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Nonlinear generalizations of teleparallel gravity entail the modification of a Lagrangian that is
pseudoinvariant under local Lorentz transformations of the tetrad field. This procedure consequently
leads to the loss of the local pseudoinvariance and the appearance of additional degrees of freedom (d.o.f.).
The constraint structure of f(T) gravity suggests the existence of one extra d.o.f. when compared with
general relativity, which should describe some aspect of the orientation of the tetrad. The purpose of this
article is to better understand the nature of this extra d.o.f. by means of a toy model that mimics essential
features of f(7T) gravity. We find that the nonlinear modification of a Lagrangian L possessing a local
rotational pseudoinvariance produces two types of solutions. In one case the original gauge-invariant
variables—the analogue of the metric in teleparallelism—evolve like when governed by the (nondeformed)
Lagrangian L; these solutions are characterized by a (selectable) constant value of its Lagrangian, which is
the manifestation of the extra d.o.f. In the other case, the solutions do contain new dynamics for the original
gauge-invariant variables, but the extra d.o.f. does not materialize because the Lagrangian remains invariant
on-shell. Coming back to f(T) gravity, the first case includes solutions where the torsion scalar T is a
constant, to be chosen at the initial conditions (extra d.o.f.), and no new dynamics for the metric is
expected. The latter case covers those solutions displaying a genuine modified gravity; 7 is not a constant,
but it is (on-shell) invariant under Lorentz transformations depending only on time. Both kinds of f(T)
solutions are exemplified in a flat Friedmann-Lemaitre-Robertson-Walker universe. Finally, we present a
toy model for a higher-order Lagrangian with rotational invariance [analogous to f(R) gravity] and derive

its constraint structure and number of d.o.f.

DOI: 10.1103/PhysRevD.101.084017

I. INTRODUCTION

The common notion that gravity can only be represented
through the curvature of spacetime has being challenged by
at least two different approaches, where either the torsion or
the nonmetricity provide physically and mathematically
equivalent versions of general relativity (GR). These two
theories correspond to the teleparallel equivalent of general
relativity (TEGR) [1] and the symmetric teleparallel equiv-
alent of general relativity (STEGR) [2,3], and their
dynamical variables are the torsion tensor and the non-
metricity tensor, respectively. The description of general
relativity in terms of curvature, torsion and nonmetricity
has incidentally being called the “geometrical trinity of
gravity” [4,5], and it consists in an intriguing starting point
to formulate extensions of Einstein’s gravity. The TEGR as
a starting point for building extensions to general relativity
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has gained wide attention in the recent years, particularly
for its versatility to predict novel consequences in the realm
of cosmology, giving rise to the f(7T) gravity paradigm
[6,7], where T is the torsion scalar. Equivalently, in STEGR
the nonmetricity scalar Q is used, giving rise to the very
recent f(Q) theories of gravity [8].

Recent interest has emerged for understanding the issue
of the number and nature of the degrees of freedom in
modified gravity theories based on a teleparallel frame-
work. Some early attempts to understand f(7) gravity as
TEGR plus a minimally coupled scalar field through con-
formal transformations were documented in Refs. [9,10],
where it was shown that it is not possible to cleanly obtain a
teleparallel Einstein frame, due to the appearance of
Lorentz-breaking terms. However, later it was shown
through a full Hamiltonian analysis, that f(7) gravity
has a unique extra degree of freedom (d.o.f.) [11], which
consequently cannot be attributed to a conformal field
redefinition of the theory. In this regard, recently disformal
transformations were studied in order to obtain a clean

© 2020 American Physical Society
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isolation of such an extra d.o.f., but these efforts have been
unsuccessful [12]. Other attempts to understand the issue
of the d.o.f. worth considering in this discussion are the
studies of the linearized approximation around Minkowski
spacetime [ 13—15], which do not show the extra d.o.f. Also,
propagating modes do not appear in linear cosmological
perturbations around a spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe [16-22]. In the light
of the perturbative analysis, there are concerns in the
community regarding the pathological behavior and strong
coupling problem in f(T) gravity [18,19,23-25]. The
disappearance of degrees of freedom at the perturbative
level is a behavior shared with other modified gravitational
theories such as massive, bimetric and Horava gravities.
Nonetheless, an important distinction between these theo-
ries and f(T') gravity is that the former use the metric as the
dynamical field; in contrast f(7') gravity is a tetrad-based
physical theory. The extra d.o.f. can be roughly interpreted
as a scalar field that has a role in selecting preferred
reference frames that are solutions of the equations of
motion [26], exhibiting in this way the loss of local Lorentz
invariance (LLI). So, it is still unclear if it should dynami-
cally manifest at the perturbative level, putting in doubt
concerns about the strong coupling problem.

Another road to understanding the important matter of
the lack of LLI in these theories comes from the analysis of
pseudoinvariance in TEGR. It is widely known that TEGR
is a pseudoinvariant (also called guasi-invariant [27])
theory under local Lorentz transformations (LLT) on the
tetrad field. This means that the TEGR Lagrangian changes
by a boundary term under LLT, or in other words, the
difference between the Ricci scalar R from GR and the
torsion scalar 7' in TEGR is a boundary term. Therefore, in
the nonlinear modification of the TEGR Lagrangian, we
cannot integrate out this boundary term, giving rise to the
modification of a pseudoinvariant system. Boundary terms
are very common in GR, such as topological invariants that
are nontrivial in higher dimensions or the Gibbons-
Hawking-York teml,1 but the nonlinear modifications of
these terms are not commonly used for model building. In
this regard, we have a very unique case of modified
pseudoinvariance in modifications to gravity based on
the teleparallel formalism. Our aim is to analyze the
properties of pseudoinvariant systems and their nonlinear
modifications through toy models, which will be very
helpful to understand the disappearance of the extra d.o.f. in
f(T) gravity for some solutions and its general behavior.

This work is organized as follows. In Sec. II we
introduce the basic concepts and definitions of teleparallel
and modified teleparallel gravity. In Sec. III we present the

'It has been claimed that the surface term from TEGR has the
same contribution, once varied, as the Gibbons-Hawking-York
term, erasing in the same way the unwanted contributions to the
Einstein equations of motion when spacetime boundaries are
considered [28].

Hamiltonian analysis of a toy model with rotational
pseudoinvariance, and the analysis of the nonlinear modi-
fication of it. We compare the outcome and generic features
of the toy model with the f(7) gravity case in Sec. IV, and
classify a couple of qualitatively different cosmological
backgrounds. In Sec. V we display a different toy model
that shares some features with f(R) gravity. Section VI is
devoted to the conclusions.

II. TELEPARALLEL AND MODIFIED
TELEPARALLEL GRAVITY

A. Teleparallel geometry

We begin by introducing the basic notation and main
expressions for understanding the teleparallel formalism.
Let us consider a manifold M, a basis {e,} in the tangent
space T,(M), and the dual basis {E“} in the cotangent
space T, (M). This pair of basis/cobasis accomplishes
E“(e,) = &7. When expanded in a coordinate basis as e, =
€20, and E¢ = Eldx", the duality relationship looks like

Ejeyt = o, ehE = &), (1)
Our notation is such that greek letters u,v,... =0, ...,
n — 1 represent spacetime coordinate indices, and latin
letters a, b, ...,g,h =0, ...,n—1 are for Lorentzian tan-
gent space indices. A vielbein (vierbein or tetrad in n = 4
dimensions) is a basis that encodes the metric structure of
the spacetime through the expression

g =nu,E ® E’ (2)

[nab = dlag(l, _1, _1,
This allows to write

—1) is the Minkowski symbol].

