
 

Influence of dark matter on black hole scalar hair
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Searches for dark matter sector field imprints on the astrophysical phenomena are one of the most active
branches of the current researches. Using numerical methods, we elaborate the influence of dark matter on
the emergence of black hole hair and formation of boson stars. We explore thermodynamics of different
states of the system in Einstein-Maxwell-scalar dark matter theory with box boundary conditions. Finally,
we find that the presence of dark sector within the system diminishes a chance of formation of scalar hair
around a black hole.
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I. INTRODUCTION

The astrophysical evidence of the illusive ingredient of
our Universe, dark matter, is overwhelming and authorizes
the galaxy rotation curves, gravitational lensing, a thread-
like structure (cosmic web) on which ordinary matter
accumulates [1,2]. On the contrary, the absence of the
evidence of the most popular particle candidates for
baryonic dark matter stipulates the necessity of diversifying
experimental efforts [3]. Black holes and ultracompact
horizonless objects being the ideal laboratories for dark
matter studies may help us to answer the tantalizing
question of how dark matter sector leaves its imprint in
the physics of these objects. However, it happens that
Schwarzschild black hole has a negative specific heat and it
cannot be in equilibrium with thermal radiation. To over-
come this difficulty, the idea of enclosing the black hole
within a box was proposed [4,5]. Einstein-Maxwell sys-
tems with box boundary conditions were elaborated in [6],
where it was established that the phase structure of the
models was similar to AdS gravity. Inclusion of the
additional scalar field to the theory in question envisages
the correspondence of phase transitions in gravity in a box
with s-wave holographic superconductor [7–9]. The ther-
modynamical studies of Einstein-Maxwell scalar systems
in the asymptotically flat spacetime with reflecting boun-
dary conditions were conducted in [10]. A certain range of
parameters allows to obtain stable black hole solution,
giving a way to circumvent no-hair theorem.
The next compact objects studied in our paper, from the

point of view of the influence of darkmatter on their physics,
are boson stars. Boson stars being a self-gravitating solution
of massive scalar field with a potential coupled to gauge

fields andgravity [11] arewidely studied in literature [12–16]
for a quite long period of time.
The purpose of our paper is to examine thermodynamical

properties and stability of the black holes and horizonless
objects-boson stars in Einstein-Maxwell-scalar system
influenced by dark matter sector and envisage the role
of the dark matter in the elaborated problems.
The organization of the paper is as follows. In Sec. II, we

describe the basic features of the hidden sector model and
derived the basic equations needed in what follows.
Section III is devoted to the description of the obtained
numerical results. In Sec. IV, we concluded our researches.

II. MODEL

We consider the spacetime manifold with timelike boun-
dary ∂M, which will be referred as a box. The action for
Einstein-Maxwell scalar dark matter gravity is provided by

S¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

4
FμνFμν−

α

4
BμνFμν

−
1

4
BμνBμν− jDΨj2−m2jΨj2

�
−
Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
K; ð1Þ

whereFμν is aMaxwell field strength tensor,Bμν is a strength
tensor of a hidden sector vector boson. The complex scalar
fieldΨ ¼ ψeiθ, where θ denotes the phase, is coupled only to
the ordinary electromagnetic field by the covariant derivative
Dμ ¼ ∇μ − iqAμ. The theoretical justifications of the model
in question originate from M/string theories, where such
mixing portals coupling Maxwell and auxiliary gauge fields
can be encountered [17]. The hidden sectors states are
charged under their own groups and interact with the visible
sector via gravitational interactions. The realistic string
compactifications establish the range of values for α between
10−2 and 10−10 [18–21]. It seems that astrophysical

*bkiczek@kft.umcs.lublin.pl
†rogat@kft.umcs.lublin.pl

PHYSICAL REVIEW D 101, 084035 (2020)

