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General geometric operators in all dimensional loop quantum gravity
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Two strategies for constructing general geometric operators in all dimensional loop quantum gravity
are proposed. The different constructions mainly come from the two different regularization methods for
the basic building blocks of the spatial geometry. The first regularization method is a generalization of the
regularization of the length operator in standard (1 + 3)-dimensional loop quantum gravity, while the
second method is a natural extension of those for standard (D — 1)-area and usual D-volume operators. Two
versions of general geometric operators to measure arbitrary m-areas are constructed, and their properties
are discussed and compared. They serve as valuable candidates to study the quantum geometry in arbitrary

dimensions.
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I. INTRODUCTION

As a nonperturbative and background-independent
approach to unify general relativity (GR) and quantum
physics, loop quantum gravity (LQG) has made remarkable
progress [1-4]. An important prediction of this theory is the
quantum discreteness of spatial geometry at Planck scale,
since the spectrums of the geometric operators, such as
volume and area, are discrete [5—7]. A key step in the
procedure of constructing these geometric operators is to
regularize the classical geometric quantities in terms of
holonomy and flux which have direct quantum analogs.
Different choices of regularization strategies may lead to
different versions of a geometric operator, e.g., the two
versions of volume operator [5,7,8]. Some consistency
checks [9-11] on different regularization methods have
been done in order to choose suitable construction and fix
the regularization ambiguity. It turns out that many geo-
metric quantities, including length [12-14], area [5,6],
volume [5,7], angle [15], metric components [16], and
spatial Riemann curvature scalar [17], have been quantized
as well-defined operators in the kinematic Hilbert space of
LQG [6,18-20]. The starting point of LQG is the Ashtekar-
Barbero connection dynamics of (1 + 3)-dimensional GR,
and this theory will be called (1 4 3)-dimensional standard
LQG in the following part of this paper. However, this
Hamiltonian connection formulation depends on the
dimensions of space such that the internal gauge group
is SU(2), since its definition representation and adjoint
representation have same dimension. This structure cannot
be directly extended to the higher dimensional case. An
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alternative connection dynamics of GR in arbitrary
(1 + D)-dimensions was proposed by Bodendorfer,
Thiemann and Thurn [21,22]. In their scheme, the con-
nection formulation is achieved by extending the Arnowitt-
Deser-Misner (ADM) phase space (1 + D)-dimensional
GR as a Yang-Mills phase space with gauge group
SO(D + 1), and extra Gaussian constraint and simplicity
constraint is introduced to eliminate the gauge degrees of
freedom. By such a scheme, the connection formulation
with compact gauge group SO(D + 1) is valid for both
Euclidean and Lorentzian signatures. The difference of
signatures is reflected by the plus and minus signs
respectively in front of the Hamiltonian constraints in
the two cases. In the present paper, the construction of
geometric operators in arbitrary dimensional LQG based on
this alternative formalism will be studied.

The phase space of the classical connection theory is
coordinated by a canonical pair (A, z%,) with nontrivial
Poission bracket,

{AY (%), 78, ()} = 2xP326051 60 (x —y), (1)

where k = 162GP*!) is the gravitational constant in
(1 + D)-dimensional space-time, f is the Barbero-
Immirzi parameter in this theory, the spatial indices read
a,b,c,...€{1,...,D}, internal indices read I,J,K, ... €
{1,...,D+ 1} and x,y, ... are coordinates on a D-dimen-
sional spatial manifold . This phase space is subject to the
Gaussian constraint

g]] = aaﬂ.aIJ + ZALIK”MK\J] =0, (2)

and simplicity constraint
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Siik = ”([11]”?@] =0, (3)

which induce gauge transformations, as well as spatial
diffeomorphism constraint and Hamiltonian constraint
which give the spacetime diffeomorphism transformations.
The solution of simplicity constraint links the momentum
#{; and spatial geometry by

w = Gy, (4)
where = represents “equal on simplicity constraint sur-
face,” e is the “D-frame” related to the inverse spatial
metric g% by g% = e¢e’!, q is the determinant of the
spatial metric g,,, and n’ is an internal normalized vector
such that e4n’ = 0. Also, on the constraint surface of the

simplicity constraint, one can define the spin connection
field T’ by [21]

Lyy = n[laanj] + eb[IaaeI;] =+ cmeb[163]7 (5)

where el = q,,e"!, and T, is the Levi-Civita connection.
Then on the constraint surface of the Gaussian and
simplicity constraints, the extrinsic curvature K,, of the
spatial hypersurface o is related to the SO(D + 1) con-
nection by

O
RG]
Based on these relations, the symplectic reduction of the
SO(D + 1) Yang-Mills phase space with respect to
Gaussian and simplicity constraints can be identified

with the familiar ADM phase space of GR in (1 + D)-
|

(AuIJ - Fau)ﬂb]]- (6)

dimensional space-time. Especially, the transformations
induced by the simplicity constraint only change some
components of AL/, while the Gaussian constraint induces
the local SO(D + 1) rotations. This classical connection
theory can be quantized following the standard loop
quantization methods, and the resulting all dimensional
LQG is equipped with a kinematic Hilbert space H =
L*(A,dugy) and the corresponding quantum constraints.
The kinematic Hilbert space is the completion of the space
of cylindrical functions and spanned by a basis of states
each of which is given by a network of holonomies, with a
specific SO(D + 1) representation assigned to each edge of
the network, and a specific coupling between the neighbor-
ing SO(D + 1) representations assigned to each vertex of
the network. The basic operators, including holonomy
operator and flux operator, act on a cylindrical function
f,(A) in H as

i:le(A) : f/(A) = he<A)fy(A>’ (7)

#(S) - £, (A) = —itcp Y e(e. S)REF, (A).  (8)

e€E(rs)

where h,(A) is the holonomy of A,;; field along edge e,
#M(S) is the standard flux operator corresponding to the
classical flux 7'/ (S) = [(dSz*/n,(S), with dS and n,(S)
being the measure and normal covector field on (D — 1)-
surface S respectively, yg denotes a graph adapted to S and
equivalent to y, RY = tr((!/h, (0, 1))TW90J)) is the right
invariant vector fields on SO(D + 1) associated to the edge
e of yg with 7!/ being an element of so(D + 1), and T
representing the transposition of the matrix, and e(e, S) is
defined by

+1 if elies above the surface Sand b(e) € S;

e(e,S) =14 —1

if elies below the surface Sand b(e) € S; e € E(yy),

0 if enS=@orelies inS.