E*-E’ = g(Ea’ Eb) = Nab» (3)

which indicates that the vielbein is an orthonormal basis. In
component notation, the former expressions are written as

G = nabEzElzjv Hap = Qyueﬁeﬂ (4)

from which the relation between the metric volume and the
determinant of the matrix Ej can be derived, giving

lg| = det[Ej)] = E. (5)

TEGR comes from the formulation of a dynamical theory
of spacetime geometry for the vielbein field, encoding the
metric structure of spacetime. The Lagrangian density for
TEGR is

L =ET, (6)
where T is the torsion scalar or Weitzenbock invariant,

r=1,5S,", (7)
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which is made up of the forsion tensor
Tﬂup = eaﬂ (ayE;a) - apEg)’ (8)

and the so-called superpotential

1
S = 2 (K””p + 143, — 1v8)), 9)
where T# = T, is the torsion vector. In the latter, we define
the contortion tensor as

1
K,uy/} = E (T/)ﬂy - le/) + Tyﬂp)9 (]0)

which is the difference between the Levi-Civita connection
and a general connection. The field strength (8) is the torsion
associated with the Weitzenbock connection Iy, = e,/ 0,E5.
The Weitzenbock connection is the simplest choice that
cancels out the Riemann tensor, rendering a curvatureless
spacetime where the parallel transport does not depend on
the path: it is absolute. However, other choices for the
connection are possible. A modern summary and criticism of
these approaches can be found in Ref. [29]. The equations of
motion for the Lagrangian (6) are obtained by varying L with
respect to the tetrad field; they are

4ed,(EetS;») + 4elTr ;S /" — et T = =2kebT,*,  (11)

where 7 ,” is the energy-momentum tensor coming from a
matter field. Equation (11) can be proved to be equivalent to
the Einstein equations when written in terms of the metric
tensor. TEGR is equivalent to GR not only in this sense, but
also at the level of the Lagrangians. This is because the
torsion scalar 7" and the Levi-Civita scalar curvature R are
related by a boundary term

R = —T + 2¢0,(ET"), (12)

which is integrated out once in the action, yielding the
equivalence between the TEGR and GR Lagrangians.

B. Modified teleparallel gravity

If our starting point to describe the gravitational inter-
actions is the TEGR Lagrangian, then the simplest way
to a theory of modified gravity is to replace the TEGR
Lagrangian by a nonlinear function of it, in the same way
that f(R) gravity is the simplest generalization of GR. If we
try to deform gravity in this way, we can define the
following action:

S = %{/ d*xE(f(T) + L,,[E%]). (13)

where L,, is a Lagrangian for matter. The dynamical
equations of motion of this action are found by varying
in terms of the tetrad field. It is obtained that

4e0,(f'(T)EeqS;*) + 4f (T)eqT? ;S — et f (T)
= —2xelT . (14)

The equations of motion (14) possess an unusual feature:
while they are invariant under global Lorentz transforma-
tions of the tetrad field, they are sensitive to the local
orientation of the tetrad. This means that they endow the
spacetime with preferred parallelizations, which relate each
other through a subset of LLT [30]. The breakdown of the
LLI is irrelevant for the metric, since the components of the
metric tensor are not affected by either global or local
Lorentz transformations of the tetrad field. Then this loss of
LLI is not a proper Lorentz violation in the sense of other
explicitly Lorentz-breaking gravitational theories, but
implies the existence of an extra degree of freedom [11]
that could be only detected through interactions of matter
with the tetrad field instead of the metric.

The growing interest in f(7) gravity mainly lies in
its success in the cosmological arena. In fact, a Born-
Infeld-like f(T) is able to smooth spacetime singularities,
leading to a maximum attainable Hubble factor in the early
Universe, and so driving an inflationary epoch without the
need of an inflaton field [6]. At the far end, the theory can
explain the accelerated expansion of the Universe by means
of a power law in the torsion scalar. In this work we are
interested in understanding how the extra degree of free-
dom of f(T) gravity manifests itself in simple flat FLRW
cosmological backgrounds; we present a couple of solu-
tions of this kind in what comes next.

C. Branching of cosmological solutions

Recently it has been noticed that two different types of
solutions can be obtained when using f(7') gravity in the
context of flat FLRW geometries, which present qualita-
tively different values for the torsion scalar. On the one
hand, the simplest and best-known solution is [6,7]

E'=dt, E'=qa(rdx, E2=aqa(t)dy, E3=a(r)dz.

(15)

which easily proves to be a solution of the system of
equations (14). The torsion scalar for this solution is

T = —6H> = —6 (g)z (16)

and the scale factor a(¢) satisfies the dynamical equations’
coming from replacing Eq. (15) in Eq. (14), giving

d
_2T%d_T (T2 (T)) 7——em> = 2xp,

_sirtL (T% ﬂ)

T\ or =2(p+p). (17)

T=—6H?

2Incidentally, notice that these equations are invariant under
the change f(T) — f(T) + AVT.
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The dynamics of the scale factor a(t) is subject to the
choice of the function f’; therefore this is the way the metric
behavior departs from general relativity.

On the other hand the flat FLRW geometry also allows
for a family of solutions that reads

E’ = cosh Adt + a(t) sinh Adr,

E! = sinh Adt + a(z) cosh Adr, E? = a(1)rdo,
E? = a(t)rsin0de, (18)
where
A7) = w(ra(t)) + —— = ") / (T, + 6H)d1
r) =w(r -
’ yira 2ra(t) 4 ¢ ’

(19)

where T, is a constant, and y is an arbitrary function of the
radial distance ra(t¢). In this case, the torsion scalar is
constant,

T=T,. (20)
and the scale factor a(r) satisfies the dynamical equations

f(T,) 2

7Ty =yt =

6H> T, +

2K
7T (p+p).
(21)

which are nothing but the equations of general relativity for
a cosmological constant A = (T, — f(T,)/f'(T,))/2 and
an effective Newton constant G = G/f'(T,). Then, this
other type of solution comes with an integration constant
T ,—it appears in the radial boost governed by the function
A—that affects the effective values of the fundamental
constants of the cosmology. This fact was first reported in
Ref. [31] for a vanishing value of the torsion scalar, through
the null tetrad approach developed in Ref. [32].

We will employ a mechanical toy model to explain why
the solutions of the original (GR) theory actually coexist
with the expected new solutions of the modified f(7)
theory. We are interested in knowing how many degrees of
freedom are involved in each case, and which is the
remnant gauge freedom kept by the tetrad.

III. MODIFYING A MECHANICAL SYSTEM
WITH ROTATIONAL PSEUDOINVARIANCE

A. Counting degrees of freedom in constrained
Hamiltonian systems

We will summarize Dirac’s procedure for constrained
Hamiltonian systems [33-35] for later use in a couple
of toy models. We consider a Lagrangian L = L(g*, §*)
such that the equations defining the canonical momenta

= OL/0g" cannot be unambiguously solved for all the

velocities. If so, the momenta are not independent but there
exist some relations among the p;’s and ¢*’s,

¢p(d".p)=0.  p=1..P (22)

which will be called primary constraints.” The constraints

(22) define a subspace I'), of the phase space—the con-

straint surface—where the dynamics of the system will
remain confined. The primary Hamiltonian

H,=H, +u'¢, (23)

is the sum of the canonical Hamiltonian H, = ¢*p; —
L(q*,4*) and a linear combination of the primary con-
straints. The Lagrange multipliers u”(t) are free functions
that can be varied independently to ensure the primary
constraints. They leave H, with a degree of ambiguity that
comes from the fact that the velocities cannot be uniquely
solved in terms of the canonical momenta.

The condition that the primary constraints be preserved
over time leads to the following system of equations:

¢U = {¢O" Hp} = {¢O" HC} + {¢O" ¢p}
W = h, + C,ul A0, (24)

where ~0 means weakly zero (i.e., “zero on the constraint
surface”); h, and C,, are implicitly defined. These con-
sistency equations could be accomplished by solving them
for the functions u”. However if det C,;, ~ 0 and h, % 0, the
consistency equations cannot be entirely solved for the
functions u”. In such a case, secondary constraints will be
needed to ensure that the primary constraints remain
weakly zero while the system evolves.* Thus, the procedure
should be iterated for the consistency of the secondary
constraints, which could lead to more secondary con-
straints. The algorithm finishes when the set of primary
and secondary constraints,

¢, =0,
¢y~ 0,

p=1,...,P,

)=P+1,...P+S, (25)
can be forced to consistently evolve by merely fixing
some of the Lagrange multipliers #”. We can wonder how
many Lagrange multipliers will be fixed, since some of
the consistency equations could be automatically satisfied
without imposing any condition on the Lagrange multi-
pliers. For simplicity let us call ¢, p=1,...,P + S, the

We will assume that the ¢, (g. p)’s are independent functions.

