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Recently theEventHorizonTelescopeCollaboration,with very-longbaseline interferometric observations,
resolved structure at the scale of∼5Schwarzschild radii about the center ofM87�, the supermassive black hole
resident at the center ofMessier 87. This important observation has paved theway for testingwhat is known as
the “no-hair” theorem, stating that isolated black holes are described by the Kerr metric, parametrized only by
their mass and spin. Generic, parametrized spacetimes beyond Kerr allow one to arbitrarily test the no-hair
theorem for deviations from theKerr resultwith noprior theoretical knowledge ormotivation. In this paper, we
present such a new general, stationary, axisymmetric and asymptotically flat black hole solution with
separable geodesic equations (thus preserving symmetries of a Kerr black hole), extending the previous work
of Johannsen. In this new metric, five free nonlinear functions parameterically deviate from the Kerr result,
allowing one to effectively transform tomany alternative black hole solutions present in the literature.We then
derive analytic expressions for the Keplerian and epicyclic frequencies, the orbital energy and angular
momentum, and the location of the innermost stable orbit of circular equatorial particle orbits. We also
compute the image of the photon rings in the new spacetime, which correspond to the boundary of the black
hole shadow image takenby theEventHorizonTelescope.We finally compare eachquantity for theKerr result
against various parametrizations of the metric, finding that, especially for highly rotating black holes, the two
solutions disagree significantly. Such a metric parametrization allows one to perform the no-hair tests in a
model-independent way, and finally map constraints to specific alternative theories of gravity.
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I. INTRODUCTION

The no-hair theorem tells us that the spacetime surround-
ing isolated, uncharged black holes (BHs) is uniquely
described by the Kerr metric. This famous metric is
asymptotically flat, stationary, axisymmetric, and is para-
metrized by only two BH parameters: the mass (M), and the
spin (a). Further, within this metric exists an event horizon
masking the true coordinate singularity found within.
Supposing the no-hair theorem holds true, we can expect
all BH observations, e.g., of photon orbits about them, to
agree with those as described by the Kerr metric. To date,
there has been no sufficient evidence that points to otherwise
[1,2], however only now have our capabilities advanced
enough to accurately probe the near-field structure of these
objects. In the near future, we may have the opportunity to
resolve effects that go beyond the standard Kerr model.
To date, several tests of the no-hair theorem have been

enacted and proposed, as reviewed in [3–6]. Such tests
include observations of pulsar-BH binaries [7–9], the orbits
of SMBH stellar companions [10–12], the electromagnetic
accretion flows of SMBHs (continuume spectrum, iron
lines, quasi-periodic oscillations, etc.) [13–27], the quasi-
normal ringdown modes of a post-coalescence perturbed
remnant BH [28–30], and even the gravitational wave

observations of extreme mass-ratio inspirals of super-
massive and stellar-mass BHs [5,31–46]. No significant
deviations from the Kerr result have been detected so far.
Recent developments in the very-long baseline inter-

ferometric (VLBI) array in the Event Horizon Telescope
(EHT) have given us the unique opportunity to probe the
spacetimes of supermassive BHs (SMBHs). With the sole
purpose of imaging SMBHs, the EHT and VLBI span the
entire globe with an array of millimeter and submillimeter
instruments, effectively creating an Earth-sized telescope
[47]. Currently operating with 8 telescopes, the EHT
achieved the impressive feat of resolving the lensed photon
orbits about Messier 87’s central SMBH M87�, with an
angular resolution of ∼50 μas [48–52]. Even with these
extraordinary results, strong deviations from the no-hair
theorem have not been detected. However, the EHT will
continue to develop with the addition of new facilities, with
a planned resolution increase of ∼40% over the next
3–5 years. Along with the addition of new SMBH targets,
this boost in resolution and image fidelity will further provide
us with the ability to probe these extreme spacetimes.
While the Kerr BH metric, developed under the solutions

to Einstein’s theory of general relativity (GR), has had
unprecedented success in describing our BH observations,
wemust continue to test the no-hair theorem. In particular, to
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this day we have left unanswered several important obser-
vational questions regarding the nature of the universe,
which could potentially be described by a new theory of
gravity. For example, the elusive “dark energy” and “dark
matter” accelerating the expansion of our universe, and the
rotation of our galaxies [53–60], or the early universe’s rapid
inflationary period [55–57,60] and our current universe’s
extreme matter/antimatter asymmetry [57,60], or even
the issue of unifying GR and quantum mechanics [53,
55–57,59,60], all remain unanswered. Such questions could
potentially be explained by a new theory of gravity, which
would certainly exhibit itself within the strong-gravity BH
spacetimes currently described by the Kerr metric.
In order to sufficiently test these spacetimes for the possi-

bility of non-Kerr effects, we must first model a “beyond-
Kerr” spacetime in a generic way [13,31,35,36,38,61–65].
Ideally, each metric element should parametrically deviate
from the Kerr metric separately, in such a way that the Kerr
spacetime is obtained when all deviations vanish. In this
paper, we restrict ourselves to BHs preserving the symmetries
of Kerr BHs, namely asymptotically flat, stationary, axisym-
metric, and with separable geodesic equations. The latter
condition avoids chaotic particle orbits, and equates to the
existence of a fourth constant of motion, in addition to the
proper mass, the energy and angular momentum, and the so-
called “Carter constant” [39,66]. The metric considered here
is a more broad example of the general class of metrics
presented in [67] which admit separable Klein Gordon
equations, and is reduced to the latter for certain assumptions
on the beyond-Kerr functions presented here. Several such
metrics have been derived in the literature [31,67,68], each
with one or more parametric deviations which reduce to Kerr
whenvanishing.See alsoRef. [69]where the authors obtained
several separable spacetimes from the Newman-Janis algo-
rithm, and present a Venn diagram showing the relationship
among such metrics and others found in the literature.
Johannsen [68] designed a Kerr-like BH solution to the

Einstein field equations which is stationary, axisymmetric,
asymptotically flat, and contains four constants of motion,
and an event horizon. His metric depends nonlinearly on
four free functions which parametrically deviate from the
Kerr solution, and is general enough that it can be mapped
to several other known BH solutions [68]. Following this,
Johannsen constrained several of the free-functions from
weak-field solar system observations [70], and proceeded
to derive expressions for several spacetime properties
including the orbital energy and angular momentum, the
Keplerian and epicyclic frequencies, and the location of the
innermost stable circular orbit (ISCO). Further, the same
author derived expressions for the photon rings of the
parametrized beyond-Kerr BH in [71].
In this paper, we follow the work of Johannsen [68] and

design a more generic, stationary and axisymmetric, asymp-
totically flat Kerr-like BH metric with separable structure.
The components of the inverse metric for a generic

spacetime with separability structure were derived in [72].
Such a metric has been used to construct a generic beyond-
Kerr (inverse) metric with separable structure in [73]
(Appendix B) and also recently in [74], which contains five
arbitrary functions of r and five arbitrary functions of θ.
We construct the newmetric as follows.We first introduce

the most generic deviation into the contravariant Kerr metric
in such a way that the Hamilton-Jacobi separability con-
dition is preserved. The new metric is then simplified by
imposing the constraint of asymptotic flatness at radial
infinity. Further, we impose constraints consistent with the
weak-field solar system tests as Johannsen did in [68],
however we note that such constraints may not be explicitly
valid in the strong-gravity regions surrounding BHs.
We follow this up by exploring several properties of the

new spacetime. We first locate the positions of the event
horizon, Killing horizon, and ergosphere, finding that the
former two reduce to the Kerr horizons, and the latter
depends on just one of the 5 free functions found in the
metric. We additionally explore the spheroidicity condi-
tions found in Ref. [75], where we find the θ-independent
functions to admit Kerr-like spherical photon orbits.
Following this, we investigate the orbital properties of
circular equatorial particle orbits, finding analytic expres-
sions for the orbital energy and angular momentum, the
Keplerian and epicyclic frequencies, and also the location
of the ISCO. We next derive analytic expressions for the
photon rings as can be observed by, e.g., the EHT, and
present plots of the viewing plane as seen by a distant
observer at radial infinity for several parametrizations of the
metric. We then demonstrate the effect each parametriza-
tion has on each of the above BH properties, and also
investigate the presence of naked singularities emergent for
certain parametrizations. Finally, we produce the required
mappings that relate the new metric to eight other BH
solutions found in the literature [74,76–91].

