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We propose a step-by-step manual for the construction of alternative theories of gravity, perturbatively as
well as nonperturbatively. The construction is guided by no more than two fundamental principles that we
impose on the gravitational dynamics: invariance under spacetime diffeomorphisms and causal compat-
ibility with given matter dynamics, provided that spacetime is additionally endowed with matter fields. The
developed framework then guides the computation of the most general, alternative theory of gravity that is
consistent with the two fundamental requirements. Utilizing this framework we recover the cosmological
sector of general relativity solely from assuming that spacetime is a spatially homogeneous and isotropic
metric manifold. On top of that, we explicitly test the perturbative framework by deriving the most general
third-order expansion of a metric theory of gravity that is causally compatible with a Klein-Gordon scalar
field. Thereby we recover the perturbative expansion of general relativity. To demonstrate how new physics
emerges from our approach, we finally construct the most comprehensive third-order expansion of a theory
of gravity that supports general (not necessarily Maxwellian) linear electrodynamics.
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I. INTRODUCTION

Research on alternative theories of gravity faces a
fundamental problem: While the experimental data con-
sistently shows that the current description of the universe
given by general relativity (GR) and the Standard Model of
particle physics (SMPP) is incomplete, it is not obvious
how a (more) complete theory should look like.1 This
leaves the researcher with an infinity of possible models
to choose from. Testing such an infinity of models against
experimental data cannot be done with only a finite number
of astrophysical measurements. In spite of this impossibil-
ity, numerous proposed alternatives to GR [6,7] tried to
resolve the inconsistencies within the current models, but a
real breakthrough has still not been achieved. To facilitate
these undertakings, we propose that the problem of con-
structing alternative theories of gravity should best be
tackled with a more structured plan at hand.
We call this plan covariant constructive gravity. At the

heart of it, there lie two fundamental requirements we
impose on any alternative theory of gravity:

(A1) The dynamical laws that govern gravity are
invariant under spacetime diffeomorphisms.

(A2) Provided that spacetime is additionally inhabited
by matter fields, their dynamics is causally com-
patible with the gravitational dynamics.

In the present work, we cast these two axioms in rigorous
mathematical language and develop a procedure to derive
the most comprehensive dynamical theory of gravity for
a tensor field that is consistent with (A1) and (A2). The
framework can be generalized at will, for instance to also
include nontensorial gravitational fields.
If in the model at hand spacetime is inhabited by matter

fields with known dynamics, such that ðA2Þ has to be
implemented, our approach is closely related to the pro-
gramme of (canonical) gravitational closure [8–10], which
aims to close the joint model of matter and gravitational
fields by deducing dynamical laws for the gravitational
field as well. The difference, however, lies in the imple-
mentation of the axioms: While canonical gravitational
closure works within the Hamiltonian picture, where
general covariance is encoded in the constraint algebra,
we choose the manifestly covariant Lagrangian description.
We proceed as follows: At the beginning of Sec. II,

we develop the necessary tools to obtain a rigorous, yet
sufficiently general formulation of gravity as a second-
derivative-order Lagrangian field theory in terms of the
jet bundle formalism. This allows the two fundamental
requirements to be cast in precise mathematical language:
(A1) is equivalent to a specific linear, first-order system of
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1Consider, for example, the problem of flat galaxy rotation

curves [1–3]. Most explanations for this phenomenon introduce
dark matter [4], i.e., augment the SMPP with additional matter
fields. There is, however, no consensus about the nature of these
fields [5]. In addition, this also leaves open the question whether
GR has to be modified as well and, if so, how it must be modified.

PHYSICAL REVIEW D 101, 084025 (2020)

2470-0010=2020=101(8)=084025(13) 084025-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3514-1535
https://orcid.org/0000-0003-2993-5275
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.084025&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1103/PhysRevD.101.084025
https://doi.org/10.1103/PhysRevD.101.084025
https://doi.org/10.1103/PhysRevD.101.084025
https://doi.org/10.1103/PhysRevD.101.084025


partial differential equations for the Lagrangian, whereas
(A2) can be formulated as additional algebraic conditions
on the gravitational principal polynomial, a certain part of
the gravitational equations of motion. Finishing Sec. II we
collect the results in the form of a precise manual for the
construction of gravitational theories.
In Sec. III we deduce perturbative equivalents to the two

fundamental requirements that we formulated in Sec. II. To
that end, we concern ourselves with the computation of
formal power series solutions to the PDE that we derived
from (A1). This further allows us to extract viable infor-
mation about how many independent curvature invariants
any specific tensorial theory of gravity admits. In particular,
we recover the known number of 14 curvature invariants for
a spacetime endowed with a metric. We conclude Sec. III
with a concrete, algorithmic recipe for the perturbative
construction of alternative theories of gravity.
Section IV is dedicated to testing the developed frame-

work. In the nonperturbative setting we consider spacetime
as a spatially homogeneous and isotropic metric manifold.
Following along the steps of the construction manual, from
this assumption we derive the Friedmann equations without
ever using the Einstein-Hilbert Lagrangian from general
relativity. As a first successful test of the perturbative
framework, we recover the perturbative expansion of
general relativity from feeding the construction recipe
the information that gravity be described by a metric tensor
field. Finally, we demonstrate how a modified theory of
gravity may be obtained using our approach by construct-
ing a third-order expansion of area metric gravity, the most
general theory of gravity that is consistent with any linear
theory of electrodynamics.

II. THE AXIOMS OF CONSTRUCTIVE GRAVITY

A. Diffeomorphism invariant gravitational dynamics

We wish to describe the gravitational field as a tensor
field2 over the 4-dimensional spacetime manifold M. To
that end, let F ⊂ Tm

n M be a vector sub-bundle of the ðm; nÞ
tensor bundle over M, such that the gravitational field can
be described as a section G ∈ ΓðFÞ of this bundle. We
denote adapted coordinates3 on F by ðxm; vAÞ, where we
introduced the abstract index A that consequently runs over
the fiber dimension of F.
As F is a vector bundle, we define its vector bundle dual

F� with fiber at p ∈ M given by the vector space dual of
π−1F ðpÞ. Moreover, we denote fiber coordinates dual to vA
by vA.
We might very well consider the case where F represents

a true subbundle of Tm
n M and hence admits fibers of

dimension r < mþ n. For such situations it is convenient
to introduce vector bundle morphisms that relate fiber
coordinates vA on F to fiber coordinates va1…am

b1…bn
on Tm

n M.
Definition 1. (intertwiner) Let ðF; πF;MÞ be a vector

bundle. We call a pair of vector bundle morphisms ðI; JÞ,

I∶ F → Tm
n M;

