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In this work we analytically obtain the quasinormal spectrum for the gravitational perturbation on a
higher-dimensional generalization of the Nariai spacetime that is comprised of the direct product of the
two-dimensional de Sitter space with several two-spheres. A key step in order to attain this result is to use a
suitable basis for the angular functions depending on the rank of the tensorial degree of freedom that one
needs to describe. Here we define such a basis, which is a generalization of the tensor spherical harmonics
that is suited for spaces that are the product of several spaces of constant curvature.
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I. INTRODUCTION

Suppose one disturbs a system that is initially at stable
equilibrium. The forces driven by such disturbance are
generally nonlinear on the perturbation. However, assum-
ing small perturbations, it turns out that in several problems
the components of the forces that are linear on the
disturbance amplitude are much more relevant than the
higher order terms, so that the dynamical equation can be
linearized. This is tantamount to approximating a general
potential by a parabola that osculates its minimum. In this
scenario, the so-called normal frequencies are of central
importance. These are the natural oscillation frequencies of
the system, irrespective of the details of the disturbance.
When the perturbations naturally tend to decay as time
passes by, these frequencies are complex numbers whose
real parts give the oscillation frequencies while the imagi-
nary parts are related to the characteristic times of the
decay. These complex frequencies form the so-called
quasinormal spectrum of the system.
The study of perturbations is of central importance in

almost all branches of physics, since often the physical
systems are in a stable configuration and the changes are all
due to small disturbances that do not build up as time passes
by. The perturbation formalism is even more necessary
when the mathematical equations that describe the dynam-
ics of a system are nonlinear, since the effect of pertur-
bations can generally be handled by means of linear
equations, providing thus a great deal of simplification.
Relativistic gravitational physics is an important example
of this, since its field equation, Einstein’s equation, is a
coupled set of ten nonlinear partial differential equations
that are impossible solve analytically in the generic case,
i.e., without assuming the existence of special sym-

metries. However, one can start with a stable solution, like
Schwarzschild or Kerr black holes, and then study the
dynamical evolution of arbitrary perturbations in these
backgrounds. Since in the classical realm the event horizon
is a one way membrane, dissipation is always present in the
black hole scenario, so that the natural frequencies of these
gravitational systems are complex [1]. Because of the
recent capability of detecting gravitational waves [2], the
study of quasinormal modes of the gravitational field have
gotten even more attention lately and, certainly, will
increase its relevance in the forthcoming years. For in-
stance, by measuring the natural frequencies of a black hole
through a gravitational wave detector one can find the
parameters of this black hole, like mass and angular
momentum. Moreover, one can test alternative theories
of gravity against the experiment [3]. For very good
reviews on quasinormal modes in gravitational physics,
the reader is referred to Refs. [4–8].
In spite of the fact that the perturbation equation for the

gravitational field is much more simple to solve than the
full Einstein’s equation, even the simplest cases, like
perturbations on the Schwarzschild background, proved
to be challenging. In fact, first and foremost, the quasi-
normal spectrum of the Schwarzschild black hole cannot be
obtained exactly [9,10], analytical results were found only
for the extremal case of the Schwarzschild–de Sitter
solution. Moreover, this humble problem was a source
of some debate and confusion in the literature. Regge and
Wheeler were the first to decompose the gravitational
perturbations in Schwarzschild background in terms of
tensor harmonics [11], a tensorial generalization of the
spherical harmonics. In order to perform this, they classi-
fied gravitational perturbations into two types: odd parity
and even parity. In addition, they showed that the equations
for the odd parity perturbations can be put into the form of a
Schrödinger-like equation with a nonintegrable potential.
However, there were some minor errors in the equations
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given by Regge and Wheeler. Indeed, Manasse pointed out
that the equations appearing in the literature contained
mistakes and were inconsistent with Einstein’s field equa-
tion [12]. Brill and Hartle rederived the odd parity
equations which once again contained some errors as
published [13]. The correct differential equations for
perturbations on the Schwarzschild metric, for both par-
ities, have been given by Vishveshwara [14], displayed in
Appendix of his doctoral thesis and published later in
Ref. [15]. Using the latter equations, Zerilli [16] has found
that the even parity perturbation equations can also be put
into a Schrödinger-like equation, just as the odd parity
perturbations. Zerilli’s equation yields an enormous sim-
plification in the analysis of such perturbations and his
work was of great significance in the study of gravitational
radiation formed from an asymmetric gravitational col-
lapse. It is also worth mentioning the contribution of
Fackerell on the analysis of the solutions to Zerilli’s
equation [17]. The Regge-Wheeler formalism was later
extended to other static black holes in four dimensions
[16,18,19] and in higher dimensions [20,21]. Rotating
black holes in four dimensions were tackled in the seminal
works of Teukolsky [22,23]. Recently, some techniques
based on monodromy calculations have been put forward to
obtain analytical expressions for the quasinormal spectrum
of perturbations in five-dimensional Kerr background [24].
However, the latter spectrum is written in terms of
transcendental equations whose solutions must be found
numerically [25].
Continuing the study of the gravitational perturbation in

higher-dimensional spacetimes, here we look for the quasi-
normal spectrum of a generalization of Nariai solution. In
fact, we manage to obtain analytically the spectrum for the
background discussed in Ref. [26]; see also Ref. [27]. In four
dimensions the spacetime considered here reduces to the
well-known Nariai solution, which is a static solution of
Einstein’s field equation that can be attained from the
Schwarzschild–de Sitter black hole in the limit in which
the cosmological and black hole horizons coincide [28,29].
Thus, our spectrum should reduce to Nariai quasinormal
frequencies when the dimension is set to four. This turns out
to be true when a comparison with the spectrum displayed in
Ref. [30] is performed, although the explicit calculation is
not shown there. Nevertheless, our result in four dimensions
coincides only partially with the ones obtained in
Refs. [31,32], where it shows three types of spectra for
the gravitational perturbation in Nariai spacetime depending
on the tensor nature of the degree of freedom being perturbed
—namely scalar, vectorial, or tensorial. On the other hand,
according to our calculations all these degrees of freedom
must have the same spectrum in four dimensions. More
precisely, our spectrum coincides with two of the three
spectra considered in Refs. [31,32]. We believe that a typo
has occurred in the first of these articles, Ref. [31], and then
has been propagated in Ref. [32].

The outline of this article is as follows. In Sec. II we
present the problem and its details. First we discuss the
general field equation for the gravitational perturbation and
then present the higher-dimensional background that is
adopted here. Moreover, we discuss the symmetries of such
background and illustrate how we can take advantage of
these to find a suitable basis to expand the components of
the gravitational perturbation. In particular, we split the
degrees of freedom into two broad types that are not mixed
by the field equations, namely, the odd perturbations and
the even perturbations. Then, in Sec. III we consider the
equations obeyed by the odd degrees of freedom. After
imposing suitable boundary conditions, we are then able to
find an analytical expression for the frequencies that are
compatible with such boundary conditions. In Sec. IV we
follow analogous steps for the even degrees of freedom.
Finally, in Sec. V we present some conclusions and, taking
into account the results of a previous work of ours [33], we
find a formula for the quasinormal spectrum of a perturba-
tion with generic spin and mass in the higher-dimensional
Nariai space considered here. In the brief Appendix, we
provide explicit expressions for the angular functions
adopted as a basis in this work.