A. Summary of the new metric

The final metric for a BH with mass M and spin a ¼
S=M with S being the magnitude of the spin angular
momentum is given by

gtt ¼ −
Σ̃ðΔ − a2A2

2sin
2θÞ

ρ̃4
;

grr ¼
Σ̃

A5Δ
;

gθθ ¼ Σ̃;

gϕϕ ¼ Σ̃sin2θ½ða2 þ r2Þ2A2
1 − a2Δsin2θ�

ρ̃4
;

gtϕ ¼ −
aΣ̃sin2θ½ða2 þ r2ÞA0 − Δ�

ρ̃4
; ð1Þ

with
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ρ̃4 ≡ ½ða2 þ r2ÞA1 − a2A2sin2θ�2
þ a2ða2 þ r2ÞðA0 − A1A2Þsin2θ

×

�
a2 þ r2

Δ
ðA0 þ A1A2Þ − 2

�
; ð2Þ

and

Σ̃≡ Σþ fðrÞ þ gðθÞ; ð3Þ

Σ≡ r2 þ a2 cos2 θ; ð4Þ

Δ≡ r2 þ a2 − 2Mr: ð5Þ

The arbitrary functions can be expanded about spatial
infinity as

AiðrÞ≡ 1þ
X∞
n¼1

αin

�
M
r

�
n
; ði ¼ 0; 1; 2; 5Þ; ð6Þ

fðrÞ≡ r2
X∞
n¼1

ϵn

�
M
r

�
n
; ð7Þ

gðθÞ≡M2
X∞
n¼0

γnPnðcos θÞ; ð8Þ

for Legendre polynomials Pnðcos θÞ. Here, the parameters
αin, ϵn and γn control the amount of deviation from Kerr.
We can set α01 ¼ 0 and α11 ¼ ϵ1=2 without loss of
generality by rescaling M and a. One can further impose
ϵ1 ¼ ϵ2 ¼ α51 ¼ α12 ¼ gðθÞ ¼ 0 to satisfy solar system
bounds, though such weak-field constraints may not apply
to spacetime outside of a BH. The difference from
Johannsen’s metric in [68] is that we have introduced a
new radial function A0 that enters in gtt, gtϕ, and gϕϕ. The
above metric reduces to the Johannsen one in the limit
A0 → A1A2. We believe this new metric is the most general
stationary, axisymmetric, asymptotically flat, and separable
spacetime.

B. Organization

Let us now present the outline of the following paper. In
Sec. II we derive our new spacetime metric preserving Kerr
symmetries, as well as compute the locations of the event
horizon, Killing horizon, and ergosphere. We follow this up
in Sec. III with a discussion on the theoretical under-
pinnings of the properties of the new spacetime, as well as
their dependencies on the 5 deviation parameters of this
metric. This includes the Keplerian and epicyclic frequen-
cies of orbiting particles, the orbital energy and angular
momentum of orbiting particles, the location of the ISCO,
and the photon rings. Finally, the transformations that take
one from this metric to other spacetimes found in the
literature are described in Sec. IV. Finally, we offer

concluding remarks in Sec. V. Throughout this paper,
we have adopted geometric units such that G ¼ 1 ¼ c.
Additionally, we use derivative notation such that ∂X ≡ ∂

∂X
and ∂2

X ≡ ∂2
∂X2.

II. A NEW METRIC PRESERVING KERR
SYMMETRIES

In this section, we present a new general spacetime
metric with parametrized deviations beyond GR. This
spacetime preserves the Kerr symmetries, and is axisym-
metric, stationary, and asymptotically flat. We also show
that the event and Killing horizons in such a spacetime
coincides with those of a Kerr BH, and then we derive the
locations of the ergosphere. Finally, we compute the
spheroidicity conditions of Ref. [75], showing them to
be independent of θ, thus admitting Kerr-like spherical
photon orbits.

A. The metric

Here we compute the new spacetime metric as used
throughout this analysis. We obtain this metric by follow-
ing and modifying the analysis thoroughly done by
Johannsen in Ref. [68]. There, a regular parametrized
BH solution was created to be stationary, axisymmetric,
asymptotically flat, and separable. The latter property
comes forth from the existence of a fourth constant of
motion, the Carter-like constant [66]. The metric presented
here, while very similar to Johannsen’s, is more general and
admits an additional deviation function from the Kerr
metric.
We begin with the Kerr metric for a rotating BH. This

well-known spacetime has a line element given by

ds2K ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σdθ2 −

4Mar sin2 θ
Σ

dtdϕ

þ Σ
Δ
dr2 þ

�
r2 þ a2 þ 2Ma2r sin2 θ

Σ

�
sin2 θdϕ2;

ð9Þ

where

Σ≡ r2 þ a2 cos2 θ; ð10Þ

Δ≡ r2 þ a2 − 2Mr; ð11Þ

with ðr; θ;ϕÞ being the radial, polar, and azimuthal coor-
dinates centered at the BH, and M, a being the BH’s total
mass and spin. Similar to Ref. [68], we introduce scalar
deviation functions fðrÞ, gðθÞ, A0ðrÞ, A1ðrÞ, A2ðrÞ, Ā0ðθÞ,
A3ðθÞ, A4ðθÞ, and A6ðθÞ into the contravariant Kerr metric
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gαβ
∂
∂xα

∂
∂xβ¼−

1

ΔΣ̃

�
ðr2þa2Þ2A1ðrÞ2

� ∂
∂t
�

2

þa2A2ðrÞ2
� ∂
∂ϕ

�
2

þ2aðr2þa2ÞA0ðrÞ
∂
∂t

∂
∂ϕ

�

þ 1

Σ̃sin2θ

�
A3ðθÞ2

� ∂
∂ϕ

�
2

þa2sin4θA4ðθÞ2
� ∂
∂t
�

2

þ2asin2θĀ0ðθÞ
∂
∂t

∂
∂ϕ

�

þΔ
Σ̃
A5ðrÞ

� ∂
∂r

�
2

þ 1

Σ̃
A6ðrÞ

� ∂
∂θ

�
2

; ð12Þ

with

Σ̃≡ Σþ fðrÞ þ gðθÞ: ð13Þ

Observe how this expression is similar to Eq. (10) of
Ref. [68], however the two additional scalar functions
A0ðrÞ and Ā0ðθÞ introduce more generality into the func-
tion. One recovers the metric in [68] by setting A0 ¼ A1A2

and Ā0 ¼ A3A4, while it reduces to the Kerr metric in the
limit Ai → 1 and f → 0, g → 0. Such modifications guar-
antee the resulting Hamilton-Jacobi equations remain
separable, and a fourth constant of motion appears as
thoroughly described in [68]. Additionally, following
Ref. [67] we find that our metric is a more broad example
of the general class of metrics that admit separable Klein
Gordon equations. As was the case for the metric presented
in [68], we find that with the additional assumption of

fðrÞ ¼ ðr2 þ a2ÞðA1ðrÞ
A2ðrÞ − 1Þ, our metric also reduces to one

that allows for the separability of the Klein Gordon
equations.
Next we define functional forms of our scalar deviation

functions, and apply various constraints. We expand the
radial functions as a power series in M=r, gðθÞ as a
Legendre expansion, and ignore the remaining polar
functions for now [68]:

AiðrÞ≡
X∞
n¼0

αin

�
M
r

�
n
; ði ¼ 0; 1; 2; 5Þ; ð14Þ

fðrÞ≡ r2
X∞
n¼0

ϵn

�
M
r

�
n

ð15Þ

gðθÞ≡M2
X∞
n¼0

γnPnðcos θÞ; ð16Þ

with Legendre polynomials Pnðcos θÞ. We note that the
Legendre expansion of gðθÞ differs from that presented in
[68], where the author utilized a trigonometric expansion in
powers of sin θ and cos θ. The Legendre expansion given
here is a more natural choice given an axisymmetric

spacetime metric, and gives unique choices on parameters
γn, whereas degeneracies occur in the trigonometric
expansion utilized previously.
We begin constraining the deviation parameters by

imposing the condition of asymptotic flatness [92,93].
This corresponds to imposing that our metric line element
must limit to

ds2∞ ¼ −
�
1 −

2M
r

�
dt2 −

4Ma
r

sin2θdtdϕþ dr2 þ r2dΩ2;

