of gravitational waves. The validity of the different approximations changes gradually, but
we indicate the approximate distances where they are generally considered valid. Adapted from Thorne [26].
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APPENDIX G: PROOF OF QUADRUPOLAR
RADIATION BEING DOMINANT

IN THE NEAR FIELD

We argue in the main text that even in the near field zone
of a subwavelength source (a source with wavelength
λ ≫ d) it is possible to use the quadrupole formula.
Note that such source has to be slow-moving/nonrelativistic
since v ¼ Ωd=2 ¼ ωd=4, where ω ¼ 2Ω is the character-
istic frequency of gravitational waves produced by this
source, and v=c ¼ ωd=ð4cÞ ¼ πd=ð2λÞ so λ ≫ d implies
that c ≫ v. If we now look at

h̄μν ¼
4GMγðvÞ

c4
X2
s¼1

vsμðtsÞvsνðtsÞ
jx −XsðtsÞj − ½x −XsðtsÞ� · vsðtsÞc

:

we can find that

h̄μν ¼
4GM
c4

X2
s¼1

vsμðtsÞvsνðtsÞ
jx −XsðtsÞj

�
1þO

�
v
c

��
; ðG1Þ

where we have used the expansions

γðvÞ ¼ 1þ v
c
þO

�
v4

c4

�

and

1

1 − v·n̂
c

¼ 1þ v · n̂
c

þ ðv · n̂Þ2
c2

þO
�ðv · n̂Þ3

c3

�
;

which together with the Cauchy—Bunyakovsky—Schwarz
inequality jhu; vij ≤ kukkvk yields

γðvÞ
1 − v·n̂

c

≤ 1þ v
c
þ 3

2

v2

c2
þO

�
v3

c3

�
:

One can see that Eq. (G1) starts to look nearly like the
quadrupolar formula, we only now have to take care of the
retarded times ts and retarded positions jx −XsðtsÞj. That
can be done by carefully placing the observer in the near
field, but far enough to the source so that the point-
quadrupole approximation holds (see Fig. 4). In other
words we choose jxj ¼ r to be the same order of magnitude
as λ so that we can use d=r ∼ d=λ ≪ 1. Note that this
allows us to take d ≪ r < λ=2π, which means we can have
the observer in a zone where we can observe evanescent
fields (r < λ=2π). Finally we get

h̄μν ¼
4GM
c4

X2
s¼1

vsμðtrÞvsνðtrÞ
r

�
1þO

�
v
c

�
þO

�
d
r

��
;

where tr ¼ t − r=c and we have used that

jx −XsðtsÞj ¼ r

�
1þO

�
d
r

��
:

In the induction zone (for a subwavelength source) the
formula simplifies to the well known quadrupole formula,
since −v1i ðtÞ ¼ v2i ðtÞ ¼ viðtÞ

h̄ij ¼
8GM
c4

viðtrÞvjðtrÞ
r

Therefore in this limit we can consider our source to be a
point gravitational quadrupole as we did in the main text.

APPENDIX H: EVANESCENT GRAVITATIONAL
WAVES NEAR A QUADRUPOLAR SOURCE

A system with two equal massesM orbiting each other at
a distance d in a stable circular orbit with frequency Ω
around a common center of mass on the x − z plane (Fig. 2)
is given by

xsðtÞ ¼
d
2
ð cosðΩtÞ; 0; sinðΩtÞ Þ⊺;

ρðt;xÞ ¼ M½δ3ðx − xsðtÞÞ þ δ3ðxþ xsðtÞÞ�: ðH1Þ
Assuming that

(i) the field is weak jhj ≪ 1,
(ii) point masses are in stable circular orbit,
(iii) the speed of the source is not relativistic v ≪ c,

which directly implies that the source is subwave-
length k · d ≪ 1 ⇔ 2d ≪ λ=2π,

(iv) The observer is not too close to the source (at
distance comparable to 2d) which does not neces-
sarily mean that the observer is in the far field thanks
to the previous assumption. The observer can be at
distance r for which 2d ≪ r ≪ λ.