J∶ Tm
n M → F; ð1Þ

that cover idM and satisfy J ∘ I ¼ idF a pair of intertwiners
for the bundle ðF; πF;MÞ.
In adapted coordinates we thus have the relations

va1…am
b1…bn

¼ IAa1…am
b1…bn

· vA;

vA ¼ Jb1…bn
Aa1…am

· va1…am
b1…bn

;

vb1…bn
a1…am ¼ Jb1…bn

Aa1…am
· vA;

vA ¼ IAa1…am
b1…bn

· vb1…bn
a1…am;

δAB ¼ IAa1…am
b1…bn

· Jb1…bn
Ba1…am

: ð2Þ

The dynamics of the gravitational field shall be
encoded as equations of motion to a second-derivative-
order Lagrangian for the gravitational field. We deliber-
ately restrict to second-derivative-order Lagrangians, as any
contribution of higher order necessarily leads to instabil-
ities in the associated Hamiltonian formulation [12].
Such a gravitational Lagrangian can be rigorously

defined on the jet bundle [11,13–16]. We denote adapted
coordinates of the second-order jet bundle J2F over F
by ðxm; vA; vAp; vAIÞ. Here we introduced a new type of
abstract index that is used to label second-order spacetime
derivatives and thus runs from 0 to 9. The relation to the
spacetime derivatives in standard notation is provided by
an additional pair of intertwiners for the symmetric bundle
S2M ⊂ T0

2M,

vAI ¼ JijI vAij;

vAij ¼ IIijvAI: ð3Þ

We now define a second-derivative-order gravitational
Lagrangian as follows.
Definition 2. (Lagrangian) A second-order Lagrangian

L on ðF; πF;MÞ is a bundle map that covers idM:

L∶ J2F → Λ4M: ð4Þ

Thus, the formulation of classical Lagrangian field
theory yields the following situation, which is also illus-
trated in Fig. 1: The gravitational field is described as a
section of a bundle F over the spacetime manifold M.
As such it can be prolonged to any jet bundle JqF,
constructed over F, by applying the jet prolongation

2The framework can readily be generalized to any vector
bundle—with the restriction that for non-natural bundles, the lift
of the diffeomorphism action from the base space to the total
space has to be specified by hand.

3We will always restrict to coordinates linear on the fibers [11].
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map jq. The Lagrangian L is a volume-form-valued bundle
map on J2F. Therefore, once composed with a prolonged
section j2G, we can compute its integral. This defines the
usual local action functional on the space of fields:

SL∶ ΓðFÞ → R

G ↦ SL½G� ≔
Z

Lðj2ðGÞÞ: ð5Þ

Equations of motion (EOM) are obtained by equating the
variational derivative of the Lagrangian with zero:

0 ¼ EA

¼ δL
δvA

¼ ∂L
∂vA −Dp

� ∂L
∂vAp

�
þDpDqJ

pq
I

� ∂L
∂vAI

�
: ð6Þ

Here we further introduced the jet bundle total derivative
Dp that maps a function f on JqF to a function on Jqþ1:

Dpf ≔
∂f
∂xp þ vAp ·

∂f
∂vA þ vAIIIpq ·

∂f
∂vAq þ � � � : ð7Þ

Note that the EOM of a second-order Lagrangian are thus,
in general, given by a function on J4F. As we wish to
restrict to theories that allow for a meaningful Hamiltonian
formulation, we will restrict, however, to those cases where
L is degenerate, such that the EOM are also of second
derivative order.
One of the fundamental requirements that we wish to

impose on the gravitational dynamics is their invariance
under spacetime diffeomorphisms. This can be understood
as a consequence of Einstein’s requirement of general
covariance [17,18]. To that end, it is necessary that we lift

the standard action of DiffðMÞ to J2F. As F ⊂ Tm
n M, the

action of DiffðMÞ lifts naturally, by the usual pushforward-
pullback construction, to an action by vector bundle
isomorphisms on F. In the following, we denote the image
of ϕ ∈ DiffðMÞ under this lift by ϕF. In order to further lift
this action to the jet bundle we need to introduce an
additional technique.
Definition 3. (prolongation of morphisms) Let

ðF1; πF1
;MÞ and ðF2; πF2

; NÞ be bundles, ϕ∶M → N a
diffeomorphism, f∶F1 → F2 a bundle morphism covering
ϕ. The kth-order jet bundle lift of ðf;ϕÞ is the unique
map jkðfÞ∶JkF1 → JkF2 that lets the diagram in Fig. 2
commute.
Note that when acting on sections G ∈ ΓðF1Þ, the jet

bundle lift of bundle morphisms commutes with the jet
prolongation map

jkðfÞ ∘ jkG ∘ϕ−1 ¼ jkðf ∘G ∘ϕ−1Þ: ð8Þ

Using this notion of lifted bundle morphisms we finally
formulate the first fundamental requirement of constructive
gravity in rigorous fashion.
Definition 4. A Lagrangian field theory described by a

second-order Lagrangian L∶J2F → Λ4M is called diffeo-
morphism invariant if L is equivariant with respect to the
lifted action of DiffðMÞ on J2F and the pullback action on
Λ4M, i.e., if it holds for all ϕ ∈ DiffðMÞ that

L ∘ j2ðϕFÞ ¼ ϕ� ∘L: ðAxiom 1Þ

Infinitesimally, on the Lie algebra level, diffeomor-
phisms are described by vector fields ΓðTMÞ with lie
bracket provided by their commutator. The lifted action of
DiffðMÞ on F yields a Lie algebra morphism [15]

FIG. 1. Commutative diagram: Lagrangian field theory.

FIG. 2. Commutative diagram: Prolongation of morphisms.
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f∶ ΓðTMÞ → ΓðTFÞ
ξ ↦ ξF

ξF ¼ ξm
∂

∂xm þ ξA
∂

∂vA
¼ ξm

∂
∂xm þ CBm

An vB∂mξ
n ∂
∂vA : ð9Þ

Here we introduced the constants CBm
An that constitute the

vertical coefficient of this lifted vector field. Further, we get
the following Lie algebra morphism that yields the corre-
sponding vector field on J2F:

j2ðfÞ∶ ΓðTMÞ → ΓðTJ2FÞ
ξ ↦ ξJ2F; ð10Þ

where

ξJ2F ¼ ξm
∂

∂xm þCBm
An vB∂mξ

n ∂
∂vA

þCBm
An ∂mξ

nvBi
∂

∂vAi − vAn∂mξ
n ∂
∂vAm

þCBm
An vB∂m∂pξ

n ∂
∂vAp þCBm

An vBI∂mξ
n ∂
∂vAI

− 2vAJIJanJamI ∂mξ
n ∂
∂vAI þ 2CBm

An vBaJ
ap
I ∂m∂pξ

n ∂
∂vAI

− vAnJ
pm
I ∂m∂pξ

n ∂
∂vAI þCBm

An vBJ
pq
I ∂m∂p∂qξ

n ∂
∂vAI :
ð11Þ

We now use the Lie algebra morphism (11) to derive an
infinitesimal version of the first fundamental requirement
(Axiom 1).
Theorem 1. Let L ¼ Ld4x be the Lagrangian of a

diffeomorphism invariant field theory on J2F, i.e., L is
assumed to satisfy condition (Axiom 1). Then the coor-
dinate expression L necessarily satisfies the following
system of first-order, linear partial differential equations,