ð17Þ

at spatial infinity r → ∞ for dΩ≡ dθ2 þ sin2 θdϕ2. Doing
so reveals the need to constrain Ā0ðθÞ ¼ A3ðθÞ ¼ A4ðθÞ ¼
A6ðθÞ ¼ 1, as well as α00 ¼ α10 ¼ α20 ¼ α50 ¼ 1 and
ϵ0 ¼ 0. The asymptotic behavior of gtt and gtϕ become

gtt ¼ −1þ ð2þ 2α11 − ϵ1Þ
M
r
þO

�
M2

r2

�
; ð18Þ

gtϕ ¼ −ð2þ α01Þa
M
r
sin2 θ þO

�
M2

r2

�
: ð19Þ

Thus, we can rescale M and a to further set α01 ¼ 0 and
α11 ¼ ϵ1=2 without loss of generality. The covariant form
of the metric is summarized in Eq. (1).
Next we consider imposing constraints obtained from the

parametrized-post-Newtonian (ppN) framework [94].1 This
is done by further imposing that the metric for a non-
spinning object must reduce to the line element given by

ds2ppN ¼ −
�
1 −

2M
r

þ 2ðβppN − γppNÞ
M2

r2
þO

�
M3

r3

��
dt2

þ
�
1þ 2γppN

M
r
þO

�
M2

r2

��
dr2

þ r2
�
1þO

�
M2

r2

��
dΩ; ð20Þ

for ppN parameters γppN and βppN, while the asymptotic
behavior of the new metric is given by

gtt ¼ −1þ 2
M
r
þ
�
M2

4
ð8α12 þ ϵ21 − 4ϵ2Þ − g

�
M2

r2

þO
�
M3

r3

�
; ð21Þ

1Apart from γppN and βppN considered here, one could in
principle consider other PPN parameters, including the one in
[95] which is associated with the Lense-Thirring precession. We
leave this possibility for future work.
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grr ¼ 1þ ð2 − α51 þ ϵ1Þ
M
r
þO

�
M2

r2

�
; ð22Þ

gθθ ¼ r2
�
1þ ϵ1

M
r
þO

�
M2

r2

��
; ð23Þ

gϕϕ ¼ r2sin2θ

�
1þ ϵ1

M
r
þO

�
M2

r2

��
: ð24Þ

Given the strong observational constraints of βppN [70] and
γppN [96] from solar system experiments, one can further
impose the conditions ϵ1 ¼ 0 (which automatically sets
α11 ¼ 0), α51 ¼ 0 and 2ϵ2 − 2α12 − gðθÞ=M2 ¼ 0. The
simplest choice of the last condition is ϵ2¼α12¼gðθÞ¼0
[68], which is what we consider in the main part of
this paper.
Notice, however, that because Birkhoff’s theorem is not

guaranteed to hold in theories beyond GR, such ppN
constraints obtained in the weak-field environment of the
local solar system may not necessarily apply to the strong-
gravity conditions present near the BHs considered here.
This is indeed the case for BHs in, e.g., Einstein-dilaton
Gauss-Bonnet gravity, in which the BH exterior spacetime
is different from that for stars due to the presence (absence)
of the BH (stellar) scalar charge [83,97–102]. Thus, the
presented constraints on ϵ1, α51 ϵ2, α12, and gðθÞ may not
necessarily hold, and Appendix A provides a description of
the effects of including such parameters in the metric.

B. Location of the event horizon,
Killing horizon, and ergosphere

In this section we describe the locations of the event
horizon, Killing horizon, and ergosphere in the new
spacetime. In particular, we note that the locations of each
of these appear identically to those as presented in
Ref. [68], thus we refer the reader there for a thorough
description of each.
We begin by briefly describing the event horizon in both

the new spacetime presented here, and Johannsen’s space-
time. The angular function rEH ≡HðθÞ is a solution to

grr þ gθθ
�
dH
dθ

�
2

¼ 0; ð25Þ

which results in the solution

ΔA5ðHÞ þ
�
dH
dθ

�
2

¼ 0; ð26Þ

which reduces to the Kerr result Δ ¼ 0, or

rEH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ a2

p
ð27Þ

at the poles and in the equatorial plane (θ ¼ π=2). Such a
solution is the same in the new spacetime presented here
because A0ðrÞ does not appear in either grr or gθθ. We see
here that this expression only depends on the non-GR
deviation function A5ðrÞ.
Next we find the location of the Killing horizon, which is

located at the solution of ðgtϕÞ2 − gttgϕϕ ¼ 0. Such an
expression reduces down to Δ ¼ 0, coinciding with the
event horizon, in both the spacetimes considered here and
by Johannsen.
Finally, the ergosphere exists at the roots of gtt ¼ 0.

Because A0ðrÞ only appears in the denominator of gtt, the
new solution is identical to that of Johannsen’s, reducing to

Δ ¼ a2A2ðrÞ2 sin2 θ ð28Þ

in both cases, which is displayed in Fig. 1 of Ref. [68]. We
see that this expression only depends on the non-GR
deviation function A2ðrÞ.

C. The spheroidicity condition

In this section we compute the spheroidicity condition as
detailed in the analysis of Ref. [75] for the new general
metric presented in this chapter. In the above investigation,
the authors found the most general form of the “spheroi-
dicity condition”. Such a condition defines nonequatorial
circular orbits confined on a spheroidal shell described by
r0ðθÞ. In particular, we compute the spheroidicity condition
found in Eq. (14) of [75] as a function of r0ðθÞ for the
general metric presented here in Eq. (1), with only the
leading order terms of each beyond-Kerr function present.
We find the resulting condition to be

0 ¼ 3α13a6M3ðα13M3 þ r30Þ − a5bM2r0ð5α13α22M3 þ 3α13Mr20 þ 2α22r30Þ − a4r0ðM4ð8α13r30 − 2α222b
2r0Þ

− 2α22b2M2r30 þ 7α213M
7 − 8α213M

6r0 − 7α13M3r40 þMr60 þ r70Þ þ 2a3bMr20ð6α13α22M5 − 5α13α22M4r0

þ 4α13M3r20 þ 3ðα22 − α13ÞM2r30 − 2α22Mr40 þ r50Þ − a2r30ðb2ð5α222M5 − 3α222M
4r0 þ 6α22M3r20 − 4α22M2r30

þMr40 − r50Þ þ 10α213M
7 − 7α213M

6r0 þ 8α13M4r30 − 5α13M3r40 − 2Mr60 þ 2r70Þ − abMr40ð−8α13α22M5

þ 5α13α22M4r0 − 4α13M3r20 þ ð3α13 − 2α22ÞM2r30 þ 2α22Mr40 þ 2r50Þ − r50ð3α213M7 − 2α213M
6r0 − α13M3r40

− 3Mr60 þ r70Þ ð29Þ

ASYMPTOTICALLY FLAT, PARAMETRIZED BLACK … PHYS. REV. D 101, 084030 (2020)

084030-5



for orbital impact parameter b. Similar to Johannsen’s
metric, we find the above condition to be independent of θ,
and we conclude that this metric admits r0 ¼ const. Kerr-
like spherical photon orbits.

III. ASTROPHYSICAL IMPLICATIONS

In this section we present the various astrophysical
implications emergent under a BH described by the new
metric presented in this analysis. Specifically, we derive
expressions for the various astrophysical observables one
might consider about such a BH. Such properties include
the Keplerian and epicyclic frequencies of orbiting par-
ticles, the orbital energy and angular momentum of
particles’ orbits, the location of the ISCO, and finally
the photon orbits.

A. Keplerian and epicyclic frequencies

Now let us describe the computation of the Keplerian
and epicyclic frequencies νϕ, νr, and νθ. The former
frequency describes a particle’s motion in the polar
direction as observed at radial infinity, while the latter
two describe the motion in the azimuthal and radial
directions for perturbed orbits.
We begin by finding the Keplerian frequency

νϕ ¼ Ωϕ=2π. We start with the definition of Ωϕ ≡ _ϕ=_t,
which can be determined from the geodesic equations

d2xα

dτ2
¼ −Γα

βγ

dxβ

dτ
dxγ

dτ
; ð30Þ

with Christoffel symbols Γα
βγ and proper time τ. Following

Ref. [68], axisymmetry and reflection symmetry of par-
ticles on circular equatorial orbits allow us to reduce this
equation to

∂rgrr_t2 þ 2∂rgtϕ_t _ϕþ∂rgϕϕ _ϕ
2 ¼ 0: ð31Þ

The above expression allows us to express the Keplerian
frequency as

Ωϕ ¼
−∂rgtϕ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtϕÞ2 − ∂rgtt∂rgϕϕ

q
∂rgϕϕ

: ð32Þ

We see that this expression only depends on the non-GR
deviation functions A1ðrÞ, A2ðrÞ, A0ðrÞ, and fðrÞ.
Next we obtain expressions for the vertical and radial

epicyclic frequencies describing the radial and polar motion
of orbiting particles with mass μ. Following the derivation
presented in Sec. IV and 5 of [103], the general epicyclic
frequencies observed with respect to the proper time of a
comoving observer in the X-direction are given by