2470-0010=2020=101(8)=084035(8) 084035-1 © 2020 American Physical Society

https://orcid.org/0000-0003-4163-7633
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.084035&domain=pdf&date_stamp=2020-04-14
https://doi.org/10.1103/PhysRevD.101.084035
https://doi.org/10.1103/PhysRevD.101.084035
https://doi.org/10.1103/PhysRevD.101.084035
https://doi.org/10.1103/PhysRevD.101.084035


observations of gamma rays of energy 511 keV [22], positron
excess in galaxies [23], and muon anomalous magnetic
moment [24] argue for the aforementioned idea of coupling
Maxwell field with dark matter sector. Recent experiments
aimed at gamma ray emissions from dwarf galaxies [25],
dilatonlike coupling to photons caused by ultralight dark
matter [26], oscillations of the fine structure constant [27],
revisions of the constraints on dark photon 1987A supernova
emission [28], measurements of excitation of electrons in
CCD-like detector [29], as well as the examinations in eþe−
Earth colliders [30], give us some hints for the correctness of
the proposed model. They and the future planned ballon
d’essai will ameliorate the mass constraints on the hidden
sector particles, especially for dark photons.
The second integral denotes the Gibbons-Hawking

boundary term of our box with γ metric on the three-
dimensional hypersurface ðr ¼ rbÞ, with the extrinsic
curvature K.
Varying the action (1), we get the equations of motion of

the forms

ð∇μ − iqAμÞð∇μ − iqAμÞΨ −m2Ψ ¼ 0; ð2Þ

α̃∇μFμν ¼ jν; ð3Þ

where α̃ ¼ 1 − α2

4
and the current jν is provided by the

relation

jν ¼ iq½Ψ†ð∇ν − iqAνÞΨ −Ψð∇ν þ iqAνÞΨ†�: ð4Þ

In what follows, we use a time-independent spherically
symmetric line element, with the metric coefficients being
functions of r coordinate,

ds2 ¼ −gðrÞhðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin θ2dϕ2Þ; ð5Þ

and the adequate components of the fields in the theory will
constitute radial functions of the forms

Aμdxμ ¼ ϕðrÞdt; Bμdxμ ¼ χðrÞdt; Ψ ¼ ΨðrÞ: ð6Þ

In general, the scalar field can have harmonic time
dependence which can be absorbed by a redefinition of
the gauge field function. Having this in mind it can be seen
that the r component of the equations of motion for the
gauge and scalar fields leads to the conclusion that
ΨðrÞ ¼ ψðrÞ. By virtue of this, the following equations
of motion are provided:

Rμν −
1

2
gμνR ¼ Tμν; ð7Þ

∇μ∇μψ − q2AμAμψ −m2ψ ¼ 0; ð8Þ

∇μFμν þ α

2
∇μBμν − 2q2Aνψ2 ¼ 0; ð9Þ

∇μBμν þ α

2
∇μFμν ¼ 0: ð10Þ

As in the case of Eq. (3), the last two equations can be
rewritten as

α̃∇μFμν − 2q2Aνψ2 ¼ 0; ð11Þ

∇μBμν þ α

α̃
q2Aνψ2 ¼ 0: ð12Þ

Consequently, the explicit forms of the equations of
motion yield

h0 − rhψ 02 −
q2rϕ2ψ2

g2
¼ 0; ð13Þ
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gh
−m2

�
ψ

g
¼ 0; ð16Þ

χ00 þ
�
2

r
−

h0

2h

�
χ0 þ αq2χψ2

α̃g
¼ 0: ð17Þ

To solve the equations of the theory in question, one has to
provide adequate boundary conditions. Namely, we can
pick either a horizonless or a black hole solution. In case of
a black hole, we expand the underlying functions in a
Taylor series around the horizon of radius rh,

ψ ¼ ψ0 þ ψ1ðr − rhÞ þ ψ2ðr − rhÞ2 þOðr3Þ; ð18Þ

ϕ ¼ ϕ1ðr − rhÞ þ ϕ2ðr − rhÞ2 þOðr3Þ; ð19Þ

g ¼ g1ðr − rhÞ þ g2ðr − rhÞ2 þOðr3Þ; ð20Þ

h ¼ 1þ h1ðr − rhÞ þOðr2Þ; ð21Þ

χ ¼ χ1ðr − rhÞ þ χ2ðr − rhÞ2 þOðr3Þ: ð22Þ

We set g0 ¼ 0 due to occurrence of the black hole
event horizon. For the regularity of the Uð1Þ-gauge
fields on the event horizon, one also puts ϕ0 and χ0 equal
to zero (in order to keep the terms with division by gðrhÞ in
equations ofmotion finite). By implementing the expansions
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(18)–(22) into the equations of motion, we find out that
frh;ψ0;ϕ1; χ1; αg comprise free parameters of the theory in
question, while the remaining ones can be expressed
by them.
As far as the boson star scenario is concerned, we