II. FIELD EQUATION FOR THE
SPIN-2 PERTURBATION

Let the metric gμν be a solution to Einstein’s vacuum
equation with a cosmological constant Λ, namely,

Rμν ¼ Λgμν;

where Rμν is the Ricci tensor associated with the metric.
Then, performing a perturbation on the gravitational field
g̃μν and on some matter fields Φ̃i living in this perturbed
background, so that

g̃μν ¼ gμν þ hμν; and Φ̃i ¼ 0þ ϕi ¼ ϕi; ð1Þ

where hμν and ϕi are infinitesimal, it follows that the matter
field perturbation decouples from the gravitational pertur-
bation. Indeed, the matter fields appear in Einstein’s
equation through its energy-momentum tensor, which is
typically quadratic or of higher order in the matter fields Φ̃i.
Since we are assuming that these were zero, before the
perturbation, it turns out that quadratic expressions on Φ̃i
are quadratic on the infinitesimal perturbation and, there-
fore, should be neglected. Thus, the differential equation
for hμν does not have the matter fields as a source.
Likewise, in the field equations for Φ̃i we should only
consider the nonperturbed metric gμν, since each term of
these equations is at least linear in the infinitesimal field ϕi,
so that any contribution of hμν would lead to a negligible
order. Thus, in general, the perturbations of matter fields
can be analyzed independently from the gravitational
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perturbation. In our previous work [33] we have considered
quasinormal modes associated the matter fields of spin 0,
1=2, and 1 in the generalized Nariai spacetime. Now, in this
paper, we will tackle perturbations on the spin-2 gravita-
tional field.
Linearizing Einstein’s equation around the background

with metric gμν we end up with the following equation
for hμν:

2∇σ∇ðμhνÞσ −□hμν −∇μ∇νh − 2Λhμν ¼ 0; ð2Þ

where ∇μ is the Levi-Civita covariant derivative built from
the initial background metric gμν, h ¼ hμμ, and□ ¼ ∇μ∇μ,
with the indices being raised using the inverse of the
unperturbed metric gμν.
Here, the background spacetime is assumed to be a

higher-dimensional generalization of the Nariai spacetime
that is the direct product of the de Sitter space dS2 with
(d − 1) spheres S2. The line element of this 2d-dimensional
spacetime is given by

ds2 ¼ −ð1 − Λr2Þdt2 þ dr2

1 − Λr2
þ 1

Λ

Xd
j¼2

dΩ2
j ; ð3Þ

where dΩ2
j is the line element of the jth unit sphere, given

explicitly by

dΩ2
j ¼ dθ2j þ sin2 θjdϕ2

j : ð4Þ

For each of the (d − 1) spheres, there exist three indepen-
dent Killing vectors that generate rotations, namely,

8>><
>>:

k1;j ¼ sinϕj∂θj þ cot θj cosϕj∂ϕj
;

k2;j ¼ cosϕj∂θj − cot θj sinϕj∂ϕj
;

k3;j ¼ ∂ϕj
:

In particular, note that the operator that acts on hμν in
Eq. (2) commutes with the Lie derivatives LkI;j

. Indeed,
since kI;j are Killing vector fields of the background
metric, it follows that the action of LkI;j

on gμν yields
zero. Since the Levi-Civita covariant derivative depends
only on the background metric it follows that
LkI;j

∇μ ¼ ∇μLkI;j
. Thus, since LkI;j

generates infinitesimal
rotations in the jth sphere, it turns out that if hμν is a
solution of Eq. (2), then its rotated version will also be a
solution. This humble assertion has an important practical
consequence, namely, when we expand hμν in terms of
irreducible representations of the SO(3) symmetry group
associated with each sphere, we just need to consider the
elements of the representation basis withmj ¼ 0, wheremj

is the eigenvalue with respect to k3;j. The other possible
values for mj can be attained by applying the ladder

operators, which are just linear combinations of the
rotations generated by k1;j and k2;j. This leads to great
simplification in the calculations. We shall return to this
point when we introduce the basis used to expand the
components of hμν.
In addition to these Killing vectors, kt ¼ ∂t also gen-

erates an isometry. In particular, this Killing vector is
lightlike at the closed surfaces r ¼ �Λ−1=2, so that these
are Killing horizons. The boundary conditions of the
quasinormal modes will be posed at these surfaces, as
discussed in Ref. [33], and the domain of interest will be
r ∈ ð−Λ−1=2;Λ−1=2Þ. In such domain one can use the
tortoise coordinate x defined by r ¼ Λ−1=2 tanhðxΛ1=2Þ,
in terms of which the line element becomes

gμνdxμdxν ¼ fðxÞð−dt2 þ dx2Þ þ 1

Λ

Xd
j¼2

dΩ2
j ; ð5Þ

where f¼fðxÞ is the following function of the coordinate x:

f ¼ sech2ðx
ffiffiffiffi
Λ

p
Þ:

Besides the continuous symmetries generated by Killing
vectors, there are also some discrete symmetries. In
particular, the line element is invariant under the parity
transformation (spatial inversion) in each of the spheres.
More precisely, the changes

θj → π − θj and ϕj → ϕj þ π ð6Þ

do not modify the line element (3). Denoting this trans-
formation by Pj, it follows that P2

j is the identity trans-
formation, so that the eigenvalues of this transformation are
�1. Objects unchanged under Pj (eigenvalue þ1) are said
to have even parity, while those that change by a global sign
(eigenvalue −1) are said to have odd parity. It turns out that
the differential operator that acts on hμν in Eq. (2) com-
mutes with these parity transformations, so that the
components of hμν with different parities will not mix in
this equation. Thus, in order to integrate Eq. (2), we can
analyze the even and odd parts of hμν separately without
loosing generality. This fact will be of great practical
relevance in what follows.
Just for illustration, suppose that we would like to study

a test massless scalar field Φ propagating in the four-
dimensional Nariai spacetime, so that in our notation
d ¼ 2. Then, in order to integrate its equation □Φ ¼ 0,
it is quite useful to assume that this field has the form

Φðt; x; θ2;ϕ2Þ ¼ eiωtϕðxÞYm2

l2
ðθ2;ϕ2Þ: ð7Þ

The latter time dependence is due to the fact that ∂t is a
Killing vector, so that t appears in the equation □Φ ¼ 0
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just through derivative operators ∂t. In turn, Ym2

l2
is a

spherical harmonic that is suitable to be used as a basis for
the angular dependence due to the fact that the background
has spherical symmetry. The index l2 labels the irreducible
representations of the SO(3) isometry subgroup associated
to the spherical part of the line element, while m2 is an
integer in the domain −l2 ≤ m2 ≤ l2 that labels the
ð2l2 þ 1Þ elements of the basis of the irreducible repre-
sentation l2. It is worth stressing that the most general
solution for the scalar field is not the one given in Eq. (7),
but rather a general linear combination of the solution (7)
for different frequencies ω and different values of the
separation constants l2 and m2.
Now, suppose that we are interested in integrating the

field equation for a spin 1 gauge field Aμ in this four-
dimensional background, ∇μ∇½μAν� ¼ 0. Since the spheri-
cal harmonics are a basis for the functions in the sphere, we
could also expand Aμ in terms of them just as we did in
Eq. (7), namely,