ωX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2Ueff

∂X2

s
; ð33Þ

for effective potential

Ueff ¼ −
1

2
ðgttE2 − 2gtϕELz þ gϕϕL2

z þ μ2Þ ð34Þ

obtained from pαpα ¼ −μ2 for the particle’s four-
momentum pα. The resulting radial and vertical epicyclic
frequencies observed at radial infinity are found to be

Ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtt þ ΩϕgtϕÞ2

2grr
ð∂2

rgtt − 2Lz∂2
rgtϕ þ L2

z∂2
rgϕϕÞ

s
;

ð35Þ

Ωθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtt þ ΩϕgtϕÞ2

2gθθ
ð∂2

θg
tt − 2Lz∂2

θg
tϕ þ L2

z∂2
θg

ϕϕÞ
s

;

ð36Þ

where the angular momentum can be computed via Eq. (39)
in the following section. We see such epicyclic frequencies
depend on the non-GR deviation functions A1ðrÞ, A2ðrÞ,
A0ðrÞ, A5ðrÞ, and fðrÞ, while the vertical frequencies
depend on all but A5ðrÞ.
Finally, we plot the Keplerian and epicyclic frequencies

νX ≡ΩX=2π for various combinations of lower-order
deviation paramters. Here take note that certain combina-
tions of deviation parameters produce naked singularities
outside of the BH event horizon, as discussed further in
Appendix B. Such exotic singularities originate from
disallowed combinations of parameters A1ðrÞ, A2ðrÞ, and
A0ðrÞ. Namely, we find that if α13 ≠ 0 or α22 ≠ 0, α02 must
additionally be nonvanishing and of the same sign, else the
photon orbit energies and angular momentum become
discontinuous and negative, and photon orbits become
open, letting photons escape to radial infinity as discussed
in [104,105]. Here we vary only the lowest-order non-
vanishing parameters present in the given expressions α13,
α22, α02, and ϵ3 for the Keplerian and vertical epicyclic
frequencies, and also α52 for the radial epicyclic frequency.
In each case, all other non-GR deviation parameters that are
not specifically mentioned are set to be 0. For a further
analysis on the further-lower-order parameters assumed to
vanish here, see Appendix A. In Fig. 1 we plot the
Keplerian frequencies νϕ, while in Figs. 2 and 3 the vertical
and radial epicyclic frequencies νθ and νr are plotted for
various nonvanishing parameters. We observe that, in
general, the parameters ϵ3 and α52 introduce very little
change into the frequencies νX, while combinations of α02
and α13 or α22 have the power to significantly alter the
ensuing trajectories. Observe how the frequencies (espe-
cially epicyclic ones) can deviate significantly from the
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FIG. 1. Keplerian frequencies of a particle orbiting a 10M⊙ BH with a ¼ 0.8M on circular equatorial orbits for various values of the
non-GR deviation parameters, while setting all remaining parameters to 0. The frequencies are plotted for varying the fðrÞ lowest-order
parameter ϵ3 (left), varying the A1ðrÞ and A0ðrÞ lowest-order parameters α13 and α02 (center), and varying the A2ðrÞ and A0ðrÞ lowest-
order parameters α22 and α02 (right). Several cases with α22 ¼ 0 while α02 ≠ 0 or α12 ¼ 0 while α02 ≠ 0, or vice versa, produce BHs
with naked singularities which are not shown here. The left-most plot agrees with that in Fig. 3 of [68].
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FIG. 2. Similar to Fig. 1 but for the vertical epicyclic frequency νθ.
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FIG. 3. Similar to Fig. 1 but for the radial epicyclic frequency νr. Additionally plotted here (top right) is the dependence on the lowest-
order parameter α52 of the deviation function A5ðrÞ appearing only in the grr metric element.
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Kerr case when varying the new parameter α02 introduced
for the first time in this paper.

B. Energy and angular momentum

In this section, we present the expressions for the orbital
energy E and angular momentum Lz of a particle orbiting a
BH described by the newmetric. We begin with the effective
potential Ueff given in Eq. (34). In the equatorial plane,

circular orbits obey the expressions UeffðrÞ ¼ dUeffðrÞ
dr ¼ 0.

When combined with the Keplerian frequency in Eq. (32),
and the Keplerian frequency written in terms of constants of
motion

Ωϕ ¼ pϕ

pt
¼ −

gtϕEþ gttLz

gϕϕEþ gtϕLz
; ð37Þ

we obtain expressions for the energy and angularmomentum
of a particle orbiting our central BH as

E ¼ −μ
gtt þ gtϕΩϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕΩϕ − gϕϕΩ2
ϕ

q ; ð38Þ

Lz ¼ −μ
gtϕ þ gϕϕΩϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtϕΩϕ − gϕϕΩ2
ϕ

q : ð39Þ

We see that these expressions only depend on the non-GR
deviation functions A1ðrÞ, A2ðrÞ, A0ðrÞ, and fðrÞ.

Now let us plot the resulting energy E=μ and angular
momentum Lz=μ for various deviation parameters present
in the expressions obtained above. Here we vary only the
lowest-order nonvanishing parameters present in the given
expressions: α13, α22, α02, and ϵ3. For a further analysis on
lower-order parameters assumed to vanish here, see
App. A. In Figs. 4 and 5, we plot the energy and angular
momentum as a function of radius for a particle of mass μ
on a circular orbit for several combinations of non-GR
deviation parameters that produce BHs without naked
singularities, where the energies and angular momenta
become discontinuous and nonpositive. In each case, all
non-GR parameters that are not specifically mentioned are
set to be 0. We see that in general, non-GR parameters
(including the new parameter α02) have a significant impact
on the energy and angular momentum of orbiting particles.
and also the ISCO radius (minimum point of the energy
curves) that we will describe in more detail in the next
section.

C. Innermost stable circular orbits

In this section, we compute the location of the ISCO. In
particular, the ISCO occurs at the minimum stable point of
the orbital energy E of a particle with a circular orbit,
namely

dE
dr

jr¼rISCO ¼ 0: ð40Þ
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FIG. 4. Similar to Fig. 1 but for the specific orbital energy E=μ. The leftmost plot agrees with that in Fig. 4 of [68]. We note that the
non-GR deviation parameters, especially the new one A0ðrÞ introduced in this paper significantly impact the orbital energy of particles.

2 4 6 8 10 8 10
r (M)

2.5

3

3.5

L
z / 

μ

GR
ε

3
 = - 2

ε
3
 = 2

2 4 6
r (M)

2

2.5

3

3.5

4

L
z / 

μ

GR
α

13
 = 2 ,   α

02
 = 2

α
13

 = - 2 ,   α
02

 = - 2
α

13
 = 2,   α

02
 = - 2

0 2 4 6 8 10
r (M)

1

2

3

4

L
z / 

μ

GR
α

22
 = 2 ,   α

02
 = 2

α
22

 = - 2 ,   α
02

 = - 2
α

22
 = 2,   α

02
 = - 2

FIG. 5. Similar to Fig. 1 but for the specific orbital angular momentum Lz=μ. The leftmost plot agrees with that in Fig. 5 of [68].
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Because the dependence of this solution is very complicated
in terms of the lower-order deviation parameters, we here
plot contours of constant rISCO for varying unitless BH spins
χ ≡ a=M, and magnitude of deviation parameters. Figure 6
does just this for 5 different classes of nonvanishing
deviation parameters, taking note that the parameters α13
or α22 can not be the sole nonvanishing parameter unless α02
is also nonvanishing, else naked singularities appear as
discussedpreviously and inAppendixB.Thus, to varyα13 or
α22, we fix α02 ¼ 10 and vice versa, in order to check the
rISCO dependence on individual non-GR parameters.