perform a similar expansion. However, since the configu-
ration in question is horizonless, the expansion accom-
plishes around the origin of the reference frame. At r ¼ 0,
we require that the derivatives of all the functions are set
equal to zero, which ensures that there is no kink at this
point. At r ¼ rb, we establish the Dirichlet boundary
condition for the scalar field ψðrbÞ ¼ 0 (the reflecting
mirrorlike boundary conditions).
Asymptotic analysis of matter fields, at the box boun-

dary, enables us to write

ψ ∼ ψ ð0Þ þ ψ ð1Þðrb − rÞ þOðr2Þ; ð23Þ

ϕ ∼ ϕð0Þ þ ϕð1Þðrb − rÞ þOðr2Þ; ð24Þ

χ ∼ χð0Þ þ χð1Þðrb − rÞ þOðr2Þ: ð25Þ

As was proposed in Refs. [10,16], because of the fact
that the scalar field satisfies the reflecting mirrorlike
boundary conditions ψðrbÞ ¼ 0, one can fix ψ ð0Þ ¼ 0

and the other parameter ψ ð1Þ can be used for the phase
transition description. This approach to the problem in
question is widely exploited in holographic studies of
superconductors and superfluids.
For the gauge fields, one has that ϕð0Þ ¼ μ and χð0Þ ¼ μd

as chemical potentials for visible and hidden sector fields,
treating the system as a grand canonical ensemble. In order
to conduct the thermodynamical analysis, we calculate the
free energy of the system, to see which phase is thermo-
dynamically preferable, for a fixed temperature. In the case
of a hairless solution, we take into account the classical
formula F ¼ E − TS − μQ − μdQd, where E is Brown-
York quasilocal energy [4,5]. Nevertheless, this approach
may cause problems in hairy solution analysis, being
insufficient to capture the mass of the scalar field.
Therefore, we treat this problem evaluating the on shell
action in Euclidean signature F ¼ TScl, which enables to
take into considerations the nontrivial profile of scalar field
constituting the solution of the underlying system of
differential equations.
Solution of Eqs. (13)–(17) with ψ ¼ 0 can be achieved

analytically, giving the Reissner-Nordstrom (RN) dark
matter black object [31]. To proceed further and accomplish
the complete numerical analysis of the underlying equa-
tions, we implement the shooting method, integrating the
aforementioned relations from rh to rb, using the fourth
order Runge-Kutta method. From the set of free parameters,
we fix the scalar magnitude on the event horizon ψ0 and
pick rh, ϕ1, and χ1 to be shooting parameters. Moreover,
we impose values on both chemical potentials that serve as

constrains in our shooting procedure for ϕ1 and χ1. We set a
domain of shooting parameters from the series expansion of
the solutions near the horizon, then by using the iterative
bisections one finds a solution that meets constrains, with a
desired tolerance. Therefore, parameters fμd; αg, which are
controlling, respectively, amount of dark charge and the
coupling strength remain free; thus, they can be varied to
see their impact on the system in question. For conven-
ience, let us refer to the parameter ψ ð1Þ, as a condensation,
which serves as a handy analogy to holographic theory. As
mentioned above, in our numerical scheme, we treat μd as
an input parameter in our code; however, one might not be
interested in expressing these relations in a language of
chemical potentials. Therefore, one might compute the total
dark charge of the system

Qd ¼ lim
r→rb

1

4π

Z
S2

Bμνtμnν
ffiffiffiffiffiffi
−g

p
d2θ; ð26Þ

where tμ is a unit timelike vector and nμ is a normal vector
to the boundary. In the similar manner, we compute
electrical charge for Fμν.

III. RESULTS

We commence with the hairy black hole solution (HBH),
i.e., a system with an event horizon and nontrivial scalar
field profile. The parameter space of HBH can be illustrated
on a plane of chemical potential and Hawking temperature
(μ-T) as a triangular shape. That region is bound between
boson star phase from the left-hand side and generalized
RN solution from the right-hand side. A schematic phase
diagram has been presented in the Fig. 1, where both
mentioned lines are marked. Moreover, the influence of the
dark sector on phase boundaries is visualized by arrows,
showing the trend of the flow by increasing the hidden
sector chemical potential.
The hairy configuration can be achieved for a specific