Secondary constraints W111 appear each time that wih, # 0,
where w§ is a null eigenvector of the P x P matrix C,,
wgC,, = 0).
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complete set of independent constraints defining the con-
straint surface I'. The consistency equations are

d)f) = hf, + Cf,pl/tp ~ O (26)
If the rank of the S x P matrix Cﬁp is K < P, then there will
be P — K right null eigenvectors V7,

CpVa=0, a=1,....P-K. (27)
Therefore the replacement u” — u” + v*V/, with arbitrary
functions v“(¢), will not alter the equation (26). As a
consequence, whenever the rank of C, is less than P then it
will remain an undetermined sector in the primary
Hamiltonian (23) associated with the constraints

ba = Ve, = 0. (28)

Let us call first class any phase space function F(q, p)
having weakly vanishing Poisson brackets with all the
constraints ¢),; otherwise it will be second class.
Remarkably, the constraints ¢, are first class.” Also H »
is first class due to the consistency relations. The con-
straints ¢, can be linearly combined to get a maximum
number of independent first-class constraints “y;.” A set
of second-class constraints “y,” will complete the set of
P + § constraints characterizing the constraint surface I'.
Since both C,, and Cj;, are weakly zero, the consistency
equations for all the first-class constraints imply nothing
for the u”’s. So, let us pay attention to the consistency
equations for the second-class constraints. We notice that
the square matrix Az = {y4,yp} must be invertible;
otherwise, there would still be first-class constraints among
the y,’s. Since the determinant of the antisymmetric matrix
A,p is different from zero, we also conclude that the
number of second-class constraints is even. Let us check
the consistency of the second-class constraints and the
consequences for the Lagrange multipliers; we start from

Xa = {){Apr} N hy + ”p{ZA,)(p} =hy +u’A,, ~0.
(29)

Then, by multiplying with AB4
0~ ABAhy + ulsh. (30)

Therefore, if the index B alludes to a secondary constraint
it is

0~ ABARy,, (31)
Uy da}y = {dp b,V = C;,Vi ~0. The ¢b,’s are a com-

plete set of first-class primary constraints, since no linearly
independent solutions to the former equation are left on I'.

which should already be a secondary constraint, since we
have assumed that the algorithm is finished (all the
secondary constraints have been found). On the other
hand, if the index B alludes to a primary constraint it is

u’ = _APAhA. (32)

These two results imply that the primary Hamiltonian can
be written as’

Hp = Hc + Uu¢a + hAAAB)(B' (33)

The ambiguity associated with the free functions w(r)
implies that only first-class phase-space functions will
unambiguously evolve. For any other phase space the
evolution will be determined modulo gauge transforma-
tions generated by the ¢,’s. Dirac conjectured that not only
the primary first-class constraints but all the y;’s generate
gauge transformations. Because of this reason it is a
common practice to use instead the extended Hamiltonian

Hp = H,+ v'y; + hy A8y (34)

without damaging the evolution of the first-class phase-
space functions.

The gauge freedom involved in Hx can be fully frozen
by accompanying the y;’s with an equal number of
independent gauge-fixing conditions &;(q,p) ~ 0. If
the gauge-fixing conditions fulfill det{y s, &z} # 0, then the
vA’s will be completely fixed by the requirement that the
gauge-fixing conditions must be consistent with the evo-
lution of the system. Actually det{y;, &z} % 0 means that
the y;’s and the £3’s form a second-class set. In fact no
first-class constraint remains since the gauge freedom has
been completely frozen. Not only the gauge-invariant
functions—the observables—but any phase-space function
will so evolve without ambiguities. Thus the phase space is
restricted by the set of conditions y; =0, &5 =0, y4 = 0.
Each pair of conditions eliminates one degree of freedom.
Therefore, the d.o.f. are counted by considering the number
of pairs of canonical variables (¢", p,,) and the number of
first-class (f.c.) and second-class (s.c.) constraints through
the following formula:

number of d.o.f. = number of (p, q)

— number of f.c. constraints

1
) number of s.c. constraints. (35)

This Hamiltonian is usually called the fotal Hamiltonian, since
it recognizes the ambiguity associated with the functions ¢,,.

"The conditions £5(g. p) = 0 must be attainable by means of
gauge transformations generated by the y;’s.
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We will make extensive use of this algorithm in the
following subsections.

B. Rotationally pseudoinvariant Lagrangian

We will propose a toy model that mimics some general
features of TEGR theory, so later we can study its
modification, which will possess several features also
present in f(7) gravity. Let us study the following
mechanical Lagrangian®:

L=2(2 ) v +: 2 gen) + 00
= di ZZ ZZ Zazg Z,Z Z(?z'g Z,2),

(36)

where z, 7 are complex-conjugate canonical variables. As
can be seen, L is a Lagrangian governing the evolution of a
sole dynamical variable: zZ. In fact the last two terms are
just the total derivative dg(z,Z)/dt and they do not
influence the Lagrange equations. Besides, the first term
is a kinetic energy for /zZ,

24V~
dr 2z —2ZZ_ 23+122)7,

and U is a potential for zZ. This means that the Lagrange
equations will govern the evolution of the modulus of the
complex variable z, but the evolution of its phase z/|z| will
remain undetermined. We can notice this fact also at the
level of the symmetries of the Lagrangian, which is
pseudoinvariant under (“local”) time-dependent rotations
(it is invariant except for a total derivative):

. d
7 ez = 5L = Eag(z, 7). (37)

We can recognize some features that resemble the TEGR
theory. In fact, the TEGR Lagrangian is pseudoinvariant
under LLT of the tetrad, so it only governs the dynamics of
the metric, but it is unable to determine the “orientation” of
the tetrad. The analogy is not complete because the
boundary term in this toy model just contains first-order
derivatives of the canonical variables, differing from the
case of TEGR in which the boundary term contains second-
order derivatives of the tetrad.

Now let us pass to the Hamiltonian formalism, and look
for the constraint algebra. The canonical momenta are
defined as

$This model and some of the conclusions drawn here were first
presented in Ref. [36]. However, explicit calculations are given in
the present article.

:a_L_li( —)+2( 7)

OL 1d 0

== -2 (20 +—g(2.2), 38
Pi=5r=7 dl(zz)+ aZ_g(z Z) (38)

from which it is easily seen that the primary constraint is

G(I)Ez<pz—g—‘z> ‘Z_'(Pf‘%) ~0, (39)

which fulfills
{GW, zz} =0. (40)

In Eq. (39) one recognizes the form of the angular
momentum, so G() is the generator of rotations.
Equation (40) then says that zZ is invariant under rotations.
As it happens in any theory having invariance under
rotations, the angular momentum is conserved; however
the conservation here is not the result of the dynamical
equations but it appears in the form of a constraint among
the canonical variables. This means that the (conserved)
value of the angular momentum cannot be freely chosen by
manipulating the initial conditions; instead the initial
conditions are restricted to satisfy the sole allowed value
G = 0. The reason why the angular momentum behaves
in such way is because not only is the Lagrangian (pseudo)
invariant under rotations, like the Lagrangian of a particle
in a central potential, but its very dynamical variable zZ is
already invariant under (even local) rotations. These are the
features characterizing the so-called gauge systems, i.e.,
those systems whose Lagrangians do not give dynamics to
each canonical variable, but only govern some combina-
tions of variables, which can be recognized through their
invariance under (local) gauge transformations. Noticeably,
in the case under study, the angular momentum G(!) has
contributions coming from those terms in L that are linear
in z, Z (the terms we added to L to make it pseudoinvariant).
As we know, these extra terms do not affect the fulfillment
of the Lorentz algebra in theories of gravity such as TEGR
[37]; however they are essential to establish the number of
degrees of freedom of the “deformed” theories, as we are
going to see in the next subsection.
The canonical Hamiltonian is

_ . d 2
H=zp1+z'pz—L=2(E\/§> + U(z2)

:éz_ {z(pz —g—g) +z’(pz——g—§>]2 +U(z2), (41)

while the primary Hamiltonian is

H,=H+u()GY, (42)
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TABLE 1. Comparison between the rotationally pseudoinvar-
iant toy model and TEGR.