Now we discuss the ISCO dependence on the lower-
order non-GR parameters ϵ3, α02, α13, and α22 as seen in
Fig. 6. When varying the parameter ϵ3, we see that for
χ < 0.8 the ISCO is mildly dependent on non-GR pertur-
bations. When varying α22 we observe that rISCO stays
almost constant for any given value of α22 except for very
large spins. As for α13, we see that the location of the ISCO
depends very strongly on the non-GR parameter. Finally we
observe that for BHs with nonvanishing spin, the depend-
ence of rISCO on α02 becomes increasingly stronger for
increasingly larger BH spins χ.
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FIG. 6. Constant rISCO contours displaying their dependence on the unitless BH spin χ and non-GR deviation parameters ϵ3, α02, α13,
and α22. Such contours are presented (from right to left) for rISCO values of 2M (black), 3M (maroon), 4M (red), 5M (orange), 6M
(yellow), 7M (green), 8M (blue), 9M (indigo), 10M (violet), and 11M (magenta). When varying the parameters α13, or α22, we fix
α02 ¼ 10, and vice versa, to avoid the presence of naked singularities.
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D. Photon rings

In this section, we obtain solutions describing the orbit of
a photon about a BH described by the new metric with
various nonvanishing deviation parameters. Following
Refs. [66,68,71], we begin with the Hamilton-Jacobi
function

S≡ −
1

2
μτ − Etþ Lzϕþ SrðrÞ þ SθðθÞ ð41Þ

for particle mass μ, proper time τ, orbital energy E,
angular momentum Lz, and generalized radial and polar
functions SrðrÞ and SθðθÞ. We compute the Hamilton-
Jacobi equations

−
∂S
∂τ ¼ 1

2
gαβ

∂S
∂xα

∂S
∂xβ ; ð42Þ

to obtain

− μ2ða2cos2ðθÞ þ fðrÞ þ gðθÞ þ r2Þ

¼ 1

Δ

�
−a4A2

1E
2 þ 2a3A0ELz − 2a2A2

1E
2r2 − a2A2

2L
2
z

þ a2ΔE2sin2θ þ 2aA0ELzr2 − 2aΔELz − A2
1E

2r4

þ A5Δ2

�∂Sr
∂r

�
2

þ ΔL2
zcsc2θ þ Δ

�∂Sθ
∂θ

�
2
�
:

Next we separate the Hamilton-Jacobi equations, using
the separation constant

C ¼ −μ2 − ðfðrÞ þ r2Þ − 1

Δ

�
−a4A2

1E
2 þ 2a3A0ELz

− 2a2A2
1E

2r2 − a2A2
2L

2
z þ 2aA0ELzr2 − A2

1E
2r4

þ A5Δ2

�∂Sr
∂r

�
2
�
; ð43Þ

C ¼ a2E2 sin2 θ þ μ2ðgðθÞ þ a2 cos2 θÞ − 2aELz

þ L2
z csc2 θ þ

�∂Sr
∂r

�
2

: ð44Þ

We then define the Carter-like constant of motion Q≡
C − ðLz − aEÞ2 which gives us a solution for SrðrÞ (and
SθðθÞ, not displayed here) as

SrðrÞ ¼ �
Z

dr
1

Δ

ffiffiffiffiffiffiffiffiffiffiffi
RðrÞ
A5ðrÞ

s
; ð45Þ

RðrÞ≡ a4A2
1E

2 − 2a3A0ELz þ 2a2A2
1E

2r2 þ a2A2
2L

2
z

− a2ΔE2 − 2aA0ELzr2 þ 2aΔELz þ A2
1E

2r4

− ΔfðrÞμ2 − ΔL2
z − ΔQ − Δμ2r2; ð46Þ

where the different signs represent particles with prograde
and retrograde motion, respectively. This proves that the
new metric presented here indeed has a separable structure,
and thus generalizing Johannsen’s [68].
Finally, we compute the generalized momenta pα

given by

pα ¼
∂S
∂xα : ð47Þ

In particular, we focus on the radial momenta, given in
covariant and contravariant form as

pr ¼ � 1

Δ

ffiffiffiffiffiffiffiffiffiffiffi
RðrÞ
A5ðrÞ

s
; ð48Þ

pr ¼ �A5ðrÞRðrÞ
Σ̃

: ð49Þ

Following Ref. [71], the impact parameters x0 and y0 [106]
describing the image plane from an observer’s point of view
at infinity with an inclination angle i can be found to be

x0 ¼ −
ξ

sin i
; y0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2 cos2 i − ξ2 cot2 i

q
: ð50Þ

In the above expression, the new invariant parameters
ξ≡ Lz=E and η≡Q=E2 have been constructed entirely
out of constants of motion.
Now we describe the solutions ðξ; ηÞ which describe the

photon rings of a black hole. Such new constants of motion
are conserved along the null geodesics, and thus can be
simply solved for at the special case of a circular-orbit for
simplicity. Here, the radial photon momentum pr found in
Eq. (49) as well as its radial derivative must vanish.
Because Σ̃ and A5ðrÞ are both non-negative, this results
in the system of equations

RðrÞ ¼ 0;
dRðrÞ
dr

¼ 0; ð51Þ

with the full reparametrized expression for RðrÞ for an
orbiting photon (μ ¼ 0) given by

RðrÞ ¼ a4A1ðrÞ2 − 2a3A0ðrÞξþ 2a2A1ðrÞ2r2
þ a2A2ðrÞ2ξ2 − a2Δ − 2aA0ðrÞξr2
þ 2aΔξþ A1ðrÞ2r4 − Δη − Δξ2: ð52Þ

With this, one can simultaneously solve Eq. (51) for ξ and η
to give parametrized expressions for the image of the
photon rings in Eq. (50). We do not present such results
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here since they are quite lengthy. In the Kerr limit, however,
they are found to correctly reduce to the GR expressions
found in [88]

ξK ¼ −
r2ðr − 3MÞ þ a2ðrþMÞ

aðr −MÞ ; ð53Þ

ηK ¼ r3½4a2M − rðr − 3MÞ2�
a2ðr −MÞ2 : ð54Þ

We also note that the expressions for ξ and η only depend
on the non-GR deviation functions A1ðrÞ, A2ðrÞ, and A0ðrÞ.
Now we compute the image of the photon rings about a

BH described by the new metric. In particular, we focus our
attention on only the lowest order parameters α13, α22, and
α02, as was done in [68,71]. However, we refer the reader to
Appendix A for an analysis of the inclusion of lower-order
parameter α12, which was assumed to vanish in the ppN
framework. There we also consider photon rings in the
EdGB theory of gravity, where we investigate the validity
of the 1=r expansion in the EdGB metric. Here we vary
each parameter α13, α22, and α02, while avoiding the cases
with emergent naked singularities (See Appendix B), else
closed photon rings do not appear and the photons escape
to radial infinity as discussed in [104,105]. This means that
if α13 ≠ 0 or α22 ≠ 0, then α02 must also be nonvanishing
and of the same sign.
Figure 7 shows the image of the photon ring as it

depends on the BH’s spin (χ), and the observers inclination
angle (i) for the case of all deviation parameters vanishing
(Kerr) for simplicity. We observe that for a fixed inclination
angle, increasing the BHs spin serves to increasingly
displace and deform the photon’s orbit. Similarly, for a
fixed BH spin, the inclination dilutes the displacement
and deformation gained from the rotating BH for all
but the highest angles. Such displacement and deformation
as a function of inclination only reaches the maximum
value allowable by the spin, with none present for a static
nonrotating BH.
Finally, we compute the images of the closed photon

rings about a BH for several nonvanishing deviation
parameters in Fig. 8. Specifically, for highly rotating
BHs (χ ¼ 0.998), moderately rotating BHs (χ ¼ 0.5),
and slowly rotating BHs (χ ¼ 0.002), we generate the
photon rings for different nonvanishing values of α13, α22,
and α02. We observe that the effect of increasing α13 and α02
acts to increase the image size, and negative values of each
parameter works to deform the image. The latter becomes
less apparent as the spin decreases, while the former still
holds true for even low BH spins. Next we see that
nonvanishing values of α22 and α02 only marginally affect
the image size, but highly deform the orbits for fast-rotating
BHs. In this case (and not in the case of nonvanishing α13
and α02), we see that positive values of the parameters work

to deform the image inwards, while negative values distort
outwards. We conclude with the remark that, especially for
highly rotating and/or highly inclined observations, that
BHs with deviations from Kerr are highly distinguishable
from the exact Kerr result. This is because the deviation
parameters α22 and α02 [corresponding to free functions
A2ðrÞ and A0ðrÞ] are associated with modifications to the
angular portions (ϕ-components) of the contravariant
metric in Eq. (12).
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FIG. 7. Images of photon rings of a Kerr BH seen by an
observer at infinity (all deviation parameters vanishing in the new
metric) for increasing degrees of inclination at a fixed BH spin
(top), and increasing BH spins at a fixed inclination (bottom). For
the former, we fix the BH spin at the extreme case of χ ¼ 0.998
for demonstration purposes, and increase the inclination angle
going left to right from i ¼ 0° to i ¼ 90° in intervals of 10°. For
the latter, we fix the inclination angle at the extreme case of
i ¼ 90°, and increase the BH spin going left to right from χ ¼ 0
to χ ¼ 0.998 in intervals of 0.1.
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FIG. 8. Images of photon rings about a high-spin χ ¼ 0.998 (top), medium-spin χ ¼ 0.5 (middle), and low-spin χ ¼ 0 (bottom) BH,
for various nonvanishing GR deformation parameters α13, α22, and α02. We avoid combinations of such parameters that produce naked
singularities and let α13 ¼ α02 ¼ �2 (left) and α22 ¼ α02 ¼ �2 (right). The inclination is fixed at the extreme case of i ¼ 90° in every
scenario, for demonstration purposes. In the bottom-right panel, we observe that the parameters α22 and α02 do not significantly alter the
photon orbit for slowly rotating BHs.
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IV. TRANSFORMATION OF THE NEW METRIC
TO OTHER SPACETIMES

