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In this paper, we present an iterative method to generate an infinite class of new nonlocal field theories
whose propagators are ghost-free. We first examine the scalar field case and show that the pole structure of
such generalized propagators possesses the standard two derivative pole and in addition can contain
complex conjugate poles which, however, do not spoil at least tree level unitarity as the optical theorem is
still satisfied. Subsequently, we define analogous propagators for the fermionic sector which is also devoid
of unhealthy degrees of freedom. As a third case, we apply the same construction to gravity and define a
new set of theories whose graviton propagators around the Minkowski background are ghost-free. Such a
wider class also includes nonlocal theories previously studied and Einstein’s general relativity as a peculiar
limit. Moreover, we compute the linearized gravitational potential generated by a static pointlike source for
several gravitational theories belonging to this new class and show that the nonlocal nature of gravity
regularizes the singularity at the origin.
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I. INTRODUCTION

Einstein’s general relativity (GR) has been the most
successful theory of gravity so far; indeed, its predictions
have been tested to very high precision in the infrared
regime, i.e., at large distances and late times [1], though it
still needs to be tested at cosmological scales. However,
despite its great achievements, there are still unsolved
problems suggesting that Einstein’s GR can be only seen
as an effective field theory of gravitational interaction,
which works very well at low energy but breaks down in
the ultraviolet (UV) regime, i.e., at short-distances and high
energies. In fact, at the classical level, the Einstein-Hilbert
Lagrangian,

ffiffiffiffiffiffi−gp
R, is plagued by black hole and cosmo-

logical singularities [2], while at the quantum level it turns
out to be perturbatively nonrenormalizable [3,4].
Themost conservativeway to extend GR geometrically is

to add terms quadratic in the curvatures to the Einstein-
Hilbert action, like, for example,R2 andRμνRμν. This kind
of action was shown to be power counting renormalizable in
Ref. [5], but still pathological because of the presence of a
massive spin-2 ghost degree of freedom which causes
Hamiltonian instabilities at the classical level, and breaks
the unitarity condition of the S-matrix at the quantum level.1

The emergence of ghost fields is related to the fact that
the field equations contain higher order time derivatives
[10]. In the last decades, it was realized that ghostlike
degrees of freedom can be still avoided if the derivative
order is not finite but infinite. Indeed, by constructing the
quadratic part of the action in terms of nonpolynomial
differential operators, like e□=M2

, with M being a new
fundamental scale, one can prevent the presence of unheal-
thy poles in the particle spectrum as initially noticed in [11–
14]. The presence of nonpolynomial derivatives makes the
action nonlocal, and this kind of nonlocal models were
already studied in the early 50s to deal with UV divergen-
ces in loop integrals; see Refs. [15]. This possibility turned
out to be very promising and has motivated a deeper
investigation of this unexplored sector of nonlocal (or
infinite derivative) field theories.
First relevant applications of infinite derivative field theo-

ries in a gravitational context were made in Refs. [16–19] in
which a stable and unitary quadratic curvature theory of
gravity was constructed aroundmaximally symmetric back-
ground; see also Ref. [20] for a more general treatment
including some nonmaximally symmetric spacetime. It was
also noticed that the presence of nonlocality can regularize
infinities and many efforts have been made toward the
resolution of black hole [17,18,21–33] and cosmological
[16,34–37] singularities. At the quantum level, the high
energy behavior of loop integrals has been investigated in
[38–41] and properties of causality and unitarity in [42,43]
and [44–47], respectively. Computations of scattering
amplitudes were performed in [48–50], while a detailed
study of spontaneous breaking of symmetry with nonlocal
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1See Refs. [6–9] in which a new quantization prescription is
proposed and shown to preserve unitarity: the ghost is converted
into a fake degree of freedom (fakeon), so that the optical theorem
can still hold.
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interactions in [51,52]. Applications also appeared in the
context of astrophysical compact objects [53,54], cosmo-
logical inflation [55], thermal field theory [56–59], dark
matter [60], supersymmetry [61,62], Hawking radiation
[63], Galilean theories [64], quantum mechanics [65–68],
curved Casimir effect [69], and neutrino oscillations [70].
To better understand our framework, let us briefly review

the main aspects of such kind of nonlocal field theories. For
simplicity, we consider a Lagrangian for a scalar field of the
following type (here we adopt the signature convention
ð−þþþÞ and the natural units ℏ ¼ 1 ¼ c):

L ¼ 1

2
ϕFð□Þϕ − VðϕÞ; ð1Þ

where the differential operator Fð□Þ is required to be an
entire function of the flat d’Alembertian □ ¼ ημν∂μ∂ν, so
that it has no poles in the whole complex plane,2 and
physically it represents the kinetic operator, while VðϕÞ is
some generic potential. From the Weierstrass theorem for
the entire functions, it follows that the operator Fð□Þ can
be written as [77]

Fð□Þ ¼ −eγð□ÞYN
i¼0

ð−□þm2
i Þri ; ð2Þ

where the function γð□Þ is also entire, the constantsm2
i can

be complex numbers and stand for the zeroes of the
function Fð□Þ, while ri is the multiplicity of each ith
zero. The natural number N can be either finite or infinite,
and counts the zeroes of the kinetic operator, or in other
words, the number of distinct poles of the propagator,3

Πðp2Þ ¼ −1
Fðp2Þ ¼

1

fðp2Þ
1

p2 þm2
; ð3Þ

where the function fðp2Þ may possess additional zeroes
which would contribute to the propagator as extra poles due
to higher derivatives.
It is well known that in order to avoid instabilities, i.e.,

ghost modes, the number of real poles and its multiplicity
cannot exceed one. For instance, one possibility in order to
avoid Hamiltonian instabilities and preserve unitarity is
[11,14,16,18,43]