Toy model TEGR
Coordinates z,Z Ej
Gauge parameter a(r) Ad(x)
Gauge symmetry Rotations Lorentz transformations
Primary constraint(s) G W

ab

Degrees of freedom 1 2
Observable |z] Two polarizations of g,

where u(r) is a Lagrange multiplier. The presence of the last
term has a twofold meaning. On the one hand it means that
the form of the Hamiltonian is ambiguous on the constraint
surface, since one can rewrite some of the canonical
variables by using the constraint. On the other hand it
implies that only the quantities O(z,Z, p., p-) having
rotational invariance (i.e., {G'!), O} ~ 0) will unambigu-
ously evolve. The other (non-gauge-invariant) quantities
are not observables; their evolution will remain ambiguous
as long as the function u(¢) remains unknown.

For consistency reasons, G(!) should evolve without

leaving the constraint surface; i.e., GY = ={GY. H »}~0.
If this condition were not fulfilled, then one would impose
new (secondary) constraints to have a consistent evolution.

Since {G(l),ZZ_} is zero, then
Bg 8g
= } 0.

GD. HY~0e G, ip. —
{ P} { ZpZ+Zp~ az az

(43)

As can be easily verified GV = {G), H »1 =0 (e, it is
zero throughout the phase space, not only on the constraint
surface). Therefore, no secondary constraints appear in this
example. There is a unique (necessarily) first-class con-
straint, so one degree of freedom is removed, and the
system is left with just one genuine degree of freedom
[33-35]. As said, zZ is the gauge invariant (observable)
associated to the unique physical degree of freedom.

The analogies between the toy model and the TEGR
theory are summarized in Table I. Notice that in the table
we do not list all TEGR constraints; the discussion on the
number and physical interpretation of them can be found
in Sec. IV.

C. Modified pseudoinvariant rotational Lagrangian

Let us deform the mechanical toy model given by the

Lagrangian (36) and replace the pseudoinvariant
Lagrangian L with a function of itself:
L= f(L). (44)

The theory described by the Lagrangian £ = f(L) is
dynamically equivalent to the one governed by the

Jordan-frame Lagrangian that includes an additional
dynamical variable ¢:

L=¢L-V(p). (45)
In fact, the Lagrange equation for ¢ is
L=V'(p). (46)

So, the dynamics says that £ in Eq. (45) is the Legendre
transform of V(¢); therefore, £ is a function f(L). Each
choice of V equals a choice of f; the inverse Legendre
transform then implies

¢ =f'(L). (47)

On the other hand, the Lagrange equation (46) also
says that the dynamics of ¢ is completely determined
by the dynamics of z(z) and Z(¢) through the function
L(z(1), (1), 2(t), Z(t)). We remark that, although L comes
with a total derivative, £ is not pseudoinvariant because the
total derivative in Eq. (45) is multiplied by ¢. So, the
system described by the Lagrangian £ has, in principle, two
degrees of freedom, let us say z and Z. Nevertheless, there is
a particular case where the number of degrees of freedom
reduces to one: when the function g in Eq. (36) has the form
9(z,Z) = v(z2). In that case L in Eq. (45) depends only on
zZ and ¢; but, as already said, the dynamics for ¢ is linked
to the one for zZ. This alternative (one or two degrees of
freedom) should be reflected by the Dirac-Bergmann
algorithm for the Hamiltonian formalism of this system.

Let us compute the canonical momenta associated with
¢, z and Z:

0 _ =% 0, (48)
o
d
. =%<zz>+¢ oz.9).
_¢d 5
pz:= _dt(ZZ)+¢ 9(z.2). (49)

We easily get the angular momentum constraint

0 0
G\ EZ(PZ —(pa—‘z> _Z_<pz_¢8_§> ~0. (50)

Notice that the piece of G(!) which comes from the
boundary term in L is now multiplied by ¢. In consequence,
the dynamical system defined by Eq. (45) has two primary
constraints whose Poisson bracket is

(6.6} = 2 (51)
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The canonical Hamiltonian is

H=:ip,+ip.— L= 2¢<;1[\/E>2+¢U(ZZ_) + V(¢)

_ 1 ~ 399\ o, — 599 ]
)

+QU(z2) + V(o). (52)

and the primary Hamiltonian is
M, =H+u ()G + u()GW, (53)

where u”*, u are Lagrange multipliers. We must evaluate the
evolution of the primary constraints to look for secondary
constraints:

GV =GV H,} = {m.H,}

(zp.+2p:)* 1 [ 9g 99’
8?77 0z

Z8z+

87z

0z 07
d 0 0
v+ (s L ) (2,

—U(z2) = V'(¢) + u(r) <z@—fa—g_>

G ={GV, H,} = u{GV,GI} = —u (Z— - z—).

Therefore there are three different ways to guarantee the
consistency of the evolution, which we proceed to study in
three separate cases.

1. Case (i)

If g(z.2) # v(z2), ie., zg—g - Zg—g # 0, then we guarantee
the consistency of the evolution by choosing the Lagrange
multipliers in the following way:

. s LO=Vi)  d [0
w0 = z<z>%<r>—z<r>%g<r>+drl 2ty
(56)

The system has no secondary constraints; the only con-

straints GV, G\ are second class, since {G<1),G£,])} in
Eq. (51) is different from zero. So, they remove only one
degree of freedom [33-35]; there are two genuine degrees
of freedom among the variables (z,Z,¢). Notice that,
differing from f(7) gravity, no gauge freedom is left in
this system since both Lagrange multipliers have been
fixed, so the primary Hamiltonian completely determines

the evolution of the variables. In particular, the evolution of
¢ is given by the equation

¢={p. M} =u" =0, (57)

which means that ¢ is a free constant. The equation for
z(1) is

. 1 n 99  _0g
:={zH,} = Ve <zpz +Zp:— ¢z 9z ZE)Z)
. L-V
tult)z=2-2—5—7%, E(gg ; (58)
29; " %oz

so the Lagrange equation L — V'(¢) = 0 [see Eq. (46)] is
obtained. The Lagrange multiplier # then becomes

u(t) = L0 /2020, (59)

dt

By combining Egs. (46) and (57) one gets

L =const and L = const. (60)

Instead of p., let us compute the evolution of the rota-
tionally invariant quantity zp, — ¢pz0g/0z:

d dg
7 <zpz — ¢z a_z)

- dg - Jg
= {zpZ —qbza—Z,Hp} = {zpz ¢Z<9_z’H}

1 _ 0g _0g\2 oU(z2)
= 3gez (Zp i Pay "’%z) P25,

=H-QU(z2) = V(¢) — ¢pzZU'(z2). (61)

By replacing this with Egs. (49), (52) and (57), one obtains

L=2(8vE) ~av@. @)

or

(63)

which amounts to the conservation of h = 2(d(/zZ)/
dt)? + U. Equation (62) coincides with the Lagrange
equation for the system described by the Lagrangian L.’
However the Lagrangian £ still makes a difference with L.
This is because the dynamics governed by £ imposes a new

9Analogously, in f(T) gravity the solutions with constant 7
satisfy the Einstein equations (although the cosmological and
gravitational constants are shifted).
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constant of motion besides /4: L has to be a constant as well.
While Eq. (62) only fixes the evolution of |z(7)|, the
condition L = const is an additional requirement that
involves the phase of z(7) in the total derivative term
of L." Therefore, differing from L, the Lagrangian L
governs the evolutions of both the modulus and the phase
of z (notice, however, that the initial phase is irrelevant due
to the global rotational symmetry).

In sum, the system described by the Lagrangian (45) has
two degrees of freedom: one of them is |z|> = zZ whose
dynamics does not differ from the one described by the
Lagrangian (36); in both cases we arrive at the conserved
quantity h = 2(d(v/zZ)/dt)* + U. Once the evolution of |z
is determined by the choices of the initial value |z(z,)| and
the constant of motion £, the evolution of the phase of z,
which is the remaining degree of freedom, is determined by
the condition L(#) = const. The value of this constant
connects with the value of ¢ through Eq. (46). There is no
other physics associated with ¢, over and above the one
related to the phase of z. In the analogy with f(T') gravity, ¢
could then be regarded as a variable carrying information
about the “orientation” of the tetrad, which would be
partially determined by the dynamical equations. We will
discuss this issue more later.

2. Case (ii)

If g(z.2) = v(z2), ie., zg—f - z'g—i’ =0, then £ depends
only on |z|> =2zZ and ¢. The constraints G1), G\
commute [see Eq. (51)], and the Lagrange multipliers u,
u” are not determined by the Egs. (54)—(55). While G is

zero, the consistency of GS,”

constraint

leads to the secondary

G? =L-V'(p)=~0, (64)

which recovers Eq. (46), and tells that the values of ¢ are
now linked to those of zZ.