In this section we present the maps that take one from the
new metric presented here to several other deformed
spacetimes present in the literature. In particular, we focus
on the following theories and spacetimes:
(1) the separable deformed spacetime:

(a) spacetime in Papadopoulos and Kokkotas [74];
(b) parameters: generic deviation parameters Ai and

Bi for i ¼ 1…5;
(2) the string-inspired RS2 braneworld [76]:

(a) spacetime in [77];
(b) parameters: the tidal charge β;

(3) the heterotic string theory:
(a) spacetime in Kerr and Sen [80];
(b) parameters: deviation parameter b related to the

magnetic dipole moment;
(4) Einstein-dilaton-Gauss-Bonnet (EdGB) gravity

[81–83]:
(a) spacetime in [84,90];
(b) parameters: the dimensionless coupling con-

stant ζEdGB;
(5) dynamical Chern-Simons (dCS) gravity [85,107]

(a) spacetime in [86,87,90];
(b) parameters: the dimensionless coupling con-

stant ζdCS;

(6) quantum-corrected regular BHs:
(a) spacetime in Bardeen [88];
(b) parameters: deviation g controlling the amount

of BH “regularity”;
(7) the nonlocalized theory of gravity:

(a) spacetime in [89];
(b) parameters: the mass scale m;

(8) the Kalb-Ramond BH with Kalb-Ramond parameter
s ¼ 1 and s ¼ 2:
(a) spacetime in [91];
(b) parameters: the Kalb-Ramond Lorentz-violating

parameter Γ.
Now let us provide a brief overview of the procedure

used to find such mappings between the new spacetime
presented here and the ones (X) listed above. Using a
computer-algebra software, this is done by first equating
each metric element gαβ ¼ gXαβ to solve for the functions
A0ðrÞ, A1ðrÞ, A2ðrÞ, A5ðrÞ, and fðrÞ found in the new
metric as a function of the GR deformation parameters
present in metric X. Such functions are then expanded in
powers of M=r about r ¼ ∞ to obtain the mappings
between non-GR parameters α0n, α1n, α2n, α5n, and ϵn
and non-GR parameters in metric X. We present all such
mappings in Table I, for the three lowest-order nonvanish-
ing parameters from each free function. We note that here,
we do not take into account the ppN bounds mentioned in

TABLE I. Mappings from the new metric presented in this paper to several other BH solutions in related works.
The notation αin

2
for i ¼ 1, 2 and n ¼ 1, 3, 5 in nonlocal gravity represents redefined AiðrÞ to instead sum over half-

powers ofM=r, as in Eq. (55). The mappings to EdGB and dCS gravity are only valid up to linear order in BH spin
and first order in deformation parameters ζ, and the mapping to Bardeen is only valid to quartic order in deviation
parameter g.

BH spacetime Deviation parameters

separable deformed spacetime [74] ϵ0 ¼ −1; ϵ2 ¼ A1

M2 ;…;

α11 ¼ −
ffiffiffiffiffiffiffi
−A5

p
M ; α12 ¼

ffiffiffiffiffiffiffi
−A5

p
M ; α13 ¼

ffiffiffiffiffiffiffi
−A5

p
ða2þM2Þ

2M3 ;…;

α20 ¼
ffiffiffiffiffiffiffi
−A3

p
M

a ; α21 ¼
ffiffiffiffiffiffiffi
−A3

p
ðMþaÞðM−aÞ
2aM ; α22 ¼

ffiffiffiffiffiffiffi
−A3

p
ðMþaÞðM−aÞ
2aM ;…;

α52 ¼ A2

M2 ; α53 ¼ 2A2

M2 ; α54 ¼
A2ð4− a2

M2Þ
M2 ;…;

α00 ¼ − A4

a ; α01 ¼ 2A4

a ; α03 ¼ − 2aA4

M2 ;…

RS2 braneworld [76] α10 ¼ 1; α12 ¼ − β
2M2 ; α13 ¼ − β

M2 ;…;

α20 ¼ 1; α22 ¼ − β
2M2 ; α23 ¼ − β

M2 ;…;

α50 ¼ 1; α52 ¼ β
M2 ; α53 ¼ 2β

M2 ;…;

α00 ¼ 1; α02 ¼ − β
M2 ; α03 ¼ − 2β

M2 ;…

heterotic string (Kerr-Sen) [80] ϵ1 ¼ 2b
M ;…;

α10 ¼ 1; α11 ¼ b
M ; α12 ¼ − b2þ4bM

2M2 ;…;

α20 ¼ 1; α21 ¼ − b
M ; α22 ¼ 3b2−4bM

2M2 ;…;
α50 ¼ 1; α51 ¼ 2b

M ; α52 ¼ 4b
M ;…;

α00 ¼ 1; α02 ¼ − 4b
M ; α03 ¼ 8bðb−MÞ

M2 ;…

(Table continued)
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Ref. [68], and instead allow all lower-order parameters
to enter.
We now discuss the results presented in Table I. We first

note that in the nonlocalized theory of gravity, a new
definition of AiðrÞ had to be made for i ¼ 1, 2, as the Taylor
expansions of M=r in these cases appeared in half-powers.
Thus, for nonlocal gravity only we define the new param-
eters αin

2
via

AiðrÞ ¼
X∞
n¼0

αin
2

Mn=2

rn=2
; ði ¼ 1; 2Þ ð55Þ

in order to properly map the new metric to the nonlocal
theory of gravity. Additionally, Ref. [68] states that the RS2
braneworld metric could not be related to Johannsen’s
metric, and in Ref. [71] the author found a mapping by
introducing a new non-GR parameter β such that Δ →
Δþ β. However, we have found that both Johannsen’s
metric and the metric presented here could be mapped to

RS2 braneworld as shown in Table I, with some difficulty.
We also note that Ref. [74] claims that Kerr-Sen BH cannot
be mapped to the Johannsen metric in [68], while we were
able to find such a mapping here. In both the EdGB and
dCS theories of gravity, the mapping is only valid up to first
order in spin χ and coupling parameter ζ. We note that all
the mappings presented in Table I for the new metric can
also be mapped to Johannsen’s.
We finish this section by noting the high versatility of

this new metric, with the ability to map to many BH
solutions found in the literature. Having said this, we point
out there are many BH solutions that cannot be mapped to
the new metric found here. Such metrics include BHs in
Einstein-scalar gravity [108] and Einstein-Maxwell dilaton
theory [78], the Bumblebee metric [79], and slowly rotating
BHs in EdGB and dCS gravity [84,86]. These metrics do
not contain separable geodesic equations, thus no Carter-
like constant is present and the geodesic equations may
become chaotic [109]. Such fundamental differences mani-
fest themselves as an inability to transform to Johannsen’s

TABLE I. (Continued)

BH spacetime Deviation parameters

EdGB gravity [84] α10 ¼ 1; α13 ¼ − ζ
6
; α14 ¼ − 14ζ

3
;…;

α20 ¼ 1; α23 ¼ − 13ζ
30

; α24 ¼ − 16ζ
3
;…;

α50 ¼ 1; α52 ¼ ζ; α53 ¼ 3ζ;…;
α00 ¼ 1; α03 ¼ − 3ζ

5
; α04 ¼ −10ζ;…

dCS gravity [86,87] α10 ¼ 1;
α20 ¼ 1; α24 ¼ − 5ζ

8
; α25 ¼ − 15ζ

14
;…;

α50 ¼ 1;
α00 ¼ 1; α04 ¼ − 5ζ

8
; α05 ¼ − 15ζ

14
;…

quantum-corrected (Bardeen) [88] α10 ¼ 1; α13 ¼ − 3g2

2M2 ; α14 ¼ − 3g2

M2 ;…;