Aμðt; x; θ2;ϕ2Þ ¼ eiωtΔμðxÞYm2

l2
ðθ2;ϕ2Þ: ð8Þ

However, this is not the most suitable choice. Indeed, while
the components At and Ax are scalars with respect to the
action of the isometry subgroup SO(3), the components Aθ2
and Aϕ2

transform under rotations as the components of a
covector field in the sphere. Therefore, the most natural
way to expand Aθ2 and Aϕ2

is using a basis of 1-forms in the
sphere. Starting from the spherical harmonic Ym2

l2
ðθ2;ϕ2Þ,

which are scalar fields in the sphere, one can take covariant
derivatives and build the following 1-forms

Vþ
a2 ¼ ∇̂a2Y

m2

l2
; and V−

a2 ¼ ϵ̂a2c2∇̂c2Ym2

l2
; ð9Þ

where the indices a, b, c run through fθ;ϕg, ∇̂a2 denotes
the covariant derivative in the unit sphere, whose line
element and metric ĝa2b2 are given by

ds2 ¼ ĝa2b2dx
a2dxb2 ¼ dθ22 þ sin2 θ2dϕ2

2;

whereas ϵ̂a2b2 is the volume form in the sphere. Explicit
expressions for V�

a are provided in Appendix. These two
1-forms have different behaviors under the parity trans-
formation (6). Since a spherical harmonic transforms as

Ym2

l2
⟶
parityð−1Þl2Ym2

l2
ð10Þ

under the parity transformation (6), it follows that the
1-form Vþ ¼ Vþ

a2dx
a2 is multiplied by ð−1Þl2 as well,

while V− ¼ V−
a2dx

a2 gets multiplied by ð−1Þl2þ1. In what
follows, given a certain irreducible representation l, objects
that transform under parity in the same way as the spherical
harmonics, namely, as in Eq. (10), are dubbed even, while

objects that get an extra minus sign under parity trans-
formation are called odd. Thus, for instance, we shall say
that Vþ has even parity, while V− has odd parity. Using
these objects, the natural decomposition for Aμ is

Aμdxμ ¼ eiωt½ðΔtdtþ ΔxdxÞYm2

l2
þ ΔþVþ þ Δ−V−�;

where Δt, Δx, and Δ� are functions of the radial coordinate
x. These four functions account for the 4 degrees of
freedom of a 1-form in four dimensions. Moreover, in
the field equation ∇μ∇½μAν� ¼ 0 the components Δt, Δx,
andΔþ do not mix with the componentΔ− since these have
different parities and the background is invariant under
parity transformation. Thus, in order to find the general
solution one can first ignore the component Δ− and
integrate for Δt, Δx, and Δþ; then, set Δt, Δx, and Δþ
to zero and find Δ−. This separation represents no loss of
generality.
Finally, suppose that we want to integrate the gravita-

tional perturbation equation given in Eq. (2) for the case
d ¼ 2. Following the idea presented in the previous para-
graph for the gauge 1-form, it follows that the components
htt, hxx, and htx should be expanded in terms of spherical
harmonics, while the components hta2 and hxa2 are com-
ponents of 1-forms with respect to the sphere and, there-
fore, should be expanded in terms of Vþ

a2 and V−
a2 . On the

other hand, the components ha2b2 form a rank two sym-
metric tensor in the sphere and, therefore, should be
expanded in terms of an angular basis that has the same
nature. Three options for basis are

T⊕
a2b2

¼ Ym2

l2
ĝa2b2 ;

Tþ
a2b2

¼ ∇̂a2∇̂b2Y
m2

l2
;

T−
a2b2

¼ ϵ̂a2c2∇̂b2∇̂c2Ym2

l2
þ ϵ̂b2c2∇̂a2∇̂c2Ym2

l2
: ð11Þ

Explicit expressions for these tensors are provided in
Appendix. Then, the suitable way to expand h ¼
hμνdxμdxν is

h ¼ eiωt½ðHttdt2 þHxxdx2 þ 2HtxdtdxÞYm2

l2

× 2ðHtþdtþHxþdxÞVþ þ 2ðHt−dtþHx−dxÞV−

þH⊕T⊕ þHþTþ þH−T−�;

where Tþ stands for Tþ
a2b2

dxa2dxb2, and likewise for T⊕

and T−. The ten H’s are functions only of x and they
account for the 10 degrees of freedom associated to hμν in
four dimensions. T⊕ and Tþ have even parity, namely,
transform in the same way as the scalar Ym2

l2
under a parity

transformation, while T− has odd parity. With this ansatz
for hμν, it is much easier to integrate Eq. (2) than using just
the spherical harmonics to expand the angular part of
the field.
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With these examples at hand, we are ready to expand, in
a natural way, the gravitational perturbation h ¼ hμνdxμdxν

in the generalized Nariai spacetime for arbitrary d. The
components htt, hxx, and htx are scalars with respect to the
(d − 1) spheres and, therefore, their angular dependence
should be given by the product of spherical harmonics

Y ¼ Ym2

l2
ðθ2;ϕ2ÞYm3

l3
ðθ3;ϕ3Þ � � �Ymd

ld
ðθd;ϕdÞ:

When we perform a parity transformation in each of the
spheres this scalar transforms as

Y⟶
parityð−1Þl2þ���þldY:

Objects that transform in the same way as Y under a parity
transformation will be said to have even parity, while
objects that gains an extra minus sign, compared to Y, will
be said to have odd parity.
In turn, htaj and hxaj behave as the components of a

1-form with respect to rotations in the jth sphere, but
behave as scalars with respect to rotations in the other
(d − 2) spheres. Thus, a suitable basis for their angular
dependence would be

V�
aj ¼ V�

ajðθj;ϕjÞ
Yd

n¼2;n≠j
Ymn
ln
ðθn;ϕnÞ;

where V�
aj have been defined in Eq. (9). With these objects

we can define the 1-forms

V�
j ¼ V�

θj
dθj þ V�

ϕj
dϕj:

One can check that the 1-form Vþ
j has even parity, while V−

j

has odd parity.
In an analogous fashion, hajbj behave as a symmetric

rank two tensor with respect to rotations in the jth sphere
and as scalars with respect to rotations in the nth sphere
when n ≠ j. Thus, a suitable basis for the angular depend-
ence of this part is

T �;⊕
ajbj

¼ T�;⊕
ajbj

ðθj;ϕjÞ
Yd

n¼2;n≠j
Ymn
ln
ðθn;ϕnÞ;

where Tþ
ajbj

, T−
ajbj

, and T⊕
ajbj

have been defined in Eq. (11).