Fðp2Þ ¼ −eγðp2Þðp2 þm2Þ ⇒ Πðp2Þ ¼ e−γðp2Þ

p2 þm2
; ð4Þ

whose only pole is p2 ¼ −m2 since the exponential of
entire function e−γðp2Þ does not introduce any extra zeroes
in the denominator; we adopt the normalization
eγð−m2Þ ¼ 1, which is usually chosen [43]. Therefore,
although the theory is made up of infinitely higher order
derivatives, the number of degrees of freedom and also
initial conditions is still finite [78,79], that is, two in
this case.
Note that similar infinite order differential operators also

appear in the context of string field theory [80–84] and
p-adic string [85].
Very interestingly, in Ref. [64], it was pointed out that

tree level unitarity can be preserved even in the presence of
pairs of complex conjugate poles; indeed, it so happens that
the optical theorem 2ImfTg ¼ T†T is still satisfied as the
complex conjugate pair does not contribute to the imagi-
nary part of the amplitude T. For instance, a kinetic
operator of the type

Fðp2Þ ¼ −eγðp2Þðp2 þm2Þðp2 þ iM2Þðp2 − iM2Þ
¼ −eγðp2Þðp2 þm2Þðp4 þM4Þ ð5Þ

would give a higher derivative theory which is unitary; see
also Refs. [6,86] for investigations on local field theories
with complex conjugate poles known as Lee-Wick theories.
In Ref. [64], the following nonlocal differential operator

was studied:

Fðp2Þ ¼ −M2ðep2=M2 − 1Þ; ð6Þ

fðp2Þ≡ −
Fðp2Þ
p2

¼ M2
ep

2=M2 − 1

p2
; ð7Þ

whose corresponding propagator

Πðp2Þ ¼ 1

M2

1

ep
2=M2 − 1

ð8Þ

is characterized by an infinite set of pairs of complex
conjugate poles: p2 ¼ i2πM2l, with l ∈ Z. Once can
show that the optical theorem is not violated at tree level for
the propagator in Eq. (8) [64] (see also Sec. II B below).
The same construction can be also performed in a gravi-
tational context around the Minkowski background, where
one can define a ghost-free nonlocal graviton propagator
made up of the standard massless pole, p2 ¼ 0, plus an
infinite set of complex conjugate pairs.4

Here, our aim is to enlarge the class of ghost-free
propagators, first in the scalar and fermionic sectors, and
then perform the same construction for gravity, so that we

2Note that we do not consider nonanalytic differential oper-
ators like 1=□ and logð□Þ, which are also known and studied in
the literature; see, for instance, Refs. [71–76].

3To be more precise, we should explicitly show the minus sign
coming from the Fourier transform, i.e., we should write either
Fð−□Þ ↔ Fðp2Þ or Fð□Þ ↔ Fð−p2Þ. However, to simplify the
notation, we adopt the convention Fð□Þ ↔ Fðp2Þ for any of the
functions used in this paper, but of course the minus sign is shown
in the explicit expressions on the right-hand side.

4It is worthwhile mentioning that in Refs. [87,88], it was
noticed that ghost-free nonlocal theories can even admit propa-
gators possessing the standard single real pole plus a brunch cut.
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can find a new infinite class of ghost-free nonlocal theories
which extends nontrivially others already known in the
literature. We will present an iterative method to generate
an infinite tower of nonlocal theories which preserves tree
level unitarity despite possessing higher (infinite) order
time derivatives.
The paper is organized as follows. In Sec. II, we present

an iterative procedure to construct generalized ghost-free
propagators in flat spacetime and give a mathematical proof
of its validity at any order in the iteration. In Sec. III, we
perform an analogous construction for the fermionic sector.
In Sec. IV, we briefly review the main aspects of gener-
alized quadratic curvature actions around the Minkowski
background. In Sec. V, we specialize the iterative procedure
introduced in Sec. II to the gravitational context and
construct a new class of generalized ghost-free graviton
propagators. Section VI is devoted to the computation of
the gravitational potential generated by a static pointlike
source for several gravitational theories belonging to this
new class. We show that, in the linear regime, the infinite
derivative nature of gravity can cure the curvature singu-
larity at the origin. In Sec. VII, we draw our conclusions.
In the rest of the paper, we set M ¼ 1 for simplicity.

II. GHOST-FREE SCALAR PROPAGATORS

From now on, we only work in the massless case, i.e., we
assume that the only real pole of the low-energy theory is
p2 ¼ 0, as we will be interested in generalizing the same
analysis to the gravity sector; however, all our results can be
easily adapted to the massive case.
The function fðp2Þ in Eq. (3) contains all the informa-

tion on extra poles in the propagator or, in other words, new
degrees of freedom. As already mentioned in the
Introduction, it is clear that if such a function is an
exponential of entire function,

fð0Þðp2Þ ¼ eγðp2Þ ⇒ Πð0Þðp2Þ ¼ e−γðp2Þ

p2
; ð9Þ

then no additional pole appears and the propagator turns
out to be ghost-free [11,14,16,18]. From now on, we simply
set γðp2Þ ¼ p2, that is, fð0Þðp2Þ ¼ ep

