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Massive gravities in anti–de Sitter spacetime can be viewed as effective dual field theories of different
phases of condensed matter systems with broken translational symmetry such as solids, (perfect) fluids, and
liquid crystals. Motivated by this fact, we explore the black hole chemistry (BHC) of these theories and find
a new range of novel phase transitions close to realistic ones in ordinary physical systems. We find that the
equation of state of topological black holes (TBHs) at their inflection point(s) in d-dimensional spacetime
reduces to a polynomial equation of degree (d − 4), which yields up to n ¼ ðd − 4Þ critical points. As a
result, for (neutral) TBHs, we observe triple-point phenomena with the associated first-order phase
transitions (in d ≥ 7), and a new phenomenon we call an N-fold reentrant phase transition, in which several
(N) regions of thermodynamic phase space exhibit distinct reentrant phase transitions, with associated
virtual triple points and zeroth-order phase transitions (in d ≥ 8), as well as Van der Waals transitions
(in d ≥ 5) and reentrant (in d ≥ 6) behavior. We conclude that BHC in higher-dimensional massive gravity
is very likely to offer further new surprises.

DOI: 10.1103/PhysRevD.101.084026

I. INTRODUCTION

From a classical field theory perspective, de Rham–
Gabadadze–Tolley (dRGT) massive gravity [1,2] is a
consistent extension of general relativity with an explicit
mass term. By giving the graviton a mass, massive gravity
could provide a possible explanation for the accelerated
expansion of the Universe without the requirement of
dark energy [3–5]. Moreover it has recently been shown
that massive spin-2 particles can explain the current
observations related to dark matter [6]. Furthermore, the
new observations from LIGO [7] imply that the graviton
mass is bounded to be mg ≤ 7.7 × 10−23 eV=c2, and so
such an assumption remains empirically viable, since
models of massive gravity typically yield the bound
mg ≤ 10−30–10−33 eV=c2, whose observable effects are
out of reach of LIGO [8].
Perhaps the most challenging problem in building a

massive gravitational field theory is the appearance of ghost
instabilities [so-called Boulware-Deser (BD) ghosts] [9].
However dRGT massive gravity has been shown to be
ghost-free in the decoupling limit to all orders in the
nonlinearities; away from the decoupling limit, the

possibility of ghost fields is excluded at least up to and
including quadratic order in the nonlinearities [2]. Any
pathological BD ghost is eliminated at the full nonlinear
level due to the Hamiltonian constraint and the existence of
a nontrivial secondary constraint [10]. This ghost analysis
generalizes both to arbitrary massive couplings [11] and
higher dimensions [12,13].
Beyond these achievements, dRGT massive gravity in

anti–de Sitter (AdS) spacetime with a singular, degenerate
reference metric is proving useful in building holographic
models for normal conductors that are close to realistic
ones, with finite DC conductivity [14–16]. Recent develop-
ments have shown that they can be regarded as dual to
effective field theories of different phases of matter,
particularly homogeneous and isotropic condensed matter
systems with broken translational invariance [17–19].
For these reasons we study here the chemistry

of AdS black holes (BHC) in this context, where the
thermodynamic pressure P ¼ −Λ=8π, and Λ < 0 is the
cosmological constant [20]. We concentrate on higher-
dimensional massive gravity as an alternative candidate to
Einstein’s general relativity, investigate the extended phase
space thermodynamics of the AdS BH solutions in detail,
and bring some new perspectives on BH thermodynamics
with massive gravitons. The phase structure of this class of
theories has yet to be considered in higher dimensions at all
orders. Our purpose is to discover which properties of black
holes are universal and which show a dependence on the
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spacetime dimension. In so doing we find a new range of
critical phenomena that may also be present in nature.
Specifically, we find that topological black holes (TBHs)
with massive gravitons can mimic the critical behavior
of everyday substances in nature without the inclusion of
any extra or unusual matter fields in the gravitational
action. Furthermore, besides van der Waals (vdW) [21,22]
and reentrant [23] phase behavior, in massive gravity
a gravitational triple point can emerge for AdS BHs
with various horizon topologies in spacetime dimensions
with d ≥ 7.
Even more remarkably, in d ≥ 8 we discover a novel and

more complex phenomenon: N-fold reentrant phase tran-
sitions (RPTs), for all types of TBHs. By “N-fold RPTs”
we mean that a number of RPTs are present in distinct
regions of thermodynamic phase space, i.e., for regions
P ∈ ðPTri ; PZi