The corresponding tensors are, then, defined by

T �;⊕
j ¼ T �;⊕

θjθj
dθ2j þ 2T �;⊕

θjϕj
dθjdϕj þ T �;⊕

ϕjϕj
dϕ2

j ;

where T ⊕
j and T þ

j have even parity, while T −
j has odd

parity.
A more tricky type of component is hanbj with n ≠ j,

which behaves as the components of a 1-form under
rotations in the nth and jth spheres, while it behaves as
a scalar with respect to rotations in the other spheres. We
need a basis for the angular dependence that has this

property. On top of that, we would like the basis elements to
have a definite parity. A solution to these constraints is
provided by the following functions:

Wþ
ajbn

¼ Vþ
ajðθn;ϕnÞVþ

bn
ðθj;ϕjÞ

Y
k≠n;j

Ymk
lk
ðθk;ϕkÞ;

W⊕
ajbn

¼ V−
ajðθi;ϕiÞV−

bn
ðθj;ϕjÞ

Y
k≠n;j

Ymk
lk
ðθk;ϕkÞ;

W−
ajbn

¼ Vþ
ajðθi;ϕiÞV−

bn
ðθj;ϕjÞ

Y
k≠n;j

Ymk
lk
ðθk;ϕkÞ;

W⊖
ajbn

¼ V−
ajðθi;ϕiÞVþ

bn
ðθj;ϕjÞ

Y
k≠n;j

Ymk
lk
ðθk;ϕkÞ;

Using these components we can define the symmetric rank
two tensors Wþ

jn, W
⊕
jn, W

−
jn, and W⊖

jn in the natural way.
For instance,

Wþ
jn ¼ Wþ

θjθn
dθjdθn þWþ

θjϕn
dθjdϕn

þWþ
ϕjθn

dϕjdθn þWþ
ϕjϕn

dϕjdϕn;

and analogously for the other three tensors. Wþ and W⊕

have positive parity, as they transform in the same way as Y
under a parity transformation, while W− and W⊖ have
negative parity. Note that the odd parity modes come from
the product of modes with opposite parities, whereas the
positive parity modes arise from the product of elements
with the same parity. Moreover, note that in order to
consider Wþ

jn, W⊕
jn, W−

jn, and W⊖
jn as a basis for the

components of the type hajbn , with n ≠ j, we just need to
assume n > j, since the case j < n lead to the same rank
two tensors. For instance, Wþ

23 ¼ Wþ
32, and W−

23 ¼ W⊖
32.

The preceding steps used to find a suitable basis for the
angular dependence should not be underestimated. Indeed,
the perturbation equation for hμν is quite involved and can
lead to an unbearable entanglement between the compo-
nents of hμν if a natural basis is not adopted.
Thus, using these angular bases, a suitable way to expand

the gravitational perturbation h ¼ hμνdxμdxν is as follows:

h¼ eiωt
�
ðHttdt2 þ 2HtxdtdxþHxxdx2ÞY

þ
Xd
j¼2

ðHþ
tjV

þ
j þH−

tjV
−
j Þdtþ ðHþ

xjV
þ
j þH−

xjV
−
j Þdx

þ
Xd
j¼2

Hþ
j T

þ
j þH⊕

j T
⊕
j þH−

j T
−
j

þ
Xd
j¼2

Xd
n>j

Hþ
jnW

þ
jn þH⊕

jnW
⊕
jn þH−

jnW
−
jn þH⊖

jnW
⊖
jn

�
;

where the H’s are all functions of the coordinate x.
Counting the number of independent functions, we have
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three coming from the first line of the right-hand side of the
previous equation, namely from Htt, Htx, and Hxx; in the
second line there are (d − 1) functions Hþ

tj and, analo-
gously, more 3ðd − 1Þ components stemming from H−

tj,
Hþ

xj, and H−
xj; in the third line we have 3ðd − 1Þ indepen-

dent functions; finally, in the fourth line we should recall

that n > j, so that there are 4 ðd−1Þðd−2Þ
2

functions. Summing
the number of these functions, we have

3þ 4ðd− 1Þ þ 3ðd− 1Þ þ 2ðd− 1Þðd− 2Þ ¼ 2dð2dþ 1Þ
2

;

which is exactly the number of independent components of
hμν in 2d dimensions. This proves that no possible degree
of freedom of the perturbation field is being neglected.
Once we have made an appropriate expansion for hμν, we

are ready to start the integration process of Eq. (2). In order
to do so, we can take advantage of the spherical symmetries
and only consider the cases mj ¼ 0, for all j, so that no ϕj

dependence will show up. Thus, any derivative of the type
∂ϕj

will not contribute, including those appearing in the
definition of our basis. For instance, Vþ

ϕj
and V−

θj
are

automatically zero in such a case (see the expressions in
Appendix). As explained before, this will represent no
important loss of generality, since the other solutions can be
generated by applying rotations to the ones with mj ¼ 0.
Moreover, in this work we are only interested in the
frequencies of the quasinormal modes, which are invariant
under the rotations in the spheres, so that we do not even
need to bother about generating solutions with nonzero
values of mj. Another great simplification that we can take
advantage of stems from the fact that the field equations for
hμν do not mix components with opposite parities. Thus, in
what follows we will separate the integration of the
perturbation equation in the odd degrees of freedom, which
will be tackled in the next section, and the even degrees of
freedom, which will be considered in Sec. IV.
A different source of simplification in the calculations

performed below arise from the gauge freedom in the
choice of the coordinate system. If we perform the change
in the coordinates

xμ ↦ x̃μ ¼ xμ þ ζμ; ð12Þ
where ζμ ¼ ζμðxÞ is infinitesimal, it follows that the
components of the metric in the new coordinate system
are given by

gμν ↦ g̃μν ¼ gμν þ∇μζν þ∇νζμ:

Thus, performing the perturbation (1) in the metric fol-
lowed by the infinitesimal coordinate transformation (12) is
equivalent, to first order in the infinitesimal parameters, to
performing just a metric perturbation with the perturbation
field being

h̃μν ¼ hμν þ∇μζν þ∇νζμ:

Since physics is insensitive to coordinate transformations, it
follows that the transformation

hμν ↦ hμν þ∇μζν þ∇νζμ; ð13Þ

is just a gauge transformation; namely, it does not lead to
changes in the physical results. In particular, these trans-
formations do not change the quasinormal spectrum of the
gravitational perturbation (assuming that we are not chang-
ing our time component). In what follows wewill perform a
wise choice for the vector field ζμ in order to eliminate
some degrees of freedom of the perturbation field.