0 ¼ L∶m

0 ¼ L∶ACBm
An vB þ L∶Ap½CBm

An δ
q
p − δBAδ

q
nδmp �vBq

þ L∶AI½CBm
An δ

J
I − 2δBAJ

pm
I IJpn�vBJ þ Lδmn

0 ¼ L∶AðpjCBjmÞ
An vB þ L∶AI½CBðmj

An 2JjpÞqI − δBAJ
pm
I δqn�vBq

0 ¼ L∶AICBðmj
An vBJ

jpqÞ
I ; ð12Þ

where L∶m ≔ ∂L
∂xm, L∶A ≔ ∂L

∂vA, etc.
Proof.—Expressing condition (Axiom 1) infinitesimally,

by utilizing the Lie algebra morphism (11) for an arbitrary
vector field ξ ∈ ΓðTMÞ, yields an equation with left-hand
side given by applying ξJ2F on L and right-hand side given
by the infinitesimal of the pullback action of ϕ on Λ4M.

As ξ ∈ ΓðTMÞ was assumed arbitrary, we can choose
the individual components such that specific contributions
to the equations are isolated. These then have to be satisfied
independently. Several suitable choices for the vector field
components then yield precisely PDE system (12). ▪
This system of 140 first-order, linear partial differential

equations for the Lagrangian follows necessarily from the
requirement of diffeomorphism invariance. Conversely,
every solution to this PDE yields a valid candidate
Lagrangian to describe the gravitational dynamics. The
problem of constructing gravitational dynamics is thus
rephrased as computing the general solution to (12). This is
an enormous advantage: As solving partial differential
equations is a frequently occurring problem in almost all
areas of research, the underlying theory is extensively
developed [14,19,20]. Furthermore, note that the only
quantity appearing in (12) that explicitly depends on the
specific gravitational field is the vertical coefficient CBm

An .
This allows for a unified treatment of the PDE, irrespective
of the precise gravitational field at hand.
Gotay et al. derived a similar system for first-order

Lagrangians [15,16] and used this system to define a uni-
versal, conserved energy-momentum tensor as Noether
current associated to DiffðMÞ. Unfortunately, restricting
to first-order Lagrangians for a description of gravity does
not always suffice—for instance, it does not in GR with
only the usual metric tensor as gravitational field.
There are many exciting implications of (12) that,

however, go beyond the scope of this paper. We have
already presented a framework for the construction of
perturbative gravitational dynamics that thrives on conse-
quences of (12) on the corresponding EOM [21]. Utilizing
the jet bundle formulation of Hamiltonian dynamics [22]
one can further show—at least for first-derivative-order
theories—that the Hamiltonian associated to any diffeo-
morphism invariant Lagrangian field theory is necessarily
given by a linear combination of 4 primary and 4 secondary
constraints and thus vanishes weakly [23].
It is worth noting that diffeomorphism invariance also

constitutes the main guiding principle for three well-known
approaches that achieved to recover Einstein’s general
relativity as the unique, second-derivative-order, metric
theory of gravity. First of all, Lovelock showed by directly
imposing the condition of diffeomorphism invariance on
the EOM that they are uniquely given by the Einstein tensor
[24–26]. Hojman et al. derived the canonical formulation of
general relativity by requiring the Hamiltonian to be fully
constrained and the corresponding constraint algebra to
resemble the algebra of hypersurface deformations [27].
Ultimately this is also related to diffeomorphism invariant
dynamics [23,28]. Last but not least, contributions mainly
due to Deser revealed how Einstein dynamics can be
obtained from energy-momentum conservation of the
gravitational dynamics [29,30]. Conversely, Gotay et al.
showed that their universal energy-momentum tensor is
conserved and, moreover, reproduces the well-known
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expression in the case of general relativity [15]. Therefore,
all three approaches illustrate further how diffeomorphism
invariance—incorporated from three distinct points of
view—can be seen as one of the fundamental traits that
distinguish general relativity and further serves as an
excellent guiding principle for the construction of gravi-
tational dynamics.

B. Causal compatibility between matter and gravity

In the last section, we considered the formulation of a
bare gravitational theory. If we additionally endow space-
time with a matter field ϕ ∈ ΓðFmatÞ that is coupled to the
gravitational field, i.e., whose dynamics is governed by a
first-order Lagrangian4

Lmat∶ Fgrav ⊕M J1Fmat → Λ4M; ð13Þ
we additionally have to ensure that the description of matter
and gravity are causally compatible.
The causal structure of a given second-order EOM

EA ¼ 0 is closely related to the behavior of wavelike
solutions in the infinite frequency limit [10]. We consider
the Wentzel-Kramers-Brillouin ansatz for the coordinate
expression of a section GA ∈ ΓðFÞ

GAðxmÞ ¼ RefeiSðxmÞ
λ · ½aAðxmÞ þOðλÞ�g: ð14Þ

Evaluating the EOM at this section and taking the limit
λ → 0 one obtains in leading order�∂EA

∂vBI
�
JabI kakb|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

TABðkaÞ

aBðxmÞ ¼ 0; ð15Þ

where ka ¼ −∂aSðxmÞ is the wave covector of the ansatz.
The r × r matrix TABðkaÞ is called the principal symbol of
the EOM. If the wave ansatz (14) with wave covector ka
shall be a nontrivial solution with aA ≠ 0 to the EOM, then,
in particular, TABðkaÞ must not be injective.
Requiring such a square matrix to be noninjective is, of

course, equivalent to imposing the vanishing of its deter-
minant. There is, however, a caveat that obstructs this
straightforward approach. If the theory at hand features
gauge symmetries, its principal symbol is necessarily
noninjective, irrespective of the specific covector ka. The
reason for this lies in the fact that for a gauge symmetry
with s-dimensional orbits, there exist s independent coef-
ficient functions χðiÞAðkaÞ, for i ¼ 1;…; s, that are gauge-
equivalent to the trivial solution aAðxmÞ ¼ 0 and thus are
contained in the kernel of the principal symbol.
Consequently, if we wish to obtain at least one physically
nontrivial solution with wave covector ka that does not

vanish modulo gauge transformation, we need to require
that the kernel of TABðkmÞ is at least sþ 1 dimensional.
This is equivalent to imposing the vanishing of all order-s
subdeterminants, i.e., a vanishing order-s adjunct matrix

