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We demonstrate separability of conformally coupled scalar field equations in general (off-shell) Kerr—
Newman-Unti-Tamburino—anti–de Sitter spacetimes in all dimensions. The separability is intrinsically
characterized by the existence of a complete set of mutually commuting conformal wave operators that can
be constructed from a hidden symmetry of the principal Killing-Yano tensor. By token of conformal
symmetry, the separability also works for any Weyl rescaled (off-shell) metrics. This is especially
interesting in four dimensions where it guarantees separability of a conformally coupled scalar field in the
general Plebański-Demiański spacetime.
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I. INTRODUCTION

The four-dimensional Kerr black hole geometry pos-
sesses many remarkable properties. Among these perhaps
the most intriguing is the separability of various test field
equations in the Kerr black hole background. The history of
“separatists” began in 1968 when Carter demonstrated that
the massive Hamilton-Jacobi and Klein-Gordon equations
can both be solved by a method of separation of variables
[1,2]. Soon after that the massless wave equations for
vector and tensor perturbations by Teukolsky [3,4], the
massless neutrino equations by Unruh [5] and Teukolsky
[4], the massive Dirac equation by Chandrasekhar [6] and
Page [7], and the Rarita-Schwinger equation by Kamran [8]
were all separated. Many of these results are directly linked
to the existence of a hidden symmetry encoded in a Killing-
Yano tensor [9,10]. From this tensor one can generate other
types of symmetries that enable a construction of symmetry
operators underlying the separability of a given test field
equation.
Interestingly, many of these results carry over to

higher dimensions as well. In particular, the entire

higher-dimensional Kerr—Newman-Unti-Tamburino
(NUT)—anti–de Sitter (AdS) family of vacuum black
holes [11–13] admits a hidden symmetry of the principal
Killing-Yano tensor, a nondegenerate closed conformal
Killing-Yano 2-form [14], which in its turn generates
towers of explicit and hidden symmetries and implies
separability of a number of test field equations in these
backgrounds [15]. Namely, the general separability of the
massive Hamilton-Jacobi and scalar field equations was
demonstrated in [16], the Dirac equation was separated in
[17], the massless and massive vector perturbations in
[18,19], and the harmonic p-form equations in [20], see
also [21] for partial results on separability of gravitational
perturbations. In fact, all these separability results remain
true in a more general class of spacetimes admitting the
principal Killing-Yano tensor. The corresponding metric
was constructed in [22,23] and is known as the off-shell
Kerr-NUT-AdS spacetime. Such a spacetime admits a
number of unspecified metric functions and is not neces-
sarily a solution to vacuum Einstein equations.
The purpose of the present paper is to extend the result

on separability of the massive scalar equation demonstrated
in [16] and show that also the equation for a conformally
coupled scalar,

ð□ − ηRÞΦ ¼ 0; η ¼ 1

4

d − 2

d − 1
; ð1Þ

separates in the general off-shell Kerr-NUT-AdS spacetime.
Here, d stands for the number of spacetime dimensions,
R is the Ricci scalar of the background metric g, and
prefactor η is chosen so that the equation enjoys conformal
symmetry, see, e.g., Appendix D in [24]. As we shall
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demonstrate such a separability is intrinsically character-
ized by the existence of a complete set of commuting
operators that are constructed from the tower of Killing
tensors and Killing vectors generated from the principal
Killing-Yano tensor of the Kerr-NUT-AdS geometry.
Exploiting the conformal symmetry, the demonstrated
separability remains valid for any Weyl rescaled metrics
and in particular implies the separability of the conformal
scalar equation in the general class of four-dimensional
Plebański-Demiański spacetimes.
Our paper is organized as follows: The general off-shell

Kerr-NUT-AdS spacetime and its basic properties are
introduced in Sec. II. Separability of the conformal wave
equation and its intrinsic characterization in this spacetime
are studied in Sec. III. The associated separability in Weyl
scaled metrics is briefly discussed in Sec. IV. Section V is
devoted to a concrete application of these results to four-
dimensional spacetimes of the Plebański-Demiański class.
We summarize in Sec. VI.