Here y is such a graph that there are only outgoing edges at
each true vertex, and b(e) denotes the beginning point of
the edge e. In comparison with the standard LQG in
(1 + 3)-dimensions, a subtle issue in the arbitrary dimen-
sional LQG is how to solve the simplicity constraint
[23,24]. Up to now, the edge simplicity constraint operator
has been solved by restricting the representation labeled to
each edge being simple representation, while the anoma-
lous vertex simplicity constraint has several alternative
solutions which are called simple intertwiners. Besides, the
construction of geometric operators in H is also a com-
plicated issue. Although the candidates of the (D — 1)-area

|

operator and the D-volume operator in (1 + D)-
dimensional LQG were proposed following the same
procedure in the construction of 2-area operator and 3-
volume operator in standard (1 + 3)-dimensional LQG, a
systematic method to construct more general geometric
operators is lacking. The general construction method is
crucial, since there are more and more geometric quantities
as the increasing of spatial dimensions. Notice that for a
given geometric quantity, several different classical ex-
pressions with the basic conjugate variables could exist.
Hence there would be different ways to construct the
corresponding geometric operators. Notice that the spatial
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metric ¢,, is determined by the momentum variable by
qq*® = 37z}, q denotes the determinant of g,,. Then
we can define the de-densitized dual momentum /g’ as a
function of z¢, on simplicity constraint surface, with z%/
as the inverse of 7%, satisfying § 74,7}/ = 5¢. Now we can
give the relation between the spatial metric ¢,, and de-
densitized dual momentum ,/gz’;/ by

1
Qab = 5\/6_17Ta11\/6_17féj, )

where /qr,;; plays the role of coframe. Therefore, if one
could construct an operator corresponding to the de-
densitized dual momentum ,/gz}/, a building block for
all geometric operators in arbitrary dimensions would be
ready. In this paper, two strategies to construct such a
building block operator will be proposed. In the first

strategy, we employ the expression

vart @) = L. v o) (10
where V(x,0):= [;d"y,/q(y) and 03 x is a proper
small open D-dimensional region. In the second strategy,
\/ﬁﬂy is purely expressed by conjugate momentum z{;.

This paper is organized as follows. In Section II, we will
construct general geometric operators by the first strategy
mentioned above. First, Thiemann’s construction of length
operator in standard (1 + 3)-dimensional LQG will be
extended to construct a length operator in the all dimen-
sional case. Then, we will construct an alternative two-
dimensional area operator by using cotriad as building
blocks in the standard (1 + 3)-dimensional LQG. The
method can naturally be extended to construct a 2-area
operator in (1 + D)-dimensional LQG. Finally, following
the construction procedure of the 2-area operator, by using
the de-densitized dual momentum as building blocks,
general m-area operators for m-dimensional surfaces in
D-dimensional space will be proposed. In Sec. III, certain
special cases of the general “m-area” operators and the
problems related to their construction will be discussed.
The consistency of the alternative flux operator, which is
used to construct the general m-area operators, with the
standard flux operator will also be checked. The second
strategy to construct general geometric operators will be
discussed in Sec. IV. The de-densitized dual momentum is
totally given by the conjugate momentum in this strategy.
By suitable regularization, its components can be expressed
in terms of flux and volume properly. Then it becomes an
operator by replacing the flux and volume by their quantum
analogs. By using this well-defined dual momentum
operator as building blocks, we will get the general geo-
metric operators corresponding to the m-areas which are
totally composed with flux operator and volume operator.
Certain special cases of the general geometric operators
and their virtues and problems will be also discussed.

Our results will be summarized and discussed in the
final section.

As two frameworks of connection dynamics and several
geometric operators are involved, it is necessary to clarify
some expressions and indices appeared in this paper. We
denote by Al, Ej?, and el as the Ashtekar-Barbero con-
nection, densitized triad (which is also the conjugate
momentum in this theory), and cotriad respectively in
(1 + 3)-dimensional standard LQG, where q,, = e’e;; is
the spatial metric in this formulation. We denote by A/,
ﬂ%L, and \/Eﬂéj as the connection, conjugate momentum,
and de-densitized dual momentum respectively in all
dimensional LQG. Besides, in the following part of this
paper, the 2-area and 3-volume operator constructed in
[6,7] will be called standard 2-area and usual 3-volume
operator (or just area and volume operator) in (1 + 3)-
dimensional standard LQG respectively, which are totally
constructed with the standard flux operators in this theory
and the usual volume operator takes a special internal
regularization. Similarly, the (D — 1)-area and D-volume
operator constructed in [22] will be called standard (D — 1)-
area and usual D-volume operator (or just area and volume
operator) in all dimensional LQG respectively, which are
also totally constructed with the standard flux operators.

II. GEOMETRIC OPERATOR IN ALL
DIMENSIONAL LQG: FIRST STRATEGY

In the standard (1 + 3)-dimensional LQG the volume
operator, area operator and angle operator were directly
constructed by the standard flux operator £(S), while the
length operators were constructed in several different
ways [12—14]. The construction of these length operators
involves two steps, the classical length of a curve is
expressed by cotriad ¢!, in the first step. In the second
step, different expressions for e/, are used in different ways.
In Thiemann’s construction of length operator, el is
expressed as [12]

: 2 .
eq(x) = —{Ay(x). V(x.O)}. (11)
KYBI
wherein yg; is the Barbero-Immrizi parameter in standard

(1 4 3)-dimensional LQG. In the other construction e/, is
expressed as [13,14]

el ENER
~ sgn(det(E))+/[det(E)]

In contrast to the standard flux operator £/(S) corresponds
to the classical flux E'(S) := [; E“n,(S) with n,(S) being
the normal covector field of 2-surface S, the expressions
(11) of cotriad imply an alternative flux operator E',(S)
whose expression involves the commutator of holonomy
and volume operator [9]. We will introduce its detail in

eq(x) (12)
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Sec. II B. The consistency checking of £, (§) with E'(S)
indicated a suitable volume operator V and fixed its
regularization ambiguity [11]. We will refer to this V as
the usual volume operator. Thus it is also reasonable to
consider alternative ways in the construction of the general
geometric operators in all dimensional LQG, which are
based on two different expressions of the de-densitized dual
momentum /gr.’. In this section, we will discuss how to
construct general geometric operators based on the expres-
sion (10), which is similar to that of Thiemann’s length
operator in standard (1 + 3)-dimensional LQG.

Let e, be a small segment of a curve e with coordinate
length ¢ — 0. The dual de-densitized momentum can be
smeared over e, as

(D-1)
px

he {he!. V(v.0)},

(13)

where 7, is the basis of Lie algebra so(D + 1), h,_denotes
the holonomy of the connection AL along e, v is the
starting point of e., and s is the parameter of e.. This
smeared quantity can be quantized directly as

z(e.) ’=/ \/@ryr,,égds = -

(D-1)
ipkn

i(e.) = he [hz! V(0. 0], (14)

which is called smeared de-densitized dual momentum

operator, and where V(v, ) is the usual D-volume opera-
tor which is totally constructed by flux operators [22].
|

It will be used as building blocks to construct general
geometric operators in all dimensional LQG.

A. The first length operator in all dimensional LQG

Classically, the length of a curve e reads

Le:/ds\/qabé“éb(s).

Partitioning of the curve e as a composition of T segments
{e6,1eN,0<t<T}, ie.,

(15)

e = efoe5o - - oefo- - oef, (16)

wherein o is a composition of composable curves which can

be carried out with
es:(t—1)e, te] - o, s, > €5(s,),

(17)

and € = % Then, we have

T
L, = 1in32Le;-, (18)
U

where  one has up to  O(?), L=

\/% (Jor ds/qeTars)( o ds\/qé’n}’). Then our task turns
to be constructing the length operator lA,ef of a small curve
ef. By Eq. (10) one has

) = “ ) (A (0. VDA ).V D) (19)
It is easy to see that in the limit ¢ — 0, we have
L. = |- etateonten) (20)
Hence, by Eq. (14), L(e.) can be quantized as
L, = \/ —%tr(@(ee)@(ee)) = (\%;th) \/tr(heC (g, V (v, O))he [h7), V (v, 0)))
- (\l/g;:h) \/(D + 1)V (v, 0) = te(h,, V(v,O)hz' V(v,0)) — te(V(v,O)h, V(v, O)A;") + te(h,, VZ (v, O)AZH).
(21)

Denoting 7, :=1IV(v,0) — h, V(v,0)h;!, we have

e

. (D-1)
V2pxh

L(ee) =

Ju(Z.ze,).