If g(z.Z) = v(zZ), then L is invariant under rotations.
Therefore

{GM,GP} =o. (65)
Besides
(GG} = V"(¢). (66)

Let us examine the consistency of G2 under the time
evolution of the system:

I f (T) gravity, it involves the orientation of the tetrad which
affects the boundary term of the TEGR Lagrangian.

G? = {G?Y H,} = {GP H} + u{G?,GV}
+u{GD, GV = {L,H} — umV" (). (67)

If V”(¢) # 0, then the consistency can be guaranteed by
choosing u, M

dL

(1) = V() LY = V)

(68)

In such a case we are left with a first-class constraint G(!)

and two second-class constraints G,(,1>, G2, So, two

degrees of freedom are suppressed by the constraint
structure. Since we started with three dynamical variables,
Z, Z and ¢, the system has one genuine degree of freedom.
The observable (gauge-invariant) variable is zZ. The phase
of z remains as a gauge freedom; it is not determined by the
evolution since the Lagrange multiplier u(z) has not
been fixed.
The dynamical equation for ¢,

aL . dL
)

d !
= L), (69)

¢ =1{p.M,} =u(t) = V'(¢)!

does not contain new information since it can also be
obtained by differentiating Eq. (64); in particular, it does
not constrain L to be a constant. The evolution of ¢ is then
entirely determined by the evolution of zZ through Eq. (64).
On the other hand, the evolution of zZ will be different than
in case (i); this is because ¢ is no longer a constant [as it is
in case (i)]. This does not mean that ¢ does not have a role;
the reader must remember that ¢ exists because the
Lagrangian L has been replaced with £ = f(L). In fact,
the lhs of Eq. (61), which is the equation we used to obtain
the evolution of zZ, will now generate an additional term

associated with ¢. Since zp, — $pz9g/9z = ¢d(zZ)/dt [see
Eq. (49)], the new term will be ¢d(zZ)/dt. Thus, the
dynamical equation (62) for zZ will now read

(f)"éﬁ% (z2) —l—%(zx‘) = 2(i \/ZE’)Z —zzU'(z2), (70)

dt

or
d d & dU
4—1Inf(L)—(\/722) +4— /77 = ———— . 71
gLV Hagava=—To=. (71

This is the result we were expecting, because it is the
Lagrange equation for a Lagrangian £ = f(L) that depends
exclusively on zZ.

"In the Legendre transform it is V" (¢)~' = f"(L).
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3. Case (iii)

As can be seen in Egs. (54) and (55), the consistency of
the evolutions of both primary constraints G,,1 and GV are
affected by the quantity z0g/Jz — Z0g/0Z. This quantity
vanishes if g(z, Z) = v(zZ), as considered in case (ii), which
means that £ = f(L) becomes invariant under local rota-
tions, and the system is left with only one degree of
freedom. However, we could still consider another pos-
sibility: the condition

25 —27:2=0 (72)

is satisfied only in some region of the constraint surface.
For instance, let us consider a function g(z,7) = g(z + 2);
then

0 0
9(z,2) =9(z+2) = za—‘z - Za—g =(z-2)d. (73)
We see that the relevant quantity for our analysis vanishes if
z is real. Therefore the real solutions, if they exist, would
work as in case (ii). Since the phase of z has been frozen to
be zero, no extra d.o.f. would be left in these solutions.
The condition (72) defines a hypersurface in the phase
space. The intersection of this hypersurface with the
constraint surface, if it exists, would constitute a subspace
where the degree of freedom associated with the phase of z
does not manifest itself, since the Lagrangian £ = f(L)
would turn out to be invariant under infinitesimal local
rotations 6z = ia(t)z:

d
6L = 3f(L) = f/(L)SL = f'(L) 269

d Jg _0g
— _ —_J —-J
= f'(L) ; [51 §z+& iz']

_ if’(L)% [a(t) (z%’—z%{ﬂ —0. (74)

Thus, we should wonder about the existence of solutions to
the equations of motion lying on the subspace defined by
Eq. (72) and the constraints. These solutions should not
contain a d.o.f. associated with the phase of z; they would
remain as solutions to the equations of motion under
infinitesimal local rotations. These solutions would evi-
dence just one degree of freedom: the one related to the
modulus of z. Therefore, the Lagrangian £ = f(L) could
lead to solutions displaying one or two degrees of freedom,
depending on which region of the constraint surface they
occupy [i.e., depending on whether they satisfy the con-
dition (72) or not].

In sum, in the Jordan frame we rewrite the Lagrangian
L= f(L)as L =¢L — V(¢). If the boundary term ¢(z, 7)
present in L is such that z0g/0z — Z0g/0Z # 0, then an
extra degree of freedom associated with the phase of z will

manifest itself. In the Jordan frame, the extra degree of
freedom comes from the free choice of the constant ¢
which, on its side, determines the phase of z through the
condition L = V'(¢) = const. Instead, if zdg/0z — Z0g/
07 = 0, then £ = f(L) will not be sensitive to the phase of
Z, so ¢ cannot be associated with an extra degree of
freedom but will be entirely determined by zZ through the
equation G = L — V'(¢) ~ 0 without imposing any con-
dition on the value of L. However the fact that ¢ is not
constrained to be a constant will imply an additional term in
the dynamical equation for the modulus of z, as can be
straightforwardly verified in the Lagrange equations for the
Lagrangian £ = f(L). Besides, if there were solutions such
that z0g/ 0z — z0g/ 7 cancels out, then these solutions will
remain as solutions of the equations of motion under
infinitesimal local perturbations of the phase of z; therefore
they would just exhibit the degree of freedom associated
with zZ.

IV. f(T) GRAVITY: A MODIFIED LORENTZIAN
PSEUDOINVARIANT LAGRANGIAN

A. Summary of d.o.f. counting in f(7T') gravity

The modified rotationally pseudoinvariant system of
Sec. III is useful to understand several features of f(T)
gravity, since the latter consists in the modification of the
Lorentzian pseudoinvariant TEGR Lagrangian. Due to the
inherent complications of the dynamical equations of f(7)
gravity, the Jordan-frame formalism has been used for the
analysis of the constraint algebra and the counting of d.o.f.
[11,38]. Reference [38] used the first-order Hamiltonian
formalism developed in Refs. [39,40] as a base for com-
puting the constraint structure of f(7) gravity. Instead,
Ref. [11] used the canonical Hamiltonian formalism for
TEGR described in Ref. [37]."> While in Ref. [38] the
authors claimed that f(T) gravity has n — 1 extra d.o.f. in
dimension n, the outcome of the counting of d.o.f. in
Ref. [11] gave only one extra d.o.f. in arbitrary dimension.
More evidence that speaks in favor of only one d.o.f. can be
found in Ref. [26], where the extra d.o.f. was identified
with a scalar field which partially determines the orienta-
tion of the tetrad field. Other classes of modified tele-
parallel gravities might have a different number of
d.o.f. [41,42].

In what follows we will summarize some key findings
that are essential for the understanding of the counting of
degrees of freedom in f(T) gravity. The notation in what
comes next will be borrowed from Ref. [11]; the reader can
find all the definitions and details there. The constraints of
f(T) gravity can be counted and classified as follows:

“In Ref. [37] the TEGR Lagrangian was expressed in the
form Lger = ET = (1/2)EQ,E}D,E} e etele M, Y, where
Mycett = 2n pelinfle — a5iip/les] 4 855l s the so-
called supermetric.
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(1) One primary constraint G,(,l) coming from the
vanishing of the momentum conjugate to the aux-
iliary scalar field ¢.

(2) n primary constraints G(al) coming from the absence
of OyEf in the Lagrangian (analogous to electro-
magnetism).

(3) n(n —1)/2 primary constraints G(alb) associated with
Lorentz invariance (also appearing in TEGR).