2

.
Moreover, also the propagator in Eq. (8) was shown to be

ghost-free at tree level [64],

fð1Þðp2Þ ¼ ep
2 − 1

p2
⇒ Πð1Þðp2Þ ¼ 1

ep
2 − 1

; ð10Þ

as no extra real pole appears but only complex conju-
gate pairs.
We can now notice a very intriguing fact. The propagator

in Eq. (10) is constructed in terms of the function fð0Þðp2Þ
in Eq. (9) which defines the propagator Πð0Þðp2Þ; indeed,
the following relation holds true:

fð1Þðp2Þ ¼ fð0Þðp2Þ − 1

p2
: ð11Þ

Remarkably, this means that we have managed to construct
a new ghost-free theory starting from another one which
was already known. Thus, it is very natural to ask ourselves
whether this property is just a coincidence or it can be
generalized and carried on iteratively at higher steps,
namely, if something like

fðnÞðp2Þ ¼ cn
fðn−1Þðp2Þ − 1

p2
; ð12Þ

with cn being constant coefficients to be fixed, can describe
new ghost-free theories for any n ≥ 1.
In the next subsection, we will find a positive answer to

our question.

A. Iterative procedure and proof for ghost-freeness

In order to make the notation simpler, let us define
z≡ p2.
First of all, the coefficients cn can be determined by

requiring that the generalized propagator has a well-defined
low energy limit, i.e., by construction we require

lim
z→0

fðnÞðzÞ ¼ 1 ⇒ cn ¼ n: ð13Þ

Therefore, the iterative relation reads

fð0ÞðzÞ ¼ ez; fðnÞðzÞ ¼ n
fðn−1ÞðzÞ − 1

z
: ð14Þ

To avoid the appearance of unhealthy degrees of free-
dom, the function fðnÞðzÞmust not possess any real zero, so
that not extra real pole is introduced in the propagator
besides the massless one (z ¼ 0). In fact, we will show that
the functions fðnÞðzÞ are always positive for any z ∈ R;
therefore, the only extra poles they can possess are complex
and have to come in conjugate pairs.
Proof.—In order to prove ghost-freeness, we can recast

fðnÞðzÞ in the convenient form

fðnÞðzÞ ¼ n!
zn

�
ez −

Xn−1
k¼0

zk

k!

�
: ð15Þ

The validity of Eq. (15) can be demonstrated by induction.
First, notice that it holds for n ¼ 1 [see Eqs. (10)]. As a
second part of the induction, we want to show that if it
holds for n, then it will also be valid for nþ 1. Indeed, from
Eq. (14), we can write
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fðnþ1ÞðzÞ ¼ ðnþ 1Þ f
ðnÞðzÞ − 1

z

¼ ðnþ 1Þ!
znþ1

�
ez −

Xn−1
k¼0

zk

k!
−
zn

n!

�

¼ ðnþ 1Þ!
znþ1

�
ez −

Xðnþ1Þ−1

k¼0

zk

k!

�
; ð16Þ

which proves the validity of Eq. (15).
By making use of the identity

Xn−1
k¼0

zk

k!
¼ ez

Γðn; zÞ
ðn − 1Þ! ; ð17Þ

with

Γðn; zÞ ¼
Z

∞

z
dttn−1e−t ð18Þ

being the incomplete gamma function, we can recast
Eq. (15) in the following elegant form:

fðnÞðzÞ ¼ ezz−ngnðzÞ; gnðzÞ≡ n! − nΓðn; zÞ: ð19Þ

To prove that the above function is always positive, let us
divide the proof in two parts.

(i) n is even: In this case, the sign of fðnÞðzÞ is equal to
that of gnðzÞ except z ¼ 0. Moreover, the derivative
of gnðzÞ reads

g0nðzÞ≡ dgnðzÞ
dz

¼ ne−zzn−1; ð20Þ

which is positive for z > 0 and negative for z < 0.
This means that the function gnðzÞ has a minimum at
z ¼ 0 where gnð0Þ ¼ 0. Therefore, gnðzÞ > 0 for
any z ∈ R except z ¼ 0, together with fðnÞð0Þ ¼ 1,
which implies fðnÞðzÞ > 0 for any z ∈ R.

(ii) n is odd: From Eq. (20), it follows that g0nðzÞ > 0 for
any z ∈ R except z ¼ 0 and since gnð0Þ ¼ 0, it
follows that gnðzÞ > 0 for z > 0, while gnðzÞ < 0 for
z < 0. Therefore, from Eq. (19) and fðnÞð0Þ ¼ 1, we
obtain that fðnÞðzÞ > 0 for odd n too.

Hence, we have shown that the functions fðnÞðzÞ are
always positive on the real axis so that no extra real pole
appears in the propagator, which turns out to be ghost-free
at tree level. ▪
In coordinate space, the new class of generalized ghost-

free theories is described by the kinetic terms

LðnÞ ¼ 1

2
ϕfðnÞð□Þ□ϕ;

fðnÞð□Þ ¼ e−□

ð−□Þn ½n! − nΓðn;−□Þ�; ð21Þ

while the generalized propagators in momentum can be
expressed in the following compact form:

ΠðnÞðp2Þ ¼ e−p
2

p2n

n! − nΓðn; p2Þ
1

p2
: ð22Þ

Clearly, the analogous formulas in the massive case can be
obtained by sending p2 → p2 þm2 or, equivalently,
□ → □ −m2.
Let us now make some remark on the above result.