II. Kerr-NUT-AdS SPACETIMES

The canonical metric describing the off-shell Kerr-NUT-
(A)dS geometry in d ¼ 2nþ ε number of dimensions (with
ε ¼ 0 in even and ε ¼ 1 in odd dimensions) reads

g ¼ gabdyadyb ¼
Xn

μ¼1

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�Xn−1

j¼0

AðjÞ
μ dψ j

�
2
�

þ εc

AðnÞ

�Xn

k¼0

AðkÞdψk

�
2

: ð2Þ

The coordinates ya ¼ fxμ;ψkg naturally split into two sets:
Killing coordinates ψk (k ¼ 0;…; n − 1þ ε) associated
with the explicit symmetries, and (Wick rotated) radial and
longitudinal coordinates xμ (μ ¼ 1;…; n) labeling the

orbits of Killing symmetries. The functions AðkÞ, AðjÞ
μ ,

and Uμ are “symmetric polynomials” of the coordinates
xμ, and are defined by

AðkÞ ¼
Xn

ν1 ;…;νk¼1
ν1<…<νk

x2ν1…x2νk ; AðjÞ
μ ¼

Xn

ν1 ;…;νj¼1
ν1<…<νj

νi≠μ

x2ν1…x2νj ;

Uμ¼
Yn

ν¼1
ν≠μ

ðx2ν−x2μÞ; U¼
Yn

μ;ν¼1
μ<ν

ðx2μ−x2νÞ¼detðAðjÞ
μ Þ; ð3Þ

where we have fixed Að0Þ ¼ 1 ¼ Að0Þ
μ . Each metric function

Xμ is an unspecified function of a single coordinate xμ:

Xμ ¼ XμðxμÞ; ð4Þ

and finally the constant c that appears in odd dimensions
only is a free parameter. We refer to [15] for a prescription

of how to translate this “symmetric gauge” to the Boyer-
Lindquist type coordinates.
The inverse metric takes the form

g−1 ¼
Xn

μ¼1

�
Xμ

Uμ
∂2
xμ þ

Uμ

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−k
Uμ

∂ψk

�2�

þ ε
1

cAðnÞ ∂
2
ψn
; ð5Þ

while the square root of the determinant of the metric reads

ffiffiffiffiffi
jgj

p
¼ ðcAðnÞÞε2U: ð6Þ

Despite the complexity of the metric the Ricci scalar
(calculated in [25]) is fairly simple given by a sum

R ¼
Xn

μ¼1

rμ
Uμ

; ð7Þ

of the functions

rμ ¼ −X00
μ −

2εX0
μ

xμ
−
2εc
x4μ

: ð8Þ

Importantly, each rμ only depends on a single variable xμ.
The above off-shell Kerr-NUT-AdS spacetime is the

most general metric that admits the principal Killing-Yano
tensor [22,23]. This is a nondegenerate closed conformal
Killing-Yano 2-form h obeying the equation

∇ahbc ¼ gabξc − gacξb; ξa ¼ 1

D − 1
∇bhba: ð9Þ

Explicitly, the principal Killing-Yano tensor is given by

h ¼ db; b ¼ 1

2

Xn−1

k¼0

Aðkþ1Þdψk: ð10Þ

It generates towers of explicit and hidden symmetries, see
[15]. Namely, we obtain the following tower of closed
conformal Killing-Yano tensors:

hðjÞ ¼ 1

j!
h ∧ … ∧ h|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

j times

: ð11Þ

Their Hodge duals are Killing-Yano tensors f ðjÞ ¼ �hðjÞ,
and their square gives rise to a tower of rank-2 Killing
tensors:

kabðjÞ ¼
1

ðd − 2j − 1Þ! f
ðjÞa

c1…dd−2j−1f
ðjÞbc1…cd−2j−1 : ð12Þ

The latter take the following explicit form (j ¼ 0;…;
n − 1):
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kðjÞ ¼
Xn

μ¼1

AðjÞ
μ

�
Xμ

Uμ
∂2
xμ þ

Uμ

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−k
Uμ

∂ψk

�2�

þ ε
AðjÞ

cAðnÞ ∂
2
ψn
; ð13Þ

and generate the tower of Killing vectors,

lðjÞ ¼ kðjÞ · ξ ¼ ∂ψj
; ð14Þ

with an additional Killing vector in odd dimensions,
lðnÞ ¼ ∂ψn

. Note that the j ¼ 0 Killing tensor is just the
inverse metric (5), and the zeroth Killing vector is the
primary Killing vector, lð0Þ ¼ ξ ¼ ∂ψ0