III. ODD PERTURBATIONS

Constraining the perturbation to have just the odd
degrees of freedom, under the parity transformation, it
follows that we can assume that hμν is given by

h ¼ eiωt
�Xd

j¼2

½ðH−
tjdtþH−

xjdxÞV−
j þH−

j T
−
j �

þ
Xd
j¼2

Xd
n>j

ðH−
jnW

−
jn þH⊖

jnW
⊖
jnÞ

�
: ð14Þ

However, one can eliminate some degrees of freedom by
means of a gauge transformation. Indeed, performing the
transformation (13) with ζμ given by

ζμdxμ ¼ −eiωt
Xd
j¼2

H−
j V

−
j ;

it follows that the transformed field h̃μν is such that it has
the same form as depicted in the expansion (14) but with
the fields H−ðxÞ transformed to H̃−ðxÞ where

8>>>>>>>>><
>>>>>>>>>:

H̃−
tj ¼ H−

tj − iωH−
j ;

H̃−
xj ¼ H−

xj − d
dx H

−
j ;

H̃−
j ¼ 0;

H̃−
jn ¼ H−

jn −H−
n ;

H̃⊖
jn ¼ H⊖

jn −H−
j :

Thus, we see that the componentsH−
j of the ansatz (14) can

be eliminated by a gauge transformation, while the other
components just get redefined. Thus, in what follows we
can ignore the degrees of freedom H̃−

j and consider that the
gravitational perturbation is given by
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h ¼ eiωt
�Xd

j¼2

½ðH−
tjdtþH−

xjdxÞV−
j �

þ
Xd
j¼2

Xd
n>j

ðH−
jnW

−
jn þH⊖

jnW
⊖
jnÞ

�
:

Now, inserting this perturbation into the field equa-
tion (2), we are eventually led to the following equations:

E−
tϕj

≡ d
dx

�
1

f

�
d
dx

H−
tj − iωH−

xj

��
− Λðκ − 2ÞH−

tj

þ iωΛ
X
n≠j

κnðH⊖
jn þH−

njÞ ¼ 0;

E−
xϕj

≡ iω
f

�
d
dx

H−
tj − iωH−

xj

�
− Λðκ − 2ÞH−

xj

þ Λ
X
n≠j

κn
d
dx

ðH⊖
jn þH−

njÞ ¼ 0;

E−
θjϕj

≡ 1

f

�
d
dx

H−
xj − iωH−

tj

�
− Λ

X
n≠j

κnðH⊖
jn þH−

njÞ ¼ 0;

E−
θjϕn

≡ d2

dx2
ðH⊖

nj þH−
jnÞ

þ ½ω2 − fΛðκ − 2Þ�ðH⊖
nj þH−

jnÞ − fE−
θnϕn

¼ 0:

ð15Þ

In the left-hand side of these equations, the objects E−
μν

are just to stress that the equation E−
μν ¼ 0 comes from

imposing the component μν of Eq. (2) to hold. The
components that do not appear above, like E−

tt are identi-
cally vanishing. In the last line of Eq. (15) it is being
assumed that n ≠ j. Above, we have also used the
definitions

κj ¼ ljðlj þ 1Þ and κ ¼
Xd
j¼2

κj: ð16Þ

Thus, the above equations comprise all the restrictions
associated with the perturbation equation obeyed by hμν.
In order to attain Eq. (15), we have assumed that the

spherical harmonics Y
mj

lj
ðθj;ϕjÞ have mj ¼ 0, which is

justified by the spherical symmetry, as explained before.
So, we have used Y

mj

lj
¼ YljðθjÞ, where YljðθjÞ obeys the

following differential equation:

1

sin θj

d
dθj

�
sin θj

d
dθj

Ylj

�
þ κjYlj

¼ 0:

In Eqs. (15), the fields H⊖
jn and H−

jn appear only by
means of the combination ðH⊖

nj þH−
jnÞ. Note, however,

that we are always assuming that n ≠ j, so that either n > j

or n < j. These fields were defined through Eq. (14), where
it is always assumed that the second index is greater than
the first. Thus, the fields H⊖

jn and H−
jn with j > n are not

defined. Hence, the convention in Eqs. (15) is that these
undefined fields are zero. So, what might appear as two
fields in the sum ðH⊖

jn þH−
njÞ is, actually, just one field.

Indeed, if n > j it follows that H−
nj vanishes, so that ðH⊖

jnþ
H−

njÞ ¼ H⊖
jn, while if j > n we have ðH⊖

jn þH−
njÞ ¼ H−

nj.
Summing up, in Eqs. (15) we have

ðH⊖
jn þH−

njÞ ¼
�H−

nj; if j > n

H⊖
jn; if n > j

:

Assuming that E−
θnϕn

vanishes, in accordance with the
third line in Eq. (15), it follows from the last line in Eq. (15)
that the fields H−

jn and H⊖
nj both obey the following

differential equation:

d2

dx2
H þ

�
ω2 −

Λðκ − 2Þ
cosh2ð ffiffiffiffi

Λ
p

xÞ

�
H ¼ 0: ð17Þ

This is the well-known Pöschl-Teller equation [34], that can
be integrated analytically. In particular, assuming that the
boundary condition for the perturbation field is as depicted
in Fig. 1, which is the appropriate boundary condition for
quasinormal modes, it follows that the spectrum of allowed
frequencies is

ω ¼
ffiffiffiffi
Λ

p
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ − 9=4

p
þ iðN þ 1=2Þ�; ð18Þ

where N ∈ f0; 1; 2;…g. For more details on the calcula-
tion of the spectrum and on the choice of boundary
condition, the reader is referred to Ref. [33]. Thus,
summing up, we have just proved that the spectrum of
the degrees of freedom H−

jn and H⊖
jn is the one given in

Eq. (18). It remains to check whether H−
tj and H

−
xj have the

same spectrum. Defining the field

FIG. 1. The wavy arrows depict the direction of the perturbation
field at the boundaries, while the cones are the local light cones.
This boundary condition is the appropriate one to attain a
quasinormal mode at the generalized Nariai spacetime; see
Ref. [33].
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H̆−
j ¼ 1

f

�
d
dx

H−
tj − iωH−

xj

�
;

it follows immediately from the equation

d
dx

Etϕj
− iωExϕj

¼ 0

that H̆−
j also obeys the Pöschl-Teller equation (17) and,

therefore, have the same spectrum of the fields H−
jn and

H⊖
jn, namely, Eq. (18). Then, by means of the equations

E−
tϕj

¼ 0 and E−
xϕj

¼ 0 we can write the fields H−
tj and H−

xj

in terms of the fields that obey the Pöschl-Teller equation.
More precisely, we have

H−
tj ¼

1

Λðκ − 2Þ
d
dx

H̆−
j þ iω

κ − 2

X
n≠j

κnðH⊖
jn þH−

njÞ;

H−
xj ¼

iω
Λðκ − 2Þ H̆

−
j þ 1

κ − 2

X
n≠j

κn
d
dx

ðH⊖
jn þH−

njÞ:

So, H−
tj and H−

xj must have the same spectrum of H̆−
j , H

−
jn,

and H⊖
jn, namely, Eq. (18). Indeed, since fields H̆−

j , H
−
jn,

and H⊖
jn obey the boundary condition depicted in Fig. 1, it

follows that near the boundaries x → �∞ (r → �1=
ffiffiffiffi
Λ

p
)

the behavior of these fields is e�iωx. Thus, linear combi-
nations of these fields and their derivatives will also obey
the same boundary conditions. Another way to understand
why H−

tj and H
−
xj have the spectrum (18) is by applying the

differential operator that acts on H in Eq. (17) to the above
expressions for H−

tj and H−
xj. Doing so, we can check that

H−
tj and H

−
xj obey the Pöschl-Teller equation with a source,

namely,

�
d2

dx2
þ ω2 −

Λðκ − 2Þ
cosh2ð ffiffiffiffi

Λ
p

xÞ

�
H−

tj ¼ Fj
df
dx

;

where Fj ¼ FjðxÞ is some field obeying the Pöschl-Teller
equation and likewise for H−

xj. The general solution for a
linear differential equation with a source is given by the
general solution for the homogeneous part of the equation,
which in the latter case is the Pöschl-Teller equation, plus a
particular solution that depends linearly on the source. In
the case of interest, the source goes to exponentially zero at
the boundaries, due to the term df=dx. Hence, near the
boundaries H−

tj and H−
xj obey the Pöschl-Teller equation

and, therefore, yield the same spectrum (18).
So far, we have imposed and solved the equations

E−
tϕj

¼ 0, E−
xϕj

¼ 0, and E−
θjϕn

¼ 0, whereas we have just

assumed E−
θjϕj

¼ 0 to be true, without really solving it.

However, inserting the latter expressions for H−
tj and H

−
xj in

the third line of Eq. (15) it follows that E−
θjϕj

¼ 0, whenever

H⊖
jn and H−

jn obey the Pöschl-Teller equation (17), so that
the constraint E−

θjϕj
¼ 0 is already guaranteed to hold once

the other equations in Eq. (15) are solved. In conclusion, all
degrees of freedom of the odd perturbation have the
spectrum (18).

IV. EVEN PERTURBATIONS

The even parity perturbation has the general form

h ¼ eiωt
�
ðHttdt2 þ 2HtxdtdxþHxxdx2ÞY

þ
Xd
j¼2

ðHþ
tjV

þ
j dtþHþ

xjV
þ
j dxþHþ

j T
þ
j þH⊕

j T
⊕
j Þ

þ
Xd
j¼2

Xd
n>j

Hþ
jnW

þ
jn þH⊕

jnW
⊕
jn

�
: ð19Þ

Then, performing a gauge transformation (13) with

ζμdxμ ¼
eiωt

2

�
AYdtþ BYdx −

Xd
j¼2

Hþ
j V

þ
j

�
;

where A ¼ AðxÞ and B ¼ BðxÞ are functions of the
coordinate x given by

A ¼ iωHþ
j − 2Hþ

t2; ð20Þ

B ¼ d
dx

Hþ
j − 2Hþ

x2; ð21Þ

it follows that the transformed perturbation field h̃μν is such
that it admits an expansion just as depicted in Eq. (19) but
with the fields HðxÞ transformed to H̃ðxÞ where H̃þ

j , H̃
þ
t2,

and H̃þ
x2 all vanish; H̃

⊕
j and H̃⊕

jn are equal to H⊕
j and H⊕

jn

respectively; while the other degrees of freedom change as
follows:

H̃tt¼Htt−
f0

2f

�
d
dx

Hþ
2 −2H

þ
x2

�
−ω2Hþ

2 −2iωH
þ
t2;

H̃xx¼Hxx−
f0

2f

�
d
dx

Hþ
2 −2H

þ
x2

�
þ d2

dx2
Hþ

2 −2
d
dx

Hþ
x2;

H̃tx¼Htx−
f0

2f
ðiωHþ

2 −2H
þ
t2Þþiω

d
dx

Hþ
2 −

d
dx

Hþ
t2−iωH

þ
x2;

H̃þ
tj¼Hþ

tj−H
þ
t2þ

iω
2
ðHþ

2 −H
þ
j Þ∀j≠2;

H̃þ
xj¼Hþ

xj−H
þ
x2þ

1

2

d
dx

ðHþ
2 −H

þ
j Þ∀j≠2;

H̃þ
jn¼Hþ

jn−
1

2
ðHþ

j þHþ
n Þ:

Hence, the following (dþ 1) degrees of freedom can be
set to zero:
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H̃þ
t2 ¼ 0; H̃þ

x2 ¼ 0; H̃þ
j ¼ 0; ð22Þ

since they can be eliminated by a gauge transformation, whereas the other H̃’s are just equal to the previous H’s added by
functions of x. Thus, assuming this gauge choice and dropping the tildes, it follows that we can assume that the perturbation
field has the form

h ¼ eiωt
�
ðHttdt2 þ 2HtxdtdxþHxxdx2ÞY þ

Xd
j¼2

H⊕
j T

⊕
j þ

Xd
j¼3

ðHþ
tjV

þ
j dtþHþ

xjV
þ
j dxÞ

þ
Xd
j¼2

Xd
n>j

ðHþ
jnW

þ
jn þH⊕

jnW
⊕
jnÞ

�
; ð23Þ

Now, inserting this ansatz into the field equation (2), we find the following differential equations obeyed by the fieldsH’s

Eþ
tt ≡ Λð2 − κfÞHtt − 2ΛHxx þ 2Λf

Xd
j¼2

�
iωðκjHþ

tj þ iωH⊕
j Þ −

f0

2f

�
κjH

þ
xj þ

d
dx

H⊕
j

��

þ d2

dx2
Htt − 2iω

d
dx

Htx − ω2Hxx þ
f0

2f

�
d
dx

Hxx − 3
d
dx

Htt þ 2iωHtx

�
¼ 0;

Eþ
tx ≡

X
j

�
κjf

d
dx

�
1

f
Hþ

tj

�
þ iωκjH

þ
xj − κjHtx þ 2iω

ffiffiffi
f

p d
dx

�
1ffiffiffi
f

p H⊕
j

��
¼ 0;

Eþ
xx ≡ 2ΛHtt − Λð2 − κfÞHxx − 2Λf

Xd
j¼2

�
κj

d
dx

Hþ
xj þ

d2

dx2
H⊕

j −
f0

2f

�
κjH

þ
xj þ

d
dx

H⊕
j

��

þ d2

dx2
Htt − 2iω

d
dx

Htx − ω2Hxx þ
f0

2f

�
d
dx

Hxx − 3
d
dx

Htt þ 2iωHtx

�
¼ 0;

Eþ
tθj

≡ d
dx

�
1

f

�
d
dx

Hþ
tj − iωHþ

xj

��
þ iω

�
1

f

�
d
dx

Hþ
xj − iωHþ

tj

��
− Λðκ − 2ÞHþ

tj

−
1

f
d
dx

Htx þ
iω
2f

ðHtt þHxxÞ þ Λ
Xd
n¼2

ðiωH⊕
n þ κnH

þ
tnÞ − iωEI

ϕjϕj
¼ 0;

Eþ
xθj

≡ iω

�
1

f

�
d
dx

Hþ
tj − iωHþ

xj

��
þ d
dx

�
1

f

�
d
dx

Hþ
xj − iωHþ

tj

��
− Λðκ − 2ÞHþ

xj

þ iω
f
Htx −

1

2f
d
dx

ðHtt þHxxÞ þ Λ
Xd
n¼2

�
d
dx

H⊕
n þ κnHþ

xn

�
−

d
dx

EI
ϕjϕj

¼ 0;