Þ and T ∈ ðTTri ; TZi
Þ the associated RPTi

occurs. This is in contrast to the situation in Lovelock
gravity (first seen in Ref. [24]), in which hyperbolic black
holes exhibit double (or multiple) RPTs (with the asso-
ciated sequence of LBH → SBH → LBH → SBH… phase
transitions, where SBH denotes small black hole, LBH
denotes large black hole and IBH denotes intermediate
black hole) as the temperature decreases along a single line
in phase space; this critical behavior is similar to observed
double reentrant transitions for smectic and nematic phases
of liquid crystals [25–28], which schematically have the
form A → B → A → B. By contrast, N-fold RPTs refer to
the phenomenon of RPTs (multiple or not) occurring along
more than one line of temperature in phase space.
This situation, in some aspects, resembles that of a

(experimentally confirmed) scenario for liquid crystals
[29–31], but in a slightly different way. In liquid crystals,
reentrance is encountered as the temperature is lowered
monotonically, with other thermodynamic quantities kept
fixed. For massive gravity TBHs we find that several RPTs
occur at various locations in phase space. From the
experimental point of view, since it is not easy to obtain
RPTs from any theory [30], we believe that these kinds of
exact and simple relations in modified gravity could
possibly shed some light on the microscopic structure of
this strange phenomenon and establish a new link between
BH physics and the realm of statistical mechanics of many-
body systems.
N-fold RPTs are thus a generic feature of higher-

dimensional TBHs in massive gravity. We explicitly show
that the analogue of triple points in SBH/IBH/LBH phase
transitions and virtual triple points in N-fold RPTs can be
obtained by adding the fifth-, sixth-, and higher-order
graviton self-interactions besides the first four terms that
usually appear in the literature. Although we do not find
evidence for any quadruple critical points [32], their
existence is not ruled out; whether or not such phenomena
exist for BHs (in massive gravity or elsewhere) remains an
open question.

II. ACTION, FIELD EQUATIONS
AND AdS BLACK HOLES

The bulk action for massive gravity on the d-dimensional
background manifold M in the presence of a negative
cosmological constant can be written as [1,2]

Ib ¼ −
1

16πGd

Z
M

ddx
ffiffiffiffiffiffi
−g

p �
R − 2Λþm2

g

Xd−2
i¼1

ciU iðg; fÞ
�

ð1Þ

where the overall minus ensures that the semiclassical
partition function yields consistent results for the thermo-
dynamic quantities. Here mg is the graviton mass, ci’s are
arbitrary massive couplings, and

U i ¼
Xi

y¼1

ð−1Þyþ1
ði − 1Þ!
ði − yÞ!Ui−y½Ky�; ð2Þ

where U i−y ¼ 1 if i ¼ y. The massive graviton self-
interactions U i are constructed from a d × d matrix Kν

μ,
which is posited to have the following explicit form:

Kμ
ν ¼ ð

ffiffiffiffi
K

p
Þμλð

ffiffiffiffi
K

p
Þλν ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
gμλfλν

q
: ð3Þ

gμν is the dynamical (physical) metric, and fλν is the
auxiliary reference metric, needed to define the mass term
for gravitons.
We seek here a holographic system (AdS BH) that

mimics the physics of solids, liquids, (perfect) fluids,
and especially liquid crystals, i.e., a system with broken
(spatial) translational symmetry as a key ingredient [33]. To
this end, following Refs. [17–19], we consider a subclass
of dRGT massive gravity [14,15,34], having a dynamical
(physical) metric gλν and a degenerate (nonphysical)
reference metric fλν ¼ ∂λϕ

a∂νϕ
bfabðϕÞ, in the configura-

tion space of scalar Stückelberg fields ϕa (a ¼ 1; 2;…; d),
where spatial inhomogeneities are substituted with graviton
mass terms [14,15,34]. This is equivalent to working
with (d − 2) Stückelberg fields for restoring translational
symmetry in spatial directions: there is a gravitational
sector with massless gravitons, encoding dðd − 3Þ=2 physi-
cal modes, and a scalar sector with (d − 2) Stückelberg
fields minimally coupled to gravity [34] that encode
(d − 2) physical degrees of freedom; in all there are
ðdðd − 1Þ − 4Þ=2 degrees of freedom.
By gauge fixing (e.g., working in the unitary gauge