.
Since all of the symmetries are generated by this single

object h, they all mutually Schouten-Nijenhuis commute
(see [15] for details):

½lðiÞ; kðjÞ�SN ¼ 0; ½lðiÞ; lðjÞ�SN ¼ 0;

½kðiÞ; kðjÞ�SN ¼ kðiÞeða∇ekðjÞbcÞ − kðjÞeða∇ekðiÞbcÞ ¼ 0: ð15Þ

The canonical coordinates fxμ;ψkg are thus completely
determined by the principal Killing-Yano tensor: the
coordinates ψk are the Killing coordinates (14) and the
coordinates xμ are the “eigenvalues” of h, see [15] for more
details.
Let us finally mention that when the vacuum Einstein

equations are imposed, Gab þ Λgab ¼ 0, the metric func-
tions Xμ take the following explicit “polynomial” form:

Xμ ¼
Xn

k¼ε

ckx2kμ − 2bμx1−εμ −
εc
x2μ

; ð16Þ

where cn is related to the cosmological constant by
Λ ¼ 1

2
ð−1Þnðd − 1Þðd − 2Þcn, while other parameters

ck; bμ; c are related to rotations, mass, and NUT charges.
With these we recover the on-shell Kerr-NUT-AdS metrics
constructed by Chen et al. [13]. However, in what follows
we will not restrict to this specific case and we are going to
work with the general off-shell Kerr-NUT-AdS metrics.

III. SEPARABILITY OF CONFORMAL
WAVE EQUATION

A. Conformal operators

In order to separate the conformally coupled scalar field
equation (1), let us first consider the following operators:

K̃ðjÞ ¼ ∇akabðjÞ∇b; ð17Þ

whose explicit action on a scalar Φ reads

K̃ðjÞΦ ¼ ∇akabðjÞ∇bΦ ¼ 1ffiffiffiffiffijgjp ∂að
ffiffiffiffiffi
jgj

p
kabðjÞ∂bΦÞ: ð18Þ

To find the coordinate form of these operators, we use (13)
to obtain

K̃ðjÞΦ¼
Xn

μ¼1

1ffiffiffiffiffijgjp ∂μ

� ffiffiffiffiffi
jgj

p AðjÞ
μ Xμ

Uμ
∂μΦ

�

þ
Xn

μ¼1

AðjÞ
μ

UμXμ

� Xn−1þε

k¼0

ð−x2μÞn−1−k∂k

�
2

Φþ ε
AðjÞ

AðnÞ∂2
nΦ;

ð19Þ

where we have abbreviated ∂μ ¼ ∂xμ , ∂k ¼ ∂ψk
, and

∂n ¼ ∂ψn
. Employing the expression for the metric deter-

minant (6) and the fact that neither AðjÞ
μ nor U=Uμ depend

on coordinate xμ, we have

1ffiffiffiffiffijgjp ∂μ

� ffiffiffiffiffi
jgj

p AðjÞ
μ Xμ

Uμ
∂μΦ

�

¼ AðjÞ
μ

Uμ

∂μððcAðnÞÞε2Xμ∂μΦÞ
ðcAðnÞÞε2

¼ AðjÞ
μ

Uμ

�
∂μðXμ∂μΦÞ þ ε

Xμ

xμ
∂μΦ

�
: ð20Þ

Finally using the following identity [16],

AðjÞ

AðnÞ ¼
Xn

μ¼1

AðjÞ
μ

Uμ

1

x2μ
; ð21Þ

we arrive at the following explicit form of these operators:

K̃ðjÞΦ ¼
Xn

μ¼1

AðjÞ
μ

Uμ
K̃ðμÞΦ; ð22Þ

where each K̃ðμÞ involves only one coordinate xμ and reads

K̃ðμÞ ¼ ∂μðXμ∂μÞ þ
1

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−k∂k

�
2

þ ε

cx2μ
∂2
n þ ε

Xμ

xμ
∂μ; ð23Þ

which is the form derived in [26].
Let us next consider the following scalar functions,