Eþ
θjθn

≡ d2

dx2
ðHþ

jn þHþ
njÞ þ ½ω2 − Λfðκ − 2Þ�ðHþ

jn þHþ
njÞ − fEI

ϕjϕj
− fEI

ϕnϕn
¼ 0;

Eþ
ϕjϕn

≡ d2

dx2
ðH⊕

jn þH⊕
njÞ þ ½ω2 − Λfðκ − 2Þ�ðH⊕

jn þH⊕
njÞ ¼ 0;

EI
ϕjϕj

≡ 1

f

�
d
dx

Hþ
xj − iωHþ

tj

�
þ ΛH⊕

j − Λ
Xd
n¼2

½H⊕
n þ κnðHþ

jn þHþ
njÞ� þ

1

2f
ðHtt −HxxÞ ¼ 0;

EII
ϕjϕj

≡ d2

dx2
H⊕

j þ ½ω2 − Λfðκ − 2Þ�H⊕
j ¼ 0;

EI
θjθj

≡ EI
ϕjϕj

¼ 0;

EII
θjθj

≡ EII
ϕjϕj

þ 2fκjEI
ϕjϕj

¼ 0; ð24Þ

where f0 stands for df=dx, as usual.
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The great advantage of using the angular basis
fY;Vþ

j ; T
⊕
j ; � � �g, instead of just using the spherical har-

monics Y is that when we compute the components of the
perturbation equation (2) the angular dependence auto-
matically factors out as a global multiplicative term, so that
we end up with equations that depend just on the coordinate
x, as we have seen for the odd perturbation, in the preceding
section, and as we now see in the above equations for the
even perturbations. Nevertheless, in the components ϕjϕj

and θjθj of the even perturbation equation the angular
functions do not factor automatically, rather we face an
equation of the following type

Y0
lj
ðθjÞAðxÞ þ cot θj

d
dθj

Y0
lj
ðθjÞBðxÞ ¼ 0: ð25Þ

However, in general, the spherical harmonic Y0
lj
is linearly

independent from cot θj
d
dθj

Y0
lj
, so that the latter equation

implies both AðxÞ ¼ 0 and BðxÞ ¼ 0. This is the reason
why the equations that stem from the components ϕjϕj and
θjθj are split in two separate constraints, which are denoted
in Eq. (24) by EI

ϕjϕj
, EII

ϕjϕj
, EI

θjθj
, and EII

θjθj
. The only case in

which we cannot conclude that A and B are both zero in
Eq. (25) is when the two angular functions are linearly
dependent, namely, when

αY0
lj
ðθjÞ þ β cot θj

d
dθj

Y0
lj
ðθjÞ ¼ 0

for some constants α and β. Integrating the latter constraint,
we conclude that the linear dependence happens only if

Y0
lj
ðθjÞ ¼ cðcos θjÞα=β;

where c is some constant. This is true only for lj ¼ 0, in
which case α=β ¼ 0, and for lj ¼ 1, in which case
α=β ¼ 1. Thus, for any lj > 1 we can promptly assume
that, in Eq. (25), A and B are independently zero, as we
have done.
From the components Eþ

θjθn
, Eþ

ϕjϕn
, and EII

ϕjϕj
, we obtain

that the fields Hþ
jn, H

⊕
jn, and H⊕

j obey the Pöschl-Teller
equation, namely,

d2

dx2
H þ

�
ω2 −

Λðκ − 2Þ
cosh2ð ffiffiffiffi

Λ
p

xÞ

�
H ¼ 0: ð26Þ

In order to conclude this, we have assumed that Einstein’s
equation EI

ϕjϕj
¼ 0 holds. As discussed in the previous

section, assuming the suitable boundary conditions for the
quasinormal modes of the gravitational perturbation the
allowed frequencies are given by

ω ¼
ffiffiffiffi
Λ

p
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ − 9=4

p
þ iðN þ 1=2Þ�; ð27Þ

where N ∈ f0; 1; 2;…g, see Eq. (18).
Now, defining the fields VI

jn ¼ VI
½jn� and VII

jn ¼ VII
½jn� as

VI
jn ≔

1

f

�
d
dx

Hþ
tj − iωHþ

xj −
d
dx

Hþ
tn þ iωHþ

xn

�
;

VII
jn ≔

1

f

�
d
dx

Hþ
xj − iωHþ

tj −
d
dx

Hþ
xn þ iωHþ

tn

�
;

and assuming that EI
ϕjϕj

¼ 0, so that the dependence on

EI
ϕjϕj

can be omitted from the definitions of Eþ
tθj

and Eþ
xθj
,

the following identities hold:

d2

dx2
VI
jn þ

�
ω2 −

Λðκ − 2Þ
cosh2ð ffiffiffiffi

Λ
p

xÞ

�
VI
jn

¼ d
dx

ðEþ
tθj

− Eþ
tθn
Þ − iωðEþ

xθj
− Eþ

xθn
Þ;

d2

dx2
VII
jn þ

�
ω2 −

Λðκ − 2Þ
cosh2ð ffiffiffiffi

Λ
p

xÞ

�
VII
jn

¼ d
dx

ðEþ
xθj

− Eþ
xθn

Þ − iωðEþ
tθj

− Eþ
tθn
Þ:

Thus, whenever the field equations Eþ
tθj

¼ 0 and Eþ
xθj

¼ 0

hold, it follows that VI
jn and VII

jn obey the Pöschl-Teller
equation and, therefore, have the spectrum (27).
It is worth recalling that our gauge choice is such that

Hþ
t2 ¼ Hþ

x2 ¼ 0. So, from the identities Etθj − Etθ2 ¼ 0 and
Exθj − Exθ2 ¼ 0, and assuming that EI

ϕjϕj
¼ 0, it follows

that

Hþ
tj ¼

1

Λðκ − 2Þ
�
d
dx

VI
2j þ iωVII

2j

�
;

Hþ
xj ¼

1

Λðκ − 2Þ
�
d
dx

VII
2j þ iωVI

2j

�
; ð28Þ

and thus the spectrum associated to these fields must be the
same as that for VI

jn and VII
jn, namely, Eq. (27).