S
—~
[\ )
[\S)
~—
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Note that £, = £} because of h{ = h;' and V(v,00) =
Vi, 0). Therefore L, is a pos1t1ve and symmetric
operator. Then the length operator for the curve e can be
defined as

T
=1 L. 23
Lm[); o (23)

Note that, although the expression of ﬁe contains the
summation of infinite terms at the limit € — 0, only a
finite number of terms are nonvanishing when it acts on a
cylindrical state f, since the volume operator only acts on
nontrivial vertices v of y. Thus the regulator € can be
removed in the graph-dependent manner. In the rest of the

paper, all the limits of this kind of infinite summation of
|

We first consider the alternative flux Eéalt>(250]2) i= [ d(*S)E% n

operators can be understood in this way. The domain of L,
is the Dth order differentiable cylindrical functions satisfy-
ing the simplicity constraint in Hy;,, and the demonstration
of its cylindrical consistency is similar to that in the
standard (1 + 3)-dimensional LQG [12].

B. 2-area operator in all dimensional LQG

Although the area operator of 2-surface can be defined
by the flux operator naturally in the standard (1 + 3)-
dimensional LQG, the construction cannot be directly
extended to higher dimensional cases. In order to construct
a 2-area operator in the all dimensional case, let us come
back to the (1 + 3)-dimensional theory to construct an
alternative 2-area operator.

«(3Ss,,) [9.11], where E% . :=1e' e

(alt) = 2 Se e

(alt)

(25012) €abce,bej U with 1, 7,7, j/,= 1, 2, and S := sgn(det(e)). Here ¢{, ¢§ are two linearly independent segments

beginning at v with coordinate length ¢, é?, é$ are their tangent vectors respectively, and %S, ,, 18 a proper open 2-surface with
coordinate area > and containing e, €5 and v. Then at the order of O(¢?), we have

2

1 €
E(a t) (2301) — m

1

1
= Str(eh (R

(K}’Bl)2

~ (krm)

Str(r,»rjrk)eieke”e, és

tw(zih (g V(x, 0)}S{h.

b c

V(x, D)}he;-{he_;l, V(x,O)})ev

V(x,00)}hee )e”. (24)

Notice thatin the third step of Eq. (24), the ordering of holonomies /¢ and h,. was changed, while the contraction of their indices

was kept unchanged. Classically, itis easy to see that Efj,) = E*,or E l(.ah) (S,,) =

E;(%S.,,), wherein E* is the density triad in

standard (1 + 3)-dimensional LQG. Thus we can define the alternative regulated flux operator by

1

2 (alt) 2
E; S =
( 012) (kypih

t(zihes [t V (x, D)IS[hg!, V(o O)]heg e (25)

Then a corresponding symmetric operator can be defined as

—_

~al (alt) (al
Eilt(zsolz) 5( ' (2S<>12) + E t (2S<>12)>’ (26)

where we ordered all the variables following the scheme in [9,11]. This ordering ensures that £ (25, ) is consistent with the

standard flux operator £'(%S, ) at least in certain cases. Now, the classical identity Ar(%S, )~ \/ E'(’S, )E/(*S,,,)5

indicates that we can define an alternative area operator by

ij

At (o)) = B (S, ) BV (S.,,)57. (27)

The alternative area operator can also be understood in another perspective of geometry. The classical corresponding expression
of Ary(*S,,,) can be written as

AL(S,,) % /8,5, E(S.,,) ~ \/—qbdqw Vebes el i, (28)

084032-5



GAOPING LONG and YONGGE MA

PHYS. REV. D 101, 084032 (2020)

Hence we have

2%m¢wmw@4ﬂwm@wﬂ<m

where L(ef):= [, ds(e VN Qap?é? mer/qupet el (v). Note
that we also have
2
wwu_mﬁiLﬂﬁﬁl, (30)

=0 L(ef)L(e5)

where 6, is the angle between ¢¢(v) and &5 (v). Therefore we
obtain

Ar(®S, ) ~ L(e{)L(¢5) sin 6y, (31)

which is the standard expression of the area of 2S<>u in

Euclidean space.

The advantage of the alternative 2-area operator (27) is
that its construction can be extended to the all dimensional
case naturally. Let us define an alternative “flux” operator
suitable to (1 4+ D)-dimensional cases as

EMen ( Solz) =

(g

I] ID 1
(gen) (2S<>12)

1 -1
ol hy {hZ)

where C = &
2/ (D-1)"

indices, e/1-/o+1 is the Levi-Civita symbols in the internal
space, tr¢1-°2 represents tracing the indices of rf‘ D he , h‘1

M is (D — 1)-tuple totally asymmetric
I...

and rflz)_z Iz he , hef separately. Note that S takes the value of

1if (D +1)is odd while takes the value of 1 with a sign of
det(n) = 55 €aarpy..ap,€11,1,..1,0,7 0 I Kigbi I

ol Kngbnln o if (D + 1) is even. Here €a,..ap 1S the Levi-
Civita symbol in the external space. The quantization Sof S
will be introduced in the Appendix. Then the area Ar(%S,, )
of the 2-surface %S, can be promoted as an operator in the

all dimensional case by

—

2 gen 2 M
Ar(’s,,)) = \/Eﬁ;’ (%Ss,,) Egen(®Ss,,). (33)

where

Now we need to show that the classical analog of Ar(/zS\o )
is exactly the 2-area. Note that at the order of O(e?) the

classical analog of égem (°S,,,) reads

V(v, D)}S{h;;l, V(v,0)}h,)e”

P A et V(0.0)}8{Ap, e V(0. 0)})e

C . .
= — el oKL i SEl Gy . (35)

C I...Ip_1KL¢tveg,e el
_ sl doakbgere (g gl
(kph) -
X hee[hg!, V (0, 0)|8[hz!, V (v, 0)) e e
(32)
|
Egen)<25<>p) _ C 2€1]...1D_11<Ltre1.e22(7;,1
’ (kB) -
= c eel T KLir (7 TJ‘JII) tr(z 't
(D-1)

which is the analog of the alternative flux (24) of (1 + 3)-dimensional standard LQG. Hence, at the order of O(e*), we have

CZ

5MM’E Egen) (2S<>12)

(gen)

1 sa b 1y na
2€ qad 4pp' €, € € el, e
= (L(ef)L(e5)sin6),)*,

which is extended from the calculation of §; /Efm( So, ) Eiy

! e 1/ i
e

K L Y] 1T
ﬁé‘ét( 1)'2‘5[ ] a\/_ﬂ'aK ejfﬂbILelje \/aﬂ(ll(/l/efr\/aﬂ'b/lLé‘lj

(36)

(%S, ,,) that comes from Eq. (28). Therefore, the classical analog

of Ar(zSolz) does correspond to the classical 2-area expression L(e§)L(e5) sin 0.

084032-6
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In the above construction of Ar(%S, ), we generalized
the alternative 2-area operator in the standard (1 + 3)-
dimensional LQG to the higher dimensional case, and kept
the authentic ordering of its constituents, which has been
shown to be consistent with the standard flux operator in
certain cases.