QðA1…AsÞðB1…BsÞðkaÞ ≔
∂sðdetðTABðkaÞÞÞ

∂TA1B1ðkaÞ…∂TAsBsðkaÞ
: ð16Þ

It can be shown that QðA1…AsÞðB1…BsÞðkaÞ is subject to the
general form [10,32]

QðA1…AsÞðB1…BsÞðkaÞ

¼ ϵσ1…σsϵτ1…τs

�Ys
i¼1

χðσiÞAi
ðkaÞ

��Ys
j¼1

χðτjÞBj
ðkaÞ

�
PðkaÞ;

ð17Þ

where PðkaÞ is a homogeneous, order 2r − 4s polynomial
in the covector components kA. We call this function the
principal polynomial of the EOM. Hence, in the infinite
frequency limit, for (14) to describe a physically nontrivial
solution to the EOM, it is necessary for the corresponding
wave covector ka to be a root of the principal polynomial
PðkaÞ. Thereby, the principal polynomial encodes the
complete information of the propagation of wavelike
solutions with infinite frequency. In particular, it contains
the information about which spacetime domains such
waves might causally influence [14,33,34].
For the special case of EA describing diffeomorphism

invariant dynamics, it follows from (12) that the following
4 independent coefficient functions lie in the kernel of
TABðkaÞ:

χðnÞAðkaÞ ¼ CCm
An vCkm: ð18Þ

In addition to defining admissible wave covectors of
nontrivial solutions, the principal polynomial also provides
information about suitable initial data hypersurfaces that
can serve as starting point for the initial value formulation
of the theory, provided such a formulation exists.
Theorem 2. If the Cauchy problem of a given PDE is

well-posed in a region of M, then the principal polynomial
necessarily restricts to a hyperbolic polynomial on T�

pM for
every p contained in that region. Furthermore, exactly
those hypersurfaces that have at every point a conormal
which is hyperbolic with respect to P are admissible initial
data hypersurfaces.
Proof.—The proof can be found in [35] and also

in [36]. ▪
Note that the existence of a well-defined Cauchy

problem is of fundamental importance for any meaningful
physical theory, as only then the theory admits predictive
power [37]. Thus, in the following, we will restrict all
considerations to theories that feature hyperbolic EOM.

4In this definition⊕M is the Whitney sum of fiber bundles over
the common bases space M [31].
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Summing up, we see that the principal polynomial of any
hyperbolic EOM defines in each T�

pM, by means of its
vanishing set Vp ⊂ T�

pM, the set of admissible, infinite
frequency wave covectors. Moreover, the set of hyperbolic
covectors Cp ∈ T�

pM that can be shown to constitute a
convex cone [38], the so-called hyperbolicity cone, pro-
vides the relevant information of possible choices of initial
data hypersurfaces. The situation is illustrated in Fig. 3.
When constructing alternative theories of gravity, the

distribution of vanishing sets Vgrav ⊂ T�M of the gravita-
tional principal Polynomial Pgrav thus not only governs the

propagation of gravitational waves, but its distribution of
hyperbolicity cones Cgrav ⊂ T�M further encodes suitable
initial data hypersurfaces, which are closely related to
viable observer definitions [10,34,37].
If gravity is additionally coupled to a matter field, we get

a principal polynomial of the matter EOM Pmat, which
endows spacetime with an additional distribution of its
vanishing sets Vmat and its hyperbolicity cones Cmat. It is
then crucial that the causal structures of matter and gravity
are compatible. Not only do we have to impose Cgrav ¼
Cmat if the two theories shall allow for a unified observer
definition [34,37], recent observations of gravitational
waves also suggest that they5 propagate at the speed
of light [39] and thus admit the same wave covectors as
matter waves. Therefore, we further need to require that
wave covectors of the given matter theory also serve
as wave covectors of gravitational waves: Vmat ⊂ Vgrav.
Consequently, specifying any matter theory of the form
(13) that is coupled to gravity, we get two additional
conditions on the gravitational dynamics:

Cgrav ¼ Cmat and Vmat ⊂ Vgrav: ðAxiom 2Þ

Given such a matter theory we therefore proceed as
displayed in algorithm 1 in the construction of a compatible
theory of gravity.

III. PERTURBATION THEORY

A. Perturbative diffeomorphism invariance

Although (12) merely constitutes a linear, first-order
PDE system—solving such systems is a well-studied
subject [20]—practically computing the general solution
poses a real problem for most cases. The reason is the sheer
size of the system. Already when treating the relatively

FIG. 3. Vanishing sets Vp, Ṽp and hyperbolicity cones Cp, C̃p
of two hyperbolic polynomials of degree 4; in both cases the
vanishing sets are given as union of the individual vanishing sets,

i.e., the cone surfaces Vp ¼ Vð1Þ
p ∪ Vð2Þ

p , Ṽ ¼ Ṽð1Þ
p ∪ Ṽð2Þ

p , while
the hyperbolicity cones are provided by the intersection of the

individual hyperbolicity cones Cp¼Cð1Þ
p ∩Cð2Þ

p , C̃p¼ C̃ð1Þ
p ∩ C̃ð2Þ

p .

Algorithm 1. Construction of Gravitational Lagrangian.

Data: Matter theory
Lmat∶ Fgrav ⊕M J1Fmat → Λ4M.

Result: Most general diffeomorphism invariant,
causally compatible theory of gravity:
Lgrav∶ J2Fgrav → Λ4M.

1 Compute CBm
An .

2 Set up PDE (12).
3 Solve PDE (12) for Lgravðxm; vA; vAm; vAIÞ.
4 Compute δLgrav

δvA
.

5 Restrict to 2nd-derivative-order sub theory of Lgrav.
6 Calculate Pgrav and Pmat.
7 Impose Cgrav ¼ Cmat and Vgrav ⊂ Vmat.

5At least those modes that have already been detected.
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simple case of metric theories of gravity, Eq. (12) consists
of 140 partial differential equations for a function that
depends on 154 independent variables.
Utilizing techniques from formal PDE theory to obtain

solutions under special circumstances, the PDE system (12)
nevertheless furnishes us with access to two significant
realms of gravitational physics. First of all, we can employ
methods of symmetry reduction and thereby obtain, for
instance, the cosmological equivalent to the alternative
theory of gravity in consideration. Such an approach is
illustrated in Sec. IVA and will be addressed in more detail
in future work [40]. Second—and this is the path that we
pursue in the following—we can construct power series
solutions to (12) in order to retrieve a perturbative
description of the modified theory of gravity. Such a
perturbative description of alternative theories of gravity
in particular allows for the treatment of propagation and
emission of gravitational waves. With the recent develop-
ments in the detection of gravitational waves, they provide
an excellent test for modified theories of gravity [6,41–43].
As first step in the construction of a power series solution

to PDE (12), the Lagrangian is expanded around an
expansion point p0 ∈ J2F. We choose an expansion point
that serves as coordinate representation of a flat instance of
the gravitational field:

J2F ∋ p0 ≡ ðxm0 ; NA; 0; 0Þ: ð19Þ

Moreover, we want to incorporate the fact that, on small
scales, spacetime is in reasonable approximation described
by the geometry of Minkowski spacetime. We therefore
choose NA ¼ NAðηabÞ such that we can interpret the
perturbative theory of gravity as an expansion around
Minkowski spacetime, where NA are obtained as functions
of the Minkowski metric ηab, such that:

(i) LmatðNA;−Þ yields a description of the matter field
equivalent to placing it on Minkowski spacetime.