(4) n secondary constraints G,(,z) due to the diffeomor-
phism invariance (same constraints as in GR).
From the whole set of primary and secondary constraints
of the theory, there are only two nonvanishing Poisson
brackets. These correspond to

{(G)(x), G (v)} » Fpb(x —y), (75)
and
(GY(x). G (y)} = Fy(x — y), (76)

where F,,, Fy are

Fo = 4EO;ESef elel,,  Fy=E(T-V'(¢)).  (77)
The functions F';, F'4 are key in determining the number of
physical d.o.f. of the theory. They enter the matrix of
Poisson brackets C;,, so they determine the rank of C;, and
the separation of the constraints into first and second class.
These functions can be arranged to compose a vector F,

F=(F4 For. Foo, s F(n-2)(n-1))
E(FO’FI’FZ’""Fn(n—l)/z)‘ (78)

We also define the vector G,

2 1 1 1
G = (G(<) ), G(()l)’ G((JZ)’ ng)—Z)(n—l))
= (GO’G17G27 ""Gn(n—l)/Z)’ (79)

to write the brackets (75)—(76) in a vector form:

{G(x).GM(y)} ~ F5(x —y). (80)

This vector equation can be “rotated” to have all the

components of F but one equal to zero. In other words,

the constraints G,(llh) and Géz) can be rearranged by linearly

combining them to have all the brackets (75)—(76) but one
equal to zero. Therefore, the brackets (75)—(76) just mean
that one combination of GE};’S and G(()z) will fail to be a

first-class constraint. That combination together with G,(,1>

will make up a (unique) pair of second-class constraints. As
is known, the pairs of second-class constraints count as
individual first-class constraints in the counting of d.o.f.

(35). So, although f(T) gravity in the Jordan frame has

an additional constraint GS,]) compared with TEGR, the
number to be subtracted in the counting of d.o.f. (35) will
not change because one of the first-class constraints of

TEGR has joined Gf,l) to make up a pair of second-class
constraints. Since f(7') gravity in the Jordan frame has an
extra pair of canonical variables (¢, 7), one concludes that
f(T) gravity contains an extra d.o.f. irrespective of the
dimension of the spacetime. The extra d.o.f. is the other
side of the coin of the reduction of the gauge freedom, since
a combination of Lorentz constraints now takes part in a
second-class constraint; thus, it stops generating a Lorentz
gauge transformation. Therefore, the orientation of the
tetrad in f(7) gravity would be partially determined
through the choice of the extra d.o.f. in the initial
conditions. Which combination of Lorentz constraints no
longer generates a gauge transformation will depend on the
value of F for each solution; we just mention that F » will be
dynamically zero [cf. Eq. (46)].

B. Lessons of the toy model for f(T) gravity

Concerning the comparison between the toy model and
f(T) gravity, we see that the Poisson brackets (75) are

analogous to its toy model counterpart {G(!), GS,I)} defined
in Eq. (51). The analogy implies that the functions F,
somehow play a role analogous to zdg/dz — z9g/dz."
While GV corresponds to the rotational gauge symmetry

of the toy model, G((llb) is related to the Lorentz gauge
symmetry of TEGR. Both symmetries will be lost in the
modified models, due to the nonvanishing of the brackets in
Egs. (51) and (75), respectively. However, in f(T) there is
still room for a subset of Lorentz transformations that keep
being a symmetry of the theory; this subset is determined
by the value of the vector F in each solution.

The analogy between z0g/Jz — 70g/0Z and F,, also
appears at the Lagrangian level in the analysis of the
pseudoinvariance of L and Ltgggr = ET. In fact, the change
of L under an infinitesimal rotation of angle a(t) [i.e.,
6z = ia(t)z],

_dg_d . dJ. 99 _ .9
5L5dtdtégdt{m(t)(zéz “az) BV

is governed by z0g/0z —z0g/0z. On the other hand,
the infinitesimal Lorentz transformation of Lypgr can be
obtained from the expression (12), rewritten as Ltggr =
—ER + 20,(ET"). In varying it, we must take into account
that ER is locally invariant under Lorentz transformations

PThe toy model does not have an analogue for the bracket (76)
because it is not invariant under reparametrizations. The repar-
ametrization invariance can be considered by adding a lapse
function N(t) to the set of dynamical variables (see for instance
Ref. [43]).
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TABLE II. Comparison between the modified rotationally pseudoinvariant toy model and f(7) gravity.
Modified toy model Ff(T) gravity

Boundary term Z% + Z-ZZ 17) (ET”)

Poisson bracket {G1 Gg)} _ Z%+ Z—jg {Gyb’ } Fo

Lost gauge symmetry

Degrees of freedom |z|+ scalar field

Rotation in the plane (z, Z)

A linear combination of Lorentz transformations
Two polarizations of g,,+ scalar field

of the tetrad: it depends exclusively on the metric. Then, the
variation of Lyggg is equal to the variation of the boundary
term 20, (ET*), that is

5LTEGR - 258” (ET”) (82)

Since T* is invariant only under global Lorentz
transformations of the tetrad field, Eq. (82) exhibits the
pseudo-gauge-invariance of Ltggr. Let us consider an
infinitesimal local Lorentz transformation of the tetrad in
the a — b plane,

5abEg = —a(t, X)5‘[qal’]b]hEh. (83)

Then the change of 9,(ET") is

8ap0,(ET") = 0, (ES,,T")
= —0,[Eg*e; ( o Epd,a — 5 i EL0,a)]
=0 (Eg”” b hE{/la/Ja)
= 0,(E [aeb]ﬁ a) = al,aaﬂ(Ee’[’ae’;]). (84)

In this calculation we have only kept terms involving
derivatives of the parameter a, because we already know
that Ltggr 1S not sensitive to global Lorentz transforma-

tions [represented by @ = const in Eq. (83)]. 14 Using the
standard formulas 0,E = Ee},0,E], 0,¢; = —e eba Ef, it
is possible to show that

0,(Eef,ey) = 3ED,Efe] ejely. (85)

Comparing with Eq. (77) we see that aﬂ(Ee?ae’Z]) =
—(3/4)F ;. Thus the variation (84) implies that

5abLTEGR = ——800{Fab + 28 0{8 (Ee[a b]) (86)

As seen, both F;, and z0g/0z — Z0g/ 07 play a role in the
pseudoinvariance of Ltpgr and L respectively.

The modified toy model has shown us that two
types of solutions can exist when the original system
possesses pseudoinvariance: the case-(i) solutions where

14Instead, L in the toy model changes even if « is a constant, as
seen in Eq. (81).

the Lagrangian is a constant to be chosen in the initial
conditions (it is the extra d.o.f.), and the case-(iii) solutions
where the extra d.o.f. does not manifest itself since it is
subject to satisfying the condition z0g/0z — Z0g/97 = 0
According to Eq. (81), the case-(iii) solutions are made of
points of the configuration space where the Lagrangian is
invariant rather than pseudoinvariant. Analogously, the
case-(iii) solutions of f(T) gravity do not exhibit the extra
d.o.f. because it is subject to canceling out the F,;’s.
According to Eq. (86), the case-(iii) solutions of f(T)
gravity are made of configurations such that Lyggr is
invariant, rather than pseudoinvariant, under Lorentz
transformations depending only on time [if @ = a(¢), then
SapLrecr = —(3/2)aF 4]

The interest in case-(iii) solutions comes from the fact
that they give new dynamics to the original gauge-invariant
variables; in f(7T') gravity, they are apt to study modified
gravity. In a case-(i) solution, instead, the dynamics for the
components of the metric tensor is the same as in TEGR,
except for the shift of the cosmological and Newton
constants due to the fact that the determinant E is not
encapsulated in the function f.

The previously remarked analogies between the modi-
fied toy model and f(7T') gravity are summarized in Table II.

C. Both types of solutions in flat FLRW cosmology

We will exemplify case-(i) and case-(iii) solutions in
f(T) gravity by revisiting cosmological solutions already
existing in the literature, in the context of flat FLRW
cosmology. The commonly used solution is the diagonal
tetrad in Eq. (15) with T = —6H? [6,7]. It is easy to prove
that all the coefficients F,, are zero, since the tetrad (15)
depends only on time, and F,, just involve spatial
derivatives. This is a case-(iii) solution; therefore, the extra
d.o.f. does not manifest itself.