C. General m-area operators in all dimensional LQG

The above construction of the 2-area operator inspires
us to consider the more general case. We will use a similar
way to construct m-dimensional (1 < m < D) area oper-
ators in (1 + D)-dimensional LQG. Consider a partition
ms — UT ’”S’ of an open m-surface ™S, with '"Sglm
being closed m- surface with open interior ™S’ , ¢ being the
labeling number of these component m-surfaces in this
partition, and 7 being the total number of them. The
arbitrary small m-surfaces ™S, ~has coordinate area €”
and contains ef,es,...,e;, and v, where the m small
segments e, e5, ..., e;, have common beginning point v
and coordinate length ¢. Their tangent vectors
&4 (v), e5(v), ..., é%(v) at point v span an m-dimensional
vector space. A local right-handed coordinate system
{s1,...,8,} can be defined such that » = (0,...,0),
t(ef) = (0,....5,...,0)[ ., & = (%) c, and e, es,

., e are its positive oriented coordinate axis, where
1 =1,...,m, and #(ef) is the target point of e¢. The classical
expressmn of the m-area of "S reads

Ar(ns) = S Ar(rs, ) =S / ATy dsy,

(37)
!

€

1 1m m
Efgan(

) (((ﬂDK);xl/)mi

Soin) = tr( I‘J‘TI"J”)S\/—ﬂall 151 ,tr(zh 2TI”J”)\/_”
e
vm o
I nJn
X 5Jm_ljmtr(’r ”’J”’T]Z‘J/’;)\/.ﬂal:l "’e,l . .e,nZ”G’

1€ e 1 11 1212
)t (18 g, T8 T

where

. .d .
e e, reline e, en

1
det("q) = "qaa) -

qamam

(38)

denotes the determinant of the metric "g,, on ™S,
induced by ¢,;. To construct the m-area operator, we need
to consider the following two cases separately.

1. Case I: m is even

Taking account of the identity (9), we define the m-form
component

=1, 7
E(gen) \/—_Sfﬂal 9y Jz\/_” o e

J, 1,J,a .a
=1 m-1 mdm a1 m el
x \/—”am 1 5],,1,11,,, ﬂﬂa”, e, ...e el

(39)
such that
det('"q) = F {éen§m E(gen)ll Ay (40)

The general flux of El (e )”’ is defined as

E flge}; <>1m / / gen % dsy.. : (4 1 )

Then, up to O(e™!) we have

I j”

ttndsy .. .ds,
LT She LV (0, D)} ke (G V(0. 0)})en

Inspired by the ordering of the alternative 2-area operator, the general flux can be quantized as

T im ([ (D=-1)"
E(gen) ( S<>|m) - <(iﬁKfl)mW

where
Per. = h,ch

Here we denote

65...he;_lhefnvtot(v,D)h;;h !

(42)
>tr 1 e,,,( |J15J]J2 1212--'5,]m_|JmT£:F:L);]ml§e?)€ll“-l'n’ € — O’ (43)
hgh hg. (44)
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Vi, 0) = D~ (=120 (0, )V (0.0).. Vg (0. D)V, o (0.0).. 7, (0.0), - (45)

where ,, ..., 1,, takes values from + and —, 8(1, ..., 1,,) is the total numbers of — in {1, ..., 1,,}, and thus V', (v, J) denotes
one of the elements of the matrix

A

<V+1<m> Vo0, 0) oo Voo (0.0) V*’”(”’D)). (46)

A A A A

V—l(vv D) V—Z(U’ D) e V—(m—l)(v’ D) V—m(v’ D)

Notice that V/,, (v, 0) is the D-volume operator and the index 1, 1 are used to label how it acts on the holonomies in Eq. (44).
Our requirement is that V., (v, [J) acts on the holonomies except he‘f1 on its right, while V_, (v, [J) acts on all the holonomies
on its right. An explicit expression for them can be given by V_,(v,[0) = h;gl V (v, [0)h, and V_(v,0) = V(v,0). The
symmetric version of the general flux operator reads

T 1
Iyody i 1 L (m Iy o
B ("S.,) = 5 (Bl (78.,) + B (75.,.) ). (47)
Since classically one has
AX("S) = lim >~ Ax("S,,,) = lim Z VEn (780, ) Egenty..1, ("S0,,). (48)

we propose the m-area operator as

Ar("S) —hm Ar("S, ) —hng Z \/Egen ("S,, E%f“, (S, ) (49)
le le

Similar to the construction of the length operator L,, the regulator ¢ can be removed in the graph-dependent way.

2. Case II: m is odd

Similar to case I, classically we define the m-form component:

Il 0, _

(gen) \/—

Note that there are m + 1 internal indices in (50), while (39) contains only m internal indices. Then it is easy to see that

N L TRV SV TR 2. i (50)

T ) S
det( C]) :E(g]en) E(gen)lll...lm- (51)

The generalized flux of the m-form can be expressed up to O(e"*!) as

11] Im m 111 Im
gen ("Ss,,) = gen ds;...ds,,
— II [//I/I I J I//J/z/
— 1
- \/W g P tr(T ‘71”1’1’)5\/5%1 U'(T : 27'-1’2’]”)\/_71-112 6]213
- m

//J// .a
X 5_]’"71] tr(rlm "‘TI//]//)\/_H ell e ’l~~-’mdsl'”dsm

Im

D — 1 m
= (W)u] “n (g Q;llrg.z’z(s,z,}...a,m 7" Shee {hg! V(0. O} by (B V(0,0)})en
(52)

Following the same quantization procedures as case I, we have
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—

(D—-1)"

gl Ay (m — ef...e, 11, I,J, o oy
B 520 = (Gpipey ) O SRR (53)
where Per. was defined by (44). The symmetric generalized flux operator can be defined by
7T Ly (m Vil om 01
Bl (18, o= (Bl (75.,) + Bl (75.,.). (54)
Again, classically one has the area expression
Ar("S) = lim 3 Ax("S,,,) = lim 3 VEi " ("Se, ) Egenyr,.,("S.,) (55)
olm
Hence the m-area operator for this case is proposed as
Ar("S) = lim >~ Ar("S,, ) = lim Z \/ Bl (05, VB, ("S.,,). (56)
)Yls

lm

III. ISSUES OF THE GENERAL m-AREA OPERATORS

A. The ambiguity in the construction of geometric operators

Let us consider two special cases of the general m-area operator where an ambiguity in the construction of geometric
operators will appear. In the special case of m = 1, the general m-area operator of S, becomes a length operator of e as

—

La(e) = \/ Exeh(e)ES7 (e9), (57)
where
B ey = P =V oy 0, o) (58)
gen 1ﬂ1<h\/§ ¢ e s e )
From Eq. (57) we get
L) = LoD o 00 V0. D) (=) — (o) 2V (0. D) (=) K (o) (. ) () 59
@) = T N ) V. DV D) Y = () V0. D)), e V(0 D) - (59)

Recall that the generalization of Thiemann’s length oper-
ator was given by Eq. (21), which is different from Eq. (59)
formally. In fact, this difference comes from the different
choices of the ordering of the holonomies and volumes in
the expressions of ¢,,.