(ii) NAðηabÞ is Lorentz invariant, i.e., it holds that
0 ¼ NACAm

Bn ðKðiÞÞnm, for the 6 Lorentz genera-
tors ðKðiÞÞnm ∈ fηm½rδns�jr < sg.

We define the coordinate deviation from the expansion
point,

ðHA;HAp;HAIÞ ¼ ðvA − NA; vAp; vAIÞ; ð20Þ

and expand the gravitational Lagrangian Lgrav as formal
power series around p0 up to finite order q:

Lgrav ¼ a0 þ aAHA þ aAIHAI

þ aABHAHB þ aApBqHApHBq þ aABIHAHBI

þ aABCHAHBHC þ aABpCqHAHBpHCq

þ aABCIHAHBHCI þ � � � þOðqþ 1Þ: ð21Þ

Here the expressions a0; aA;… are constants. Note that we
do not include any explicit dependency on xm in the
expansion, as the first equation in (12) prohibits such.
Further note that terms that include a total of more than two
spacetime derivatives6 must be removed from the expan-
sion (21) as these terms would necessarily make the
gravitational principal polynomial Pgrav depend on deriva-
tive coordinates vAp and vAI and thus be causally incom-
patible with Pmat. Finally, note that we excluded terms that
only feature a single spacetime derivative, as such are
prohibited for the following reason: We will subsequently
show how the required Lorentz invariance of the expansion
point NA enters the PDE (12) and imposes restrictions on
the expansion coefficients. In particular, we will see that
this forbids terms with a single spacetime derivative.
Inserting the expansion (21) into PDE (12) and evalu-

ating at the expansion point p0 yields the following system
of linear equations for the first-order expansion coeffi-
cients:

0 ¼ aACBm
An NB þ a0δmn

0 ¼ aAICBðmj
An NBJ

jpqÞ
I : ð22Þ

Prolonging the PDE to second derivative order, inserting
the expansion and again evaluating at the expansion point,
we obtain linear equations for the second-order expansion
coefficients7:

0 ¼ aACBm
An þ 2aABCm

An þ aBδmn

0 ¼ aAI½CBm
An δ

J
I − 2δBAJ

pm
I IJpn� þ aABJCm

An þ aBJδmn

0 ¼ 2aAðpjBqCjmÞ
An þ aAI½CBðm

An 2JpÞqI − δBAJ
pm
I δqn�

0 ¼ aBAICðmj
An J

jpqÞ
I þ aAICBðm

An JpqÞI : ð23Þ

Proceeding analogously we derive further linear equations
for the third-order expansion coefficients:

0 ¼ 2aACCBm
An þ 2aABCCm

An þ 6aABCCm
An þ 2aBCδmn

0 ¼ 2aApCr½CBm
An δ

q
p − δBAδ

m
p δ

q
n� þ 2aABqCrCm

An þ 2aBqCrδmn

0 ¼ aCAI½CBm
An δ

J
I − 2δBAJ

pm
I IJpn� þ 2aACBJCm

An þ aCBJδmn

0 ¼ 2aCAðpjBqCjmÞ
An þ aCAI½CBðm

An 2JpÞqI − δBAJ
pm
I δqn�

0 ¼ 2aBCAICðm
AnJ

pqÞ
I þ aCAICBðm

An JpqÞI : ð24Þ

Similarly, one readily obtains the corresponding linear
equations for any higher-order expansion coefficients.
When constructing such power series solutions to a given

PDE system, it is crucial to know whether or not the system

6For instance, aApBIHApHBI includes a total of 3 spacetime
derivatives.

7Here, and below, Cm
An ¼ CDm

An ND.
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generates integrability conditions during prolongations.
Such lower-derivative-order equations that are only present
once the system is prolonged to a higher derivative order
thoroughly disturb the perturbative treatment of the system.
This is because perturbation theory is usually motivated
by the fact that by aborting the construction of a power
series solution after some order q > 0, the difference to the
exact solution is of Oðqþ 1Þ in the deviation from the
expansion point. Thus, such a perturbative solution pro-
vides a reasonable approximation near p0. If now during
some higher order prolongations the PDE produces inte-
grability conditions of derivative order lower than q, one
gets additional equations that further restrict the computed
perturbative solution. Hence, the perturbative solution
actually does not approximate the real problem with the
desired accuracy. Putting it differently, in such a case, one,
in fact, misses information that is hidden in the integrability
conditions and therefore obtains a solution that is too
general, i.e., includes fake solutions.
PDEs that are certain not to produce any integrability

conditions are called formally integrable. Proving formal
integrability of PDEs is notoriously difficult. There exists,
however, the related notion of involutive PDEs that implies
formal integrability, i.e., constitutes a stronger condition,
whilst at the same time is much easier to verify [13,14].
Theorem 3. PDE system (12) is involutive and thus, in

particular, formally integrable.
Proof.—We only sketch why any potential integrability

condition of (12) is necessarily linearly dependent on the
equations already contained in (12) and thus provides no
further information needed to construct a power series
solution. Details can be found in [13,23]. The claim follows
from the fact that the homogeneous part of PDE system
(12) is described by vector fields that span the image of
the lie algebra morphism (11) in ΓðJ2FÞ. The only way
for linear PDEs to generate integrability conditions is by
adding several prolongations of individual equations in the
system such that all second-derivative-order contributions
cancel due to the commutative law of second partial
derivatives. The remaining first-derivative-order contribu-
tions can then be shown to be given by a commutator of
vector fields contained in the image of (11). As this image,
in particular, constitutes a Lie algebra, this commutator
is necessarily given as linear combination of individual
vector fields and thus vanishes modulo PDE system (12).
Hence, the first-order contribution is already contained in
(12) and therefore does not constitute an integrability
condition. ▪
Theorem 3 implies that the previously described pertur-

bation techniques can safely be applied to PDE (12),
without risking to obtain perturbative solutions that are
too general.
Involutive PDEs admit many unique properties. For

instance, they allow for a straightforward prediction of
the form of the general solution.