value of the chemical potential. Below the value μRN scalar
cannot condensate and we get RN-dark matter black hole.
On the other hand, for the value greater than the critical one,
μc, the system becomes unstable. By stable hairy solution,
we mean a constrained solution of the equations of motion
(13)–(17) that fulfils the boundary conditions with desired
tolerance and its free energy is lower than the free energy of
RN and BS, making it the ground state of the system. We
can define μc as the chemical potential for which the phase
transition driven by temperature is no longer of second
order and the condensate collapses. In the range between
μRN and μc, we contend a typical second order phase
transition, depicted in Fig. 2. In the vicinity of critical
temperature, condensation can be described by a function
ψ ð1Þ ∼ ðTc − TÞ1=2. It should also be noted that establishing
an HBH solution requires relatively a large value of the
scalar charge. In our calculation, we used q ¼ 100 and a
small mass of m ¼ 10−6.

INFLUENCE OF DARK MATTER ON BLACK HOLE SCALAR … PHYS. REV. D 101, 084035 (2020)

084035-3



Let us now discuss physical mechanisms behind the
phase boundaries flow from Fig. 1. When we cross the line
of the critical chemical potential value μc, one encounters
the exotic phase, where for one value of temperature we
have two values of the condensation parameter ψ ð1Þ.
Moreover, by evaluating its free energy, we can find it is
so high that the hairy state is no longer stable—our

numerical method finds constrained solutions, but due to
free energy leap, they are not thermodynamically preferred.
The exotic phase effect occurs in case when scalar mass is
close to or equal zero, for a mass away from this limit we do
not obtain that phase. Instead, we have a sharp crossing,
from stable solutions below μc to the situation when the
equations of motion do not provide solutions with con-
densed scalar above the μc threshold at all. It is worth
mentioning that a similar condensation-temperature profile
has been shown in the so-called vector p-wave holographic
superfluids [32], but a first order phase transition was
hidden behind it. However, it was revealed that for the real
value of the vector field, the model in question gave us the
same description as holographic s-wave model with dark
matter sector [33–34].
Dark matter gauge field plays an interesting role in this

transition, as it accelerates the appearance, let us say, the
exotic phase. For a larger value of dark sector chemical
potential, ψ ð1Þ becomes double valued for the lower
chemical potential, which is depicted in Fig. 3, where μd
has gradually increasing value. Moreover, when system
enters the exotic phase, its free energy rises repeatedly and
exceeds the free energy of RN black hole, so the hairy
phase is no longer a preferred option. In this way, that effect
restricts the range of chemical potential where the second
order phase transition may occur, μc becomes a descending
function of the dark charge [see curve (A) in the Fig. 1].
However, it cannot be increased without a limit. For every
value of the electric charge, there exists a certain limit of
dark charge, below which a formation of scalar hair is

FIG. 2. Condensation ψ ð1Þ as a function of temperature for the
different values of μd and α ¼ 10−3. For μ ¼ 0.1, a typical second
order phase transition takes place, the dark matter presence
influences the transition point and the condensation.

FIG. 3. Double valued profiles of condensation as functions of
Hawking temperature caused by an increasing amount of dark
matter in the system with α ¼ 10−3 and μ ¼ 0.14. While the first
transition for μd ¼ 0.08 might still be considered as a regular, the
another strictly not—the value of condensation becomes double
valued for some range of temperatures. Moreover, these solutions
obey the boundary conditions but their free energy is larger than
both BSs and RNs; therefore, they cannot be considered as
thermodynamically preferred.

FIG. 1. A scheme of phase diagram of the described system.
Blue-yellow line indicates the border between boson star and
hairy black hole parameter space, while the red line depicts hairy
BH—generalized RN BH phase boundary. The arrows on the
scheme show us the flow of phase boundaries driven by the
chemical potential of dark matter. Lines have been split and
labeled from A to C, with a point D being the center of rotation of
left-hand side boundary.
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possible. Above it, such condensation cannot take
place and no stable solutions are found. This phenomenon
adds up both gravitational influence of the charge on the
metric and nongravitational coupling between both gauge
fields.
Now, let us draw our attention to the HBH-RN BH

(B) border. An interesting effect that hidden sector exerts on
the hairy black hole system is the shifting of the critical
temperature of the phase transition. The larger growth of
dark matter charge (and also μd) we observe, the lower
value of the transition temperature one achieves. Such
effect has been depicted in the Fig. 4, where the critical
temperature ratio described by the relation