In the case of m = D, the general m-area operator of
"S,,, becomes alternative D-volume operators as

VOlalI(DSOID) = \/Eélelnll" (DSOID)E?;:IH (DSOID) (60)

for odd D, and

VOlalt(DSOID) = \/Ege“ " (DS<>|D)E%ICHI,” (DS<>10) (61)

for even D. The alternative D-volume operators (60) and
(61) are totally constructed by the dual momentum operator
which involves the usual D-volume operator [22]. There is

an analogous alternative volume operator V/ol\flﬁ‘ in the
standard (1 + 3)-dimensi0nal LQG [25]. Consider the case

of D = 3 and denote by Volil! the operators (60) and (61) in

alt

this case. It is interesting to compare Volg‘ﬂ with Voljjf
There are the following two main differences between

them. First, the dual momentum used to construct Volgﬂ is

s0(4)-valued, while the cotriad used to construct Volfﬁﬁ1 is
Lie algebra su(2) valued. Second, the construction schemes
and ingredients of the two operators are different. To

construct Volij!, one employed the classical identity
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Vol'®(R) = [, d®x|det(e)| with Eq. (11), where V(v, ()

alt
is quantized as the usual volume operator [7] in standard

(1 4 3)-dimensional LQG. To construct Volzﬂ, we employed

the classical identity VOIl(R):= [, d’xy/det(q) with
Egs. (9) and (10), where V (v, D) is quantized as the usual
volume operator [22] in all dimensional LQG. It should be
noted that, since all the spatially geometric quantities can
be classically expressed by the frame or flux, while there
are alternative regularizations for them, the ambiguity which
appeared in the construction of the above m-area operators
is rather general in the construction of other geometric
operators.

B. The issue of simplicity constraint

In the construction of geometric operators in all dimen-
sional LQG, there is the issue of how to carry out the
simplicity constraint. Classically, on the simplicity con-
straint surface of the phase space, one has 7{, = Zﬁn[le%

and 7/ = 2, /g"'n'¢}. Hence the identity (10) holds. By
quantization, one expects that this “simple” property be
transformed as the requirement to the right invariant vector
fields such that ]V[’RZ[K] =0, Vb(e,) = v, where N is the
operator of an auxiliary internal vector field which plays
the role of n’, and b(e;) denotes the beginning point of e;.
In the construction of a general geometric operator,
usually there would appear the following term acting on
a state f, as

he-:; ...he-;;...V’glheQ VP fys (62)

where f, is supposed to satisfy the simplicity constraint
by labeling its edges by the simple representation of
SO(D + 1) and its vertices by the simple intertwiners.
Note that the volume operator can keep its geometric
meaning only on the state satisfying the simplicity con-
straint. However, the holonomy operator may change the
simple intertwiner into a nonsimple one. Suppose that f,
satisfy the quantum simplicity constraint. Then we have

he(A) - f,(A) =

Equation (63) does not vanish unless N oo h,(A) =0.
This condition could not be satisfied for the general
holonomy #,(A) in the construction of the general geo-
metric operator. Hence, the operator (62) already lost its
geometric meaning. One possible solution to this problem
is to introduce a projection operator 5, which projects the
space of the kinematic states into the solution space of
simplicity constraint, and insert it into the two sides of each
volume operator in (62) to define

NURL £ ANIRI h (4). (63)

hé}...h;}...ﬂﬁ’SV’é‘ﬁsheq PVEBshys . f,.  (64)

Generally, the degrees of freedom that should be eliminated
by the simplicity constraints in the construction of a
geometric operator are still unclear. This issue needs further
investigation. Moreover, there is the issue of anomaly for
the quantum simplicity constraint [22,23]. It is argued that
only the weak solutions of the quantum simplicity con-
straints have the reasonable physical degrees of freedom
[24]. In the next section, we will introduce another scheme
for constructing general geometric operators, which leads
to a better behavior of the operators concerning the issue of
simplicity constraints.

C. Consistency of the alternative flux
and the standard flux operators

In the special case of m = D — 1 the m-area operator
introduced in the last section is alternative to the (D — 1)-
area operator defined by the standard flux operator. It is
worth checking whether the two versions of area operators
are consistent with each other. Now we consider the case
that (D — 1) is even. Since the alternative (D — 1)-area
operator consists of the alternative flux operator,

Al ((D-1) g

Talt <>(p_1>>

(65)

the necessary condition for the consistency of the two
versions of area operator is the consistency of
Al ((PVS,, ) with the standard flux operator
ﬁ”((D*I)SO(D_U). Now we check this issue. Note that the

action of volume operator in the expression of the standard
flux on a cylindrical function f, is given by

V(U’ D) : f}/
i? o=
(hKﬂ> 1 Creg. 757 D! Z 9e,.....ep 'fyv
e1,....ep€E(y),e1N--Nep=v
(66)
where
1 . .
Aey...ep = Esgn(det(el(l)), s (ep(0)ersn .. 1,,
1K, 1] I,,K,Z
X RéJRe‘1 ]Re’:Kl ...R, Re,,K,,’
(67)

with RY := tr((z!/ h,(A))T
is relabeled as (e, e, e, ...,
of Eq. (67). Let Ty -1

’ °1,(D-1)

%). Here the set (e, ..., ep)
e, e,) in the right-hand side
be a spin network state which

intersects the surface (P~VS,, 1oy, by an inner point v of its

edge e(. By the identity
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V(oD@ O = (pP = S g, (68)

the action of Eyb "’ ‘((D*”SO(D_I)) on T},.(D—I)SOL(D_” reads
EII/...\IU,I (D—I)S T i% rcg ( - 1)( ) t (u 0 15 17]2 5 Iip-nJ (p-1)
gen 0(0—1))' A = (ip)” (ircp) P~V /(D -1)! - (T o Ointey oo b o

17 I K
Xheehee...h € h e )Psel/l]/lll]/l_nlil]l RIJR ] ]Re

"’(1)72) ¢(p-1

-1 1 1 1 - UD-1) . .
Ok het1 h Sh e h. ¢y l))el >0-T, w LR
Creg. (D_l)( - (1

D=1
2

- D—-1 !RI’J’ s b

D'(lfucﬂ)D1 (D-1)! 4) (D= DRe e P

K/...

XRannR

~ (inwp)?

9
°1(D-1)

(69)
as €—0, where e =¢f, € =¢, e=¢ e =¢5....e,=¢€5, e, =€, n= DT‘I, equation
lim_q tr(z b, REERZ!) = 5{?5% was used, and the symbol ~ represents “be proportional to.” Hence we obtain

) 5 inkp (D-1)
ﬁljt((D 1)S°<D—1>) ' TV-(DH)SO].(D—I) - Creg'\/i D ( 2 ) Rg ’ T77<D71>501,(D—1)' (70)

Notice that there is the ambiguity of choosing a suitable projection operator P depending on how to solve the quantum
simplicity constraint. This leads to the undetermined factor ¢, in Eq. (70), which is still an open issue for the alternative
flux operator. Recall that the action of the standard flux operator reads

ﬁ.IJ((D—l)S .T v,

<>(n_1)) 3 — 21flKﬁR” (- 1>S<>] . (71)

(D-1) (D-1)

Therefore, the actions of #/ ((°=Ds_ ) and 2/ ((P-1s, o) onT, wong, are equivalent up to an undetermined factor

alt 1(D-1)

O (D-1)

in the above case.