1. Geometrical interpretation

We can notice that Eq. (14) has a precise geometrical
meaning: at each nth order the function fðnÞðzÞ is propor-
tional to slope of the function fðn−1ÞðzÞ between the points z
and z0 ¼ 0 at which fðn−1Þðz0Þ ¼ 1, and the constant of
proportionality is n. Since the starting function is
fð0ÞðzÞ ¼ ez, then any nth order is related to the (n − 1)
th slope of the exponential ez,

fðnÞðzÞ ¼ n
ðn − 1Þ ðn−2Þ

3
2
ez−1
z −1
z −1

..

.

z −1
z − 1

z
: ð23Þ

In functional analysis, there exists the concept of higher
order convexity. Any function hðxÞ is said to be n-convex if
and only if its (n − 1)-derivative exists and is convex or, in
other words, if its (nþ 1)-derivative exists and is positive.
Moreover, one can also show that if a function is n-convex,
then its kth sloop, with k ¼ 1;…; n is positive; see
Ref. [89] and references therein for details.
In our case, the function hðxÞ is given by the exponential

ez which is an n-convex function for any n ∈ N as
dðnÞez=dzn ¼ ez > 0. Therefore, the proof presented above
is consistent with already existing mathematical theorems
on n-convex functions and represent a specific subcase of a
more general topic in functional analysis.

2. n → ∞ limit

We can also ask whether the class of theories described
by the set of functions ffðnÞðzÞg has a well-defined n → ∞
limit, and which is the corresponding theory, fð∞ÞðzÞ, to
which it tends. By taking the limit for n → ∞, we obtain
[see Eq. (21)]

fð∞ÞðzÞ≡ lim
n→∞

fðnÞðzÞ ¼ 1; ð24Þ

LUCA BUONINFANTE et al. PHYS. REV. D 101, 084019 (2020)

084019-4



which corresponds to the local Klein-Gordon propagator,
Πð∞Þðp2Þ ¼ 1=p2. This means that, if we reinstate the
nonlocal energy scale M, there are two possible ways to
recover the local limit, either M → ∞ or n → ∞.
This is not so surprising if we think that quantum field

theory with the canonical kinetic term of two derivatives is
unitary and, therefore, it must consistently belong to the
class of ghost-free theories found above.

B. Tree level unitarity

Given the compact expression for fðnÞð□Þ in Eq. (21),
we can now discuss the pole structure of the propagator
(22) in relation to unitarity.

1. Optical theorem

The unitarity condition of the S-matrix is defined by the
identity

S†S ¼ 1; ð25Þ

which, by introducing the amplitude T such that
S ¼ 1þ iT, can be also recast in the form

iðT† − TÞ ¼ T†T; ð26Þ

known as optical theorem [90]. By introducing jbi and jai
as out- and in-states, respectively, and using the complete-
ness relation, we can write the optical theorem as

i½hbjT†jai − hbjTjai� ¼
X
n

hbjT†jnihnjTjai: ð27Þ

Let us now introduce the matrix M, whose components
(Feynman diagrams) are defined through the relations

hbjTjai ¼ ð2πÞ4δð4ÞðPb − PaÞhbjMjai; ð28Þ

where Pb and Pa are the outgoing and ingoing momenta,
respectively. In terms of the Feynman amplitudes, the
optical theorem in Eq. (27) reads

i½hbjM†jai − hbjMjai�

¼
X
n

Yn
l¼1

Z
d3kl
ð2πÞ3

1

2El
ð2πÞ4δð4Þ

�
Pa −

Xn
l¼1

kl

�

× hbjM†jfklgihfklgjMjai; ð29Þ

where we have explicitly written the phase space integral in
the completeness relation, i.e.,

1 ¼
X
n

Yn
l¼1

Z
d3kl
ð2πÞ3

1

2El
jfklgihfklgj; ð30Þ

with the energies El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
l þm2

q
.

Note that, in the case a ¼ b (forward scattering ampli-
tude), Eq. (29) reduces to

2ImfhajMjaig ¼
X
n

Yn
l¼1

Z
d3kl
ð2πÞ3

ð2πÞ4
2El

× δð4Þ
�
Pa −

Xn
l¼1

kl

�
jhfklgjMjaij2 ≥ 0;

ð31Þ

which implies that the imaginary part of any forward
scattering amplitude has to be non-negative. For example,
if we consider a simple amplitude with two constant
vertexes and a single internal propagator Πðp2Þ, the optical
theorem implies ImfΠðp2Þg ≥ 0. Field theories with
higher order time derivatives, like the one in Ref. [5],
are usually characterized by a violation of unitarity as the
ghost component of the propagator satisfies the wrong
inequality, ImfΠghostðp2Þg < 0.

2. Pole structure

We now want to show explicitly that tree level unitarity is
satisfied for the new class of nonlocal theories found above.
First of all, as shown above, p2 ¼ 0 is always the only

real pole (or, p2 ¼ −m2 in the massive case). Besides this
massless pole, the only other possibility is that pairs of
complex conjugate poles appear.
The equation to be satisfied by the additional poles is

Γðn; p2Þ ¼ ðn − 1Þ!; n ≥ 1; ð32Þ

while for the propagator with n ¼ 0 we have no extra poles
[see Eq. (4)] [11,16,18]. From Eq. (32), it follows that if p2

is a solution, then also its complex conjugate ðp2Þ� will be a
solution.
The case n ¼ 1 gives ep

2 ¼ 1, which is the same as
Eq. (8) and contains infinite pairs of complex conjugate
poles; indeed, the propagator can be written as [64]

Πð1Þðp2Þ ¼ e−
p2

2

p2

þ e−
p2

2

X∞
l¼1

ð−1Þl
�

1

p2 þ i2πl
þ 1

p2 − i2πl

�
:

ð33Þ

For other ghost-free theories with generic n, the propagator
ΠðnÞðp2Þ will exhibit the same feature. For instance, for
some n, we have checked graphically that infinite pairs of
complex conjugate poles also appear. Hence, the most
general form of the propagator will be given by
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ΠðnÞðp2Þ ¼ eγ̃ðp2Þ
�
1

p2
þ
X∞
l¼0

�
cðnÞl

p2 þ ðμðnÞl Þ2

þ cðnÞ�l

p2 þ ðμðnÞ�l Þ2
��

; ð34Þ

where γ̃ðp2Þ is an entire function of p2, ðμðnÞl Þ2 are the

complex poles, and cðnÞl the residues of the propagator at
each pole (except the factor of eγ̃ðp2Þ). One can easily show
that for the propagator in Eq. (34) the optical theorem is still
preserved at tree level, i.e., ImfΠðnÞðp2Þg > 0, by using the
fact that (see also Ref. [64])

Im

�X∞
l¼0

�
cðnÞl

p2 þ ðμðnÞl Þ2
þ cðnÞ�l

p2 þ ðμðnÞ�l Þ2
��

¼ 0: ð35Þ

3. Case n = 1∶ first example

To better understand the result, let us study in more
details the nonlocal model with n ¼ 1,

Lð1Þ ¼ 1

2
ϕðe−□þm2 − 1Þϕ; ð36Þ

as in this case we can analytically determine the pole
structure; we consider a nonzero mass to be more general.
In particular, we investigate the optical theorem for two
different interaction terms.
As a first example, we analyze a simple cubic interaction

with coupling constant λ,

VðϕÞ ¼ λϕ3; ð37Þ

whose corresponding tree level amplitude for a 2 → 2
scattering is given by

hp3p4jMjp1p2i ¼ λ2Πð1Þðp2Þ; ð38Þ

where p2 ¼ ðp1 þ p2Þ2 ¼ ðp3 þ p4Þ2 is the total momen-
tum squared of the two scattered particles, with p1, p2 and
p3, p4 being the ingoing and outgoing momenta,
respectively.
First, let us consider the case in which in- and out-states

are the same, i.e., let us check the validity of Eq. (31). The
left-hand side (lhs) coincides with the imaginary part of the
propagator (up to numerical factors),

Imfhp1p2jMjp1p2ig ¼ λ2Im

�
e−ðp2þm2Þ=2

p2 þm2 − iϵ

�

¼ λ2
e−ðp2þm2Þ=2ϵ

ðp2 þm2Þ2 þ ϵ2

¼ λ2πδðp2 þm2Þ > 0; ð39Þ

where to go from first to second line we have used

Im

�X∞
l¼1

ð−1Þl
�

1

p2 þm2 þ i2πl

þ 1

p2 þm2 − i2πl

��
¼ 0; ð40Þ

while from the second to the third line we have taken the
limit ϵ → 0. From Eq. (40), we can notice that having
complex poles appearing in conjugate pairs is crucial in
order to preserve tree level unitarity. Thus, the lhs in
Eq. (31) reads

lhs ¼ 2πλ2δðp2 þm2Þ: ð41Þ

As for the right-hand side (rhs) of Eq. (31), we have only
one intermediate state (internal line), i.e., n ¼ 1 and
jfklgi ¼ jki; therefore, we obtain

rhs ¼
Z

d3k
ð2πÞ3

ð2πÞ4
2Ek

δð4Þðp1 þ p2 − kÞjhkjMjp1p2ij2

¼ 2πλ2
Z

d4kδðk2 þm2Þδð4Þðp1 þ p2 − kÞ

¼ 2πλ2δðp2 þm2Þ; ð42Þ

whichmatches with the lhs in Eq. (41). Note that, to go from
the first to the second line of Eq. (42), we have used the
identity

R
d3k
ð2πÞ3

1
2Ek

¼R
d4k
ð2πÞ42πδðk2þm2Þ and hkjMjp1p2i ¼

hp1p2jM†jki ¼ λ.
So far, we have shown the optical theorem only in the

case of forward scattering amplitude in Eq. (31), i.e., with
a ¼ b, but by following similar steps we can show the
validity of Eq. (29) with a ≠ b too. Indeed, since the vertex
is a constant, we can easily understand that we obtain again

lhs ¼ i½hp3p4jM†jp1p2i − hp3p4jMjp1p2i�
¼ 2λ2ImfΠð1Þðp2Þg
¼ 2πλ2δðp2 þm2Þ: ð43Þ

Furthermore, for the right-hand side the same happens;
indeed, we have hkjMjp1p2i ¼ hp3p4jM†jki ¼ λ, which
still implies rhs ¼ 2πλ2δðp2 þm2Þ. Thus, the optical
theorem is satisfied at tree level.