It remains to obtain the spectrum of the fields Htt, Htx,
and Hxx. From Eþ

tx ¼ 0, we can isolate Htx which leads to
the equation

Htx ¼
1

κ

X
j

�
κjf

d
dx

�
1

f
Hþ

tj

�

þ iωκjH
þ
xjþ2iω

ffiffiffi
f

p d
dx

�
1ffiffiffi
f

p H⊕
j

��
:

Thus, Htx can be written in terms of Hþ
tj, H

þ
xj, H

⊕
j and its

derivatives, so that Htx must have the same spectrum of the
latter fields. Finally, from the equation Eþ

tθ2
¼ 0, we find

that
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Htt þHxx ¼
2

iω

�
d
dx

Htx − Λf
X
n

ðiωH⊕
n þ κnH

þ
tnÞ

�
;

where it has been used thatHþ
t2 andH

þ
x2 both vanish, due to

our gauge choice, and it has been assumed that EI
ϕjϕj

¼ 0,

as done before. Now, from the equation EI
ϕ2ϕ2

¼ 0 we find

Htt −Hxx ¼ 2Λf
X
n≥3

½H⊕
n þ κnðHþ

2nÞ�:

Thus, from these equations for Htt �Hxx we conclude that
these fields are written in terms of fields that we already
proved that have the spectrum (27). This finishes the proof
that in the generalized Nariai spacetime all degrees of
freedom of the gravitational perturbation, scalar, vectorial,
and tensorial, even and odd, have the same spectrum of
quasinormal modes. In particular, when D ¼ 4 we have
κ ¼ lðlþ 1Þ and the spectrum can be written as

ωffiffiffiffi
Λ

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1Þ − 1

4

r
þ i

�
N þ 1

2

�
; ð29Þ

this is exactly the spectrum of frequencies shown by
Cardoso in Ref. [30], in which an exact expression for
the quasinormal modes of gravitational perturbations of a
near extremal Scwarzschild–de Sitter black hole, in four
dimensions, was displayed. It is well known that the
extremal limit of the Scwarzschild–de Sitter solution, when
the black hole horizon coalesces with the cosmological
horizon, yield the Nariai spacetime [28,29], so that both
spectra should, indeed, coincide. Nevertheless, when
D ¼ 4, our analytical spectrum is in disagreement with
the quasinormal frequencies for the tensorial degrees of
freedom of the gravitational perturbation displayed in
Refs. [31,32]. We believe that this difference might have
come from a typo in Ref. [31] that was replicated
in Ref. [32].
In order to obtain the spectrum of the even part of the

gravitational perturbation it was not necessary to use all
field equations displayed in Eq. (24). More precisely, we
have not solved Eþ

tt ¼ 0, E−
xx ¼ 0, and EI

ϕnϕn
¼ 0 for n > 2.

Therefore, it is prudential to check if these remaining
equations are consistent with the solutions of the ones that
we have used. After some algebra, we have checked that
this consistency holds indeed. Thus, once we assume that
Hþ

jn, H⊕
jn, H⊕

j , VI
jn, and VII

jn obey the Pöschl-Teller
equation (26), and that Hþ

tj, H
þ
xj, H

þ
tx, H

þ
tt , and Hþ

xx are
given by the expressions given above, it follows that the
remaining components of Einstein’s equation are automati-
cally satisfied.

V. CONCLUSIONS

In this article we have explored the quasinormal modes
of a higher-dimensional generalization of the Nariai
spacetime, with dimension 2d, and obtained that all
degrees of freedom of the gravitational perturbation have
the same spectrum, namely the one displayed in Eq. (27).
This differs, for example, from what happens in other
higher-dimensional spacetimes like Schwarzschild and
(anti) de Sitter [10,35,36], in which different parts of
the gravitational perturbation have different spectra.
Thus, the isospectral property of the higher-dimensional
the Nariai spacetime considered here proves that the
existence of different spectra to different degrees of
freedom of the gravitational field is much more related
to the symmetries of the spacetime than to the tensorial
nature of the degree of freedom of the perturbation or to
the dimension of the background. Here the background
has SOð3Þ × SOð3Þ × � � � × SOð3Þ symmetry, d − 1 times,
whereas the Schwarzschild black hole has a SOð2d − 1Þ
symmetry.
The angular basis constructed here can also be used to

separate the degrees of freedom of the gravitational
perturbation propagating on other backgrounds with the
symmetry SOð3Þ × SOð3Þ × � � � × SOð3Þ. In particular, the
higher-dimensional black hole presented in Ref. [26] can
certainly be handled with the technique introduced here.
The same idea can also be applied to any spacetime that is
the direct product of several spaces of constant curvature.
This work completes the results obtained in a previous

paper in which the quasinormal spectrum for fields with
spin 0, 1=2, and 1 have been explicitly calculated [33].
Now, with all these results at hand, we can write down a
unique formula that works for all of these cases:

ω ¼
ffiffiffiffi
Λ

p h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ L2 − ðs − 1=2Þ2

q
þ iðN þ 1=2Þ

i
;

where s is the spin of the perturbation, μ is the mass of the
field, and L2 is the squared angular momentum eigen-
value. For instance, the gravitational perturbation amounts
to choosing μ ¼ 0, s ¼ 2, and L2 ¼ κ ¼ P

j ljðlj þ 1Þ.
The expression for L2 is the same for the scalar field
(s ¼ 0) and for the electromagnetic field (s ¼ 1), since
these are all bosonic fields. On the other hand, for the
spin 1=2 field we have L2 ¼ P

j λ
2
j , where λ ∈

f�1;�2; � � �g are the eigenvalues of the Dirac operator
on the unit sphere. It is worth pointing out that while in
Ref. [33] Einstein’s vacuum equation was not assumed to
hold, so that the spheres of the generalized Nariai
spacetime could have different radii [26], depending on
the electromagnetic charges of the background, here we
have assumed vanishing charges, so that the gravitational
perturbation decouples from the electromagnetic pertur-
bation. Otherwise, we would have to consider the gravi-
tational and electromagnetic perturbations simultaneously,
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since the electromagnetic perturbation field would be a
source for the gravitational perturbation, as discussed
above in Sec. II. Note also that we have not analyzed the
perturbations for the Proca field and for massive gravi-
tational field, i.e., for spin one and two the above formula
has been checked only for the case of vanishing mass,
μ ¼ 0. However, it is natural to expect that the above
formula for the spectrum will also hold for these cases not
considered yet.
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APPENDIX: BASIS FOR THE ANGULAR
FUNCTIONS

In order to facilitate the attainment of the results we
provide the explicit expressions for the basis of tensor fields
adapted to the spherical symmetry that we have used to
span the various degrees of freedom of the gravitational
perturbation in the generalized Nariai spacetime.

Vþ ¼ ∇̂aYm
l dx

a ¼ ∂θYm
l dθ þ ∂ϕYm

l dϕ;

V− ¼ ϵ̂ac∇̂cYm
l dx

a ¼ csc θ∂ϕYm
l dθ − sin θ∂θYm

l dϕ;

T⊕ ¼ Ym
l dθ

2 þ sin2θYm
l dϕ

2;

Tþ ¼ ∂2
θY

m
l dθ

2 þ 2ð∂θ∂ϕYm
l − cot θ∂ϕYm

l Þdθdϕ
þ ð∂2

ϕY
m
l þ cos θ sin θ∂θYm

l Þdϕ2;

T− ¼ 2 csc θð∂θ∂ϕYm
l − cot θ∂ϕYm

l Þdθ2
þ 4ðcsc θ∂2

ϕY
m
l þ cos θ∂θYm

l − sin θ∂2
θY

m
l Þdθdϕ

þ 2ðcos θ∂ϕYm
l − sin θ∂θ∂ϕYm

l Þdϕ2:
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