IV. GENERAL GEOMETRIC OPERATOR: SECOND STRATEGY

Another way to construct general geometric operators in all dimensional LQG is to express the de-densitized dual
momentum by the momentum variable z{, as

L, 0,0, ﬂ.b]] 7 ﬂ.an,,
LK, 1K,/ (72)

1
(D-1)! aalbl anbne

sgn(det(z))| det(z) |5~

\/*IJ'\

for D = 2n + 1 is odd, where

1LJ,...1,J b1 K, a b K,.
iyl 70 ® o (73)

det(r) := b €

1
2D! €aa,b,...a,b,
and

2 1 b,J arI,K, brJ 7 1,K, b,J
D=1y Carbyanb, V€Il |J ot | K B2 g R e

- n 74
ddet(r)%= 74)

\/C_In'allll(l =

for D = 2n is even, where
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1
I ._ I1J,...1,J, DKy _a, _bK,
V= D|€a1h|-.-anb e P |K1”J| Lk, 7,
a)’l bVle'l
X g Ty, (75)

and ddet(r) := V'V, = (\/q)*P~2. Then, we can regu-
larize and quantize them through the flux operators,
volume operator and so on, by taking account of
Egs. (9), (77) and (80). This strategy is similar to that
used to construct the other two versions of length
operator [13,14] in the standard (I 4+ 3)-dimensional
LQG. In this section, we will first extend the con-
struction of the length operator in [14] to all dimen-
sional theory, and then follow a similar strategy to
construct general geometric operators.

|

1K, (D—1 gi
€ iy €110, 1,0, 7 ( Sl)”J]K]

A. The second length operator in all dimensional LQG

Let us recall the classical expression (18) of the length L,
of a curve e. The length segment L, related to an arbitrary
segment e can be rexpressed by fluxes following a
partition of the neighborhood of e¢ in ¢ as follows.
Choose a set of (D—1)-faces (P7'S,,....P71S;, ...,
D‘ISD_I), i.e., (D — 1)-hypercubes, with coordinate vol-

ume P~V intersecting at e,. The normal covectors
(nl,...,nk, ...,n2=1) of these (D — 1)-faces are chosen

to be linearly independent so that

éleleaalaz...au,l = €i..ip, nll] nfll;) ll ’ (76)
where €; ; . is the (D — I)-dimensional Levi-Civita
symbol. Taking account of the expressions (72) and (74)
for \/qm,;;, we can define the smeared quantity

(P10, glnKn (P=1§ip2) 7/

vk, (P1S0-1) (77)

leE,IJ = (

- 1)vg?

for D =2n+1 is odd, where V = J5 dPx| detzt|v 1, and [, is the D-hypercube which contains point » and has

coordinate volume €. Here det(r) was smeared as det( )p) =x(p, A\, ..

. Ap) with

1
ﬂ(p’Al""’AD) = VOI(AI)...VOI(AD)AdDXI.“/O,dDXDXAI(p’XI))(A2(2p’XI +x2)--~)(AD(DP,x1 ++XD)

1
1, ... 1,J
S D! €aa1b1...a,,bn€ "

a A biK, a, n
fywyl A T

b K, (78)

n

where y A (p, x) denotes the characteristic function in the coordinate x of a hypercube with center p, which is spanned by the

D right-handed vectors A" := ANigii=1,..
coordinate volume vol = Al...AP det(?', ..., 7P) = €P

=1

where (-,

the lower indices A; = (A}, ...,

2
(D= 1)1 i

X ”IMKH (D_ISiD—Z)”‘In

lee 1k, = (=

SRILE

Dern,. 07 k(P78 72K (P15 7

K, (D—l SiD—l ) VD€3_2D

.D, with 7' being a normal vector in the frame under consideration, and has
. Thus one has

T Pl).

-} is the standard Euclidean inner product and ®(y) = 1 for y > 0 and zero otherwise. Also, in Eq. (78) we used
AP) to label different hypercubes, see [22]. Similarly, we have the smeared quantity

(79)

s, (P18

(80)

for D =2n is even, where V/(p) is also smeared as V/(OOP7'):= [vol(T)]”~* [ V/(p)dp®, with V/(p) =
Vi(p, A, ..., Ap) and
1
VI(P, Ay, .. Ap) = VOI(Al)...VOI(AD) l del-" [; deD)(Al(p,xl))(Az(2p,x] +x2),“)(AD(Dp,x] + -4 xp)
1 biK b b
XEé‘albl...anbhelhjl'”1"‘]"”[ K, ﬂj: 17[7721(271"12 2 71'7: ”71' :K” (81)

similar to the definition of z(p, A, ...

,Ap). With these smeared quantities, we can reexpress the length of a curve as
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[
~1HE(82)

L= lig33L, = 3>

Correspondingly, the length operator based on this ex-
pression is given by

La; A
L, =1lim Eléi (1 (83)

e".I])

An alternative formulation reads

_hmz \/1 I (L) + (1 ). (84)

e—0

Now we need to define the operator /. In all dimensional
LQG [22], the fluxes and volume can be promoted as
operators immediately. The action of a flux operator on a
cylindrical function f, reads

inkp Z

e,€E(y[P157)

#l(P71sh) - f, = e(e,. "ISORY - f,. (85)

where E(y[P~!S']) denotes the collection of the edges
intersecting the face ?~'S%, and R is the right invariant
vector field on SO(D + 1)  h,(A). When D is even, the
action of the volume operator is given by

with
1 i’
. N
Viy = DI g s(ers....ep)de,  ep
“ey,....ep€E(y),eN...Nep=v
Py I K, 11 n ¥
de,.....ep, = €11,0,1r0,...1,0,Re) 'R Re,, Re’K ; (88)

wherein the set (ej,...,ep) is relabeled as (e, e,
en en). When D is odd, the action of the volume
operator is also given by

VDF ' f}/ (hKﬁ>DL Z ‘A/v.}/ : f}/’ (89)
veV(y)nd,
with
e s
Vv,;/ = E Z s(elv > eD)Qel ..... ep >
er,....ep€E(y),eN...nep=v
(90)
with
. 1
qel sssss €p = 561‘,11‘/112‘12"'1n‘lnRé‘1R£1|K1RZ’:KI o RI KnRell:Kn
(91)

In the above equations we used the inventions that V(y) is

Vo, - fy = (hxp) = Z Vvy fr (86)  the collection of vertices of the graph 7, s(el,...,ep) =
veV(y)NLe sgn(det(e;(v),...,ep(v))), and v is the intersection point
of the D-tuple of edges (e, e, ..., ep). It is understood that
where we only sum over the D-tuples of edges which are incident
. , L at a common vertex. Similarly, we can quantize V/((JP~1)

V (V11}/VIU,]/)2D_2’ (87) in (80) as

|
Do lhKﬂ el,...,e ) N
(O = a0 5 / 3 DNGA ) Ao P80 (0.,
= (kpn)P Z Ly Ty (92)
veV(y)n,

Hence the operator Z{ is well defined by replacing the
components in its classical expression with the correspond-
ing quantum operators. Several remarks are listed below on
the replacement. First, the expression involves the inverse
of the local volume operator VDE which is noninvertible as
it has a huge kernel. To overcome this problem, we can

—

introduce an operator V_lme similar to the “inverse”
volume operator in (1 4 3)-dimensional standard LQG,
which is defined as the limit