RðjÞ ¼
Xn

μ¼1

AðjÞ
μ

Uμ
rμ; ð24Þ
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where rμ is given by Eq. (8), and upgrade the operators K̃ðjÞ
above to the following conformal operators:

KðjÞ ¼ K̃ðjÞ − ηRðjÞ: ð25Þ

We immediately find

KðjÞ ¼
Xn

μ¼1

AðjÞ
μ

Uμ
KðμÞ; ð26Þ

where

KðμÞ ¼ ∂μðXμ∂μÞ þ
1

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−k∂k

�
2

− ηrμ þ
ε

cx2μ
∂2
n þ ε

Xμ

xμ
∂μ: ð27Þ

B. Separability

Since K̃ð0Þ ¼ □, the conformally coupled scalar field
equation (1) can be written as

Kð0ÞΦ ¼ 0: ð28Þ

Slightly more generally, we can include a mass term and
consider an equation

ðKð0Þ −m2ÞΦ ¼ 0: ð29Þ

To separate this equation we seek the solution in the
multiplicative separated form,

Φ ¼
Yn

μ¼1

ZμðxμÞ
Yn−1þε

k¼0

eiΨkψk ; ð30Þ

whereΨk are (Killing vector) separation constants and each
of the Zμ is a function of the single corresponding variable
xμ only. With this ansatz we have

∂kΦ ¼ iΨkΦ; ∂μΦ ¼ Z0
μ

Zμ
Φ; ∂2

μΦ ¼ Z00
μ

Zμ
Φ; ð31Þ

which allows us to rewrite Eq. (28) in the following form:

Φ
Xn

μ¼1

Gμ

Uμ
¼ 0; ð32Þ

where Gμ ¼ GμðxμÞ are functions of one variable only,

Gμ ¼ Xμ
Z00
μ

Zμ
þ X0

μ
Z0
μ

Zμ
−

1

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−kΨk

�
2

− ηrμ −
ε

cx2μ
Ψ2

n þ ε
Xμ

xμ

Z0
μ

Zμ
−m2ð−x2μÞn−1: ð33Þ

Here we have used another identity [16]

1 ¼
Xn

μ¼1

ð−x2μÞn−1
Uμ

: ð34Þ

Now let us use the following “separability lemma” [16,27].
Lemma.—The most general solution of

Xn

μ¼1

fμðxμÞ
Uμ

¼ 0; ð35Þ

where Uμ is defined in Eq. (3), is given by

fμ ¼
Xn−1

k¼1

Ckð−x2μÞn−1−k; ð36Þ

where Cj are arbitrary (separation) constants.
Thus, we see that the most general solution of Eq. (32) is

Gμ ¼
Xn−1

k¼1

Ckð−x2μÞn−1−k: ð37Þ

That is, Eq. (29) is satisfied for our ansatz (30) provided the
functions Zμ ¼ ZμðxμÞ satisfy the following ordinary dif-
ferential equations (ODEs):

Z00
μ þ Z0

μ

�
X0
μ

Xμ
þ ε

xμ

�
−
Zμ

X2
μ

� Xn−1þε

k¼0

ð−x2μÞn−1−kΨk

�
2

−
Zμ

Xμ

�
ηrμ þ

ε

cx2μ
Ψ2

n þ
Xn−1

k¼0

Ckð−x2μÞn−1−k
�

¼ 0; ð38Þ

where we have set C0 ¼ m2. When the coefficient η is set to
zero, we recover the result from [16] on separability of the
massive Klein-Gordon equation in the off-shell Kerr-NUT-
AdS spacetime in canonical coordinates. On the other hand,
setting m ¼ 0 we have successfully separated the con-
formal equation (1) in these spacetimes.