On the other hand, the tetrad (18) is a case-(i) solution. In
fact, T is a constant 7,; besides some of the F,,’s are
different from zero, namely

4 2
Fy = _§m(t>2 sin 6, Fp = —gm(t)2 cos O cosh 4,

2
Fi, = gra(t)zcosesinh/l (87)

(the rest of the antisymmetric components F,, are zero on-
shell). By replacing the tetrad (18) in the equations of
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motion of f(7) gravity, one obtains that the scale factor
a(t) fulfills the FLRW equations of general relativity with
shifted gravitational and cosmological constants, as shown
in Eq. (21). The extra d.o.f. ¢ = f'(T,) is represented by
T,, which takes part in the tetrad field through the function
A() in the same way that ¢ enters the phase of z in the
case-(i) solutions of the toy model. Equation (87) suggests

combining the constraints Géll), G(()lz) and G(llz) as
1 1
foj = sinh /1G(()12) + cosh /IG(112>,
9(112> = cos 9G811> — 2sin@(cosh /IG(()IZ) + Sinh,l(;i?)’ (88)

to get on-shell

1 1 1 1
{00 (x).G(y)} m Foa(x —y).  {Goy (x).G ()} ~0.
1 1
{917 (x).G (v)} ~0. (89)
Therefore, gé? and G,(,l) make up a pair of second-class

constraints, and the rest of the constraints are first class. Of

course, the second-class sector of the gﬁ}b”s is ambiguous,
because the addition of a linear combination of first-class

constraints to gf)? will not change the result of the previous
Poisson brackets.
We will take advantage of the simplicity of the
case-(i) solution (18) to make some considerations about
the relationship between the extra d.o.f. and the remnant
gauge invariance. No local Lorentz transformation of the
tetrad can modify the metric (2)—(4). But it could affect the
f(T) dynamics, since it will produce one of the following
results:
(D It affects the value of T'; T is no longer a constant, so
the transformed tetrad is not a case-(i) solution [it
could be a case-(iii) solution or not a solution at all].
(IT) It affects the value of T; T turns to be a different
constant, so the transformed tetrad is another case-
(i) solution because the extra d.o.f. has changed
its value.

(II) The (constant) value of T is not affected; the local
Lorentz transformation is a remnant gauge symmetry.

To exemplify these situations, let us show two local
Lorentz transformations of the tetrad (18) that do not
change the value of 7' (remnant symmetries):

(1) A rotation in the (E?, E?) subspace [the local parameter a(x) is completely free],

E’ = cosh Adt + sinh Aa(7)dr,

E! = sinh Adt + cosh Aa(t)dr,
E? = a(t)r(cos a(x)df + sin a(x) sin 0de),

E? = a(t)r(—sina(x)d0 + cos a(x) sin 6de). (90)

(2) A boost along the ¢ direction [the local parameter f(x) cannot depend on ¢ in order to keep the value 7 = T,]:

E° = cosh (x)(cosh Adt + sinh a(t)dr)+ sinh f(x)a(t)r sin Ode,
E? = sinh 8(x)(cosh Adt + sinh Aa()dr) + cosh B(x)a(t)r sin Od¢. (91)

E? = a(t)rdé,

The tetrads (18), (90) and (91) represent different
gauges for the same solution of f(7T) gravity, since they
share the value T =7, of the extra d.o.f. They can
be distinguished by looking at non-gauge-invariant
quantities, like the torsion vector 7# and the axial vector
A, = Ee,,;,T".P

On the other hand, a boost along the r direction—the
transformation associated with Géll)—is able to change the
value of the constant T,, thus passing to a different
case-(i) solution. In fact, a boost along the r direction will
leave the tetrad (91) unchanged, except for the replacement

At,r) = At r) +7(x), (92)

where y(x) is the parameter of the boost. Therefore:

“However the divergence of T* is a gauge-invariant quantity
because it directly relates to T [see Eq. (82)].

E! = sinh Adt + cosh Aa(t)dr,

(I) If the parameter y(x) is arbitrary, then 7 will no
longer be a constant. So the transformed tetrad will
not be a case-(i) solution.

II, IIT) If the parameter y(x) has the form

y(x) = W(ra(r)) —%ra(t)tATo, (93)

then the transformed tetrad will be a case-(i) solution with a
different value of the extrad.o.f.: T =T, + AT,. Thus, the
function a(z) will evolve with other effective cosmological
and Newton constants.

V. MODIFYING A HIGHER-ORDER
MECHANICAL SYSTEM WITH
ROTATIONAL INVARIANCE

A. Rotationally invariant higher-order Lagrangian

In this section we will study another toy model and its
modification, in order to show a qualitatively different
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mechanism for the generation of an extra degree of free-
dom. The idea is to mimic the Einstein-Hilbert Lagrangian
which is composed of terms that are invariant under local
Lorentz transformations in the tangent space (they depend
just on the metric), but it exhibits a second-order boundary
term to guarantee the invariance under local diffeomor-
phisms. So let us introduce a second-order Lagrangian
displaying invariance under local rotations:

d 2 A
L —2<E\/z_z'> - U(zZ) + A7 4277 427)

=2 (% \/z_z> 2— U(zzZ) + % (AzZ). (94)

The last term is a total derivative which does not enter the
Lagrange equations, so the dynamics is still governed by
the equations (62). However the presence of second
derivatives in the Lagrangian implies the wuse of
Ostrogradsky’s procedure to introduce the Hamilton equa-
tions; namely, we have to define momenta associated with
both canonical variables z and Z = z:

OL oL

0z  0i
OL daL 1d

z = Z,

=——-—— Az
p: 0;  dt0; zdt 4 () + AL (95)
OL 8L
P; =— = z,
(9Z 82
OL doL 1 d
SR T W E di (z2) +Az. (96)

—AZ)-z(p.—AZ), Gy =P,-Az
=P, — Az, (97)

that commute, since

{G“),G(Zl)} =0, {GV.G

N
\,:/
I
L

The canonical Hamiltonian is
H(Zyz_vzvz9 pzs szPZ9PZ)
— 7P, +ZP;+ip, +5p.— L

= L ep. - AZ) + 2(p: -

822 AZ)? + ¢U(z2).  (99)

The primary Hamiltonian is

H,=H+uGY +uG) +uzGY.  (100)
As already expected, there is not a unique way of writing
the canonical Hamiltonian, due to the presence of con-
straints. For instance, we can also write H =Zp, +
Zp:— (222)"Y(2Z + 72Z)* — 2AZZ + U(zZ). However this
apparently simpler form of H will lead to secondary
constraints.

The constraints remain zero when the system evolves,

(1 1
&) = (601, =0,
(101)

G\ = {G<'> H,} =0,
GY ={G)) H,} =0.

So we have three first-class constraints in a phase space of
dimension eight. The reduced phase space has dimension
two, which means one degree of freedom.

B. Modified rotationally invariant
higher-order Lagrangian

Let us deform the theory by replacing the invariant
higher-order Lagrangian with a function of itself,

L= f(L), (102)

which is dynamically equivalent to the Jordan-frame
representation that includes an additional dynamical var-
iable ¢:

L=¢L-V(p). (103)

Again we apply Ostrogradsky’s procedure. We will intro-

duce not only the variable Z = z, but ® = ¢ as well. Thus
the canonical momenta are

_oL oL

=0, r=——-———=0, (104)
T ob 0 op drod
The secondary constraints will be
@=gn_Z P N )
G? =G (zpz—zZ)—;(p;—zZ),Gz =G,
. Z+7Z
=-p +AZ+Z te G<2> EG(Z>
z
Z+z7
=-p;: +AZ+ < :Z

The constraints G<Zl>, G(ZI), G(ZZ) , and G(;) are nothing but the

2)

definitions of P, Pz, p., and p.. Besides G(ZZ), G(Z are not

linearly independent of G(; in fact, it is G = 2G5 — zG3.
This nonindependence is an additional ingredient for the right
counting of the degrees of freedom. The secondary constraints
should prove to consistently evolve, which could lead to tertiary
constraints.
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oL oL oL dOL $d, _ .
YT oz 07 AL b= "wo: ~ Zar (22) + $pAZ - pAZ,

oL oL oL doL ¢d .
P,="S="C=¢A =2 - S22 =05 (22) + gAZ - Az
£ o7 0% Pz P2="5z " a1 0% z‘dt(zz)ﬂbZ Az

The Poisson brackets are

(GH.¢Py=0,  {GH,¢Vy=0. {GW.GYy=0, {GV.GM} =A(zz-z2),

1 1 1 1 1 1 -
6.6 =0,  {6Y).cYy=0, {G)).GV}=-az

6.6 =0, {G)).¢" =-4z, {GY).G6}1=o0.
The canonical Hamiltonian is'’
H(2.2.2. 2., ®. p.. p. Py Pz, 2. 11) = OI + pu + ZP, + ZP; + ip. + ip- — L

1

= 89 [2(p. — PAZ) + Z(p: — PAZ) + 20AzZ)> — PA(ZZ + 2Z) + pU(22) + V().