/\

Vel = hm(v2 (1)) (93)

c

where ZE,DH) is the Plank length in (1 4 D)-dimensional
space-time. The existence of the “inverses” volume oper-

ator Vai indicates that the length operator will be non-
vanishing only on the vertex which does not vanish the
volume operator. Second, although the prequantized
smeared quantities are well defined in some limit, they
are not yet background-independent because of the appear-
ing  of kyele,,....e, .0)=c¢;, ; €ele, 7).
e(e,, . P71S8-1) after we replace fluxes by flux operators
in Egs. (77) and (80), where 6 = (P~1§1, ..., P-1§P-1)
represents the choice of the set of (D — 1)-surfaces ?~1§ in
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the partition of the neighborhood of e¢. The background
structure can be removed by suitably “averaging” the
regularized operator over it following a strategy similar
to the treatment of the volume operator and the length
operator in (1 4 3)-dimensional standard LQG [7,14]. The
averaging is taken over the (D — 1)?-dimensional space B
of all the choices of (P~1S!, ..., P=1§P=1) in the partition of
the neighborhood of ¢¢, and it results in

kay(e,,....e, )= /d@,u(@)kpre(e,], e, 1 0), (94)
B

where 6 € BB, and dfu(6) is a suitable normalized measure
on B. We take into account the fact that for any finite
set e, ey, ...,e, which intersected at vertex v, such that
each two of them are not tangent at v, the functions
ko (€yys--nn €y, 0) withy < 1,... < 1p_; and the constant
function constitute a set of linearly independent functions
on B [7]. The averaging result kav( e, ) has the
following properties: (1) kyy (e, . ..., e, l) depends only on
the segments of the edges (€s.--ney 1) that are located in

e intersect at a vertex v and their tangential directions are
linearly independent there; (4) the choice of the measure
dOu(0) ensures that k, (e, . ....e, ) = ky(e;,....e; ) if
(e.e,,....e, ) and (e.e,....e; ) are related by an
orientation preserving diffeomorphism of . These proper-
ties ensure that k,(e,.....e, ) can be given by k,, -
s(ec.e,.....e, ) uniquely, wherein k,, is a constant, and
(ec.e,.....e, ) is the orientation function which equals
+1 (or—1) 1f the tangential directions of e, ¢, , ..., ¢, are
linearly independent at the vertex » dual to [, and oriented
positively (or negatively), or equals zero otherwise. Third,
the following noncommutative relations generally hold:

[ V5] #0, (95)
where v € e° is the vertex dual to [, and
Lo L) #0, (%)

where e; and e intersect at a true vertex which is dual to
a nonvanishing volume. This result indicates that we

the neighborhood of e¢; (2) kav( ....e, ) is totally  should choose a “nice” extended curve to define its length
antisymmetric in 1, ...,1p_;, 1., kav(e,l, ..e, )= operator [13].
kav(e[, Lo elLH]); (3) in the limit € -0, Based on the above treatment the operator /, ;; can be
ko (e, . ...,e, ) is nonvanishing only if e, ,...,e, ~and  given by
J
5 (ucﬂfz LK) pJ —I\D—
lee,IJ : fy = Z Zkav g € 1] .. zD I)elJI Jy..0 J"Re[] ]RexlzK REID . RetD 1K, (Vljt)D 2. fJ/’ (97)
e’] e’D 1
for D =2n +1 is odd, and
n 1Kﬂh
leF,IlKl 'f;/: Z dev g € 117---7610,1)
€y Gpy
> "‘/I(DD—I)e Rt phKapl R K Rl V= y-12D-3 - f (98)
€ Iy | ey g e, e, Rey p ey, g VO, 7

for D = 2n is even. The final formulation of the second
length operator is given by Eq. (83) or Eq. (84).

B. The second version of general m-area operators

The above procedure of constructing the length operator
can be extended to construct the general geometric oper-
ators measuring the m-area of a m-dimensional surface "'S.
By the partition "S =3 ,yoc<r™Ss, of an open
m-surface ™S, the m-area Ar("S, ) can be reexpressed
by fluxes following a partition of the neighborhood of
"S,,, in o as follows. Suppose that the (D — m)-tuple of the
(D — 1)-surface P~'S; (i =1,..., D — m) with coordinate
(D — 1)-area €P~! intersects at the m-dimensional region
"S- The normal covectors (n,...,n,,....n0=") of

|
"S,,, spana (D — m)-dimensional vector space and satisfy

I1...1 5%m
el me ..ey)

B 1
~(D-m)!

ay...Aplpy)---Adp iD-m . ( )
€ nam+1 Ny "€ . (99

1---ipem

We consider the following two cases.
Case I: m:= D —m is even

Define
2 b by by
Ex . \/R Tk L15L b, g, S
x nb nb iy | det(z)[7H, (100)

for D is odd, and
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Ep Sh Lzﬂ.II’(zL kel glaeilagle ”ifl~-'”Zf§,€i|...im|ddet(”)|ﬁ’ (101)

1 / KL] m—1m-1 mtim

for D is even. Both of them satisfy

det(mq) — EK]“'K';’EK]...K,;N (102)
which gives det(q) = det("q) det(™gq), and
m,\—1 1 i/] i/ a, b azbj, im
det("q) =yt €y i g My oMy €5y iy (103)
Case II: m =D — m is odd
Similar to the last case, we can define
I3 o— 1 b L Ly bZ bm 2 Li—oLy bm 1 il L1 Lo
Epk, k. -——ﬂ'uﬂ'K 1,00 g Sttty ey € det(z) o1, (104)
V2m!

for D is odd, and

1 .
— b L,L, b2 b LioLi_y D il U1 .
Epyk ..k, = g S g St U, T €y
\V2m!

for D is even. They also satisfy

ddet(z)%2,  (105)

lrn

det("q) = EVKr- K By (106)

rn 1°
Similar to the construction of the length operator, we define

1 A A . .
EKiKp oo aKiLi(D-1gin)g, | gKala(D-1g) | gKa-ila- (D-1Sin-1)g,  gKala(D-lgin)e,

e"\/m!

for m is even, and

Ve (o7)

1ol

1
2im!

X ]'[Km ZL -2 (D 1Slm—7)5Lm ,L;

(Z:IJKI --~Kﬁx—l =

n.IJ(D—ISi)ﬂ.KIL] (D—ISil)éL .

K>,L, (D—1 i
kel (P18

= - — i 1—m
n— lf[Klﬂ—le—l (D 1S’m—] )eii] O P V\<:|5 m>’ (108)

for /m is odd, where [J, is a D-dimensional box with coordinate volume €? containing the tuple of P~'S?. Then, the m-area
Ar(™S) can be reexpressed as

Ar("S) = lim > Ar(ms,,) = lim EKi K8y (109)
nlS()]m m OIm
for m is even, and
A("S) =lim S™ Ar("S,, ) = lim 37 (UK KBy g (110)
mSOlm mSolm

for m is odd. Since all the components in Eqgs. (107) and (108) have clear quantum analogs, we can obtain the general
geometric operators as