α20 ¼ 1; α23 ¼ − 3g2

2M2 ; α24 ¼ − 3g2

M2 ;…;

α50 ¼ 1; α53 ¼ 3g2

M2 ; α54 ¼ 6g2

M2 ;…;

α00 ¼ 1; α03 ¼ − 3g2

M2 ; α04 ¼ − 6g2

M2 ;…

Nonlocal gravity [89] α11
2
¼ −

ffiffi
3

p
Mm ; α132 ¼

ffiffi
3

p ð2M2m2−3Þ
2M3m3 ; α15

2
¼

ffiffi
3

p ð4M4m4þ36M2m2−27Þ
8M5m5 ;…;

α21
2
¼ − 2Mmffiffi

3
p ; α23

2
¼ 9þ24M2m2−4M4m4

4
ffiffi
3

p
M3m3 ; α25

2
¼ 27−9M2m2þ24M4m4þ4M6m6

4
ffiffi
3

p
m5M5 ;…;

α51 ¼ 3
M2m2 ; α52 ¼ − 3ð3þ2M2m2Þ

M4m4 ; α53
9ð3þ4M2m2Þ

M6m6 ;…;

α00 ¼ 2; α01 ¼ 3þ4M2m2

M2m2 ; α02 ¼ 3ð3−2M2m2Þ
M4m4 ;…

Kalb-Ramond [91] (s ¼ 1) α10 ¼ 1; α12 ¼ − Γ
2M2 ; α13 ¼ − Γ

M2 ;…;
α20 ¼ 1; α22 ¼ − Γ

2M2 ; α23 ¼ − Γ
M2 ;…;

α50 ¼ 1; α52 ¼ Γ
M2 ; α53 ¼ 2Γ

M2 ;…;
α00 ¼ 1; α02 ¼ − Γ

M2 ; α03 ¼ − 2Γ
M2 ;…

(s ¼ 2) α10 ¼ 1; α11 ¼ − Γ
2M ; α12 ¼ Γð3Γ−8MÞ

8M2 ;…;

α20 ¼ 1; α21 ¼ − Γ
2M ; α22 ¼ Γð3Γ−8MÞ

8M2 ;…;
α50 ¼ 1; α51 ¼ Γ

M ; α52 ¼ 2Γ
M ;…;

α00 ¼ 1; α01 ¼ − Γ
M ; α02 ¼ ΓðΓ−2MÞ

M2 ;…
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metric or the metric presented here, and can be seen by the
appearance of angular functions within the mapping
functions of fðrÞ and AiðrÞ.

V. CONCLUSION AND DISCUSSION

The no-hair theorem tells us that isolated BHs create a
spacetime described by the famous Kerr metric. In this
metric, we can predict the shape and size of photon rings
seen by a far-away observer that depend only on the central
BH’s mass and spin. While several tests to date have
confirmed this hypothesis [3–5,7–25,28–31,33–46], what
if small deviations from the Kerr metric yet exist in nature?
That is one question the EHTwith the VLBI aim to answer,
by using an effective earth-sized telescope to accurately
map photon rings about SMBHs located at the center of
galaxies.
In this manuscript, we have extended the important

analysis done by Johannsen in [68] to design a more
general Kerr-like BH solution. This new metric can be
interpreted as the most general stationary, axisymmetric,
and asymptotically flat spacetime we can create with intact
separable geodesic equations. Such a new metric is para-
metrized nonlinearly by 5 free functions AiðrÞ for i ¼ 0, 1,
2, 5 and fðrÞ which deviate from the Kerr metric, and
reproduce the exact Kerr metric when vanishing. This
general metric can be mapped to a large range of BH
solutions found in the literature, as demonstrated for eight
different cases [74,76–91]. The metric has been shown to
produce an event horizon and Killing horizon coexistent
with the Kerr one. Finally, we looked at the spheroidicity
conditions found in Ref. [75], finding a θ-independent
function which admits a Kerr-like spherical photon orbits.
Now that we have a new, general metric in hand, we

proceeded to calculate several properties of the ensuing
spacetime. In particular, we focused on circular equatorial
particle orbits and found analytic expressions for the orbital
energy and angular momentum of such a particle, along
with its Keplerian and epicyclic frequencies for perturbed
radial and vertical orbits. We plot these quantities for
several different parametrizations of the new metric for
comparison against the Kerr result to show the effect of the
parametrized deviations. We then compute the location of
the ISCO, once again comparing the results for several
parametrizations against the Kerr result.
We finally shift our attention to the orbits of photons

about BHs described by the new metric presented here. By
following the analysis of Johannsen in [71], we derive
analytic expressions for thin photon orbit solutions, called
“photon rings.” The images of such orbits are observable
by, e.g., the EHT, and are extremely timely due to the recent
image of the lensed photon orbits about the SMBH M87�
[48–52], with future resolution and fidelity improvements
imminent. We then compare the photon rings about BHs
with several different parametrizations against the Kerr
result. We find that, especially for highly rotating BHs

and/or highly inclined observation angles, the non-Kerr
photon rings indeed distinguish themselves prominently
against the standard Kerr result.
Future work includes constraining the new metric found

in this paper with current and future observations. For
example, one can use observations of x-ray continuum
spectrum and iron line emissions from accretion disks
around BHs to constrain some of the parameters, as already
done in [110–114]. Another way to constrain the metric is
to use future gravitational-wave observations. For example,
extreme-mass ratio inspirals can probe accurately space-
time around BHs [5,31–46]. Other possibilities include
pulsars orbiting around BHs [7,115], stars orbiting around
the center of Sgr A� [10–12] and low-mass X-ray binaries
with BHs [116]. One could additionally repeat the analysis
done in [117] with the new metric presented here, where
the authors compared current and future gravitational
wave and x-ray constraints on deformed spacetime metric
parameters.
In addition, future work on the presented topic includes a

detailed investigation into a finite stress-energy tensor that
sources the beyond-Kerr nature presented here, if such a
metric corresponds to a nonvacuum spacetime. In particu-
lar, one could compute Einstein’s Equations with the new
metric considered in this paper assuming GR, and attribute
the purely beyond-Kerr components to an additional stress-
energy tensor. While the key purpose of this investigation
was to determine an arbitrary, theory agnostic spacetime
model, a source term for such effects is interesting to study,
and, e.g., determine if the energy conditions are satisfied.
We found that the stress-energy tensor and energy con-
ditions required for the beyond-Kerr corrections presented
here are lengthy and complicated given the number of
arbitrary beyond-Kerr functions, and do not provide any
immediately meaningful observations. We leave a further
analysis on this point for future work.
Additionally, one could introduce a stress-energy tensor

corresponding to the accretion disk found outside of, e.g.,
M87� in the EHT observations, find a black hole solution
with such an accretion disk perturbatively and see if such a
solution can be mapped to the beyond-Kerr metric pre-
sented in this paper (or with any other beyond-Kerr
spacetimes). Such future work could be used to probe
properties of the disk with the arbitrary free parameters
utilized in this paper.
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APPENDIX A: THE EFFECTS OF LOWER-
ORDER PARAMETERS AND VALIDITY

OF 1=r EXPANSION

In this section we investigate the effects of lower-order
parameters on the direct observables in the new spacetime:
the Keplerian and epicyclic frequencies, and the photon
rings. Such lower-order parameters were originally
assumed to be vanishing by Johannsen in Ref. [68] due
to strong constraints on the ppN parameters [70]. However,
such constraints were obtained via observations of the
local, weak-field solar system and may not hold true in the
strong-gravity regimes present near BHs, where the space-
time is not guaranteed to even be similar to that surrounding
a star. Thus, in this section we revive these neglected
parameters:

(i) the first order parameter ϵ1 from the function fðrÞ2;

(ii) the lowest-order parameter α12 from the A1ðrÞ
function;

(iii) the lowest-order parameter α51 from the func-
tion A5ðrÞ;

(iv) the first- and second-order parameters γ1 and γ2 from
the function gðθÞ.3

We begin our investigation on the Keplerian and epicy-
clic frequencies’ dependence on such lower-order param-
eters. In the case of the former, we note that of the
parameters we focus on in this section, only ϵ1 and α12
enter the expression (which is dependent on gtt, gϕϕ, and
gtϕ) for equatorial orbits (where γ1P1ðcos θÞ vanishes
entirely). Similarly, the radial epicyclic frequencies depend
only on ϵ1, α12, and now α51, due to the grr dependence.
Finally, the vertical epicyclic frequencies depend on ϵ1, α12,
and now γ1 and γ2, as a result of the ∂θ derivatives.
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FIG. 9. Keplerian (top row), radial epicyclic (middle row), and vertical epicyclic frequencies about a BH with the lower order
parameters ϵ1, α12, α51, γ1, and γ2 that were presumed to vanish in Ref. [68] due to strong constraints on the ppN parameters [70]. Also
shown for comparison in each case are the high-order parameters ϵ3, α13, and α52 that were used in the main analysis and [68]. We see
that, especially for radial epicyclic frequencies, the lower order parameters impact the results strongly if they are indeed nonvanishing.
We note that when ϵ1 ≠ 0, we have set α11 ¼ ϵ=2 to prevent a rescaling of the BH mass.