δTc ¼
TcðμdÞ − Tcð0Þ

Tcð0Þ

is shown as a function of the chemical potential
of hidden sector normalized to the visible sector chemi-
cal potential. One can notice that the shift of the critical
temperature is proportional to the square of μd. Obvi-
ously, it cannot decrease as low as one wishes and a
certain limit exists which has been discussed in analytic
solution of dark matter charged RN-like black hole [31].
The descent of the critical temperature becomes steeper
for larger value of the chemical potential of the visible
sector. It can be explained by the nongravitational
interaction between fields via kinetic mixing term, which
plays a significant role when both fields are sufficiently
strong.
To proceed further, we shed some light on the influence

of dark matter sector on the black hole-boson star phase
transition in the stable area of small values of the chemical

potential [line (C) in Fig. 1]. This process is depicted in
Fig. 5, which asserts a phase diagram at the boundary
between hairy black hole and boson star. While the boson
star is a horizonless object, its Hawking temperature
remains undefined. However, it is possible to calculate
its characteristic—condensation and free energy as a
function of chemical potential. Then to obtain the phase
boundary curve, we start in the hairy black hole regime,
then one moves toward lower Hawking temperatures and
study the value of the free energy of the hairy black hole on
the way. When it exceeds the free energy of a boson star, for
the corresponding value of the chemical potential, the
transition point is found. Both phases of the system are
influenced by the hidden sector; nonetheless, the free
energy of a boson star is affected much less than that of
the black hole. Dark sector causes a significant drop of free
energy of a hairy black hole. It means that the stability of a
hairy solution is preserved for lower temperatures given the
presence of the dark matter in the system. Such effect
causes that hairy black hole solution is thermodynamically
preferable for the lower Hawking temperatures and limits
the emergence of boson star. The presence of α-coupling
constant slightly diminishes the space of parameters for
which boson star can emerge.
At last, it is sensible to mention some points that seem to

be dark sector resistant. One of them appears on the phase
boundary, labeled with (D) on the phase diagram scheme in
Fig. 1. This point or rather its neighborhood does not seem
to be susceptible on the dark charge presence in the system.
For a particular numerical example, like in Fig. 5, it is
placed around μ ≈ 0.1160942 and T ≈ 0.2929537. Another
one can be noticed in the condensation-Hawking temper-
ature dependence presented in Fig. 2. All the curves

FIG. 4. Relative change of the critical temperature of hairy
black hole—generalized RN black hole as a function of a ratio of
chemical potentials. The temperature ratio has been normalized to
the critical temperature of dark matter free solution,
where μd ¼ 0.

FIG. 5. Quasirotation of the phase transition boundary between
boson star and hairy black hole caused by dark sector charge with
α coupling equal to 10−4. It can be observed that the μ threshold
for hairy BH solution is significantly lowered and some param-
eter space of boson star is taken for the advantage of hairy BH for
lower values of the chemical potential.
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certainly cross each other in one point, located at ψ ð1Þ ≈
0.345 and T ≈ 0.3325. This interesting phenomenon shows
that while the dark sector may modify the phase structure of
the system and has an imprint on its critical quantities, there
exists a specific configuration of the system, that remains
completely untouched.
The points in question constitute the so-called isosbestic

ones [35], where the curves dependent on temperature T
and parametrized by values of dark matter chemical
potential, intersect. They illustrate the influence of temper-
ature on condensation ψ ð1Þ and chemical potential of visible
sector. At this point, we may perform a short analysis,
which would reveal the leading order term of the dark
sector influence. We take a following expansion of the
condensate:

ψ ð1ÞðT; μdÞ ¼ ψ ð1ÞðT; 0Þ þ μ2dψ
ð1Þ
1 ðTÞ þOðμ3dÞ: ð27Þ

The second order term takes the approximated form

ψ ð1Þ
1 ðTÞ ¼ ψ ð1ÞðT; μd1Þ − ψ ð1ÞðT; μd2Þ

μ2d1 − μ2d2
; ð28Þ

where in a certain example of curves from Fig. 2 we took
μd1 ¼ 0.12 and μd2 ¼ 0.08. The zero of this function refers
to the isosbestic point, where the contribution of μd is by
definition none. By calculating the above function with
help, the leading order of the influence of the dark sector
may be subtracted from the main function