Theorem 4. The general solution to (12) is of the form

ω · F ðΨ1;…;ΨkÞ; ð25Þ

where k ≔ dimðJ2FÞ − 140, Ψ1;…;Ψk are k functionally
independent solutions to the homogeneous PDE system
corresponding to (12), F is any function of k real variables,
and w is a particular solution to (12).
Proof.—As proven in proposition 7.1 in [13], the general

solution to the homogeneous PDE system corresponding to
(12) is given by F ðΨ1;…;ΨkÞ. The claim can then readily
be proven by noting that the product of any two solutions ω
to (12) and ρ to the homogeneous version is again a
solution to PDE system (12) and conversely the quotient of
two solutions ω1, ω2 to (12) solves the corresponding
homogeneous version, which simply follows from the
product rule of derivatives. ▪
The functions Ψi∶J2F → R are diffeomorphism invari-

ant scalar functions. In the context of general relativity
these are called curvature invariants. It is a well-known
result that the metric structure present in GR admits 14
functionally independent curvature invariants [44,45]. Note
that by the above theorem we readily recover this result.
The metric fiber bundle FGR ≔ S2M has fiber dimension
10, which admits 40 first-order derivative coordinates
and 100 second-order derivative coordinates. Thus, we
get dimðJ2FGRÞ ¼ 4þ 10þ 4 × 10þ 10 × 10 ¼ 154 and
therefore k ¼ 154 − 140 ¼ 14 curvature invariants. We are
now, however, in a position to predict the number of
independent curvature invariants for any other spacetime
geometry at wish, simply by counting the dimension of the
second-order jet bundle dimðJ2FÞ.
When computing perturbative solutions to (12), there

exists one further obstruction that is caused by the required
Lorentz invariance of the flat expansion point NA. Due to
this additional symmetry, the second equation in (12)
admits rank defects once evaluated at p0. Consider this
equation evaluated at a general point that admits a coor-
dinate expression with vanishing derivative contributions
p≡ ðxm;MA; 0; 0Þ:

0 ¼ LAjpCBm
An MB þ a0δmn : ð26Þ

This tensor equation in general contains 16 independent
scalar equations. Conversely, evaluating the same equation
at p0 ≡ ðxm0 ; NA; 0; 0Þ yields only 10 independent equa-
tions, as contraction with the Lorentz generators ðKðiÞÞnm
yields 6 independent vanishing linear combinations.8

When constructing a power series solution around a
Lorentz invariant expansion point p0, we can now form
exactly the same linear combination for any prolongation of

8This contraction corresponds to the restriction from the
diffeomorphism-induced local action of GL(4) in (Axiom 1) to
the local action of the Lorentz group SOð3; 1Þ.
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the second equation in (12). As the highest-derivative-order
contribution of all these prolongations is proportional to
CBm
An NB, contracting with ðKðiÞÞnm always yields an addi-

tional equation of submaximal derivative order. The equa-
tions that we obtain by this procedure must, however, not
be confused with integrability conditions, as they are only
present once we evaluate at p0.
To provide an example for such an additional equation,

we consider the first equation of (23) and contract against
the Lorentz generators to obtain

0 ¼ aACBm
An ðKðiÞÞnm: ð27Þ

This additional equation for the first-order expansion
coefficient aA has to be taken into account when construct-
ing power series solutions to (12). It states that also the
expansion coefficient aA must be Lorentz invariant.
Similar equations can be obtained from any further pro-
longation of the second equation in (12). These additional
equations then also subject all remaining expansion coef-
ficients to the invariance under Lorentz transformations.
We conclude that when computing power series solutions
to (12) around a Lorentz invariant expansion point, the PDE
itself demands that the expansion coefficients are also
Lorentz invariant.

B. Perturbative causal compatibility

Once (12) is solved perturbatively, deducing the pertur-
bative equivalent to the second axiom (12) is straight
forward. We start by computing a perturbative expression
of the matter principal polynomial, i.e., we simply expand
Pmat around p0 to obtain:

Pmat ¼ ðPð0Þ
matÞ þ ðPð1Þ

matÞAHA þOð2Þ: ð28Þ

Here, we will stick to Lgrav expanded to third order, so it
suffices to expand the two polynomials up to first order. All
calculations are easy to generalize to higher orders.
The gravitational principal polynomial is obtained by

first computing the perturbative EOM of the solution to
(22)–(24). This induces an expansion of the gravitational
principal symbol that we denote as9

T ¼ ðTð0ÞÞ þ ðTð1ÞÞAHA þOð2Þ: ð29Þ

Moreover, we also expand

χðnÞA ¼ CBm
An NBkm þ CBm

An HBkm

≕ ðχð0ÞÞAn þ ðχð1ÞÞBAnHB ð30Þ

and define

fðA1…A4ÞðB1…B4Þ ≔ ϵi1…i4ϵj1…j4

�Y4
r¼1

χðirÞAr

��Y4
s¼1

χðjsÞBs

�
;

ð31Þ

with the induced expansion

fðA1…A4ÞðB1…B4Þ≕ ðfð0ÞÞðA1…A4ÞðB1…B4Þ

þ ðfð1ÞÞCðA1…A4ÞðB1…B4ÞHC

þOð2Þ: ð32Þ

We now choose a ðr − 4Þ × ðr − 4Þ full-rank submatrix
QðA1…A4ÞðB1…B4Þ of the principal symbol by removing
appropriate rows ðA1…A4Þ and columns ðB1…B4Þ. Its
determinant expands as

detðQðA1…A4ÞðB1…B4ÞÞÞ ¼ ðDð0ÞÞðA1…A4ÞðB1…B4Þ

þ ðDð1ÞÞCðA1…A4ÞðB1…B4ÞHC

þOð2Þ; ð33Þ

with the following contributions in the individual orders:

ðDð0ÞÞðA1…A4ÞðB1…B4Þ ¼ detððQð0ÞÞðA1…A4ÞðB1…B4ÞÞ
ðDð1ÞÞCðA1…A4ÞðB1…B4Þ ¼ detððQð0ÞÞðA1…A4ÞðB1…B4ÞÞ

· TrððQð0ÞÞ−1ðA1…A4ÞðB1…B4ÞðQð1ÞÞCðA1…A4ÞðB1…B4ÞÞ ð34Þ

This then finally allows us to expand the gravitational
principal polynomial

Pgrav ¼ ðPð0Þ
gravÞ þ ðPð1Þ

gravÞAHA þOð2Þ; ð35Þ

where the individual contributions are given by

ðPð0Þ
gravÞ ¼

ðDð0ÞÞðA1…A4ÞðB1…B4Þ
ðfð0ÞÞðA1…A4ÞðB1…B4Þ

ð36Þ

and

ðPð1Þ
gravÞC ¼

ðDð1ÞÞCðA1…ÞðB1…Þ − ðfð1ÞÞCðA1…ÞðB1…Þ · ðPð0Þ
gravÞ

ðfð0ÞÞðA1…ÞðB1…Þ
:

ð37Þ

Given the perturbative expressions for the matter and
gravitational principal polynomial, we now implement
axiom 2 perturbatively by imposing that (Axiom 2) holds
in the corresponding order:

Cgrav ¼ Cmat þOðq − 2Þ and

Vmat ⊂ Vgrav þOðq − 2Þ: ð38Þ
9We suppress matrix indices and any explicit ka dependency

for the sake of a more concise notation.
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Summing up, given the perturbative expansion of the
gravitational Lagrangian—which is necessarily of the form
presented in (21)—to the desired order around the chosen
expansion point, the perturbative construction of alternative
theories of gravity boils down to solving linear systems
(22)–(24) for the expansion coefficients. Doing so, one has
to take into account that the expansion coefficients are
necessarily Lorentz invariant if the expansion is chosen as
such. Finally, condition (38) has to be imposed. The
enormous advantage of the thus developed framework lies
in the fact that the involved computations are not only
conceptually entirely clear, but can easily be performed
employing efficient computer algebra [46], as they almost
only involve basic linear algebra. Obtaining valid pertur-
bative models of alternative theories of gravity is therefore
merely a problem of setting up and solving the relevant
equations. A precise step-by-step recipe for the computa-
tion of perturbative theories of gravity is displayed in
algorithm 2.

IV. APPLICATIONS

After presenting the framework in general, we are
now going to employ the construction recipes 1 and 2
to derive three particularly interesting cases of gravita-
tional dynamics, one constituting an exact theory and two
perturbatively expanded theories. As an in-depth discus-
sion would go beyond the scope of this paper, we are
going to present the results only qualitatively. Details can
be found in [23,40].

A. Metric cosmology

We first apply the steps outlined in algorithm 1 to a
spatially homogeneous and isotropic metric spacetime
ðM; gÞ (see [47]). More precisely, we consider a metric
spacetime where there exists a diffeomorphism ϕ∶R×
Σ → M, with induced 1-parameter family of embeddings
ϕλ∶Σ → M, ϕλðsÞ ≔ ϕðλ; sÞ,

gð∂t; ∂tÞ ¼ 1 and dtðXÞ ¼ 0 ⇒ gð∂t; XÞ ¼ 0; ð39Þ

with t ≔ πR ∘ϕ−1 and moreover, for all λ ∈ R, the metric
3-manifold ðΣ; γλ ≔ ϕ�

λgÞ is homogeneous and isotropic.
We define the scale factor a as

aðλÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγλÞ

p 1
3: ð40Þ

Because all information about the cosmological metric
spacetime is encoded in ∂t and a, we construct the
gravitational dynamics over the cosmological bundle FC ¼
TM ⊕M Vol

1
3ðMÞ of vectors and densities of weight 1

3
. The

vertical coefficients of vector fields are

Cam
bn ¼ δanδ

m
b ð41Þ

and the vertical coefficients of 1
3
densities are

Cm
n ¼ −

1

3
δmn : ð42Þ

Setting up and solving equations (12) yields, up to
boundary terms, the action

Sgrav½a� ¼
1

2κ

Z
a3
�
−6

�
_a
a

�
2

− 4Ua
;a
_a
a
−
2

3
ðUa

;aÞ2− 2Λ
�
d4x;

ð43Þ

withU ≔ ∂t and _a ≔ ∂ta. Variations of (43) with respect to
a and ∂t reproduce the well-known Friedmann equations,
which read in coordinates where Ua ¼ const

�
_a
a

�
2

−
Λ
3
¼ κ

3
ρ; ð44Þ

ä
a
−
Λ
3
¼ −

κ

6
ðρþ 3pÞ: ð45Þ

Here we introduced the energy density

ρ ¼ 1

a3

�
−
a
3

δða3LmatterÞ
δa

þ Up δða3LmatterÞ
δUp

�
ð46Þ

and the pressure

Algorithm 2. Perturbative Construction of Gravitational
Lagrangian.

Data: Matter theory Lmat∶Fgrav ⊕M J1Fmat → Λ4M,
expansion order q > 0, Lorentz invariant
expansion point J2Fgrav ∋ p0 ≡ ðxm0 ; NA; 0; 0Þ.

Result: Most general diffeomorphism invariant,
causally compatible Lgrav expanded as finite
power series to order q around p0.

1 Compute CBm
An .

2 Compute the most general Lorentz invariant expansion
coefficients (use [46]).

3 Set up equations (22)–(24) and all necessary
higher-order equivalents.

4 Solve this linear system (use [46]).
5 Compute the expansion of Tgrav.
6 Choose a full-ranked QðA1…A4ÞðB1…B4Þ.
7 Compute (31).
8 Compute the expansion of detðQðA1…A4ÞðB1…B4ÞÞ (34).
9 Compute the expansion Pgrav (35).
10 Compute Pmat up to Oðq − 2Þ.
11 Impose

Cgrav ¼ Cmat þOðq − 2Þ and Vmat ⊂ Vgrav þOðq − 2Þ.
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p ¼ 1

a3

�
a
3

δða3LmatterÞ
δa

�
: ð47Þ

These notions of energy density and pressure correspond to
the respective notions in general relativity, where both are
defined as constituents of the stress-energy tensor of a
perfect fluid

Tab ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmatterÞ

δgab
¼ ðρþ pÞUaUb þ pgab: ð48Þ

This correspondence can be verified for e.g., a spatially
homogeneous and isotropic scalar field ϕ with action

Smatter½ϕ� ¼
Z ffiffiffiffiffiffi

−g
p ½gabϕ;aϕ;b − VðϕÞ�d4x

¼
Z

a3½ðUaϕ;aÞ2 − VðϕÞ�d4x; ð49Þ

whose energy density and pressure calculated by both
methods [either using (46) and (47) or using (48)] are

ρ ¼ ð _ϕÞ2 þ VðϕÞ; ð50Þ

p ¼ ð _ϕÞ2 − VðϕÞ: ð51Þ

We thus recovered the well-known dynamics of a
spatially homogeneous and isotropic metric coupled with
such matter, but without prior knowledge of the Einstein-
Hilbert action or the Einstein field equations, just from the
properties of the cosmological bundle FC.