ϕa ¼ δaμxμ), general covariance is preserved in the ðt; rÞ
coordinates and breaks in the other spatial coordinates
(x1; x2;…; xd−2). Consequently, the dual gauge theory on
the AdS boundary will have a conserved energy without
conserved momentum currents [14,15].
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We are looking for a holographic system (AdS BH) that
mimics the physics of solids, liquids, (perfect) fluids, and
especially liquid crystals, i.e., a system with broken
(spatial) translational symmetry as a key ingredient [33].
To do so, we need a system of massless scalar fields
interacting with pure (Einstein) gravity that can be sepa-
rated into different phases of physical matter [17–19]. This
theory can be reformulated in an equivalent way via dRGT
massive gravity with a singular (degenerate) reference
metric, as we shall assume.
We employ the static ansatz

ds2 ¼ −VðrÞdt2 þ VðrÞ−1dr2 þ r2hijdxidxj ð4Þ

for the dynamical metric gμν. The degenerate (spatial)
background [14,35] is chosen for the reference metric as
fμν ¼ diagð0; 0; c20hijÞ where c0 is a positive constant,

with hijdxidxj ¼ dx21 þ sin2ð ffiffi
k

p
x1Þ

k

P
d−2
i¼2 dx

2
i

Q
i−1
j−2 sin

2xj
representing spherical (k ¼ 1), planar (k ¼ 0), and hyper-
bolic (k ¼ −1) horizon geometries of constant curvature

d1d2k and volume ωðkÞ
d2

(in what follows we will use
the convention dn ¼ d − n). With appropriate identifica-
tions these become compact surfaces of higher genus,
yielding TBHs [36]. The interaction terms U i are
U i ¼ ðc0=rÞi

Qiþ1
j¼2 dj; there exist (d − 2) potential terms

in a d-dimensional spacetime.
Varying the bulk action (1), including the Gibbons-

Hawking surface term (IGH), with respect to the dynamical
metric (gμν) yields

Gμν þ Λgμν þm2
gXμν ¼ 0; ð5Þ

where

Xμν ¼ −
Xd−2
i¼1

ci
2

�
U igμν þ

Xi

y¼1

ð−1Þy i!
ði − yÞ!U i−yK

y
μν

�
:

ð6Þ

The above gravitational field equations can be analytically
solved using the metric ansatz (4), and, the metric function
VðrÞ is obtained as

VðrÞ ¼ kþ r2

l2
−

m
rd3

þm2
g

Xd−2
i¼1

�
ci0ci
d2ri−2

Yi
j¼2

dj

�
; ð7Þ

where the Arnowitt-Deser-Misner (ADM) mass of the
black hole is [35]

M ¼ d2ω
ðkÞ
d2

16π
m ð8Þ

where for up to four interaction potentials (i ¼ 1, 2, 3, 4)

m ¼ krd3þ þ rd1þ
l2

þm2
gr

d3þ

�
c0c1
d2

rþ þ c20c2

þ d3c30c3
rþ

þ d3d4c40c4
r2þ

�
ð9Þ

with VðrþÞ ¼ 0; the extension to higher-order potentials is
straightforward.
Note that although the Λ-term of the metric function (7)

is dominant for large r and the curvature tensor approaches
that of pure AdS spacetime, the asymptotic symmetry
group is not necessarily that of pure AdS. For example
charged black hole solutions with a degenerate reference
metric [35] have the same form as Eq. (7) but break the
global symmetries of AdS. To our knowledge there has
been no thorough analysis in the literature regarding the
asymptotic symmetries of solutions in massive gravity with
a negative cosmological constant, and we shall not consider
a full analysis of the asymptotic behavior of our solu-
tions here.
The Hawking temperature of the BH spacetime can be

obtained by employing the Euclidean formalism. By the
analytic continuation of the Lorentzian metric (4) to
Euclidean signature and requiring the regularity condition
near the horizon, we obtain

T ¼ β−1 ¼ V 0ðrÞ
4π

����
r¼rþ

¼ 1

4πrþ

�
d3kþ d1

r2þ
l2

þm2
g

Xd−2
i¼1

�
ci0ci
ri−2þ

Yiþ1

j¼3

dj

��
ð10Þ

for the Hawking temperature.