ψ̃ ð1ÞðT; μdÞ ¼ ψ ð1ÞðT; μdÞ − μ2dψ
ð1Þ
1 ðTÞ: ð29Þ

In the similar manner, we can expand and analyze the
chemical potential as a function of Hawking temperature,
parametrized by μd from boson star-hairy black hole phase
boundary,

μðT; μdÞ ¼ μðT; 0Þ þ μ2dμ1ðTÞ þOðμ3dÞ: ð30Þ
We define μ1ðTÞ analogically to (28) with μd1 ¼ 0.2 and
μd2 ¼ 0.08 and perform the same transformation for
μðT; μdÞ curve as for ψðT; μdÞ in (29). The effect of these
transformations is depicted in Fig. 6, where all curves tend
to be much closer to each other than before. Obviously, the
total effect of μd is not ruled out completely, since it is much
more complex than in the considered expansion.

IV. CONCLUSION

In our paper, based on Einstein-Maxwell scalar dark
matter theory, where the hidden sector is mimicked by the
auxiliary Uð1Þ-gauge field coupled to the ordinary
Maxwell one by the kinetic mixing term with a coupling
constant α, we elaborate two scenarios of emergence of a
hairy black hole or a boson star. The main motivation
standing behind our research was to shed some light on the
influence of dark matter sector on the physics and thermo-
dynamics of these systems.
The obtained results reveal that the coupling between

visible and hidden sectors plays a complex role in the
behavior of scalar hair. The parameter space (μ-T), where
these solutions constitute a thermodynamically favorable
phase, is being narrowed on two boundaries and extended
to another one. The dark sector’s presence strongly reduces
the value of critical chemical potential, above which the
hairy solution becomes unstable. Moreover, the critical
temperature of HBH-RN-like solution is shifted toward the
lower value of Hawking temperature. However, the boun-
dary between HBH and boson stars is shifted toward the
latter. The presence of the dark sector lowers the free
energy of HBH system, which broadens the parameter
space available for the emergence of the object in question
by a noticeable extent, i.e., leaving boson star as an adverse
phase in the low μ regime. It appears that the free energy of
boson stars in the considered configuration reacts faintly to

(a)

(b)

FIG. 6. Panel (a) presents condensation profile after the trans-
formation performed in Eq. (29). The plot refers to the same data
as in Fig. 2; however, it can be seen that the separation between
curves is significantly smaller. In case of panel (b), which refers
to Fig. 5, all curves appear to overlap with the dark matter free
solution. The aforementioned transformation had removed the
leading term of the dark sector influence.
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the presence of Uð1Þ-gauge dark matter field. While the
response of the system is visible, it is much smaller in
magnitude than of the condensate around a black hole.
However, we suppose that interesting results may be
achieved for more robust model of a scalar field, e.g.,
containing self-interacting terms.
In the view of presented results, it seems that the hairy

solutions are not only battled by no-hair theorems origi-
nating from the theory of black holes, but also by a factor
that is commonly present in our Universe—the dark matter.
Even if such formation would be possible despite different
obstacles a significant abundance of dark matter may
prevent hairy solutions from emerging.
To visualize the impact of dark sector, we compute the

area of HBH parameter space between both phase boun-
daries. One can consider simple integration

R ðμBSðTÞ −
μRNðTÞÞdT of the curves from Fig. 5, which reveals that the
dark sector with μd ¼ 0.14 takes away approximately 27%
of the hairy black hole’s parameter space, compared to dark
matter free solution. It is indeed a significant difference,
because even if such formation would be possible despite

different obstacles a significant abundance of dark sector
may prevent hairy solutions from emerging.
The curves ψ ð1ÞðTÞ and μðTÞ, parametrized by the values

of dark matter chemical potential, reveal the isosbestic
points, where they all intersect. One has the specific
configurations of the considered system which is unaf-
fected by the influence of hidden sector. At the points in
question, we perform analysis revealing that the leading
order influence of dark matter on the condensation ψ ð1Þ and
chemical potential of ordinary matter is quadratic in μd.
As a concluding remark, we present promising future

research directions. We have elaborated the simple box-
boundary models of a hairy black hole and a boson star (the
so-called small boson star). The tantalizing question can be
asked about the different boson star configurations with
additional fields and potentials. Further investigations in
this direction will be published elsewhere.
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