B. Perturbative general relativity

We apply the perturbative construction manual (III B) to
the case of gravity being described by a metric tensor field,
i.e., a section of FGR. Moreover, we couple the metric
theory of gravity to a Klein-Gordon scalar field:

LKG ¼ 1

2
ðgabϕaϕb −m2ϕ2Þ ffiffiffiffiffiffi

−g
p

d4x: ð52Þ

We choose NA ¼ ηabJabA as fiber coordinate value of the
Lorentz invariant expansion point. The vertical coefficient
of the diffeomorphism Lie algebra action of FGR are

CAm
Bn ¼ −2IAnpJ

mp
B : ð53Þ

The Lorentz invariant expansion coefficients are con-
structed using computer algebra specifically designed for
this task [46]. This Haskell library is capable of computing
a Lorentz invariant basis of tensors with given index struc-
ture and symmetries as well as setting up and solving tensor
equations. The number of arbitrary constants in the parti-
cular expansion coefficients is displayed in Table I. After
inserting the thus obtained expressions in Eqs. (22)–(24)

and solving the resulting linear system, we end up with a
perturbative Lagrangian that features 2 undetermined
parameters, μ1 and ν1.
Moreover, it turns out that the two principal polynomials

already coincide in Oð2Þ. Thus, already the required
diffeomorphism invariance yields the correct causal struc-
ture and the construction procedure terminates. The
obtained result coincides with the perturbative expansion
of the Einstein-Hilbert action

SE:-H: ¼
Z

1

2κ
ðR − 2ΛÞ ffiffiffiffiffiffi

−g
p

d4x ð54Þ

around ηab, with the two remaining constants ν1 and μ1
representing the gravitational and cosmological constant.

C. Perturbative area metric gravity

As a second example we consider a theory of gravity that
describes the gravitational field as a (0,4) tensor field that
satisfies the symmetries

Gabcd ¼ −Gbacd ¼ Gcdab: ð55Þ

We call this tensor field area metric and denote the
corresponding vector bundle by Farea. The area metric is
deeply connected to the premetric treatment of electrody-
namics, a formulation of classical electrodynamics that
does not rely on the geometric background provided by the
usual metric tensor field [32,48–51]. In this context one can
show that the most general, linear theory of electrody-
namics (GLED) that features the conservation of electric
charges and satisfies the Lorentz force law is given by the
Lagrangian10

LGLED ¼ GabcdFabFcdωGd4x; ð56Þ

where Fab is the usual electromagnetic field strength
2-form and ωG is any density constructed from the area

TABLE I. Dimensions and parameters of the Lorentz invariant
expansion coefficients for LGR.

Expansion coefficient Dimension Constants

a0 1 fμ1g
aA 1 fμ2g
aAI 2 fν1; ν2g
aAB 2 fμ3; μ4g
aApBq 6 fν3;…; ν8g
aABI 5 fν9;…; ν13g
aABC 3 fμ5;…μ7g
aABpCq 21 fν14;…; ν34g
aABCI 13 fν35;…; ν47g

10Here, the inverse of the area metric is implicitly defined as
GabpqGpqcd ¼ 4δ½ac δ

b�
d .
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metric, for instance, ωG ¼ Gabcdϵ
abcd. In particular, for the

special case of

Gabcd ¼ 2gc½agb�d and ωG ¼ ffiffiffiffiffiffi
−g

p
; ð57Þ

the GLED Lagrangian reproduces standard Maxwell
electrodynamics on a metric background gab.
Note that Farea possesses 21-dimensional fibers. Thus,

the area metric constitutes a much richer structure than the
usual metric tensor field. This is also reflected in the
number of area metric curvature invariants, which using
theorem 4 is computed as

k ¼ dimðJ2FÞ − 140

¼ 4þ 21þ 21 · 4þ 21 × 10 − 140

¼ 179: ð58Þ

Therefore, we also expect the perturbative theory of area
metric gravity to contain more unknown parameters.
Following the steps outlined in algorithm 2 we are going

to construct a third-order expansion of area metric gravity.
We choose

NA ¼ JabcdA ð2ηacηbd − ϵabcdÞ; ð59Þ

because at this expansion point we recover Maxwell
electrodynamics on Minkowski spacetime from LGLED.
Thus, we can interpret the perturbative expansion of area
metric gravity as being performed around Minkowski
spacetime. The vertical coefficients are

CBm
An ¼ −4IBnbcdJmbcd

A : ð60Þ

The Lorentz invariant expansion coefficients of the power
series Lagrangian (21) are again computed with computer
algebra [46] and are displayed in Table II. Now we obtain
a total of 240 such constants. Plugging the expansion
coefficients into Eqs. (22)–(24) and solving the correspond-
ing linear system, the number of parameters is reduced to
52. 10 of these parameters occur in expressions that do not

involve derivatives such as HAp, HAI , i.e., are of type μ,
while 42 occur in expressions that do involve derivatives
and thus are denoted as ν.
The matter principal polynomial of GLED was first

computed by Rubilar [32]. Computing the gravitational
principal polynomial of the perturbative expansion of area
metric gravity, we finally see that, up to our chosen
perturbation order, the two polynomials describe precisely
the same vanishing set and thus, in particular, satisfy
the second condition (38). Thus, also for the case of
perturbative area metric gravity, already the imposed
diffeomorphism invariance renders the two theories caus-
ally compatible and the construction algorithm terminates.
We therefore find that the most general theory of gravity
that is compatible with a linear theory of electrodynamics
contains 52 unknown parameters in its cubic expansion.
The precise expression that we obtained is provided in [23].

V. CONCLUSIONS

We translated the two fundamental requirements (A1)
and (A2) for any alternative theory of gravity into rigorous
mathematics and examined how these two requirements
guide the perturbative as well as the nonperturbative
construction of theories. The obtained results have been
formulated as a concise step-by-step manual for explicitly
computing the most general dynamical laws consistent with
the two fundamental requirements that govern any tensorial
gravitational field at wish.
We have further tested the two construction manuals by

considering metric theories of gravity both perturbatively
and under the assumption of a cosmological symmetry. In
both cases the corresponding theory of gravity that follows
from the Einstein-Hilbert Lagrangian has been recovered,
without having ever included information about the dynam-
ics of general relativity. Consequently, the first two tests are
considered a success.
Moreover, we have constructed the third-order pertur-

bative Lagrangian of the most comprehensive theory of
gravity that is consistent with general linear electrody-
namics. Such a third-order Lagrangian for the first time
enables the prediction of gravitational wave emission in
this highly significant alternative theory of gravity and thus
can ultimately be used to put the physically well-motivated
area metric to the test. This is a considerable improvement
over the previous situation, where only a second-order
Lagrangian has been reliably derived by means of canoni-
cal closure [52]. With the emission of gravitational waves
from a gravitationally bound system being an effect of
second order in the field equations, only the emission of
waves from nongravitationally bound systems has been
studied so far [53]. Using our result, which extends one
order higher, to overcome this obstacle is precisely what
we consider as one of the main interests of future research
that should build up on the foundation laid out by this
paper.

TABLE II. Dimensions and parameters of the Lorentz invariant
expansion coefficients for LArea.

Expansion coefficient Dimension Constants

a0 1 fμ1g
aA 2 fμ2; μ3g
aAI 3 fν1;…; ν3g
aAB 6 fμ4;…; μ9g
aApBq 15 fν4;…; ν18g
aABI 16 fν19;…; ν34g
aABC 15 fμ10;…μ24g
aABpCq 110 fν35;…; ν144g
aABCI 72 fν145;…; ν216g
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