III. EUCLIDEAN ACTION AND FREE ENERGY

We assume the gravitational partition function of the
massive AdS BH could be defined by a Euclidean path
integral over a dynamical metric (tensor field gμν) as

Z ¼
Z

D½g�e−IE½g� ≃ e−Ion-shell ð11Þ

whose most dominant contribution originates from sub-
stituting the classical solutions of the action, i.e., the so-
called on-shell action, by applying the saddle-point
approximation. The on-shell action can be evaluated
using the Hawking-Witten prescription (the so-called sub-
traction method) [37,38], and the divergence in the partition
function will be canceled. That leads to F≡ ΔF ¼
β−1ðIBH − IAdSÞ for the free energy difference, in which
the zero-point energy of the boundary gauge theory is
eliminated due to our renormalization method. We choose
the thermal AdS background in massive gravity as the
ground state with the period β0, which is different from the
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period of a massive AdS BH, β. Note that this background
solution is given by setting m ¼ 0 in Eq. (7), which is not
pure AdS; it will later become evident that this is the
appropriate background. As usual in massive gravity,
cosmological and black hole solutions are modified at
long distances relative to their counterparts in Einstein
gravity. For a sufficiently tiny graviton mass mg, the
black hole solution tends to the Schwarzschild-AdS case
at short distances.
In deriving the on-shell action, we have made use of

some necessary ingredients, which we briefly explain. The
Ricci scalar in the bulk action (1) can be written in terms of
the cosmological constant and massive potential terms.
Contraction of the field equation (5) yields

R ¼ 2

d2
½Λdþm2

gX �; ðX ≡ gμνXμνÞ: ð12Þ

The second term of the above equation can be summed with
the graviton’s interaction Lagrangians, and then recast in a
compact form as

2

d2
m2

gX þm2
g

Xd−2
i¼1

ciU i ¼ m2
g

Xd−2
i¼1

ði − 2Þ c
i
0ci
ri

Yiþ1

j¼3

dj; ð13Þ

in which we have made use of the identity

2
Yiþ1

j¼3

djþ
Xi

y¼1

ð−1Þy i!
ði−yÞ!

Yi−yþ1

j¼2

dj¼ði−2Þ
Yiþ1

j¼3

dj; ð14Þ

where
Qy

x … ¼ 1 if x > y. As a result, the on-shell action
for the massive AdS BH is

IBH ¼ βωðkÞ
d2

16πGd

�
2rd1

l2
−m2

g

Xd−2
i¼1

ði − 2Þci0cirdiþ1

d − i − 1

Yiþ1

j¼3

dj

�
R

rþ

ð15Þ

where R is an upper cutoff to regularize the on-shell
actions. Repeating the same procedure for the thermal
AdS background in massive gravity yields

IAdS ¼ β0ω
ðkÞ
d2

16πGd

�
2Rd1

l2
−m2

g

Xd−2
i¼1

ði − 2Þci0ciRdiþ1

d − i − 1

Yiþ1

j¼3

dj

�
:

ð16Þ

Fixing the temperature of both the AdS and BH configu-
rations at r ¼ R, i.e., β0V0ðRÞ1=2 ¼ βVðRÞ1=2 so that both
the AdS and BH spacetimes must have the same geometry
at r ¼ R gives β0¼βð1− ml2

2Rd−1þOðR−2ðd−1ÞÞÞ. Subtracting
the on-shell action of the AdS background yields

I≡ lim
R→∞

ðIBH−IAdSÞ

¼βωðkÞ
d2
rd3þ

16πGd

�
k−

r2þ
l2

þm2
g

Xd−2
i¼1

�ði−1Þci0ci
ri−2þ

Yi
j¼3

dj

��
ð17Þ

where the following identity has been used:

1

d2

Yi
j¼2

dj þ
i − 2

d − i − 1

Yiþ1

j¼3

dj ¼ ði − 1Þ
Yi
j¼3

dj: ð18Þ

IV. THERMODYNAMICS

Thermodynamic quantities associated with TBH space-
times can be directly extracted via the partition function,
Eqs. (11) and (17). The mean energy of thermal radiation,
hEi, is given by

M≡ hEi ¼ −
∂
∂β lnZ

¼ d2ω
ðkÞ
d2

16π

�
kþ r2þ

l2
þm2

g

Xd−2
i¼1

�
ci0ci
d2ri−2þ

Yi
j¼2

dj

��
rd3þ ; ð19Þ

which is in agreement with the ADM mass [39,40] of the
BH spacetime (setting Gd ¼ 1). Noting that the pressure is
P ¼ −Λ=8π ¼ d1d2=16πl2 (implying that the BH mass is
interpreted as the enthalpy, M≡H [41]), we find

V ¼
�∂M
∂P

�
Xi

¼ ωðkÞ
d2

d1
rd1þ ð20Þ

for the thermodynamic volume, where Xi denotes the
extensive quantities. The Gibbs free energy, which depends
on the quantities T and P, is given by

G≡ β−1 lnZðβ; PÞ

¼ ωðkÞ
d2
rd3þ

16π

�
k −

16πPr2þ
d1d2

þm2
g

Xd−2
i¼1

�ði − 1Þci0ci
ri−2þ

Yi
j¼3

dj

��
:

ð21Þ
Finally, the entropy of TBHs is calculated as

S ¼ βM − I ¼ ωðkÞ
d2

4
rd2þ : ð22Þ

These quantities obey the Smarr formula

ðd − 3ÞM ¼ ðd − 2ÞTS − 2PV þ
Xd−2
i¼1

ði − 2ÞCici; ð23Þ

with Ci ¼ ð∂M∂ciÞS;P;ci≠j ¼
m2

gω
ðkÞ
d2

16π ci0r
d−i−1þ

Q
i
j¼2 dj.

Note that Eq. (23) (which follows from Eulerian
scaling [41]) proves that variations in the massive couplings
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(ci) are required for consistency of the first law with
the Smarr formula, so massive couplings are not fixed
a priori. This implies that the thermodynamic quantities
(M, T, S, P, V, Ci and ci) analytically satisfy the first
law of thermodynamics in the enthalpy representation,
i.e., dM ¼ TdSþ VdPþP

d−2
i¼1 Cidci.

V. EQUATION OF STATE AND PHASE
STRUCTURE

The equation of state is simply obtained from Eq. (10) as

P ¼ d2T
4rþ

−
d2d3k
16πr2þ

−
m2

g

16π

Xd−2
i¼1

�
ci0ci
riþ

Yiþ1

j¼2

dj

�
: ð24Þ

The critical point occurs at the spike-like divergence of the
specific heat at constant pressure (i.e., an inflection point in
the P − V diagrams) and can be found from the relations
�∂P
∂v

�
T
¼

�∂2P
∂v2

�
T
¼ 0 →

� ∂P
∂rþ

�
T
¼

�∂2P
∂r2þ

�
T
¼ 0;

ð25Þ
which yield

2kþm2
g

Xd−2
i¼1

�
iði − 1Þci0ci

ri−2þ

Yiþ1

j¼4

dj

�
¼ 0; ð26Þ

where the specific volume v ¼ 4rþl
d2
P =d2 is proportional

to rþ [42,43].
Since the expression on the left-hand side of Eq. (26) is

a real and inhomogeneous polynomial equation of
degree (d − 4) in rþ, an arbitrary number of critical points
could be produced by adjusting the spacetime dimension d.
Consequently higher-dimensional TBHs within the frame-
work of massive gravity can exhibit as many as n ¼ ðd − 4Þ
critical points in d dimensions. Note that criticality does
not take place in d ¼ 4; the inclusion of Uð1Þ charge can
yield critical behavior in this case. Interestingly, in d ≥ 7
dimensions, with up to five graviton self-interaction poten-
tials (U1;…;U5), we have