4. Case n = 1∶ second example

As a second example of interaction, we can consider a
nonlocal extension of the Galilean scalar Lagrangian [91]
introduced in [64]

VðϕÞ ¼ λðe□ − 1Þϕ ðe□ − 1Þ
□

∂μϕ
ðe□ − 1Þ

□
∂μϕ: ð44Þ
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The corresponding 2 → 2 scattering tree level amplitude
now is more involved,

hp3p4jMjp1p2i ¼ Vðp1; p2; pÞΠð1Þðp2ÞVðp; p3; p4Þ;
ð45Þ

where the vertex reads

Vðp1; p2; pÞ ¼ λðe−p2
1 − 1Þðe−p2

2 − 1Þðe−p2 − 1Þ

×

�
p1 · p2

p2
1p

2
2

þ p1 · p
p2
1p

2
þ p2 · p

p2
2p

2

�
: ð46Þ

Let us prove the optical theorem directly for any a and b,
either equal or different. The lhs in Eq. (29) reads

lhs¼ i½hp3p4jM†jp1p2i− hp3p4jMjp1p2i�

¼ 2πλ2ðem2 −1Þ6
�
p1 ·p2

m4
−

1

m2

�
2

δðp2þm2Þ; ð47Þ

where we have used p2
i ¼ −m2 for the on shell momenta

and p1 · p2 ¼ p3 · p4. Moreover, after computing the
quantities,

hp3p4jM†jki ¼ λðem2 − 1Þ2ðe−k2 − 1Þ

×

�
p3 · p4

m4
þ p3 · k

p2
3k

2
þ p4 · k

p2
4k

2

�
ð48Þ

and

hkjMjp1p2i ¼ λðem2 − 1Þ2ðe−k2 − 1Þ

×

�
p1 · p2

m4
þ p1 · k

p2
1k

2
þ p2 · k

p2
2k

2

�
; ð49Þ

we can perform the integral on the right-hand side of
Eq. (29) and obtain lhs ¼ rhs, so that the optical theorem is
satisfied.
Finally, let us point out that the class of ghost-free

theories we have constructed is even wider; indeed, we can
include generic entire functions γð□Þ in the exponentials in
Eqs. (21) and (22) by only requiring that γð0Þ ¼ 0.
Although no extra real pole appears, for generic entire
function the n → ∞ limit changes.
In this paper, we only consider γð□Þ ¼ −□.

III. GHOST-FREE FERMION PROPAGATORS

In this section, we define analogous generalized nonlocal
Lagrangians in the fermionic sector and also in this case
find a new class of propagators which satisfy tree level
unitarity.
It is not difficult to understand that the fermion

Lagrangian corresponding to the scalar one in Eq. (21)
is given by

LðnÞ
F ¼ −ψ̄fðnÞð□Þiγμ∂μψ ; ð50Þ

where γμ are the Dirac matrices. Indeed, the propagator can
be written in terms of the scalar one in Eq. (22) as follows:

ΠðnÞ
F ðp2Þ ¼ −

1

fðnÞðp2Þ
1

γμpμ

¼ =pΠðnÞðp2Þ; ð51Þ

where in the last step we have used the relation fγμ; γνg ¼
−2ημν and introduced the notation p ¼ γμpμ. Also, in this
case, analogous formulas in the massive case can be
obtained by sending p → p −m or, equivalently, i=∂ →
i=∂ þm. From Eq. (24), it is clear that in the n → ∞ limit,
we obtain the Dirac Lagrangian,

Lð∞Þ
F ¼ −ψ̄iγμ∂μψ : ð52Þ

It is worthwhile mentioning that the fermion Lagrangian in
Eq. (50) can be rigorously obtained in a supersymmetric
description; indeed, it turns out to be the counterpart of the
scalar Lagrangian in Eq. (21). Indeed, in Ref. [62], it was
shown that for any scalar kinetic operator fð□Þ□, the
corresponding one for fermions is given by −fð□Þiγμ∂μ.
Note that, the fermion Lagrangian and propagator with

n ¼ 0 has been already considered in the literature [40,48],
while all other theories (n ≥ 1), to the best of our knowl-
edge, have not been investigated so far.5

It is clear that the pole structure of the propagator in
Eq. (51) is the same as that in the scalar case, indeed
we have a pole at p2 ¼ 0 (or p2 ¼ −m2 in the massive
case), and in addition pairs of complex conjugate poles.
As a consequence, this new class of nonlocal fermion
Lagrangians possess a propagator which still satisfies tree
level unitarity despite the presence of higher time
derivatives.
One can show that all the arguments presented in the

previous section apply to the fermionic sector too. For
instance, one can consider the nonlocal kinetic operator in
Eq. (50) in the presence of a Yukawa interaction term,

VFðϕ; ψ̄ ;ψÞ ¼ λϕψ̄ψ ð53Þ

and show that, in both cases of fermion and scalar internal
propagators, the imaginary part of the tree level scattering
amplitude is non-negative. Indeed, the crucial role is still
played by the presence of complex conjugate pairs which
cancel each other when evaluating the imaginary part of the
amplitude.

5In the appendix of Ref. [64], another nonlocal extension of a
Dirac action is proposed. But, it has a massless pole as well as an
infinite number of real tachyonic poles, which might lead to
tachyonic instabilities.
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IV. QUADRATIC CURVATURE ACTIONS

The iterative procedure introduced above can be also
used to generate new ghost-free gravitational theories, as
we will show below. In order to set up our framework, in
this section we review the main aspects of quadratic
curvature gravity around flat spacetime.
One can show that the most general parity-invariant and

torsion-free action up to linear perturbations around
Minkowski background is given by [18]6

S¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ1

2
½RF 1ð□ÞRþRμνF 2ð□ÞRμν�

�
;

ð54Þ

where κ ≔
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1=Mp, with G being the Newton
constant and Mp the Planck mass, and the differential
operators F ið□Þ are uniquely determined around
Minkowski once the graviton propagator is known
[17,18] (see also Ref. [92] for a more general action
including torsion). In particular, by perturbing the metric
around flat spacetime,

gμν ¼ ημν þ κhμν; ð55Þ

with hμν being the metric perturbation, we obtain the action
up to order Oðh2μνÞ [18],