(’”S) = 11m Z Ar("S, )= lgr&ln
lm lm

(111)
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for m is even, and

— i —~ 1K, ...K
Ar("S) = 113(1); Ar("S,,,) = lim Z \/5 e Ko (112)
°lm le
for m is odd. Also, an alternative formulation can be given as
(’”S = hm z Ar("S,, ) hm Z \/(£K' "+ E’;l_.Kﬁx)(?g{l'”Kﬁ’ + ?Ll.._Kﬁ) (113)
le <>lm
for m is even, and
SIJK,..K;_ olJK, .. K
Ar("S) = 11_{% Ar(mSol ll_{% Z \/ B 5111(1 Ky JETTTT gIJKl o (114)
1m le
for m is odd. Note that we defined
2K K- 1 . . . — (-1
KKa m'ﬁ.K,Ll(D—lsz,)5LIL2ﬁ.K2L2(D—ISIZ) KLt (D=1 gl 08y 7K '"(D_lslm)ei..i.iﬁvit(m )
(inkp) , . e L — (-1
ﬂ Z e,.D715h).ee, PSR KL15L LR KZLQ'_.RggjLm_léLm_leRS;:LmeilmimVal(m ),
,,,, e
(115)
for m is even, and
1 , . A
SIJKl K = = ﬁ.IJ(D—lsz)ﬁ,K]Ll (D*lSl] )éLleﬂ.Ksz (Dflslz).”
A n—1
fknslaes (D=1 gin)s, ) Kooy (D-1§in)ey, o VA y=10m=1)
inkp)™ , . _
¥ DT e S el P el P
m: [T [
2 m=24m- m—1+mn— /—\(__1)
R”Rf, Lis, LR KzL . R{f 2L I lem_]lL 1€ii1...iﬁ,,1vﬂi , (116)

for m is odd. Here we can also remove the background
structure by suitably averaging the regularized operators.
The average of €; ; e(e,.P7'S)...e(e, ,P71S) gives

Mhay - G(€5, ..., ,....e, ) for m is even, and that
D—1gi D—1qi D—1 iy
of éiil.“im_]e(e,, Se(e, . P7'S")...e(e, ,P7ISn1)
gives "k, - c(ef,....e5. e e, . ....e, ) for m is odd,
wherein "k,, is a constant, (e, ..., e5,) is the set of edges
to give ™S, , and c¢(ef.....e5.e,.....,e, ) or

(e, ....epnee,,....e, ) is the orientation function.
We have constructed the background-independent
“elementary” general geometric operators in all dimen-
sional LQG. The operators (111), (112), (113) and (114)
are symmetric. The overall undetermined factor "k,, is
expected to be fixed by semiclassical consistency. It
should be noted that in the special case of m =D — 1
the general geometric operators become some length

operators. However, they are not exactly the same as
(83) and (84). Nevertheless, the two versions of length
operators can be identified by certain operator reordering.
Also, the (D — 1)-area operator which is constructed with
flux operators directly can be given as the special case
of m =1 from the general geometric operators, and the
usual D-volume operator can be given as the special case
of m =0. Thus the construction strategy of general
geometric operators is the extension of those for the
standard (D — 1)-area operator and usual D-volume
operator.

It is easy to see that the elementary geometric operator

K\r(’”Solm) does not commute with the D-volume operator
\A/Dt if they both contain a same vertex ». This implies

that these elementary geometric operators are generally
noncommutative,
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[AR("S,,, ). AR("S,, )] #0. (117)
for™S, ~and msl, . contain the same vertex v which is dual
to L. Hence we can only define the m-area operator of nice
extended m-surfaces based on the elementary geometric
operators as suggested in Ref. [13]. Also, we leave the
operator ordering issue of our general geometric operators
for further study [24].

V. CONCLUDING REMARKS

In the previous sections, we constructed two kinds of
length operators for all dimensional LQG by extending the
constructions in standard (1 4 3)-dimensional LQG. Based
on the two different strategies, we also constructed two
kinds of general geometric operators to measure arbitrary
m-areas in all dimensional LQG. In the first strategy,
by Eq. (10) the de-densitized dual momentum ,/gr} is
regularized as Eq. (13). Then the general geometric
quantities with z(e,.) as building blocks can be quantized
by this regularization and suitable choices of operator
ordering. In the second strategy, as the de-densitized dual
momentum can be expressed by the momentum z¢; and the
volume element by Egs. (72) and (74), it can also be
regularized as Eqgs. (77) and (80). For the general geometric
quantities, the m-area element can be regularized by the
flux of z{, through Eqgs. (109) and (110). Then they can be
quantized by the regularization and introducing the inverse
volume operator. To get well-defined and background-
independent general geometric operators, the averaging of
the regularizations has to be also introduced.

Several remarks on the two kinds of general geometric
operators are listed in order. First, the first kind of general
geometric operators was constructed in Sec. II with the so-
called (de-densitized) dual momentum, whose smeared
version was expressed by the holonomy of connection.
This construction would lead to some problem if the
simplicity constraint was taken into account, since the
action of a holonomy could change a state satisfying
the constraint into a nonsatisfying one. To solve the
problem, some projection operators should be introduced
in the construction. Different from the first one, the second
kind of general geometric operators constructed in Sec. [V
would have a good behavior even if the simplicity con-
straint was considered, since these kinds of operators and
the simplicity constraint are both totally composed of the
flux operators. In this sense, the second kind of general
geometric operators is expected to be a better choice than
the first one in the consideration of obtaining the semi-
classical spatial geometry from all dimensional LQG.
Second, the second kind of general geometric operators
contains the standard (D — 1)-area operator and usual D-
volume operator as some special cases. Hence, its con-
struction could be regarded as a natural extension of those
of standard (D — 1)-area operator and usual D-volume

operator. Different from the second one, the construction
of the first kind of general geometric operators is com-
pletely different from those of standard (D — 1)-area and
usual D-volume operators. Thus it deserves checking the
consistency between them in future work. Note that a
similar consistency check was performed in (1 + 3)-dimen-
sional standard LQG [25]. Third, in the construction of the
first kind of general geometric operators, the choice of the
operator ordering is inspired by that of the alternative
flux operator in (1 + 3)-dimensional standard LQG
[9,10]. The consistency between the alternative flux oper-

ator 2l (P78, ) and the standard flux operator

#7((P-Dg, (Diw) in (1 + D)-dimensional LQG was checked
in Sec. IIL

Moreover, the properties of these general geometric
operators are worth further studying. Though it is hard
to obtain the spectra of the general geometric operators,
one may consider the semiclassical behavior of these
operators. For instance, one can study the actions of the
general geometric operators on the semiclassical states that
are equipped with the simple coherent intertwiners [26].
The undetermined regularization constants in these general
geometric operators are also expected to be fixed in such a
kind of semiclassical consistency check.
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APPENDIX: QUANTIZATION OF S

Recall that in all dimensional LQG, S takes a value of 1
if (D + 1) is odd while it takes a value of 1 with a sign
of det(r) =535 €aa,p,...ap,€101,0,...0,0, 7 7K TG
ol Kugbuln i if (D + 1) is even. Let us focus on the case
that (D + 1) is even now. Notice that det(x) is smeared as

z(p, N, ..., Ap) which is defined in Eq. (78) and then

we have

S(p)=sgn(det(z)(p)) =sgn(z(p,Ar,....Ap)), €—0.
(A1)

Also we have the volume of the box [, which is given by
Vo, = J, dPx|detz|p and it can be transformed as

me,.:/ dPpla(p, Dy, ...
DE‘
= |T[(p,A1,...

It should be noticed that
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S(p)-n(p. Ay, ... Op) = |n(p. Ay .. Ap)|. - (A3)
Then, similar to the discussion of the signum operator in
[9], the S must be identified with the signum that appears
inside the absolute value under the (D — 1)-degree roots in
the definition of the volume Vi in the classical theory.

This meaning of S can be extended to the quantum case

naturally. Recall the expression, Egs. (89) and (90), of the
volume operator for D is odd and consider the case ¢ — 0:
we can immediately conclude that Eq. (68) holds, where the
right-hand side of Eq. (68) is basically the expression inside
the absolute value in the definition of the volume operator
and S represents the signum of the expression inside the
absolute values in the volume operator.
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