This system has the well-known solution

hijðt; rÞ ¼
2G
c4

1

r
d2

dt2
Qijðt − r=cÞ; ðH2Þ

where Qij is the quadrupole moment of mass density ρ

Qij ¼
Z Z Z

R3

ρðt;xÞxixjd3x: ðH3Þ

The solution of Eq. (H2), in frequency space is given by

hijðω; rÞ ¼
Gω2

4c4
qij

eiωr=c

r
; ðH4Þ

where

qij ¼
Md2

2

0
B@

−1 0 −i
0 0 0

−i 0 1

1
CA: ðH5Þ

Equation (H4) describes a spherical wave, with origin at
r ¼ 0 or x ¼ 0. At r ≫ λ, the wavefront is asymptotic to a
plane wave locally. However, in the near zone, this is not
true. Our goal hence is to find a decomposition of a
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spherical wave into a spectrum of plane waves, labeled by
ðkx; ky; kzÞ. This angular spectrum representation is a
standard problem in the study of reflection and refraction
of spherical waves. This decomposition can be performed
by first choosing a special axis (we choose z), and then
performing a 2-D Fourier transform on the plane [we
choose ðx; yÞ] as follows:

eiωr=c

r
¼ i

2π

ZZ
∞

−∞

1

kz
eikxxþikyye�ikzzdkxdky; ðH6Þ

where we choose the plus representation for z > 0 and the
minus representation for z < 0. This representation is often
known as the Weyl identity and its derivation can be found
in Mandel and Wolf [28]. By simple substitution of
Eq. (H6) into Eq. (H4) we can rewrite Eq. (H4) as the
following spectrum of plane waves

hijðω; x; y; zÞ ¼
ZZ

∞

−∞
h̃ð�Þ
ij ðω; kx; ky; zÞeikxxþikyydkxdky;

ðH7Þ

with

h̃ð�Þ
ij ðω; kx; ky; zÞ ¼

G
8πc4

iω2

kz
qije�ikzz: ðH8Þ

Note that this decomposition, and the resulting spectrum
Eq. (H8), breaks the spherical symmetry of Eq. (H4).
The two mode basis tensors obey the relations eij×e×ij ¼
eijþe

þ
ij ¼ 2 and eij×eþij ¼ eijþe×ij ¼ 0, so the amplitudes hþ

and h− of the modes can be obtained by projection, as:

hð�Þ
þ ¼ 1

2
h̃ð�Þ
ij ðω; kx; ky; zÞeijþðω; kx; ky;�kzÞ; ðH9Þ

hð�Þ
× ¼ 1

2
h̃ð�Þ
ij ðω; kx; ky; zÞeij×ðω; kx; ky;�kzÞ: ðH10Þ

The key point here is that, for a chosen z, the spectrum has a
very different behavior in different regions of the ðkx; kyÞ
plane, depending on the sign of k2z ≡ ω2=c2 − k2x − k2y. If
k2z < 0, then the plane wave is evanescent. This occurs
outside the circle of radius ω=c in the ðkx; kyÞ plane. Notice
that in this case, the e�ikzz term on the right-hand side of
Eq. (H8) suppresses the contribution of evanescent waves
as z → ∞. In Fig. 5 we show that, unsurprisingly, the
spectrum contains standard plane waves k2z > 0 which
describe the far-field radiation diagram of a quadrupole
source. However, the spectrum also exhibits support for the
k2z < 0 evanescent components, which in fact dominate in
amplitude when sufficiently close to the source.
As can be seen in Table IV, the near zones for the

frequencies of present and near future GW directors are
very close to the source, and hence direct detection of EGW
from binaries is not very likely.

FIG. 5. Plot of complex amplitudes of the two spectra jhð−Þþ j and jhð−Þ× j after propagating them to a plane z ¼ −λ=2π via the transfer
function e−ikzz.

TABLE IV. The near-field zones of present and future detec-
tors, calculated as d < λ=2π ¼ c=2πf.

Frequency [Hz] Near zone [A.U.]

LIGO 103 10−7

LISA 10−2 10−2

ETA 102 10−6
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