Sð2Þ ¼ 1

4

Z
d4x

�
1

2
hμνfð□Þ□hμν − hσμfð□Þ∂σ∂νhμν

−
1

2
hgð□Þ□hþ hgð□Þ∂μ∂νhμν

þ 1

2
hλσ

fð□Þ − gð□Þ
□

∂λ∂σ∂μ∂νhμν
�
; ð56Þ

h≡ ημνhμν is the trace and □ ¼ ημν∂μ∂ν the flat
d’Alembertian, while

fð□Þ ¼ 1þ 1

2
F 2ð□Þ□;

gð□Þ ¼ 1 − 2F 1ð□Þ□ −
1

2
F 2ð□Þ□: ð57Þ

We can obtain the graviton propagator around Minkowski
by adding a gauge fixing term and inverting the graviton

kinetic operator. One can show that its saturated part reads
[11,14,17,18,93]

Πμνρσðp2Þ ¼ P2
μνρσ

fðp2Þp2
þ P0

s;μνρσ

ðfðp2Þ − 3gðp2ÞÞp2
; ð58Þ

where the spin projection operators P2
μνρσ and P0

s;μνρσ [94]
project along the spin-2 and spin-0 components of any
symmetric two-rank tensor, respectively. For f ¼ 1 ¼ g,
we recover the Einstein-Hilbert propagator,

ΠGR;μνρσðp2Þ ¼ P2
μνρσ

p2
−
P0

s;μνρσ

2p2
; ð59Þ

which possesses both spin-2 and spin-0 components off
shell, while on shell only the spin-2 (with �2 helicities)
survives.

A. Spin-2 graviton propagator

For simplicity, in what follows, we consider gravitational
theories whose graviton propagator contains only a spin-2
component on shell. To achieve this, we need to demand
the necessary condition

F 1ð□Þ ¼ −
1

2
F 2ð□Þ ⇔ fð□Þ ¼ gð□Þ; ð60Þ

which gives the gravitational action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p fR −GμνF ð□ÞRμνg; ð61Þ

with Gμν ¼ Rμν − 1=2gμνR being the Einstein tensor and
we have redefined

F ð□Þ≡ F 1ð□Þ ¼ −
fð□Þ − 1

□
: ð62Þ

The corresponding graviton propagator reads

Πμνρσðp2Þ ¼ 1

fðp2Þ
�
P2

μνρσ

p2
−
P0

s;μνρσ

2p2

�
: ð63Þ

Note that the last expression for the graviton propagator is
analogous to the one in Eq. (3) for a scalar field, and the
function fðp2Þ has exactly the same meaning.

V. GHOST-FREE GRAVITON PROPAGATORS

The iterative procedure introduced in Sec. II can be
applied straightforwardly to the gravitational context, but in
this case the construction is even richer as we can find a
relation between the functions fðnÞðp2Þ and the form factors
F ðn−1Þðp2Þ at each nth order of the iteration.

6Since we are interested in second order metric perturbations
of the gravitational action around Minkowski, we can always
neglect the term RμνρσF 3ð□ÞRμνρσ up to this order. Indeed, the
following identity is valid for any power n of □∶

Rμνρσ□
nRμνρσ ¼ 4Rμν□

nRμν −R□nRþOðR3Þ þ div;

where OðR3Þ includes higher order contributions Oðh3Þ and div
stands for boundary terms.
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At 0th order, the graviton propagator is given by

fð0Þðp2Þ ¼ ep
2

⇒ Πð0Þ
μνρσðp2Þ ¼ e−p

2

p2

�
P2

μνρσ −
1

2
P0

s;μνρσ

�
; ð64Þ

and using Eq. (62), we also obtain the corresponding form
factor

F ð0Þðp2Þ ¼ ep
2 − 1

p2
: ð65Þ

At first order, we have

fð1Þðp2Þ ¼ ep
2 − 1

p2

⇒ Πð1Þ
μνρσðp2Þ ¼ 1

ep
2 − 1

�
P2

μνρσ −
1

2
P0

s;μνρσ

�
; ð66Þ

while the form factor reads

F ð1Þðp2Þ ¼
ep

2−1
p2 − 1

p2
¼ ep

2 − 1 − p2

p4
: ð67Þ

We can now notice that the function fð1Þðp2Þ coincides with
the form factor of the previous iterative order, i.e.,
fð1Þðp2Þ ¼ F ð0Þðp2Þ. This means that we have managed
to construct a new ghost-free gravitational theory starting
from another one which was already known. From the
iterative relation in Eq. (14) obtained in the scalar field
case, it follows that for gravity the following relations hold
true:

fð0ÞðzÞ ¼ ep
2

;

fð1Þðp2Þ ¼ F ð0Þðp2Þ;
fð2Þðp2Þ ¼ 2F ð1Þðp2Þ;

..

.

fðnÞðp2Þ ¼ nF ðn−1Þðp2Þ;
..
. ð68Þ

and at any nth order we obtain a new class of gravitational
theories whose propagators

ΠðnÞ
μνρσðp2Þ ¼ 1

fðnÞðp2Þ

�
P2

μνρσ

p2
−
P0

s;μνρσ

2p2

�
ð69Þ

are ghost-free as no extra real pole appears besides p2 ¼ 0;
recall that the expression for fðnÞðp2Þ is given in Eq. (21).