ðkþm2
gc20c2Þr3þ þ 3d4m2

gc30c3r
2þ þ 6d4d5m2

gc40c4rþ
þ 10d4d5d6m2

gc50c5 ¼ 0; ð27Þ
which can have three positive roots, indicating the exist-
ence of a triple point and an analogue of the solid/liquid/gas
phase transition for uncharged-AdS BHs in massive gravity
(without loss of generality, we set c0 ¼ 1 hereafter). This
situation is similar to that seen in multispinning (d ≥ 6)
Kerr-AdS BHs [44]. In a d-dimensional spacetime, an
inhomogeneous polynomial equation of degree (d − 4)
could at most have (d − 4) positive roots. This indicates
the possibility of finding more than three different BH
phases in massive gravity.

VI. TRIPLE POINT AND SBH/IBH/LBH
PHASE TRANSITION

We now consider a ten-dimensional BH spacetime with a
flat (k ¼ 0) geometry for its event horizon. This leads to a
boundary dual gauge theory with a Minkowski metric. To
observe the analogue of a triple point, we have tuned the
massive couplings to produce three critical points, as shown
in Fig. 1, where we depict the G − T diagram correspond-
ing to the SBH/IBH/LBH phase transition that resembles
the solid/liquid/gas phase transition in usual substances.
The isobar corresponding to Pc2 < P < Pc1 displays the
swallowtail (vdW) behavior which indicates a first-order
phase transition. For pressures with PTr < P < Pc2 we
observe two swallowtails, indicating the appearance of
two first-order phase transitions, implying three-phase
behavior. By decreasing the pressure, the two swallowtails
eventually merge and a triple point (TTr,PTr) appears.

VII. N-FOLD RPTs

Next we present an analogue of four critical points in
the context of BH thermodynamics. By further tuning the
parameters, we show in Fig. 2 that four critical points can
be created in the thermodynamic phase space of ten-
dimensional planar BHs. As seen in Fig. 2, two distinct
reentrant phase transitions take place in the phase space,
indicating the appearance of two virtual triple points
(referred to as PTr1 and PTr2). In fact, for a fixed pressure
in ranges of PTr1 < P < PZ1

and PTr2 < P < PZ2
, each

RPT takes place along a single horizontal transition line in
the P − T diagram (Fig. 3) and we may observe multiple
phase transitions indicating N-fold reentrant phase tran-
sition behavior. In these two distinct regions of phase space,
as temperature decreases monotonically, a first-order phase
transition is observed, and then, a finite jump (disconti-
nuity) appears in the global minimum of the Gibbs free

FIG. 1. Analogue of a triple point: G − T diagram for various
pressures; we have set k ¼ 0, d ¼ 10, mg ¼ 1, c0 ¼ 1, c1 ¼ 1,
c2 ¼ 1.6, c3 ¼ −2.1, c4 ¼ 0.35, c5 ¼ 2.6, c6 ¼ −2.9, c7 ¼ 0,
and c8 ¼ 0. Critical data: (TC1

¼ 0.127185, PC1
¼ 0.002482),

(TC2
¼ 0.124382, PC2

¼ 0.001624), and (TTr ¼ 0.123577,
PTr ¼ 0.001532).
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energy, which displays the zeroth-order phase transition.
Then we observe a twofold reentrant phenomenon, which
in some aspects is reminiscent of the sequence of reentrant
phase transitions in liquid crystals [29–31]. But an impor-
tant difference remains here. In the thermodynamic phase
space of the obtained TBHs, two RPTs are observed in
distinct regions of phase space, i.e., the first RPT occurs for
a given pressure in PTr1 < P < PZ1

as temperature is
lowered monotonically in the region TTr1 < T < TZ1

,
and the second RPT occurs in the same way with temper-
ature in the region TTr2 < T < TZ2

and a given pressure
in PTr2 < P < PZ2

. But, in liquid crystals and multi-
component fluids, multiple RPTs (especially the double

reentrance sequence A → B → A → B [25–28]) take place
as the temperature is lowered with other thermodynamic
quantities (such as pressure) held fixed. This situation is
more similar to that seen in (d ¼ 7) Lovelock-AdS BHs
with hyperbolic horizon topology [24], in which a double
RPT (LBH → SBH → LBH → SBH) has been observed
solely by lowering the temperature. These remarks indicate
the importance of studying the critical behavior of TBHs
in the other gravitational alternatives such as Lovelock
gravity.
Summarizing, we have demonstrated the existence of

N-fold RPTs within massive gravity. These depend on the
number of inflection points. Our investigations show that
the existence of N-fold RPTs with corresponding (N)
virtual triple points is a generic feature of all types of
TBHs in higher-dimensional massive gravity, which is a
step forward in understanding BH phase transitions via
modified gravity. Perhaps these new kinds of N-fold RPTs
are present in many-body systems; they certainly merit
further exploration.