However ® = ¢ can be solved from the definitions of Dz Dz as

© = = AP ADZ) ~ 2Ups ~ APZ) + 2422 + 22)
e 2AzZ '

So, on the primary constraint surface the canonical Hamiltonian can also be written as
H = _i (zZ + ZZ)Z + Z(pz _A¢Z_) + Z_(Pz‘ _A¢Z>
5.7

= (2Z + 2Z) + QU(zZ) + V(¢h).
zZ 277

The primary Hamiltonian is
H, = H+uGY + u Gy + uzGY) + 1, G + uyGY.
The consistency equations are
GV = {GV, H,} = A(zZ — ZZ)(® — u,),
Gy ={G,) . H,} = AZ(® - u,).
GY ={G)) H,} = Az(® - u,),

"Notice that the definition ® = ¢ is necessary to write 7 in terms of canonical variables.

084017-15

(105)

(106)

(107)
(108)

(109)

(110)
(111)

(112)

(113)

(114)

(115)

(116)
(117)

(118)



RAFAEL FERRARO and MARIA JOSE GUZMAN

PHYS. REV. D 101, 084017 (2020)

where @ is given by Eq. (114), and

14+A
277

G ={G H,} =

(1 1
G\ = (G, H,} =0.

Thus, no secondary constraints will appear, since the
consistency can be managed by properly choosing the
Lagrange multipliers. From the algebra (110), (111), and

(112) we recognize one first-class constraint Gg ) (so up
will be left as a free function of 7). Among the other four
Lagrange multipliers only two of them seem to have been
determined: u,(t) = ®(¢) (however the evolution of ® is
not determined by the Hamilton equations!), and some
combination of u, uz, and u; that makes the result (119)
zero. Therefore, four Lagrange multipliers would be left
free, which would imply that the evolution of four of the six
variables z, 7, Z, Z, ¢, ® are not determined by the
Hamilton equations. The fact that some of the Lagrange
multipliers u, uy, uz;, u, are not determined by the

(1)

consistency equations means that the set G(l), G(Zl), GZ ,

Gg,l) involves first-class constraints. In fact, the matrix

0 0 0 -A(zZ-122)
0 0 0 -Az
D oy _
G G\ =
6.6, 0 0 0 -Az
A(zZ-37Z) Az Az 0
(121)

has rank 2; thus, by combining rows, we can make two of
them zero. Concretely, the constraints can be combined to
yield

G = (c+2)6V - (2~ 22)(Gy + GY).

Qé” = ZG(ZI) -GV,
GV =6V +z6
gé(lw _ thl).

N

)

’

N

(122)

Thus, the algebra (110), (111), and (112) is replaced by

00 O 0
00 O 0
M g
g = 123
{67973 0 0 0 —24zZ (123)
0 0 24zz O
Therefore the first-class constraints are gﬁ”, Qél), GI(TU,

and the second-class constraints are gg”, gg” = G,(,1>.

(2Z+2Z)? = U(zZ) = V'(¢p) — uA(ZZ — zZ) + A(Zuy + zuz),

(119)

(120)

[

Then 3+ 1 degrees of freedom are removed from the
canonical variables z, 7, Z, Z, ¢, ®. Two genuine degrees of
freedom are left. This toy model can be regarded as an
analogue of f(R) gravity. The extra d.o.f. is then analogous
to the well-known propagating extra d.o.f. that results from
the trace of the modified Einstein equations in f(R) gravity.

VI. CONCLUSIONS

In order to better understand the nature of the extra
degree of freedom in f(7') gravity, we have developed in
Sec. Il a toy model endowed with local rotational
pseudoinvariance, that mimics the pseudoinvariance of
the TEGR Lagrangian under local Lorentz transformations
of the tetrad field. The nonlinear modification of this
system can then be taken as an analogue of f(T) gravity.
We have shown that the nonlinear modification of a
pseudoinvariant system leads to two different scenarios.
In general, one extra d.o.f. should be expected due to
the loss of the local rotational pseudoinvariance in the
modified system. In the so-called case-(i) solutions, the
extra d.o.f manifests itself as a constant of motion affecting
the phase of the dynamical variable z; it does not influence
the gauge-invariant variable |z|, which evolves under the
dictates of the (unmodified) original Lagrangian. The other
scenario relates to the case-(iii) solutions, which make
the modified dynamics work as if they come from an
invariant Lagrangian [i.e., as if they were case-(ii) solu-
tions]. These solutions do not exhibit an extra d.o.f., but
they do exhibit a heavily modified dynamics for the gauge-
invariant variables.

The counting of the number of d.o.f., both for the toy
model (Sec. III) and f(T) gravity (Sec. IV), relies on the
Dirac-Bergmann formalism for constrained Hamiltonian
systems, which has been designed to identify the con-
straints that generate gauge transformations, and to separate
the spurious d.o.f. We have summarized the qualitative
features of the toy model and TEGR in Table I; the same
comparison between the modified toy model and f(7)
gravity is found in Table II. In both models, the distinctive
feature is the deformation of the constraint algebra due to
the loss of the pseudoinvariance. As a consequence, a
subset of the Poisson brackets of the constraint algebra
becomes different from zero; however, they could remain
zero on some trajectories of the phase space, which is the
key for the branching of the solutions into case (i) and case
(iii). In the case-(i) solutions of f(7T') gravity, the scalar

084017-16



PSEUDOINVARIANCE AND THE EXTRA DEGREE OF FREEDOM ...

PHYS. REV. D 101, 084017 (2020)

torsion 7 is a genuine d.o.f. that behaves as a constant of
motion. The dynamics of the original gauge-invariant d.o.f.
(the components of the metric tensor) is dictated by the
equations of TEGR (however the cosmological and Newton
constants are shifted as a consequence of the role of E in the
Lagrangian density). In the case-(iii) solutions the con-
straint algebra becomes (on-shell) trivial; the extra d.o.f.
does not manifest itself but the metric gets a modified
dynamics. Some remnant gauge symmetry can be left in
both cases, since TEGR comes not with one but six local
Lorentz pseudoinvariances (in n = 4 dimensions). We have
exemplified the two different scenarios in the context of a
FLRW flat cosmology. The present analysis strongly
suggests the study of the branching of solutions to f(7T')
gravity in cases other than the cosmological one. Some
other examples of solutions with 7 = const in modified
teleparallel gravity have been documented in Refs. [32,44—
48]. Naturally, the toy model cannot cover all the features
of f(T) gravity. The toy model is a mechanical pseudoin-
variant system, whereas f(7) gravity is a field theory.
Because of this reason, there could still be room for f(7)
solutions exhibiting the extra d.o.f. but having 7' different
from a constant. The point is that 7" should not evolve, as
shown by the toy model, so we could consider solutions
whose T only depends on the spatial coordinates. Such
solutions could exhibit both the extra d.o.f. and an effect of
modified gravity at the level of the metric tensor. In this
regard, the study of exact wave solutions to f(7') equations
might be a fertile arena for future research.

Finally, in Sec. V we have contributed to deepening the
comparison between f(R) and f(T) gravity by introducing
a toy model that is intended to mimic f(R) gravity. This
model is invariant under local rotations; thus its nonlinear
modification does not entail the loss of a local symmetry.
However, the model comes with a second-order boundary
term, which will be encapsulated in the function f of the
modified dynamics. Thus, fourth-order Lagrange equations
have to be expected for the modified dynamics, which will
cause an extra d.o.f. This toy model is a good analogue of
f(R) gravity because the Einstein-Hilbert Lagrangian is
made of terms that are separately invariant under local
Lorentz transformations of the tetrad (they depend just on
the metric). Besides, it includes an inoffensive second-order
boundary term that is needed to achieve the invariance
under local diffeomorphisms. As is well known, f(R)
gravity possesses a propagating extra d.o.f., whose dynam-
ics is governed by the trace of the modified Einstein
equations. This fact seems to constitute a remarkable
difference when compared with f(7) gravity.
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