VI. NONSINGULAR GRAVITATIONAL
POTENTIALS

In this section, we compute the linearized gravitational
potential generated by a static pointlike source for several
theories belonging to the new class constructed above and
show that the presence of nonpolynomial operators in the
action, i.e., of infinite order derivatives, is crucial in order to
regularize the singularity at the origin.
First of all, we can write the following generalized

quadratic action whose graviton propagator is ghost-free
around the Minkowski background:

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − Gμν

1

□
Rμν

−Gμν
e−□

ð−□Þnþ1
½n! − nΓðn;−□Þ�Rμν

�
: ð70Þ

By varying the corresponding linearized action, i.e.,
Eq. (56) with fð□Þ ¼ gð□Þ → fðnÞð□Þ, up to order
Oðh2Þ and introducing the interaction with matter through
the stress-energy tensor Tμν, we obtain the field equations

fðnÞð□Þð□hμν − ∂σ∂νhσμ − ∂σ∂μhσν

þ ημν∂ρ∂σhρσ þ ∂μ∂νh − ημν□hÞ ¼ −2κTμν: ð71Þ

We choose the Newtonian gauge and express the metric in
isotropic coordinates,

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞðdr2 þ r2dΩ2Þ; ð72Þ

where we have introduced the gravitational potential Φ, so
that κh00 ¼ −2Φ < 1, κhij ¼ −2Φδij < 1 and κh ¼ −4Φ.
In the case of a static pointlike source, we have
Tμν ¼ mδ0μδ

0
νδ

ð3Þðr⃗Þ, where m is the mass of the object.
Moreover, by imposing the conditions of staticity and
spherical symmetry, one can show that Eq. (71) reduces
to one single modified Poisson equation,

fðnÞð∇2Þ∇2ΦðnÞðrÞ ¼ 4πGmδð3Þðr⃗Þ; ð73Þ

where we have used □ ≃∇2, with ∇2 being the spatial
Laplacian.
Equation (73) is highly nonlocal as it contains infinite

order derivatives through the function fðnÞð∇2Þ. However,
we can write its solutions in an integral form by using the
Fourier transform method,
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ΦðnÞðrÞ ¼ −4πGm
Z

d3k
ð2πÞ3

1

fðnÞðk2Þ
eik⃗·r⃗

k2

¼ −
2Gm
π

1

r

Z
∞

0

dk
1

fðnÞðk2Þ
sinðkrÞ

k

¼ −
2Gm
π

1

r

Z
∞

0

dk
e−k

2

k2n−1

n! − nΓðn; k2Þ sinðkrÞ; ð74Þ

where k≡ jk⃗j and we have used polar coordinates to go
from the first to the second line. The integral in Eq. (74) can
be solved analytically only for n ¼ 0, which gives
Φð0ÞðrÞ ¼ − Gm

r Erfðr
2
Þ, while for any other theory with n ≥

1 we have to do it numerically. The case n ¼ 0 has been
already intensively studied in the literature [18,26,83,84],
while the theory with n ¼ 1 has been investigated only
recently in Ref. [64]. Instead, to the best of our knowledge,
the theories with n ≥ 2 have been never considered so far;
indeed, they are totally new and, therefore, worth to
analyze.
In Fig. 1, we have plotted the generalized gravitational

potential in Eq. (74) for several theories, n ¼ 0, 1, 2, 3, 4, 5,
in comparison with the Newton potential. As it is clear from
the plot, we find that for all the examined nonlocal theories
the potential is devoid of any singularity, contrarily to the
Newtonian one.
We also notice that by increasing the number n, the

behavior of the nonlocal potentials approaches the
Newtonian one, meaning that theories with higher n
describe a stronger gravitational interaction. Note that,
such a feature is consistent with the fact that in the n →
∞ limit, we get Einstein’s GR; see Eq. (24). Therefore, we
have

Φð∞ÞðrÞ≡ lim
n→∞

ΦðnÞðrÞ ¼ −
Gm
r

: ð75Þ

Hence, if we reinstate the nonlocal energy scale M,
Einstein’s GR can be recovered by taking either
M → ∞ or n → ∞.

VII. CONCLUSIONS

In this paper, we have defined an iterative procedure to
generate an infinite class of ghost-free theories, which
nontrivially extends others previously studied and already
known in the literature. We have performed the same
procedure first for a scalar field, then we applied the same
in the fermionic sector and, subsequently, we focused on
the gravity. We have classified such new theories in terms
of the functions fðnÞð□Þ, which describes the additional
pole structure. All the theories turn out to be nonlocal
except that corresponding to n ¼ ∞ which coincides with
their local limits, namely Klein-Gordon, Dirac, and
Einstein’s GR. We have mathematically proven the
ghost-freeness of these generalized propagators by showing
that the functions fðnÞðp2Þ are always positive for any
p2 ∈ R, namely do not have any real zero. The only
possible zeroes must be complex and appear in conjugate
pairs; however, they do not spoil the optical theorem at
tree level.
Moreover, we have computed the generalized gravita-

tional potential generated by a pointlike static source and
expressed it in a general integral form. In particular, we
have shown that in the linear regime the singularity at the
origin from which Einstein’s GR suffers is now regularized
thanks to the smearing feature of nonlocality.
The next would-be task is to find a method to discrimi-

nate these new class of theories. In fact, the original
motivation of Ref. [64] was to discriminate nonlocal
theories from local ones. For this purpose, the local
Galilean symmetry was extended to a nonlocal correspon-
dence. We are going to explore this kind of symmetry
argument or to derive some consistency relations for the
new class of ghost-free theories proposed in this paper,
which would be the clue for the discrimination of these
theories.
To conclude, let us also mention that future investiga-

tions will also focus on the verification of optical theorem at
higher order in perturbation theory, by taking into account
amplitudes with at least one loop.
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