C. Commuting operators

Following [26] let us now show that the above demon-
strated separability can be “justified” by the existence of a
complete set of mutually commuting operators. This set
consists of the above constructed conformal operators KðjÞ
and the Killing vector operators LðjÞ,
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KðjÞ ¼ ∇akabðjÞ∇b − ηRðjÞ; ð39Þ

LðjÞ ¼ −ilaðjÞ∇a: ð40Þ

To show that these operators mutually commute, we
consider their explicit form

LðjÞ ¼ −i
∂

∂ψ j
; ð41Þ

KðjÞ ¼
Xn

μ¼1

AðjÞ
μ

Uμ
KðμÞ; ð42Þ

where KðμÞ were derived above and are given by Eq. (27).
Obviously, we have

½KðkÞ;LðlÞ� ¼ 0; ½LðkÞ;LðlÞ� ¼ 0: ð43Þ

To show that also

½KðkÞ;KðlÞ� ¼ 0 ð44Þ

we can reuse the argument presented in [26]. First, note that
for μ ≠ ν we have ½KðμÞ;KðνÞ� ¼ 0 because these operators
depend on different xμ ≠ xν and so any derivatives terms
will commute. Next we can employ the first of the
following identities [16]:

Xn−1

k¼0

AðkÞ
ν

ð−x2μÞn−1−k
Uμ

¼δνμ;
Xn

μ¼1

ð−x2μÞn−1−k
Uμ

AðjÞ
μ ¼δjk; ð45Þ

to “invert” the expression in Eq. (42) to write

KðμÞ ¼
Xn−1

k¼0

ð−x2μÞn−1−kKðkÞ: ð46Þ

Thus using ½KðμÞ; ð−x2νÞn−1−l� ¼ 0 for μ ≠ ν we can express
the commutation of the KðμÞ’s as

0 ¼ ½KðμÞ;KðνÞ� ¼
Xn−1

k;l¼0

ð−x2μÞn−1−kð−x2νÞn−1−l½KðlÞ;KðkÞ�:

ð47Þ

In particular as the ð−x2μÞn−1−k are nonvanishing in general
this shows that ½KðkÞ;KðlÞ� ¼ 0, as required.
Of course, the separated solution above is nothing else

than the “common eigenfunction” of these operators and
the separation constants fΨk; Cjg are the corresponding
eigenvalues, that is, for our solution (30) obeying Eq. (38)
we have

KðjÞΦ ¼ CjΦ; ð48Þ

LðjÞΦ ¼ ΨjΦ: ð49Þ

To see the former, we write

1

Φ
KðjÞΦ ¼ 1

Φ

Xn

μ¼1

AðjÞ
μ

Uμ
KðμÞΦ

¼
Xn

μ¼1

AðjÞ
μ

Uμ
ðGμ þm2ð−x2μÞn−1Þ

¼
Xn

μ¼1

AðjÞ
μ

Uμ

Xn−1

k¼0

Ckð−x2μÞn−1−k

¼
Xn−1

k¼0

Ck

Xn

μ¼1

AðjÞ
μ

Uμ
ð−x2μÞn−1−k ¼ Cj; ð50Þ

where we have subsequently used Eqs. (42) and (37), and
the second identity (45).
Now with the separability of the conformal wave

equation guaranteed we can turn to applications involving
metrics conformally related to general metric (2).

IV. SEPARABILITY IN Weyl
RESCALED METRICS

Equation (1) enjoys a conformal symmetry. This means
that under a Weyl scaling of the metric,

g → g̃ ¼ Ω2g; ð51Þ

we have [24]

ð□̃ − ηR̃Þ½Ω1−d=2Φ� ¼ Ω−1−d=2ð□ − ηRÞΦ: ð52Þ

In other words, provided Φ is a solution to Eq. (1) in the
spacetime with metric g,

Φ̃ ¼ Ω1−d=2Φ ð53Þ

is a solution of Eq. (1) in the spacetime with metric g̃.
In particular, this implies that in any spacetime g̃ related

to the off-shell Kerr-NUT-AdS metric by the Weyl trans-
formation, we can find a solution of the corresponding
conformal equation (1) in the form (53), where Φ is the
separated solution (30) and functions Zμ obey Eq. (38).
Strictly speaking, due to the prefactor Ω1−d=2 the corre-
sponding solution (53) is no longer formally written in a
multiplicative separation form and the corresponding sepa-
rability is called R-separability.
Let us also note that this result is nontrivial as the

principal tensor no longer exists in the Weyl scaled metrics
and consequently only towers of conformal hidden sym-
metries (as opposed to full hidden symmetries) exist in the
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Weyl rescaled spacetimes. Specifically, if ω is a conformal
Killing-Yano p-form in spacetime with g, then ω̃ ¼ Ωpþ1ω
is a conformal Killing-Yano p-form in spacetime with g̃. In
particular

h̃ ¼ Ω3h ð54Þ
is a new principal conformal Killing-Yano tensor, which
however need no longer be closed and is a much weaker
structure. This implies that each Killing tensor, generated
from j copies of h with jþ 1 contractions with the inverse
metric, via Eq. (12), becomes a conformal Killing tensor:

K̃ab
ðjÞ ¼ Kab

ðjÞ; ð55Þ

and the former explicit symmetries becomeconformalKilling
vectors, l̃aðjÞ ¼ laðjÞ. It would be interesting to study how these

symmetries can directly be applied to guarantee separability
of conformal wave equations in these spacetimes.

V. FOUR-DIMENSIONAL EXAMPLES

A. Carter’s spacetime

To apply the above machinery, let us now specify to
d ¼ 4 dimensions. Upon the Wick rotation of one of the xμ
coordinates,

ψ0 ¼ τ; ψ1 ¼ ψ ; x1 ¼ y; x2 ¼ ir; ð56Þ

and setting

X1 ¼ −Δy; X2 ¼ −Δr;

U2 ¼ Σ ¼ r2 þ y2 ¼ −U1; ð57Þ

the off-shell Kerr-NUT-AdS spacetime yields the off-shell
Lorentzian Carter’s metric [2],

g¼−
Δr

Σ
ðdτþy2dψÞ2þΔy

Σ
ðdτ− r2dψÞ2þ Σ

Δr
dr2þ Σ

Δy
dy2;

ð58Þ

with arbitrary

Δr ¼ ΔrðrÞ; Δy ¼ ΔyðyÞ; ð59Þ

the principal Killing-Yano tensor given by

h ¼ ydy ∧ ðdτ − r2dψÞ − rdr ∧ ðdτ þ y2dψÞ; ð60Þ

and the following Ricci scalar:

R ¼ −
Δ00

r þ Δ00
y

Σ
: ð61Þ

The conformal scalar field equation (1) reduces to
�
□ −

R
6

�
Φ ¼ 0: ð62Þ

Its solution can be found in a separable form,

Φ ¼ ZðrÞYðyÞeiωτeiΨψ ; ð63Þ

where functions Z and Y satisfy the following ordinary
differential equations:

ðΔrZ0Þ0 þ Z

�
1

Δr
ðΨþ r2ωÞ2 þ Δ00

r

6
− C

�
¼ 0; ð64Þ

ðΔyY 0Þ0 þ Y

�
−

1

Δy
ðΨ − y2ωÞ2 þ Δ00

y

6
þ C

�
¼ 0: ð65Þ

Of course, this result remains valid for the on-shell Carter
spacetime [2], a solution to the Einstein-Maxwell-Λ theory,
for which

Δr ¼ ðr2 þ a2Þð1 − Λr2=3Þ − 2mrþ e2 þ g2; ð66Þ

Δy ¼ ða2 − y2Þð1þ Λy2=3Þ þ 2ny: ð67Þ

Here, e and g are electric and magnetic charges, andm, a, n
are related to mass, rotation, and NUT charge parameters,
while the metric is accompanied by the Uð1Þ gauge
potential

A ¼ −
er
Σ
ðdτ þ y2dψÞ − gy

Σ
ðdτ − r2dψÞ: ð68Þ

B. Plebański-Demiański class

Another, more general, class of four-dimensional black
hole spacetimes is encoded in the Plebański-Demiański
spacetime [28]. The off-shell metric is given by

g̃ ¼ Ω2g; ð69Þ

where g is given in Eq. (58) and the conformal prefactor
takes the following form:

Ω ¼ 1

1 − yr
: ð70Þ

By the above theory, this spacetime admits a solution of
the conformal equation (62), which can be found in the
R-separated form

Φ ¼ 1

Ω
ZðrÞYðyÞeiωτeiΨψ ; ð71Þ
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where functions Z and Y obey the ordinary differential
equations (64).
One particular example of a spacetime in this class is the

original on-shell Plebański-Demiański metric [28], for
which the metric functions Δr and Δy take the following
specific form:

Δr¼ kþe2þg2−2mrþ ϵr2−2nr3− ðkþΛ=3Þr4; ð72Þ

Δy ¼ kþ2ny− ϵy2þ2my3− ðkþe2þg2þΛ=3Þy4; ð73Þ

where e, g, n, k,m, and ϵ are free parameters that are related
to the electric and magnetic charges, NUT parameter,
rotation, mass, and acceleration. Due to the conformal
invariance of Maxwell equations in 4D, the gauge potential
remains given by Eq. (68). In this special case, the
separability of the conformal scalar equation follows from
the results presented in [29], see also [30] for its intrinsic
characterization.
Another example of a spacetime which belongs to the

off-shell Plebański-Demiański class is the hairy black hole
solution constructed in [31,32], see also [33] for a more
general spacetime that can bewritten in the form (69) with a
more general conformal prefactor.

VI. SUMMARY

In this paper we have separated the conformal wave
equation in general off-shell Kerr-NUT-AdS spacetimes in
all dimensions, generalizing the work [16] on separability
of the massive Klein-Gordon equation in these spacetimes.
Let us emphasize that although the two results formally
coincide in vacuum with cosmological constant—for the
on-shell Kerr-NUT-AdS spacetime [13]—they are very
different for a more general matter content.
We have further shown that the demonstrated separabil-

ity can be intrinsically characterized by a complete set of
mutually commuting operators. To the leading order in
derivatives, these operators are constructed from Killing
tensors and Killing vectors generated from the hidden
symmetry of the off-shell Kerr-NUT-AdS spacetime
encoded in the principal Killing-Yano tensor. The second
order operators also pick up an “anomalous” absolute term,
see Eqs. (24) and (25), which in the case of the original
conformal wave operator is simply given by the Ricci scalar
of the spacetime and guarantees the conformal invariance
of the corresponding equation. It is plausible to conjecture
that also for other operators KðjÞ (j ¼ 1;…; n − 1) these
anomalous terms ensure some kind of conformal symmetry.
Unfortunately, at the moment we only have a coordinate
expression for these correction terms and cannot study
conformal properties of these operators until a covariant
expression for the anomalous terms is found. This issue
certainly deserves attention in the future.
We have also discussed the Weyl rescaled metrics and

shown how our results imply separability of the conformal
wave equations in those spacetimes. As a concrete

application we have considered the most general type D
spacetime described by the Plebański-Demiański family and
constructed the associated R-separated test field solution of
the conformal wave equation. We expect that this con-
struction would apply to a wide class of solutions with
various matter content, similar to what happens in four
dimensions [28,31–33].
The obtained separated solution (30) is general—it

depends on d − 1 separation constants fΨk; Cjg—any sol-
ution to the conformal scalar equation can be written as a
superposition of these separated modes. Note, however, that
in our paperwehave used the symmetric gauge (2),where the
(Wick rotated) radial and longitudinal coordinates xμ are
treated on the same footing and there is no clear distinction
between the time and angle Killing coordinates both being
encoded in ψk. Consequently, also the resultant ordinary
differential equations (38) all “look the same.” In order to
apply our result to study the behavior of the scalar field in the
black hole vicinity, one needs to transform to the “physical
space,” see [15] where this is explicitly done. Upon this one
of the separated equations (38) becomes a (distinguished)
radial equation while the other equations are the angular
ones. In order to solve this system (which is only coupled
through parameters of the solution and separation constants),
one needs to impose the regularity conditions on the axes, as
well as proper boundary conditions for the radialmodes. This
then distinguishes various physical modes one wants to
study. For example, the quasinormalmodes are characterized
by ingoing boundary conditions on the horizon together with
the appropriate asymptotic conditions. This in turn restricts
the admissible values of the separation and integration
constants, and poses the “nonlinear eigenvalue problem,”
see, e.g., [19,34,35] for how this is done in similar settings. In
particular, we expect a similar approach to [19,36,37] (where
comparable ODEs were obtained by exploiting the hidden
symmetries for the case of massive vector fields) can be used
to numerically analyze the quasinormal modes arising from
the coupled ODEs (64) in the physically interesting
Plebański-Demiański family of spacetimes.
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