VIII. CLOSING REMARKS

Since condensed matter systems usually break transla-
tional invariance in nature, we have considered holographic
duals of such systems with homogeneity and isotropy
properties using the language of dRGT massive gravity
with a singular, degenerate reference metric. We obtained
TBH solutions that are free from pathological behavior
and dual to matter with broken translational symmetry
property; so, in principle, they can be dual to liquid crystals
[33,45,46]. These TBHs yield up to n ¼ ðd − 4Þ critical
points in d dimensions. Consequently, a number of new
interesting phenomena emerge, in particular N-fold re-
entrant phase transitions, indicating multiple phases in
d ≥ 7 dimensions. Moreover, in the grand canonical
ensemble of charged-AdS BHs, this behavior persists
and holds in higher dimensions as well. Since (multiple)
RPTs are typical of liquid crystals, elementally, holo-
graphic models for them using BHC could probably
simulate realistic critical behavior and perhaps be imple-
mented to predict new features of criticality, such as N-fold
RPTs, in nature. No proposal has yet been provided to
experimentally verify TBH phase transitions, but it is
conceivable that analogue gravity simulations [47] may
one day get to this point.
From the molecular point of view, (multiple) RPTs

appear in compounds (especially in liquid crystals) and
only approximate qualitative explanations exist for them.
Regarding this, we believe that the analytic TBH equations
of state (24) in d ≥ 8 and their counterparts in other
gravitational alternatives such as Lovelock gravity [24]
could possibly shed some light on the microscopic structure
of multiple RPTs (or perhaps N-fold RPTs if they exist) in
liquid crystals and multicomponent fluids [29–31] which

FIG. 2. Twofold RPTs:G − T diagram for various pressures; we
have set k¼0,d¼10,mg ¼ 1, c0 ¼ 1, c1 ¼ 1, c2 ¼ 3, c3 ¼ −4.3,
c4 ¼ 2.6, c5 ¼ 1.2, c6 ¼ −3.5, c7 ¼ 2.6, and c8 ¼ 0. Critical
data: (TC1

¼ 0.175778, PC1
¼ 0.007513), (TC2

¼ 0.172218,
PC2

¼ 0.005847), (TC3
¼ 0.1653102, PC3

¼ 0.003276),
(TC4

¼ 0.160285, PC4
¼ 0.002343), (TTr1 ¼ 0.174034,

PTr1 ¼ 0.006794), (TZ1
¼ 0.174203, PZ1

¼ 0.006882),
(TTr2 ¼ 0.162519, PTr2 ¼ 0.0029496), and (TZ2

¼ 0.162572,
PZ2

¼ 0.002965).

FIG. 3. Phase diagram for twofold RPTs: The corresponding
coexistence lines of twofold RPTs, presented in Fig. 2, in the
P − T diagram. Dashed and solid lines represent zeroth- and first-
order phase transitions, respectively. Qualitatively, this behavior
is generic for any twofold RPTs.
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merits further investigation in the future. Furthermore, we
expect that the exact massive TBHs with a range of novel
phase transitions constructed here have potential applica-
tions in the context of the AdS=CFT correspondence; in
particular, a holographic interpretation of them remains an
open question.
Finally, we note that our considerations are valid for all

types of TBHs, which can be manifest by introducing the
effective topological factor keff ¼ ðkþm2

gc20c2Þ appearing
in Eqs. (7), (10), (21), (24), and (26). The only necessity is
that the same value must be provided for the combination
keff (by varying the massive constant c2) while keeping
other parameters fixed. As a result, the same critical points

with the same critical behavior are found for the cases of the
spherical, planar, and hyperbolic BHs.
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