2We note that to avoid a rescaling of the observable BH mass
M, when ϵ1 ≠ 0, we must set α11 ¼ ϵ1=2.

3We additionally consider the second-order parameter γ2
corresponding to terms of cos2 θ. This is because in all example
metrics considered, typically cos2 θ enters at first order in gðθÞ, as
is the case of the Kerr-Sen metric.
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In Fig. 9, we compare each of these orbital frequencies for
two different cases: (i) only including the lower order
parameters (ϵ1, α12, α51, γ1 and γ2) that were assumed to
vanish in the ppN framework, and (ii) only including the
next-higher-order parameters already used in the main
analysis (ϵ3, α13, α52). We observe that for every case the
inclusion of the neglected lower-order parameters makes
quite a large difference on the observables νϕ, νr, and νθ as
compared to the higher-order ones. In particular, the radial
epicyclic frequencies are significantly impacted upon the
inclusion of ϵ1, α12, and α51. This indicates that, if the
parameters ϵ1, α12, α51, γ1, and γ2 are indeed nonvanishing
and the ppN constraints applied to BHs are invalid, such
lower-order parameters must be included for accuracy.
Next we discuss another observable—the BH photon

rings. We find that, of the lower-order parameters consid-
ered here, such expressions only depend on α12. This is a
result of gðθÞ not entering the separated radial equations,
A5ðrÞ canceling out on each side of RðrÞ ¼ d

dr RðrÞ ¼ 0,
and a vanishing μfðrÞ for photon orbits with μ ¼ 0. In
Fig. 10 we plot the ensuing photon rings with (i) only α12
included, and (ii) only α13 included. We observe that, if
such lower-order parameters were nonvanishing in the ppN
framework, their inclusion would make a sizable impact on
the size (but not the shape) of the photon rings.
Finally we provide a brief analysis on the validity of

including leading-order parameters in the computation of
photon rings for the example of EdGB gravity. To do this,
we begin by computing the photon ring solutions in the

EdGB theory of gravity, to first order in spin as described in
Ref. [84] (exact in the 1=r expansion). Next we take the
new metric and map to the EdGB theory of gravity as
described in Table I using only the leading-order param-
eters in the 1=r expansion. Figure 11 compares the photon
rings for these two cases for an EdGB BH with coupling
parameter ζ ¼ 0.5, spin χ ¼ 0.1, and observer inclination
i ¼ 90°.4 We observe that the two photon rings agree quite
well, giving some indication to the validity of using only
the leading-order terms in the 1=r expansion.

APPENDIX B: NAKED SINGULARITIES
IN THE NEW SPACETIME

In this section we briefly discuss the emergent naked
singularities for certain sections of the new metric’s param-
eter space. As also shown in, e.g., Refs. [104,105], when a
naked singularity is present outside of the BH event
horizon rEH, closed photon rings no longer exist and the
photons escape to radial infinity. Figure 12 demonstrates this
phenomena for several cases of BHs with naked singular-
ities, such as α13 ¼ 2, α22 ¼ 2, α02 ¼ 2, α13 ¼ −α02 ¼ 2, or
α22 ¼ −α02 ¼ 2, with all other deviation parameters
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FIG. 10. Comparison between the image of the photon rings
about a BH when including lower order parameter α12 (presumed
to vanish in Ref. [68] due to strong constraints on the ppN
parameters [70]) and when instead including the next-order
parameter α13. Observe the difference made in the observable
photon rings when including the lower-order parameter that may
be nonvanishing if the solar-system ppN constraints are invalid in
the vicinity of BHs.
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FIG. 11. Comparison between photon ring images about a BH
computed with two different methods: (i) using the leading-order
mapping of the new metric to EdGB found in Table I and
(ii) using the full EdGB metric to first order in spin. Here, the BH
spin or EdGB coupling parameter ζ can not be too large or else
the small-coupling or small-spin approximations begin to break
down and the photon rings become nonsensical. Observe how the
two photon rings agree quite well, indicating the validity of the
leading-order expansion in 1=r.

4We note that, due to the small-coupling and slow-rotation
approximations used in the EdGB metric, neither ζ nor χ can be
too large, else the approximations break down and the photon
ring results become unreliable.
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vanishing in each case. Observe how for each case, a photon
“arc” appears, and the orbit is not closed.We similarly find in
each such scenario that the other spacetime properties such
as the orbital energy and angular momentum become
discontinuous, negative, and complex. We find that these
naked singularities appear when any of α13, α22, or α02
appear as the sole nonvanishing parameter of the three,while
the former two must appear alongside α02 to avoid such
singularities. We also find that when nonvanishing, the
parameters ðα13; α02Þ or ðα22; α02Þmust share the same sign,
else naked singularities appear.
Next we demonstrate that such open photon orbits are

indeed indicative of emergent naked singularities in the
new spacetime. This is done by examining the nature of the
Kretschmann invariant K in both of the spacetimes that do
and do not exhibit naked-singularity symptoms. The
Kretschmann invariant is given by

K ¼ RαβγδRαβγδ ðB1Þ

for Riemann curvature tensor given by

Rα
βγδ ¼ Γα

βδ;γ − Γα
βγ;δ þ Γμ

βδΓαμγ þ Γμ
βγΓαμδ ðB2Þ

with X;k representing a partial derivative
∂X
∂xk and Christoffel

symbols given by

Γαβγ ¼
1

2
ðgαβ;γ þ gαγ;β − gβγ;αÞ: ðB3Þ

The scalar quantity K is gauge invariant, and thus a
divergence of K is a sign for the presence of a true
singularity. For demonstration purposes, we pick a highly
rotating BH with χ ¼ 0.998, for the two cases of α13 ¼ 2,
and α13 ¼ α02 ¼ 2, where the former exhibits naked singu-
larity behaviors, and the latter does not. The event horizon
for the latter case is located at rEH ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, which

reduces to 1.06M for our given BH rotation.
Finally, we compute the Kretschmann invariant along the

equatorial plane. The results are shown in Fig. 13 for both
cases. We observe that for the closed-photon orbit case of
α13 ¼ α02 ¼ 2, there exists a singularity at r ¼ a ¼
0.998 M as usual, well behind the event horizon of
rEH ¼ 1.07 M. Alternatively, for the open-orbit case of
sole-nonvanishing parameter α13 ¼ 2, we observe several
interesting features. First, we see a singularity behind the
“would-be” event horizon at r ¼ 0.93 M as one would
expect. Next, there exists a singularity directly on thewould-
be event horizon at r ¼ 1.07 M, and finally we see a
singularity well beyond the would-be event horizon at
r ¼ 1.77 M. This confirms our suspicion of the existence
of naked singularities, thus for the remainder of this analysis
we avoid parametrizations that create such anomalies.
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FIG. 12. Open photon orbits (“arcs”) about a BH with photons
escaping to radial infinity. Such orbits appear for certain
parametrizations of the new metric similar to the ones presented
here: α13 ¼ 2, α22 ¼ 2, α02 ¼ 2, α13 ¼ −α02 ¼ 2, and
α22 ¼ −α02 ¼ 2, with all other deviation parameters set to 0.
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FIG. 13. Scalar Kretschmann invariant K on the equatorial
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central BH described by the new metric. This is plotted for two
cases: (i) BH with nonvanishing parameter α13 ¼ 2, and a (ii) BH
with nonvanishing parameters α13 ¼ α02 ¼ 2. Also shown by the
dashed vertical line is the event horizon of rEH ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
¼ 1.07 M for case (ii). In case (i) we see, as predicted,

that there exists a naked singularity at r ¼ 1.77 M, well outside
of the “would-be” event horizon. Additionally, in this case there
also exists a singularity at r ¼ 0.93 M, and interestingly, on the
“would-be” event horizon at r ¼ 1.07 M. In case (ii), we observe
a singularity at r ¼ a ¼ 0.998 M, behind the event horizon as
usual, confirming our predictions.
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